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Abstract

We develop a generalized polarization index of income distribution to measure social unrest

and test two hypotheses: for a given income inequality, polarization captures reduced

between-group income mobility raising crime incentives; for a given mobility, the poor feel

more alienated against the rich than vice versa. We design the index to allow for asymmetric

feeling of alienation and derive its asymptotic properties. Fixed-effects estimates show that

the polarization index is significantly correlated with crime rates whereas the Gini index

is not; placing more weight on the alienation felt by the lower-income class increases the
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1 Introduction

It is commonly thought that income inequality and crime are positively correlated. Standard

economic models in the tradition of Becker (1968) imply that, as the income distribution

gets more unequal, the gap between the benefits and costs of crime widens and thus the

incentive for (property) crime becomes higher. The sociological theory of relative deprivation

emphasizes that social tension increases as the poor feel more inferior to the rich, resulting

in higher crime rates (e.g., Merton, 1968; Blau and Blau, 1982). Although these theories are

compelling, the existing empirical evidence is mixed at best. While most cross-sectional studies

conclude that inequality leads to crime (see, e.g., the survey by Demombynes and Özler, 2005),

these findings may be subject to an omitted variable bias problem, as they do not control for

unobserved heterogeneity that is possibly correlated with inequality. Studies analyze panel

data to control for unobserved fixed effects, but often find no significant relationship between

income inequality and crime (e.g., Freeman, 1996; Doyle, Ahmed and Horn, 1999; Kelly, 2000;

Fajnzylber, Lederman and Loayza, 2002; Demombynes and Özler, 2005).

We argue in this paper that the empirical literature does not generate robust results because

common income inequality measures such as the Gini coefficient do not adequately account for

the effects of between-group income mobility that individuals experience over their lifetimes.1

In this paper, we emphasize the bipolarization aspect of income distribution as an important

determinant of individual crime behavior. As pointed by Wolfson (1994) and Esteban and Ray

(1994), two income distributions with the same level of inequality can have different degrees

of bipolarization. Conventional inequality measures describe the overall dispersion of income

distribution, and they are used to represent an individual’s relative social status as an indicator

of unhappiness at a point in time (e.g., Alesina, Di Tella and MacCulloch, 2004). In contrast,

bipolarization of income distribution emphasizes within-group clustering as well as the distance

between different income groups (e.g., Esteban and Ray, 1994; Esteban, Gradin and Ray, 2007).

It thus can capture the phenomenon of the disappearing middle class and formation of two

1Examples include the Gini coefficient (e.g., Ehrlich, 1973; Blau and Blau, 1982; Fajnzylber, Lederman,

Loayza, 2002), the proportion of the population below a certain percentage of the median income (e.g., Nilsson,

2004; Bourguignon, Nunez, and Sanchez, 2003), and the mean log deviation as a special case of a generalized

entropy measure (e.g., Demombynes and Özler, 2005).
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segregated income classes, which naturally have a strong implication for between-group income

mobility. Even for a given level of overall income inequality, in a society with lower income

mobility, the poor have more dismal prospects for the future (i.e., lower expected lifetime

income) and feel more deprived than those in a society with higher mobility. In the special

case of a society with zero mobility between different income groups, the only way of joining

the higher income group is to supply labor in the illegal labor market. Income bipolarization

thus properly reflects the level of social unrest, and is expected to explain the crime rate better

than simple inequality measures.

However, the income bipolarization index developed by Esteban and Ray (1994) and Es-

teban, Gradin and Ray (2007) does not explain the crime rate effectively because it does not

reflect heterogeneity among different income groups. Specifically, it does not consider asymmet-

ric psychological aspects between the poor and the rich. Degrees of alienation or antagonism

are generally different between the low- and the high-income classes, and such difference affects

the asymmetry in crime incentives of different income groups. We develop a bipolarization in-

dex that properly allows for such asymmetric degrees of alienation so that it will explain the

crime rate more effectively.

The main contributions of this paper are three-fold. First, we develop a more general mea-

sure of income polarization that accounts for both between-group mobility and asymmetric

antagonism between different income groups. It thus measures the level of underlying social

unrest more effectively compared to existing inequality or polarization indices, particularly in

explaining negative social consequences like crime. Importantly, this new measure nests ex-

isting measures as special cases (e.g., Gini coefficient and polarization index by Esteban and

Ray, 1994). Second, we derive the asymptotic distribution of the new measure so that stan-

dard statistical inferences can be made, and develop an easy-to-implement variance estimation

algorithm. Despite the repeated reports that income distribution has become more bipolar-

ized (e.g., Esteban, Gradin and Ray, 2007), few empirical studies provide formal statistical

conclusions due to the fact that the indices they examine lack theoretical distributions. The

asymptotic result is readily applied to existing indices because the new index nests existing
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measures as special cases. Third, we empirically verify the relationship between this new mea-

sure and crime rates. Analysis based on panel data sets at the country level and the U.S.

state level reveals that when both the Gini and the bipolarization indices are included in the

regression model, bipolarization significantly raises the crime rate whereas the Gini index does

not. We also find that our generalized bipolarization index has more explanatory power when

a heavier weight is placed on the feeling of alienation of the lower income class.

The remainder of this paper is organized as follows. Section 2 develops a new bipolarization

index to represent the level of social unrest or aggregated effective antagonism in a society. The

asymptotic distribution of the index and an easy-to-implement jackknife variance estimation

algorithm are also obtained. A description of the data, the estimation method, and empirical

findings are presented in Section 3. Section 4 concludes the paper by summarizing the main

results.

2 Measuring Social Unrest: Generalized Polarization Index

2.1 Generalized Polarization Index

We assume that a set of individual income data {}=1 is a random sample from an underlying
distribution  (), whose support is given by [min max] with 0  min  max  ∞. We
consider  number of pre-specified and disjoint intervals [−1 ) for  = 1 2 · · ·  and

2 ≤  ≤ . Without loss of generality, we let min = 0  1  · · ·  −1   = max

and define the last interval [−1  ] to be closed. The number of intervals, , is given and

it is assumed to be fixed (i.e., not growing with ) and small (e.g.,  = 2 in the context of

bipolarization). In each interval  = [−1 ), we define the population fraction  and the

group mean  as

 =

Z 

−1
 () and  =

1



Z 

−1
 () ,

where we assume that   0 for all . It follows that
P

=1  = 1 and the overall mean is

defined as  =
P

=1  =
R
 (). Note that the group means are in ascending order by

construction so that    if   .
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Figure 1: 
¡
 − 

¢
describes asymmetric alienations of group 

We define the polarization index P as

P ( ) = 1

2

X
=1

X
=1





¡
 − 

¢
, (1)

where 0 ≤  ≤ 12 and  ≥ 0 are parameters chosen by a researcher. Here  () =

2 ( − I {  0}) represents the between-group alienation measure, which depends on the
income distance between different income groups. I{·} is the binary indicator.   0

represents the (relative-) identity measure of group , where  is the weight placed on the

identity measure relative to the alienation measure. Similar to Esteban and Ray (1994), there-

fore, P ( ) combines the following two concepts: within-group identity and between-group
alienation. Note that if  = 12 (and thus  () = ||) and  = , then the polariza-

tion index P ( ) in (1) is the same as the index developed by Esteban and Ray (1994),
 () = (1)

P
=1

P
=1 

1+
 

¯̄
 − 

¯̄
. Furthermore, if  = 12 and  = 0, then the

index becomes the Gini index for grouped data.2

2 It is worth noting that P ( ) satisfies the axioms of polarization by Esteban and Ray (1994), pro-
vided 0   ≤ 16. It is because P ( ) conforms to the general form of the index satisfying the axioms,




=1



=1 I ()A

 


for some constant , if the identity function is defined as I () =  and

the alienation function as A   = 

 − 


.

4



To be more specific, we formulate between-group alienation as


¡
 − 

¢
= 2

¡
 − 

¢ ¡
 − I©  

ª¢
, (2)

which is more general than  () in the sense that we allow for asymmetric feelings of

alienation, with the degree of the asymmetry being determined by the value . Specifically,

since we let 0 ≤  ≤ 12, the lower income groups feel more alienated from the higher income

groups than vice versa. The asymmetry gets more severe as  goes to zero; a lower  can

be understood as a relatively higher level of antagonism of the low income group compared

to that of the high income group. As an extreme case, if  = 0 then the richer groups do

not feel any alienation against the poorer groups. If  = 12 then the degree of alienation

is symmetric between the groups, which corresponds to the existing polarization indices (e.g.,

Esteban and Ray, 1994) and income inequality measures. Different from the existing income

polarization indices, therefore, the polarization index P ( ) reflects not only the between-
group income distance but also the asymmetry in the antagonism each group has against the

others. Figure 1 depicts ( − ), where the absolute value of the slope determines the

degree of the asymmetric alienation of group  to different income-level groups. Note that

the parameter of asymmetric feeling of alienation, , is different from the inequality aversion

parameter in Atkinson’s index (Atkinson, 1970) or generalized entropy index (Cowell and

Kuga, 1981; Shorrocks, 1984); the latter measures the overall (and thus symmetric) inequality

aversion level whereas the former measures the asymmetric inequality aversion levels in each

direction.

For the within-group identity parameter , we assume that the degree of group-identity is

positively affected by the group size as in the Esteban-Ray type indices but is inversely related

to within-group relative income dispersion. More precisely, we let

 =


()
, (3)

where  is the Gini index of the entire population and  is the Gini index of the income
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distribution over the interval . In this specification, within-group identity gets larger either

when the population share of group  increases or when the relative dispersion of the within-

group income distribution of group  decreases. The population proportion  reflects the

majority or minority of the group in the society. An individual feels the income class separation

more as a social structural problem when the population proportion of the income group

that she belongs to gets larger. The relative dispersion of group , , represents the

degree of clustering of individuals’ income levels in group  around its group mean. An

individual identifies more with her group members as within-group income levels become more

similar. Note that the relative dispersion measure () is more meaningful than the absolute

dispersion measure () since changes in  also alter the overall income inequality level .

The forms of between-group alienation (
¡
 − 

¢
) and within-group identity () sup-

port the idea that the generalized polarization index P ( ) represents the level of social unrest
(or the level of total antagonism) implied by income distribution more effectively than existing

indices, such as Esteban and Ray (1994) or Esteban, Gradin, and Ray (2007). Specifically,

P ( ) allows not only for asymmetric degrees of alienation among different income groups
but also for a more plausible identification function.

From (2) and (3), we can readily obtain an estimator for P ( ) in (1) using proper
estimators for    ( = 1 2 · · · ) and  as

bP ( ) = 1

2

X
=1

X
=1

bb Ã bb b
!


¡
 − 

¢
, (4)

where

b = 


=
1



X
=1

I { ∈ } ,  =
1



X
=1

I { ∈ }

and  = (1)
P

=1  with  being the number of observations in the interval . Recall

that b =
¡
1(2

2
)
¢P

=1

P
=1 | −  | I { ∈ } I { ∈ } is the Gini coefficient for

group  and b = ¡1(22)¢P
=1

P
=1 | −  | is the standard Gini coefficient for the entire

income distribution. Since  is assumed to be fixed and independent of , we can assume that

 →∞ for all  = 1 2 · · ·  as →∞ without loss of generality. Therefore, for each given
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( ), the consistency of bP ( ) for the true polarization index P ( ) readily follows by
applying the continuous mapping theorem, since all the individual estimators are consistent.

Remark 1 In the polarization index  () by Esteban and Ray (1994),  measures the

feeling of identification each individual has toward her own group members. In comparison,

our new polarization index P ( ) considers not only the ‘size effect’ () but also the relative
‘clustering effect’ () in measuring the degree of within-group identity. In this regards, it

can be understood that the extended polarization index by Esteban, Gradin and Ray (2007)

also considers the group clustering effect implicitly, though such a point is not discussed in their

paper. Note that their extended index is defined as  ( ) =  () −  , where

( 0) is some arbitrary weight parameter (often  = 1) and  is the error in approximating

the continuous Lorenz curve by -piecewise linear functions.  gets smaller as within-group

income distributions become more clustered around their group means. Some distinctions,

however, are noticed between P ( ) and  ( ). First, P ( ) considers relative
clustering whereas  ( ) considers absolute clustering. Second, P ( ) constructs the
identity function of each group using its own clustering effect whereas  ( ) combines

all the clustering effects to form the overall approximation error. Third, it is known that the

arbitrariness of an additional parameter  could generate some undesirable properties. For

example,  ( ) could be negative or it could violate one of the axioms in Esteban and

Ray (1994). The index could even decrease when the between-group distance increases (e.g.,

Lasso de la Vega and Urrutia, 2006). In contrast, P ( ) satisfies all the axioms in Esteban
and Ray (1994) since the structure of the index remains the same as also noted in footnote 2.

Remark 2 To estimate the polarization index, it is required that the intervals  = [−1 )

are pre-determined. Even when the number of intervals  is chosen, finding the cutoff points

{}−1=1 is still a difficult problem (e.g., K-means clustering algorithm; Hartigan and Wong,

1979). To solve this problem, Esteban, Gradin and Ray (2007) employ Aghevli and Mehran

(1981)’s method of optimal grouping for a given . The idea is that one minimizes the sum of

within-group income dispersions (e.g., the mean difference) with respect to the optimal cutoff
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points. Geometrically, this method corresponds to approximating the continuous Lorenz curve

by piecewise linear functions and finding the optimal cutoff points that minimize the overall

approximation error. When we consider the bipolarization index, in particular, the number

of intervals is fixed as  = 2 and we only need to choose one cutoff point ∗1 (= ∗), which

separates the entire income distribution into two. Aghevli and Mehran (1981) show that the

optimal cutoff point is the population mean (i.e., ∗ = ) in this case.

2.2 Asymptotic Distribution of Bipolarization Index

Despite the repeated reports that income distribution has become more bipolarized, few stud-

ies provide formal statistical conclusions due to the fact that their indices lack theoretical

distributions. This subsection derives the asymptotic distribution of the generalized index es-

timator bP ( ) to facilitate further statistical inferences for the index. Note that this new
index is general enough to include the existing Esteban-Ray type indices as special cases. The

statistical results below can thus be directly applied to those indices. In what follows, we focus

on the income bipolarization, which considers the case of  = 2. The results can be readily

generalized to the cases of   2. More precisely, for a given threshold ∗, the bipolarization

index is defined as

B ( ) =
1

2

2X
=1

2X
=1



µ




¶


¡
 − 

¢
=

2 − 1


12

∙
(1− )

µ
1

1

¶

+ 

µ
2

2

¶¸

for 1  2 by construction. Similarly as
bP ( ), its consistent estimator can be obtained as

bB ( ) =
2 − 1


b1b2 "(1− )

Ã b1b1 b
!

+ 

Ã b2b2 b
!#

(5)

=

µ
1− 1



¶b1 b ∙(1− )

µ b1b1
¶

+ 

µ
1− b1b2

¶¸
.

We let b = −2
P

=1

P
=1 | −  | be the standard mean difference coefficient and b =b = −1 −1

P
=1

P
=1 | −  | I { ∈ } I { ∈ } be the sub-group mean difference co-
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efficient for all   = 1 · · · . It holds that b =P
=1

P
=1 bbb (e.g., Dagum, 1997) and

 =
P

=1 b. Then, bB ( ) in (5) can be rewritten as
bB ( ) = (2 − 1) b1b2

(b11 + b22)1+ ¡b21b11 + 2b1b2b12 + b22b22¢
½
(1− )

µb11b11
¶

+ 

µb22b22
¶¾

since b = b2 and b = b2 for each  = 1 2. In order to derive the asymptotic

distribution of bB ( ), we introduce the following -statistics for some given cutoff point ∗:
1 = −1

P
=1 I { ≤ ∗}

2 = −1
P

=1 I { ≤ ∗}
3 = −2

P
=1

P
=1 | −  | I { ≤ ∗} I { ≤ ∗}

4 = −1
P

=1 I {  ∗}
5 = −1

P
=1 I {  ∗}

6 = −2
P

=1

P
=1 | −  | I {  ∗} I {  ∗}

7 = −2
P

=1

P
=1 | −  | I {  ∗} I { ≤ ∗} ,

where denoting

1 =
R ∗
−∞  () =  (∗)

2 =
R ∗
−∞  ()

3 =
R ∗
−∞

R ∗
−∞ | − |  ()  ()

4 =
R∞
∗  () = 1−  (∗)

5 =
R∞
∗  ()

6 =
R∞
∗
R∞
∗ | − |  ()  ()

7 =
R ∗
−∞

R∞
∗ | − |  ()  () ,

1 2 · · ·  7 are consistent estimators of 1 2 · · ·  7, respectively. Theorem 7.1 of Hoeffd-

ing (1948) gives joint asymptotic distribution of 1 2 · · ·  7 as follows.

Lemma 1 Let {}=1 be i.i.d. with continuous distribution  () and finite variance. If

1 2 → ∞ as  → ∞ and    (∗)  1−  for some  ∈ (0 1), then the joint distribution
of
√
(−) for  = 1 2 · · ·  7 tends to the 7-variate normal distribution as →∞ with
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zero mean and covariance matrix Σ given by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 (1− 1) 2 (1− 1) 23 (1− 1) −14 −15 −16 −17
2 223 −24 −25 −26 −27

43 −34 −35 −36 −37
4 (1− 4) 5 (1− 4) 26 (1− 4) 7 (1− 4)

5 256 27 (1− 5)

46 467

47

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

2 =
R ∗
−∞ 2 ()− 22

3 =
R ∗
−∞

nR ∗
−∞ | − |  ()

o2
 ()− 23

23 =
R ∗
−∞

R ∗
−∞  | − |  ()  ()− 23

5 =
R∞
∗ 

2 ()− 25

6 =
R∞
∗

nR∞
∗ | − |  ()

o2
 ()− 26

7 =
R∞
∗

nR ∗
−∞( − ) ()

o2
 ()− 27

56 =
R∞
∗
R∞
∗  | − |  ()  ()− 56

67 =
R∞
∗

nR∞
∗ | − |  ()

onR ∗
−∞( − ) ()

o
 ()− 67.

Note that Bishop, Formby and Zheng (1997) consider the joint distribution of 1 2 3;

Lemma 1 extends their result.

Since b1 = 1, b2 = 4, 1 = 21, 2 = 54, b11 = 3
2
1 , b12 = 714 andb22 = 6

2
4 , we can rewrite

bB ( ) as
bB ( ) = 51 − 24

(2 + 5)
1+

(3 + 27 + 6)


½
(1− )

µ
2

2
1

3

¶

+ 

µ
5

2
4

6

¶¾
,

which is consistent for (provided 1 · · ·  7  0)

B ( ) = 51 − 24

(2 + 5)
1+

(3 + 27 + 6)


½
(1− )

µ
2

2
1

3

¶

+ 

µ
5

2
4

6

¶¾
(6)

10



from Lemma 1. Using Lemma 1 above and Theorem 7.5 of Hoeffding (1948), we obtain

asymptotic distribution of bB ( ) as follows.
Theorem 2 Under the same conditions as Lemma 1, we have

√
( bB ( ) − B ( )) →

N (0 B ( )) as  → ∞, where B ( ) = [∇B ( )]0Σ[∇B ( )] and the 7 × 1 vector
∇B ( ) is given by



1+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 + 21 5

−4 − (1 + ) + 2 −4 − (1 + ) 

 − 3 

−2 −2 + 24
1 − (1 + )  1 − (1 + ) + 5

  − 6

2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝ (1− )
¡
2

2
13

¢

¡
5

2
46

¢
⎞⎟⎠

with  = (2 − 1)12.

Proof. From (6), the partial derivative vector is obtained as ∇B ( ), where 3+27+6 = 

and 2 + 5 =  by construction and by letting  ≡ 51 − 24 = (2 − 1)12. Then the

result follows immediately from Lemma 1 above using Theorem 7.5 of Hoeffding (1948). Note

that 1 4  0 since it is assumed that    (∗)  1−  for some  ∈ (0 1), and thus   0

for  = 1 2 · · ·  7.

In some cases, we need to obtain the standard error of the bipolarization index. For example,

when we want to compare bipolarization indices between two different groups or test changes

in bipolarization over time, the standard error is a key ingredient for constructing any test

statistics. The asymptotic variance B ( ) can be consistently estimated using the sample

counterparts of ’s for  = 1 2 · · ·  7 (i.e., their  -statistics, 1 2 · · ·  7), but the cal-
culation is very complicated as appears in Theorem 2. To facilitate the variance estimation

of bB ( ), we propose a subsampling method, specifically the jackknife variance estimation.
The procedure is summarized in detail in the Appendix.
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Some remarks are in order. The Esteban and Ray (1994) index () is a special case

of B ( ) when  = 2 and  = 12. Therefore, the asymptotic distribution in Theorem 2

and the jackknife variance estimation procedure can be easily extended to (). Also note

that, while we consider the case with fixed  but large  asymptotics, Duclos, Esteban and

Ray (2004) derive the asymptotic properties of () under the large  asymptotics.

3 Empirical Evidence

This section empirically verifies that the new bipolarization measure describes well the rela-

tionship with the crime rate that is predicted by theory. More precisely, the goal of the data

analysis is to test two hypotheses: crime rates are better explained by bipolarization than

inequality; low income earners feel more alienated from high income earners than the latter do

from the former, so that placing a heavier weight on lower income earners better explains the

crime rate.

To support the first hypothesis, which reflects the economic aspect of income mobility, we

need to show that the new bipolarization index is significantly associated with crime rates,

controlling for the Gini index and other variables. Based on the Becker model, existing studies

(e.g., Imrohoroglu, Merlo and Rupert, 2000; Kelly, 2000; Fajzylber, Lederman and Loayza,

2002) often interpret income inequality as the difference between the gains from crime and its

opportunity costs (i.e., the net gain from crime). We claim, however, that the net (expected)

gain from crime is better represented by bipolarization rather than inequality. This is so

because the degree of between-group income mobility, which is not fully captured by between-

group income distance itself, is the key aspect in understanding the net gain.

To test the second hypothesis, which reflects the sociological theory of relative deprivation,

we estimate the model for various values of  and show that the new bipolarization index has

more explanatory power as a heavier weight is placed on the poor. However, the rich cannot

be entirely neglected in explaining the crime rate and we expect that there exists an optimal

weight on the poor (i.e.,  between 0 and 05) that best explains the crime rate.
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3.1 Data and Econometric Model

The most challenging aspect of this empirical study is to compute the new bipolarization index

for each unit of analysis in which crime is examined. In particular, the index requires dividing

the sample into the poor and the rich in each unit, and computing various group-level statistics

including the Gini coefficient for each group. For this reason, country level data can be very

useful because the sample size of micro data on individual households is large in general.

On the contrary, differences in the definition of household income often make it difficult

to compare various inequality and polarization measures across different countries. For that

reason, we examine country data from the Luxembourg Income Study (LIS) database, which

includes income micro data from a large number of countries at multiple points in time using

the same definition and components of household income across countries. We use household

disposable income adjusted by the ‘OECD equivalency scale’ (see, e.g., Atkinson, Rainwater

and Smeeding, 1995) and household sample weights.

There is one more advantage of using country data. When the unit of analysis is very

small, the local crime rate does not necessarily reflect the region’s economic conditions. For

example, criminals travel to neighborhoods in search of higher returns (e.g., Demombynes and

Özler, 2005); those who are frustrated in one region move on to another region, where they

have better prospects and thus decide to supply labor to the legal labor market. It generates

geographical interdependence (e.g., Glaeser, Sacerdote and Scheinkman, 1996) that makes the

analysis extremely complicated. However, the crime market can reasonably be assumed to be

closed at the country level in general.

Because our primary goal is not to distinguish empirically between the economic and soci-

ological explanations of the relationship between crime and income distribution, and because

the new bipolarization measure reflects both economic and psychological motives of crime, the

overall crime rate is the relevant variable to be used for the test of hypotheses. Following

Fajzylber, Lederman, and Loayza (2002), however, we primarily analyze violent crime. This is

because property crime categories such as theft and burglary suffer from severe underreport-

ing and their definitions or classifications vary depending on the reliability of each country’s
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judicial system.

To further reduce the potential bias in the results that may arise from using country data,

we select 13 countries in the LIS (Australia, Austria, Canada, Denmark, France, Finland,

Germany, Netherlands, Norway, Sweden, Switzerland, United Kingdom, and United States)

that share relatively similar legal traditions and cultural backgrounds, which allows us to focus

on aspects of income distribution as a potential crime determinant. The final sample includes

68 country-year observations for 13 countries, where the sampling frequency is five years on

average and both the 1980s and the 1990s are covered for most countries.

The crime data we use are from the United Nations Surveys on Crime Trends and the

Operations of Criminal Justice Systems (CTS). Regarding other control variables, police size

(POLICE) is imported from the CTS; average years of education (EDUCATION ), percentage

of urban population among the total population (URBAN POPULATION ), and population

density (DENSITY ) come from the World Bank; the proportion of men aged between 15 and

29 among the total population (YOUNG MEN ), unemployment rates (UNEMPLOYMENT ),

and the percentage of tax revenue among gross domestic product (TAX-GDP-RATIO), to be

used an instrumental variable for POLICE, are drawn from the Organization for Economic

Cooperation and Development (OECD).

[Figure 2 is about here]

Figure 2 displays estimated Gini and bipolarization indices for selected countries. Each

country contains four series of indices, Gini and three bipolarization indices for different values

of  = 05, 025 and 0.  is set to be 16. It reveals that Gini and bipolarization indices

have different patterns, although they are related. Focusing on temporal patterns, estimated

Gini and bipolarization indices often move in opposite directions. Moreover, three series of

bipolarization indices for different  values show different temporal patterns for most countries.

Although the main analysis is based on country data, we also look for evidence from

U.S. state-level data to supplement the main results. The Current Population Survey (CPS)

data are used to calculate our bipolarization indices by state and year. Excluding 11 states,

which do not have valid observations for some relevant control variables, we work with annual

14



observations on 40 states from 1991 through 2005. The first year the CPS reports state codes is

1991. Compared with the country level data, U.S. data have the advantage of fairly consistent

definitions of crime categories and similar crime-related legal traditions across different states.

Crime markets are relatively closed at the state level, although less so than at the country level.

As the CPS does not report disposable income, before-tax-transfer income is used, although the

former is more relevant for crime behavior. The final sample consists of 600 state-year balanced

observations for 40 states. The crime data, along with police size, are directly drawn from the

Federal Bureau of Investigation Uniform Crime Reports for the period of 1991 through 2005.

Among other control variables, DENSITY, YOUNG MEN, and the percentage of those who

have earned bachelor’s degrees or higher among the population over 25 years old, all measured

by state and by year, are drawn from the U.S. Census Bureau; and state unemployment rates

are from the Bureau of Labor Statistics.

For the regression equation, the logarithm of the crime rate is explained by the bipolariza-

tion index as well as other demographic, economic and crime-prevention variables. As one of

the primary goals is to test if crime is better explained by bipolarization than inequality, the

final model includes the Gini index as an additional explanatory variable. In the estimation,

the simultaneity between the crime rate and the crime deterrent variable, police size, is ad-

dressed using instrumental variables described below. Unobservable unit-specific fixed effects

are included in every regression model and 2-step fixed-effects Generalized Method of Moments

(GMM) estimation is applied with Heteroskedasticity and Autocorrelation Consistent (HAC)

standard error estimates.

3.2 Findings

Estimates in Table 1 through 3 are based on country data, while those in Table 4 are obtained

from the U.S. state-level data. For all tables, we let  = 16 and ∗ =  in computing the

bipolarization index. The first three columns of Table 1 report the base model, where only the

conventional Gini and the new bipolarization indices are included to explain the crime rate.

Overall, the bipolarization index explains the crime rate significantly, while the Gini index

15



does not. In addition, the explanatory power of the bipolarization index is higher when a

greater weight is placed on the poor than an equal weight ( = 05). Compared with the case

of  = 025, however, the explanatory power of the bipolarization index is somewhat reduced

when the rich are entirely eliminated in designing our bipolarization index ( = 0).

[Table 1 is about here]

In the last three columns of Table 1, we consider five additional control variables: unemploy-

ment rates, population density, the proportion of the urban population among the total, the

proportion of young men aged between 15 and 29, and the average years of schooling. While

the estimated signs accord with theoretical predictions, the estimated coefficients on these

variables are relatively imprecise. All of the results obtained from the basic model are still

preserved even in the extended model.

Existing studies, on U.S. data in particular, often emphasize the importance of police

activity as a crime determinant, focusing on the effectiveness of crime deterrent efforts measured

by police size, the arrest rate, the imprisonment rate, and so on. Omitting these effects may

bias the estimated coefficients of our bipolarization and the Gini index if the demand for

public safety is correlated with these variables. The only police-related variable available at

the country level is the police size, as measured by the number of policemen per 100,000 people.

Table 2 reports the results with, in addition to the five control variables used in Table 1, the

police size as an additional determinant.

[Table 2 is about here]

Although, for brevity, we report the estimated effects of only the new bipolarization and the

Gini index along with police size, little change occurs on the estimated coefficients of other

control variables in Table 1. In the first three rows, we treat police size as an exogenous variable.

Estimates in the remaining table are obtained by applying the fixed-effects GMM with TAX-

GDP-RATIO as an instrumental variable (IV) for police size. As argued by Cornwell and

Trumbull (1994), countries with residents who have greater preferences for law enforcement

will reveal their preferences by voting for higher tax rates to finance larger police forces.
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Such countries would have larger police sizes for reasons not directly related to the crime

rate. Including police size as an additional exogenous control variable does not change the

estimated coefficients on our bipolarization index and Gini index obtained in Table 1, and the

coefficient on police size appears positive. In the fixed-effects GMM estimates on the last three

rows, however, the estimated effect of police size is now negative, though not significant. Most

importantly, all our previous findings in Table 1 are preserved, whether or not police size is

treated endogenously.

Table 3 shows the results for total crime. Using total crime as a new dependent variable

allows us to use an additional IV for the police variable, CRIME COMPOSITION, which is

also suggested by Cornwell and Trumbull (1994). Crime composition is defined by the ratio of

the number of violent crimes to that of property crimes. While this ratio is not directly related

with the total number of crimes, crime composition is believed to be related with police size.

For example, with the total number of crimes fixed, a greater proportion of violent crimes calls

for more police activity and for more policemen involved.

[Table 3 is about here]

Due to the noise associated with property crime data previously mentioned, the estimated

effects of the bipolarization index are reduced by a large amount, but again all of our previous

results still hold: it is bipolarization and not inequality that matters in explaining crime. This

is more apparent when a greater weight is put on the poor and, for a given level of mobility,

even high income earners contribute to the positive effects of bipolarization on crime to some

degree.

[Table 4 is about here]

Finally, Table 4 shows evidence from the U.S. data. For brevity, we report the results

only for the overall crime rate and the estimated coefficients on the two distribution-related

indices along with police size. Table 4 adopts a similar specification as in Table 3. In this

case, we use the crime composition of a state and a population-weighted average of police sizes

in neighboring states (NEIGHBOR POLICE) as instrumental variables for that state’ police
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size. The fixed-effects GMM estimates show that police size reduces crime significantly in the

U.S. More importantly, despite differences between our country sample and our U.S. sample

(e.g., the frequency of observations and the definitions of household income), the two samples

produce virtually identical results regarding our two main hypotheses.

Although not reporting in separate tables for brevity, we conduct various robustness checks

about the current findings. As for the results in Table 2, we further disaggregate violent crime

into several subcategories (homicide, robbery, assault, and rape) and find very similar results

with robbery, assault and homicide, but not with rape. As for the results in Table 4, separate

analyses for violent and property crimes still give very similar results. Finally, for both the

country and the U.S. state level data, we conduct similar exercises with the dependent variable

replaced by the labor force participation rate and find that the bipolarization index, not the

conventional Gini index, reduces the unit’s labor force participation rate, with other things

being constant.

One consistent pattern we have observed across all the tables, but not explicitly mentioned,

is that the explanatory power of the new bipolarization index is somewhat smaller at  = 0

than at  = 025. This is consistent with our previous conjecture: With the degree of income

mobility being held constant, even high income earners should be considered in designing the

bipolarization index as a crime determinant, although less so than low income earners. This

motivates us to further explore the ‘optimal’ value of  that gives our bipolarization index the

greatest power in explaining crime rates. To that effect, we re-estimate each regression model

in Tables 2, 3 and 4 with the entire set of control variables by fixed-effects GMM, repeatedly

changing the value of  from 0 to 05 by 001. For all cases, the estimated coefficients on the

bipolarization index appears as a concave function of . When country data are used, the

largest coefficient estimate of our bipolarization index is obtained at  = 030 and 032 for

violent and total crime, respectively. For the U.S. data, the global optimum is obtained at

 = 027. Due to the large standard error estimates, however, differences in the estimated

coefficient for different values of  are generally insignificant.
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4 Conclusion

When a person decides whether to supply his labor in the legal or illegal labor market, he

considers his relative position not just in the current income distribution but also in the dis-

tribution of expected lifetime income. While the former is related with conventional static

inequality measures such as the Gini coefficient, the latter is determined by the person’s entire

lifetime income stream and his expected income mobility. Given this perspective, even a low

income earner at a certain point in time would not have high crime incentive if he had better

prospects in the future: if one has a higher expectation of upward mobility, then expected

lifetime income is higher and so is the marginal cost of the crime.

The level of mobility implied by income distribution can be well summarized by income

polarization. The index by Esteban and Ray (1994) or Esteban, Gradin and Ray (2007),

for example, has strong implications on income mobility between groups, although such an

aspect is not explicitly emphasized in their work. They specify that income distribution is

more polarized when either the between-group distance is larger or within-group clustering is

stronger. Increasing bipolarization reflects the phenomena of the disappearing middle class and

the enhanced immobility between groups. However, such an immobility measure only describes

the distributional aspect of the income profile of a society, which naturally assumes that all

income groups are symmetric in the degree of alienation one group feels against the others.

In order to find a more meaningful relation between income immobility and the incentive for

crime, we need to introduce group heterogeneity in the feeling of alienation so that we can

better capture overall level of social tension.

By developing a new polarization measure that accounts for between-group mobility and

asymmetries of antagonism, we show that the bipolarization of income distribution is a cru-

cial aspect in understanding crime incentive. The fixed effects GMM estimates for the cross

country and the U.S. panel data regression models suggest that, while the Gini index (i.e.,

the income inequality measure) is not related with any type of crime, bipolarization signifi-

cantly increases the crime rate. More importantly, consistent with our prediction regarding

asymmetric feelings of alienation between the rich and the poor, the explanatory power of our
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generalized polarization index increases as we put a greater weight on the lower income class.

The asymptotic distribution of the proposed bipolarization index is also derived using

results from U-statistics and an easy-to-implement jackknife variance estimation algorithm is

obtained. As a result, more statistical inferences are expected in the future on cross-country

comparisons or time changes of income polarization.
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Appendix: Jackknife Variance Estimation

This appendix summarizes jackknife estimation of B ( ) in Theorem 2. It is known that

bootstrap variance estimation of the Gini coefficient is still computationally demanding espe-

cially when  is large like the conventional income data. This is still the case for bB ( ) since
we need to calculate the Gini coefficients b and b in each iteration step. On the other hand,

the jackknife variance estimator can be obtained much faster than the bootstrap variance es-

timator once we construct the following efficient algorithm. The main algorithm for the Gini

coefficient part is based on Karagiannis and Kovacevic (2000).

1. Sort the original income data in ascending order and denote them as {}=1; therefore,
the index of  also represents its rank .

(a) Calculate the sample mean  = (1)
P

=1 .

(b) Define  =
P

=1  and  =
P

=+1  for  = 1 2 · · ·   with  = 0.

(c) Then the Gini coefficient can be obtained as b = (2)  ¡2¢− (+ 1) .
2. Group the data in two using a given cutoff point ∗ (e.g., the sample mean ), and let

1 = {|  ∗} and 2 = {| ≥ ∗}.

(a) Since the original data is already sorted in step 1, the data in each group is also

properly ordered. For each group  = 1 2, we let  be the number of observations

in group  and {}=1 be the sorted income data in group . We also denote 

as the rank of ’s in group .

(b) Calculate the group sample proportion b =  and the group sample mean

 = (1)
P

=1 . Also define  =
P

=1  and  =
P

=+1  for

 = 1 2 · · ·   with  = 0.

(c) Then the Gini coefficient of group  can be obtained as b = (2) 
¡


2


¢ −
( + 1) .

(d) Using values obtained in steps 1 and 2, calculate bB ( ) as in (5) for given  and

.

3. From the entire sample, omit the -th observation  ( = 1 2 · · ·  ).

(a) Using (− 1)-number of observations, obtain the new sample mean and the Gini
coefficient as

(−) =
1

− 1 ( − ) and b(−) = 2

(−) (− 1)2
(−  −)− 

− 1 .
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(b) Let

b1(−) =
⎧⎪⎨⎪⎩ (1 − 1)  (− 1) if  ∈ 1

1 (− 1) if  ∈ 2

1(−) =

⎧⎪⎨⎪⎩ (11 − )  (1 − 1) if  ∈ 1

1 if  ∈ 2

2(−) =

⎧⎪⎨⎪⎩ 2 if  ∈ 1

(22 − )  (2 − 1) if  ∈ 2

.

Then the Gini coefficients of group 1 and 2 can be obtained as

b1(−) =

⎧⎪⎨⎪⎩
2

1(−)(1−1)2
(1 − 1 −1)− 1

1−1 if  ∈ 1b1 if  ∈ 2

,

b2(−) =

⎧⎪⎨⎪⎩
b2 if  ∈ 1

2

2(−)(2−1)2
(2 − 2 −2)− 2

2−1 if  ∈ 2

.

(c) Using values obtained in step 3 above, we get bB(−) ( ) as
bB(−) ( ) =

Ã
1− 1(−)

(−)

!b1(−)
"
(1− )

Ã b1(−)b1(−) b(−)
!

+ 

Ã
1− b1(−)b2(−) b(−)

!#
.

4. Iterate step 3 from  = 1 to  and recursively calculate

 = −1 +
− 1


³ bB(−) ( )− bB ( )´2
with 0 = 0. Then,  is the jackknife variance estimate of bB ( ).
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Table 1. Determinants of Violent Crime (cross country data)

Basic Model Extended Model

Variables  = 05  = 025  = 0  = 05  = 025  = 0

BIPOLARIZATION 1.654 11.969∗∗ 7.364∗∗ 0.646 7.469∗ 4.993∗∗

(11.150) (5.026) (2.731) (3.986) (3.519) (2.012)

GINI 1.638 -2.587 0.102 0.342 -2.073 -0.286

(4.916) (2.374) (1.790) (2.094) (1.440) (1.078)

DENSITY − − − 0.023 0.030 0.033∗

(0.022) (0.019) (0.018)

URBAN POPULATION − − − 0.150∗∗∗ 0.122∗∗ 0.113∗∗

(0.037) (0.042) (0.041)

YOUNG MEN − − − 2.038 2.146∗ 2.233∗

(1.178) (1.073) (1.095)

UNEMPLOYMENT − − − 0.025 0.017 0.020

(0.028) (0.028) (0.026)

EDUCATION − − − -0.055 -0.080 -0.100

(0.066) (0.067) (0.064)

CONSTANT -8.006 -6.808∗∗∗ -6.418∗∗∗ -8.006 -6.808∗∗∗ -6.418∗∗∗

(1.452) (1.472) (1.452) (1.452) (1.472) (1.452)

No. of Countries 13

Obs. 68

NOTE: Fixed-effects estimation. Dependent variable = log(number of violent crimes per 100,000 people), where

violent crime includes robbery, homicide, assault and rape.  is the weight parameter in the bipolarization index.

Robust standard error estimates are in parentheses. *, ** and *** means significant at the 10%, 5%, and 1%

levels, respectively.
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Table 2. Determinants of Violent Crime - Consideration of Crime Prevention
Activity (cross country data)

Weight on High Income Group

 = 05  = 025  = 0

Exogenous police size (fixed effects estimates)

BIPOLARIZATION 1.891 8.195∗∗ 5.529∗∗

(4.982) (3.740) (2.122)

GINI -0.743 -2.767∗ -0.750

(2.878) (1.548) (0.949)

log(POLICE) 0.374∗ 0.319 0.287

(0.173) (0.206) (0.213)

Endogenous police size (fixed effects GMM estimates)

Instrumental variable: TAX-GDP-RATIO

BIPOLARIZATION -4.690 11.258 7.598∗∗

(12.258) (7.136) (3.544)

GINI 2.104 -4.757 -1.808

(7.906) (4.033) (2.161)

log(POLICE) -3.235 -3.049 -2.373

(4.209) (4.152) (3.194)

First-stage F-test 0.165 0.042 0.019

No. of Countries 13

Obs. 60

NOTE: Dependent variable = log(number of violent crimes per 100,000 people), where violent crime includes

robbery, homicide, assault and rape. Additional control variables are as in Table 1.  is the weight parameter

in the bipolarization index. Robust standard error estimates are in parentheses. *, ** and *** means significant

at the 10%, 5%, and 1% levels, respectively. ‘First-stage F-test’ gives the p-value.
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Table 3. Determinants of Total Crime - Consideration of Crime Prevention
Activity (cross country data)

Weight on High Income Group

 = 05  = 025  = 0

Exogenous police size (fixed effects estimates)

BIPOLARIZATION 0.270 2.953∗ 1.960∗∗

(2.928) (1.376) (0.742)

GINI 0.305 -0.694 -0.694

(1.846) (0.979) (0.816)

log(POLICE) 0.357 0.351 0.339

(0.251) (0.261) (0.267)

Endogenous police size (fixed effects GMM estimates)

Instrumental variables: TAX-GDP-RATIO

CRIME COMPOSITION

BIPOLARIZATION -2.817 2.381∗ 1.889∗∗

(3.005) (1.332) (0.757)

GINI 2.272 -0.192 0.312

(0.312) (0.814) (0.662)

log(POLICE) 0.374 0.205 0.100

(0.356) (0.393) (0.400)

First-stage F-test 0.000 0.000 0.000

Hansen J-test 0.021 0.030 0.055

No. of Countries 13

Obs. 60

NOTE: Dependent variable = log(total crime per 100,000 people). Additional control variables are as in Table

1.  is the weight parameter in the bipolarization index. Robust standard error estimates are in parentheses.

*, ** and *** means significant at the 10%, 5%, and 1% levels, respectively. ‘First-stage F-test’ and ‘Hansen

J-test’ give the p-values.
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Table 4. Determinants of Total Crime (U.S. state-level data)

Weight on High Income Group

 = 05  = 025  = 0

Exogenous police size (fixed effects estimates)

BIPOLARIZATION -0.242 0.519∗ 0.415∗∗

(0.513) (0.307) (0.191)

GINI -0.816∗∗ -1.459∗∗∗ -1.530∗∗∗

(0.306) (0.302) (0.275)

log(POLICE) -0.095 -0.097 -0.099

(0.072) (0.071) (0.071)

Endogenous police size (fixed effects GMM estimates)

Instrumental variables: log(NEIGHBOR POLICE)

CRIME COMPOSITION

BIPOLARIZATION -0.484 0.595∗∗ 0.494∗∗∗

(0.499) (0.259) (0.166)

GINI -0.436 -1.286∗∗∗ -1.480∗∗∗

(0.318) (0.281) (0.286)

log(POLICE) -0.946∗∗∗ -0.940∗∗∗ -1.392∗∗∗

(0.231) (0.231) (0.263)

First-stage F-test 0.000 0.000 0.000

Hansen J-test 0.234 0.253 0.282

No. of State 40

Obs. 600

NOTE: Dependent variable = log(total crime per 100,000 people). Additional control variables are the ratio

of (the number of young men of age 15-29)/(the total population), state unemployment rates, the population

proportion of college graduates, and population density.  is the weight parameter in the bipolarization index.

Robust standard error estimates are in parentheses. *, ** and *** means significant at the 10%, 5%, and 1%

levels, respectively. ‘First-stage F-test’ and ‘Hansen J-test’ give the p-values.
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Figure 2: Inequality and Bipolarization ( values are in parentheses;  = 16 for all cases)
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