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Basic Notation

positive integers

nonnegative integers

integers

rational numbers

real numbers

complex numbers

the setf1;2;:::;ngforn 2 N (so [0] =)

the group of integers modulm

the nite eld with g elements

cardinality (number of elements) of the nite setS

the disjoint union of Sand T, i.e.,S[ T, whereS\ T = ;
the set of all subsets of seb

the set ofk-element subsets 06

the set ofk-element multisets onS

the vector space with basisS over the eld K

the poset of all subsets off], ordered by inclusion

coe cient of x" in the polynomial or power series (x)
the Kronecker delta, which equals 1 if = ] and O otherwise

the sum of the parts (entries) ofL, if L is any array of nonnegative integers



() length (number of parts) of the partition

p(n) number of partitions of the integern 0



Chapter 1

Walks in graphs.

Given a nite set S and integerk 0, let f denote the set ofk-element
subsets ofS. A multiset may be regarded, somewhat informally, as a set
with repeated elements, such afl; 1; 3; 4; 4; 4; 6; 6. We say that a multiset
M is on a setS if every element ofM belongs toS. Thus the multiset in
the example above is on the s&b = f1; 3;4; 6g and also on any set containg
S. Let E’ denote the set ofk-element multisubsets orS. For instance, if
S = f1;2;3g then (using abbreviated notation),

S S

5 = 11213 23g; , =1f11,223312 13 230:

E = fe; :::; &0 together with a function’ : E ! \; . We think that
if ' (€) = uv (short for fu;vg), then e connectsu and v or equivalently e is
incident to u and v. If there is at least one edge incident ta and v then
we say that the verticesu and v are adjacent If ' (e) = vv, then we calle a
loop at v. If several edge®;;:::;q (j > 1) satisfy’ (e))= =" (g) = uv,
then we say that there is amultiple edgebetweenu and v. A graph without
loops or multiple edges is calledimple In this case we can think ofE as
just a subset of ¥ [why?].

The adjacency matrix of the graphG is thep p matrix A = A(G), over
the eld of complex numbers, whosei(j )-entry a; is equal to the number of
edges incident tov; and v;. Thus A is a real symmetric matrix (and hence
has real eigenvalues) whose trace is the number of loopsdn For instance,
if G is the graph
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A walkin G of length™ from vertex u to vertex v is a sequencey; e;; Vp; &;:::,
V-; e V41 such that:

eachy; is a vertex ofG

eachg is an edge ofG

the vertices ofeg arev; and vj,q,, for1 i
vi=uandv, = V.

1.1 Theorem. For any integer” 1, the (i;j )-entry of the matrix A (G)
is equal to the number of walks fron to v; in G of length".

Proof. This is an immediate consequence of the de nition of matrix oti-
plication. Let A =(a;). The (i;j )-entry of A(G) is given by
. X
(A(G)); = Qi Ay, s

where the sum ranges over all sequences;(::;i- 1) with 1 Ik p.
But since a5 is the number of edges betweew and v, it follows that the
summanda;, a,i, &. ,j in the above sum is just the number (which may
be 0) of walks of length” from v; to v; of the form

Vis€1; Vi, € il Vil s ey,

11



(since there area;, choices fore;, &;,;, choices fore,, etc.) Hence summing

to v;, as desired. O

We wish to use Theorem 1.1 to obtain an explicit formula for tt number
(A(G) ) of walks of length™ in G from v; to v;. The formula we give will
depend on the eigenvalues & (G). The eigenvalues ofA (G) are also called
simply the eigenvalues ofG. Recall that a real symmetricp p matrix M
has p linearly independent real eigenvectors, which can in factebchosen to

orthonormal eigenvectors fotM , with corresponding eigenvalues;:::; .
All vectors u will be regarded agp 1 column vectors. We let' denote trans-
pose, sautisal prow vector. Thus the dot (or scalar or inner) product of
the vectorsu and v is given by utv (ordinary matrix multiplication). In par-

ticular, ufu; = j (the Kronecker delta). LetU = (u; ) be the matrix whose
columns areus;:::; Uy, denotedU = [uy;:::;uUy]. Thus U is an orthogonal
matrix, so 2 3
ut
1
Ut = U 1_ g % .
t
Up
the matrix whose rows areuj;:::;u,. Recall from linear algebra that the

(AG))j =€ 1+ +G

then we have
Ck = Uik Ujk -



8 CHAPTER 1. WALKS IN GRAPHS.

Proof. We have [why?]

Hence ‘ \ )
A =U diag( ;5 JU *
Taking the (i;j )-entry of both sides (and usingu ! = U!) gives [why?]
\ X .
(A)ij = Uk U;
k
as desired. 0

In order for Corollary 1.2 to be of any use we must be able to cqaute the

uj). There is one interesting special situation in which it is at necessary to
compute U. A closed walkin G is a walk that ends where it begins. The
number of closed walks irG of length ~ starting at v; is therefore given by
(A(G) )i, so thetotal number f (") of closed walks of length is given by

xXP

(A(G))i

i=1

tr( A(G) );

fe()

where tr denotes trace (sum of the main diagonal entries). Morecall that
the trace of a square matrix is the sum of its eigenvalues. Ihé matrix M

of closed walks inG of length™ is given by
fe()= 1+ +

We now are in a position to use various tricks and techniquesoimn linear
algebra to count walks in graphs. Conversely, it is sometimepossible to
count the walks by combinatorial reasoning and use the resing formula to
determine the eigenvalues o5. As a rst simple example, we consider the

any two distinct vertices. ThusK, hasp vertices and § = %p(p 1) edges.



1.4 Lemma. LetJ denote thep p matrix of all 1's. Then the eigenvalues
of J are p (with multiplicity one) and O (with multiplicity p 1).

Proof. Since all rows are equal and nonzero, we have radk(= 1. Since a
p p matrix of rank p m has at leastm eigenvalues equal to 0, we conclude
that J has at leastp 1 eigenvalues equal to 0. Since ti) = p and the
trace is the sum of the eigenvalues, it follows that the remaing eigenvalue
of J is equal top. O

1.5 Proposition. The eigenvalues of the complete graph, are as follows:
an eigenvalue of 1 with multiplicity p 1, and an eigenvalue op 1 with
multiplicity one.

Proof. We haveA (Kp) = J |, wherel denotes thep p identity matrix. If

the eigenvalues of a matriXxM are 4;:::; ,, then the eigenvalues oM + cl
(wherec is a scalar) are 1 + c;:::; p+ c[why?]. The proof follows from
Lemma 1.4. O

1.6 Corollary. The number of closed walks of lengthin K, from some
vertexv; to itself is given by

. 1 . .

(A(Kp) )i = 5((p ) +(p 1( D): (1.1)
(Note that this is also the number of sequencés;:::;i-) of numbersl; 2;:::;p
such thati; = i, no two consecutive terms are equal, and 6 i, [why?].)

Proof. By Corollary 1.3 and Proposition 1.5, the total number of clsed walks
in K, of length " isequalto @ 1) +(p 1)( 1). By the symmetry of
the graph K, the number of closed walks of length from v; to itself does
not depend oni. (All vertices \look the same.") Hence we can divide the
total number of closed walks byp (the number of vertices) to get the desired
answer. O

A combinatorial proof of Corollary 1.6 is quite tricky (Exercise 1.1). Our
algebraic proof gives a rst hint of the power of algebra to $ee enumerative
problems.

What about non-closed walks inK,? It's not hard to diagonalize ex-
plicitly the matrix A (Kp) (or equivalently, to compute its eigenvectors), but
there is an even simpler special argument. We have

. X ——
@ = (1~ K J5 (1.2)
k=0
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by the binomial theorem! Now for k > 0 we havelk = pk 1J [why?], while
JO = 1. (It is not clear a priori what is the \correct" value of J°, but in
order for equation (1.2) to be valid we must takel® = |.) Hence

X‘ N
@ = (- K P+
k=1

Again by the binomial theorem we have
@ =S U (I 1.3)
Taking the (i;] )-entry of each side when 6 | yields
(AKD) = S D (D) (14)

If we take the (i;i)-entry of (1.3) then we recover equation (1.1). Note the
curious fact that if i 6 j then

(AKp) )i (A(Kp))y =( 1):
We could also have deduced (1.4) from Corollary 1.6 using

XX

AKp . =pP 1);

1]
i=1 j=1

the total number of walks of length™ in K. Details are left to the reader.
We now will show how equation (1.1) itself determines the esgvalues

of A(Ky). Thus if (1.1) is proved without rst computing the eigenvaues

of A (K,) (which in fact is what we did two paragraphs ago), then we hav

another means to compute the eigenvalues. The argument wellwgive can

be applied to any graphG, not just K,. We begin with a simple lemma.

o =+ (1.5)

Thenr = s and the 's are just a permutation of the 's.

1We can apply the binomial theorem in this situation becausel and J commute If
A and B arep p matrices that don't necessarily commute, then the best we ca say is
(A+ B)2= A%+ AB + BA + B2, and similarly for higher powers.
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Proof. We will use the powerful method ofgenerating functions Let x be a
complex number whose absolute value (or modulus) is close@o Multiply
(1.5) by x and sum on all’ 1. The geometric series we obtain will
converge, and we get

lX rX lX SX

+ o+ = + o+ =
1 ix 1 x 1 X 1 X

(1.6)

This is an identity valid for su ciently small (in modulus) ¢ omplex num-
bers. By clearing denominators we obtain a polynomial ideity. But if two
polynomials in x agree for in nitely many values, then they are the same
polynomial [why?]. Hence equation (1.6) is actually validaor all complex
numbersx (ignoring values ofx which give rise to a zero denominator).

Fix a complex number 6 0. Multiply (1.6) by 1  x andletx! 1= .
The left-hand side becomes the number of;'s which are equal to , while
the right-hand side becomes the number of;'s which are equal to [why?].
Hence these numbers agree for all so the lemma is proved. O

1.8 Example. Suppose thatG is a graph with 12 vertices, and that the
number of closed walks of length in Gisequalto 3 5 +4 +2( 2) +4.
Then it follows from Corollary 1.3 and Lemma 1.7 [why?] thathe eigenvalues
of A(G) are given by 55;5;4; 2; 2;1;1;1,;1,0;0.

References for Chapter 1

The connection between graph eigenvalues and the enumeoatiof walks
is considered \folklore." The subject ofspectral graph theorywhich is con-
cerned with the spectrum (multiset of eigenvalues) of vans matrices asso-
ciated with graphs, began around 1931 in the area of quantunthemistry.
The rst mathematical paper was published by L. Collatz and U Sinogowitz
in 1957. A good general reference is the bdoR4] by Cvetkovc, Doob,
and Sachs. Two textbooks on this subject are by Cvetkovc, 8&vlinson, and
Simc [25] and by Brouwer and Haemers [13].

2All citations to the literature refer to the bibliography be ginning on page 242.



Chapter 2

Cubes and the Radon
transform.

Let us now consider a more interesting example of a gragh, one whose
eigenvalues have come up in a variety of applications. L&, denote the
cyclic group of order 2, with elements 0 and 1, and group opéi@ being
addition modulo 2. Thus0+0=0,0+1=1+0=1,1+1=0. Let Z}
denote the direct product ofZ, with itself n times, so the elements of} are

addition. De ne a graph C,, called then-cube as follows: The vertex set of
C, is given by V(C,) = ZJ, and two verticesu and v are connected by an
edge if they di er in exactly one component. Equivalentlyu + v has exactly
one nonzero component. If we regard) as consisting ofreal vectors, then
these vectors form the set of vertices of an-dimensional cube. Moreover,
two vertices of the cube lie on an edge (in the usual geometsense) if and
only if they form an edge ofC,. This explains why C,, is called then-cube.
We also see that walks inC,, have a nice geometric interpretation | they
are simply walks along the edges of am-dimensional cube.

We want to determine explicitly the eigenvalues and eigene®rs of C,,.
We will do this by a somewhat indirect but extremely useful ad powerful
technique, the nite Radon transform. LetV denote the set of all functions
f : 23 ! R, where R denotes the eld of real numbers. Note that V
is a vector space oveR of dimension 2 [why?]. If u = (uy;:::;uy) and

1For abelian groups other thanZ} it is necessary to use complex numbers rather than
real numbers. We could use complex numbers here, but there 130 need to do so.

15
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u v=uvq+ + UpVn! (2.1)

where the computation is performed modulo 2. Thus we regaxd v as an
element ofZ,. The expression ( 1)'" is de ned to be the real number +1
or 1, depending on whetheu v =0 or 1, respectively. Since for integers
k the value of ( 1) depends only ork (mod 2), it follows that we can treat
u and v as integer vectors without a ecting the value of ( 1)*v. Thus, for
instance, formulas such as

( 1)u(v+w):( 1)uv+uwz( 1)UV( 1)uw

are well-de ned and valid. From a more algebraic viewpointthe map Z !
f 1;1g sendingn to ( 1)" is a group homomorphism, where of course the
product onf 1;1g is multiplication.

We now de ne two important bases of the vector spac¥. There will be
one basis element of each basis for eact2 Z5. The rst basis, denotedB;,
has elementd , de ned as follows:

fu(v) = w; (2.2)
the Kronecker delta. It is easy to see thaB; is a basis, since anyg 2 V
satis es X
g= g(u)fy (2.3)
u2zj

[why?]. HenceB; spansV, so since #8; =dim V = 2", it follows that B, is
a basis. The second basis, denot&}, has elements , de ned as follows:

o) =( '™
In order to show that B, is a basis, we will use an inner product ox (denoted
h; i) de ned by X
hf;gi = f(u)g(u):
u2zj

Note that this inner product is just the usual dot product with respect to
the basisB;.

2.1 Lemma. The setB,=f ,:u2 Zjgforms a basis forV.
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Proof. Since #B, = dim V (= 2"), it suces to show that B, is linearly
independent. In fact, we will show that the elements oB, are orthogonal.
We have

_ X
hu i = u(W) y(w)
w275
X
— ( 1)(u+v)w:
w275

It is left as an easy exercise to the reader to show that for arw2 Z3, we
have
X (qywe 2iify=0
0; otherwise.

w275

where 0 denotes the identity element ofZ} (the vector (0;0;:::;0)). Thus
hy vi=0ifandonly u+ v =0, ie., u= v, so the elements oB, are
orthogonal (and nonzero). Hence they are linearly indepeedt as desired.

]

We now come to the key de nition of the Radon transform.

Given a subset of ZJ and a functionf 2 V, de ne a new function
f 2V by

X
f(v)= f(v+ w):

w2

The function f is called the discrete or nite ) Radon transformof f (on
the group Z3, with respect to the subset ).

We have denedamap :V !V . Itis easy to seethat is a linear
transformation; we want to compute its eigenvalues and eigeectors.

2.2 Theorem. The eigenvectors of are the functions , whereu 2 Z3.
The eigenvalue , corresponding to  (i.e., u= u u)lisgiven by

X
u= QY

w2
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Proof. Let v 2 Z5. Then

X
u(v) = u(V+ w)
%2
— ( 1)u (v+w)
w2 |
X !
= (v (e
w2 |
X !
= (D" u(v):
w2
Hence X |
u= (G ) RS
w2
as desired. 0

Note that because the ,'s form a basis forV by Lemma 2.1, it follows
that Theorem 2.2 yields a complete set of eigenvalues and engectors for

. Note also that the eigenvectors , of  are independent of ; only the
eigenvalues depend on .

Now we come to the payo. Let = f 4;:::; ,g, where ; is the ith
unit coordinate vector (i.e., j has a 1 in positioni and O's elsewhere). Note
that the jth coordinate of ; is just j (the Kronecker delta), explaining
our notation ;. Let[ ] denote the matrix of the linear transformation

:V 'V with respect to the basisB; of V given by (2.2).

2.3 Lemma. We have[ ]= A(C,), the adjacency matrix of then-cube.

Proof. Let v2 Z5. We have
X
fu(v) = Fu(v+ w)

w2

= furw(V);
w2
sinceu = v+ w if and only if u+ w = v. There follows [why?]
X
fu= furw: (2.4)

w2
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Equation (2.4) says that the (;v)-entry of the matrix is given by

1, fu+v?2
0; otherwise

( Jw=
Nowu+ v 2 ifandonlyif uandv dierin exactly one coordinate. This
is just the condition for uv to be an edge ofC,, so the proof follows. O

2.4 Corollary. The eigenvectorsE, (u2 Z%) of A(C,) (regarded as linear
combinations of the vertices oC,, i.e., of the elements ofZ}) are given by
X

E,= ( 1)"Vv: (2.5)
v2Z§
The eigenvalue , corresponding to the eigenvectdE, is given by
Q=N 2 (u); (2.6)

where! (u) is the number ofl's in u. (The integer! (u) is called the Ham-

ming weight or simply the weight of u.) Hence A(C,) has " eigenvalues
equal ton 2i, foreachO i n.
Proof. For any function g 2 V we have by (2.3) that
X
g= o)y
\
Applying this equation to g = gives
X X
u = d(Wfy = ( D"VFy: (2.7)
\% \

Equation (2.7) expresses the eigenvectoy of  (oreven  for any Z%)
as a linear combination of the functiond,. But has the same matrix
with respect to the basis of thef ,'s asA (C,) has with respect to the vertices
v of C,. Hence the expansion of the eigenvectors of in terms of thef,'s
has the same coe cients as the expansion of the eigenvectar A (C,) in
terms of thev's, so equation (2.5) follows.

According to Theorem 2.2 the eigenvalue, corresponding to the eigen-
vector  of (or equivalently, the eigenvectorE, of A (C,)) is given by

X
u = ( '™ (2.8)

w2
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Now = f 4;:::; h,0,and ; uis 1ifu has aone initsith coordinate and is
0 otherwise. Hence the sum in (2.8) has ! (u) terms equal to +1 and! (u)
termsequalto 1,so0 y=(n !(u) !(u=n 2 (u),asclaimed. O

We have all the information needed to count walks iiC,,.

2.5 Corollary. Let u;v 2 Z5, and suppose that (u+ v) = k (i.e., uandv
disagree in exactlyk coordinates). Then the number of walks of lengthin
C, betweenu and v is given by

X X \
zin ( 1y K rl‘ jk (n 2 (2.9)

(A\)uv =
i=0 j=0 J

where we set? © =0 if j>i . In particular,
1 X n

2ni=0

(A )w = (n 2i): (2.10)

Proof. Let E, and , be as in Corollary 2.4. In order to apply Corollary 1.2,
we need the eigenvectors to be amit length (where we regard thef,'s as
an orthonormal basis ofV). By equation (2.5), we have

H 2 X 2
JEuj® = (( 1)*v)==2™

V275

Hence we should replac&, by E? = W%ZEU to get an orthonormal basis.
According to Corollary 1.2, we thus have
. 1 X .
(A)w = 2_n EuwwEw w-

w228

Now E,, by de nition is the coe cient of f,, in the expansion (2.5), i.e.,
Ew =( 1)*% (and similarly for E,), while ,, = n 2! (w). Hence
. 1 X .
(A)dw = = ( DY 20 (w)) : (2.11)

n
w273

The number of vectorsw of Hamming weighti which havej 1's in common

with u+ v is :‘ X J." , since we can choose the 1's in u + v which agree
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with w in Jk ways, while the remainingi | 1's ofw can be inserted in the
n Kk remaining positions in 7 J." ways. Since + v) w | (mod?2), the
sum (2.11) reduces to (2.9) as desired. Clearly setting= v in (2.9) yields
(2.10), completing the proof. O

It is possible to give a direct proof of equation (2.10) avoidg linear al-
gebra, though we do not do so here. Thus by Corollary 1.3 and ibena 1.7
(exactly as was done folK,) we have another determination of the eigen-
values ofC,. With a little more work one can also obtain a direct proof of
(2.9). Later in Example 9.9.12, however, we will use the eig@lues ofC, to
obtain a combinatorial result for which no nonalgebraic prof is known.

2.6 Example. Setting k =1 in (2.9) yields

‘ 1 X n o1 n 1 -
(A)w = on . i T (n 2i)
1 X n 1 (n 2y
n i n i

Note (for those familiar with the representation theory of nite groups).
The functions ,: Z5 ! R are just the irreducible (complex) characters
of the group Z5, and the orthogonality of the ,'s shown in the proof of
Lemma 2.1 is the usual orthogonality relation for the irredaible characters
of a nite group. The results of this chapter extend readily b any nite
abelian group. Exercise 5 does the ca%g, the cyclic group of ordern.
For nonabelian nite groups the situation is much more comptated because
not all irreducible representations have degree one (i.are homomorphisms
G! C), and there do not exist formulas as explicit as the ones fobalian
groups.

We can give a little taste of the situation for arbitrary groyps as follows.
Let G be a nite group, and let M (G) be its multiplication table. Regard
the entries ofM (G) as commuting indeterminates, so thatM (G) is simply
a matrix with indeterminate entries. For instance, letG = Zj3. Let the
elements ofG be a; b; ¢ where saya is the identity. Then

2 3
a b c

M(G)=4b c ad:
c awb
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We can compute that detM (G) = (a+ b+ c)(a+!b+! 2c)(a+! b+ !c), where
I = €7 3. In general, whenG is abelian, Dedekind knew that deM (G)
factors into certain explicit linear factors overC. Theorem 2.2 is equivalent
to this statement for the group G = Z) [why?]. Equation (12.5) gives the
factorization for G = Z,. (For eachw 2 G one needs to interchange the row
indexed by the group elementw with the row indexed by w ! in order to
convert the group determinant to the circulant matrices of quation (12.5),
but these operations only a ect the sign of the determinanj. Dedekind
asked Frobenius about the factorization of de¥l (G), known as the group
determinant, for nonabelian nite G. For instance, letG = S 3, with elements
(in cycle notation) a = (1)(2)(3), b=(1;2)(3), c=(1;3)(2), d =(1)(2;3),
e=(1;23),f =(1;3;2). Then det(M (G)) = fif,f 2, where

fi = a+b+c+d+e+f
f, = a+b+c+d e f
fs = a2 B & d*+e+f? ae af +bct bd+cd ef:

Frobenius showed that in general, for each conjugacy classof G there is
an irreducible homogeneous polynomidk of some degreel for which

Y
detM (G)=  f:
K

Note that taking the degree of both sides gives & = P « d2 . Frobenius'
result was a highlight in his development of group represeation theory.
The numbersdx are just the degrees of the irreducible (complex) represen-
tations of G. For the symmetric groupS,,, these degrees are the numbers
of Theorem 8.1, and Appendix 1 to Chapter 8 gives a bijectiverpof that
(f )2=n.

References for Chapter 2

The Radon transform rst arose in a continuous setting in thepaper [84]
of J. K. A. Radon and has been applied to such areas as compuged tomog-
raphy. The nite version was rst de ned by E. Bolker [9]. For some further
applications to combinatorics see J. Kung [64]. For the Radaransform on
the n-cube Z3, see P. Diaconis and R. Graham [27]. For the generalization
to Z}, see M. DeDeo and E. Velasquez [26].
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For an exposition of the development of group representatictheory by
Frobenius and other pioneers, see the survey articles of Hams [52][53][54].



Chapter 3

Random walks.

Let G be a nite graph. We consider a random walk on the vertices db
of the following type. Start at a vertex u. (The vertex u could be chosen
randomly according to some probability distribution or cold be specied
in advance.) Among all the edges incident ta, choose one uniformly at
random (i.e., if there arek edges incident tou, then each of these edges is
chosen with probability 1=k). Travel to the vertex v at the other end of the
chosen edge and continue as before from Readers with some familiarity
with probability theory will recognize this random walk as aspecial case of
a nite state Markov chain. Many interesting questions may le asked about
such walks; the basic one is to determine the probability ofding at a given
vertex after a given number of steps.

Suppose vertexu hasdegreed, ,i.e., there ared, edges incident tau (count-
ing loops atu once only). LetM = M (G) be the matrix whose rows and

entry is given by
My = —; (3.1)

where , is the number of edges between and v (which for simple graphs
will be 0 or 1). Thus M, is just the probability that if one starts at u,

then the next step will be tov. An elementary probability theory argument
(equivalent to Theorem 1.1) shows that if is a positive integer, then M ),

is equal to probability that one ends up at vertexv in ~ steps given that one
has started atu. Suppose now that the starting vertex is not speci ed, but
rather we are given probabilities , summing to 1 and that we start at vertex
u with probability . Let P be the row vectorP =[ ,;:::; ,]. Then again

27



28 CHAPTER 3. RANDOM WALKS.

probability of ending up atv in * steps (with the given starting distribution).
By reasoning as in Section 1, we see that if we know the eigelns and
eigenvectors ofM , then we can compute the crucial probabilities NI )uy
and .

Since the matrix M is not the same as the adjacency matriA, what
does all this have to do with adjacency matrices? The answex that in one
important caseM is just a scalar multiple of A. We say that the graphG
is regular of degreed if eachd, = d, i.e., each vertex is incident tod edges.
In this case it's easy to see thatM (G) = %A (G). Hence the eigenvectors
E, of M (G) and A(G) are the same, and the eigenvalues are related by

d(M) = % w(A). Thus random walks on a regular graph are closely related
to the adjacency matrix of the graph.

3.1 Example. Consider a random walk on then-cube C,, which begins at
steps one is again at the origin? Before applying any form@anote that
after an even (respectively, odd) number of steps, one must lat a vertex

with an even (respectively, odd) number of 1's. Hencp = 0 if "~ is odd.
Now note that C, is regular of degreen. Thus by (2.6), we have

WM (€)= (2 (W)

By (2.10) we conclude that

" 2):
Note that the above expression fop- does indeed reduce to 0 whehis odd.

References for Chapter 3

Random walks on graphs is a vast subject, of which we have blgre
scratched the surface.



Chapter 4

The Sperner property.

In this section we consider a surprising application of caxin adjacency ma-
trices to some problems in extremal set theory. An importantole will also
be played by nite groups. In general, extremal set theory isoncerned with
nding (or estimating) the most or least number of sets satifying given set-
theoretic or combinatorial conditions. For example, a tygial easy problem
in extremal set theory is the following: What is the most numbr of subsets
of an n-element set with the property that any two of them intersec? (Can
you solve this problem?) The problems to be considered hereeanost con-
veniently formulated in terms of partially ordered sets, omposets for short.
Thus we begin with discussing some basic notions concernipgsets.

4.1 De nition. A poset (short for partially ordered set) P is a nite set,
also denotedP, together with a binary relation denoted satisfying the
following axioms:

(P1) (reexivity) x xforallx2P
(P2) (antisymmetry) If x yandy x,thenx=y.
(P3) (transitivity) If x yandy z thenx z.

One easy way to obtain a poset is the following. Leé® be any collection
of sets. Ifx;y 2 P, thendenex yinP if x yassets. Itis easy to see
that this de nition of makesP into a poset. If P consists ofall subsets
of an n-element setS, then P is called a ( nite) boolean algebraof rank n
and is denoted byBs. If S= f1;2;:::;ng, then we denoteBs simply by B,,.
Boolean algebras will play an important role throughout ths section.
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There is a simple way to represent small posets pictoriallyThe Hasse
diagram of a posetP is a planar drawing, with elements oP drawn as dots.
If x<y inP (.e.,,x yandx 6 y), theny is drawn \above" x (i.e., with a
larger vertical coordinate). An edge is drawn betweer andy if y covers

X, i.e., Xx <y and no elementz is in between, i.e., noz satises x <
z <y. By the transitivity property (P3), all the relations of a n ite poset
are determined by the cover relations, so the Hasse diagraratérminesP.
(This is not true for in nite posets; for instance, the real mmbers R with
their usual order is a poset with no cover relations.) The Has diagram of
the boolean algebraB; looks like

123

12 23

We say that two posetsP and Q are isomorphic

if there is a bijection (one-to-one and onto function) : P ! Q such
that x yinP ifandonlyif' (x) ' (y)in Q. Thus one can think that
two posets are isomorphic if they di er only in the names of tair elements.
This is exactly analogous to the notion of isomorphism of gops, rings,
etc. It is an instructive exercise (see Exercise 4.1 to drawallse diagrams
of the one poset of order (number of elements) one (up to isorphism),
the two posets of order two, the ve posets of order three, anthe sixteen
posets of order four. More ambitious readers can try the 63 pets of order
ve, the 318 of order six, the 2045 of order seven, the 16999 mftler eight,
the 183231 of order nine, the 2567284 of order ten, the 4672B4f order
eleven, the 1104891746 of order twelve, the 33823827452rdéothirteen,
the 1338193159771 of order fourteen, the 68275077901156rdér fteen,
and the 4483130665195087 of order sixteen. Beyond this thember is not
currently known.

A chain C in a poset is a totally ordered subset d?, i.e., if x;y 2 C then
eitherx yory xin P. A nite chain is said to have length n if it has
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n + 1 elements. Such a chain thus has the formg < x 1 < <X,. We say
that a nite poset is graded of rankn if every maximal chain has lengthn.
(A chain is maximal if it's contained in no larger chain.) For instance, the
boolean algebraB,, is graded of rankn [why?]. A chainyy <y; < <y is
said to besaturated if eachy;.; coversy;. Such a chain need not be maximal
since there can be elements & smaller thany, or greater thany;. If P is
graded of rankn andx 2 P, then we say thatx hasrank j, denoted (x) = j,
if some (or equivalently, every) saturated chain o with top element x has
length j. Thus [why?] if we letP; = fx 2 P : (x) = jg, then P is a
disjoint union P = Pg[ Pq[ [ Pn, and every maximal chain ofP has the
form xo < X1 < < X, where (x;) = j. We call P; the ith level of P.
We write p; = jP;j, the number of elements of of rank j. For example, if
P = B, then (x) = jxj (the cardinality of x as a set) and

pp=#fx f 1,2::ng:jxj=jg= j

(Note that we use bothjSj and #S for the cardinality of the nite set S.)
We say that a graded poseP of rank n (always assumed to be nite)

is rank-symmetric if p, = p, ; for 0 i n, and rank-unimodal if pg

P1 B P+ P2 p, forsome O j n. If P is both

rank-symmetric and rank-unimodal, then we clearly have

Po P Pm Pm+1 Pn; ifn=2m

Po P Pm = Pm+1  Pm+2 Po; fN=2m+1:

Po + P1q+ + pnq" is symmetric or unimodal, as the case may be. For
instance, B,, is rank-symmetric and rank-unimodal, since it is well-know
(and easy to prove) that the sequence] ; 7 ;:::; 1 (the nth row of Pas-
cal's triangle) is symmetric and unimodal. Thus the polynonal (1 + g)" is
symmetric and unimodal.

A few more de nitions, and then nally some results! Anantichain in a
posetP is a subsetA of P for which no two elements are comparable, i.e.,
we can never have;y 2 A and x <y . For instance, in a graded pose® the
\levels" P; are antichains [why?]. We will be concerned with the problerof
nding the largest antichain in a poset. Consider for instane the boolean

algebraB,. The problem of nding the largest antichain in B, is clearly
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equivalent to the following problem in extremal set theory:Find the largest
collection of subsets of am-element set such that no element of the collection
contains another. A good guess would be to take all the subsetdf cardinality
bn=2c (where bxc denotes the greatest integer x), giving a total of 1.
sets in all. But how can we actually prove there is no larger tection? Such
a proof was rst given by Emanuel Sperner in 1927 and is knowrs &perner's
theorem We will give three proofs of Sperner's theorem in this seoti: one
proof uses linear algebra and will be applied to certain othaituations; the
second proof is an elegant combinatorial argument due to DavLubell in
1966; while the third proof is another combinatorial argum@ closely related
to the linear algebra proof. We present the last two proofs faheir \cultural
value." Our extension of Sperner's theorem to certain othesituations will
involve the following crucial de nition.

4.2 De nition. Let P be a graded poset of rank. We say that P has the
Sperner propertyor is a Sperner posetif

maxf# A: A is an antichain of Pg=maxf#P;: 0 i ng:
In other words, no antichain is larger than the largest levep;.

Thus Sperner's theorem is equivalent to saying thaB, has the Sperner
property. Note that if P has the Sperner property there may still be an-
tichains of maximum cardinality other than the biggestP;; there just can't
be any bigger antichains.

4.3 Example. A simple example of a graded poset that fails to satisfy the
Sperner property is the following:

We now will discuss a simple combinatorial condition whichugrantees
that certain graded posets are Sperner. We de ne arorder-matching from
P; to P, to be aone-to-onefunction : P! Pjp satisfyingx < (X)
for all x 2 P;. Clearly if such an order-matching exists therp Pi+1
(since is one-to-one). Easy examples show that the converse is éalse.,
if pi pi+1 then there need not exist an order-matching fronP; to Pj.; .
We similarly de ne an order-matching fromP; to P; ; to be a one-to-one
function :P;! P; ; satisfying (x) <x forall x 2 P;.
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4.4 Proposition. Let P be a graded poset of rank. Suppose there exists
an integer0O j n and order-matchings

Po! P! Pl 1 P P P P.:  (4.1)

=}

Then P is rank-unimodal and Sperner.

Proof. Since order-matchings are one-to-one it is clear that

Po P1 Pi B+ P+ Pn:

HenceP is rank-unimodal.

De ne a graph G as follows. The vertices ofc are the elements ofP.
Two vertices x;y are connected by an edge if one of the order-matchings
in the statement of the proposition satises (x) = y. (Thus G is a

subgraph of the Hasse diagram d®.) Drawing a picture will convince you
that G consists of a disjoint union of paths, including single-veex paths
not involved in any of the order-matchings. The vertices ofaeh of these
paths form a chain inP. Thus we have partitioned the elements oP into
disjoint chains. SinceP is rank-unimodal with biggest levelP;, all of these
chains must pass throughP; [why?]. Thus the number of chains is exactly
p;. Any antichain A can intersect each of these chains at most once, so the
cardinality jAj of A cannot exceed the number of chains, i.gA] p,. Hence
by de nition P is Sperner. O

It is now nally time to bring some linear algebra into the pidure. For
any (nite) set S, we let RS denote the real vector space consisting of all
formal linear combinations (with real coe cients) of elemats of S. Thus S
is a basis forRS, and in fact we could have simply de nedRS to be the
real vector space with basi§. The next lemma relates the combinatorics we
have just discussed to linear algebra and will allow us to pve that certain
posets are Sperner by the use of linear algebra (combined wgome nite
group theory).

4.5 Lemma. Suppose there exists a linear transformatiob : RP; ! RP;.;
(U stands for \up") satisfying:

U is one-to-one.

For all x 2 Pj, U(x) is a linear combination of elementsy 2 Pj.;
satisfyingx <y . (We then call U an order-raising operator)
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Then there exists an order-matching : P! Pj.1.
Similarly, suppose there exists a linear transformatiob) : RP; ! RPj;
satisfying:

U is onto.
U is an order-raising operator.
Then there exists an order-matching : Pi+; ! P;.

Proof. SupposeU : RP; ! RP;,; is a one-to-one order-raising operator. Let
[U] denote the matrix of U with respect to the bases; of RP; and P;.; of

is one-to-one, the rank of ] is equal top; (the number of columns). Since
the row rank of a matrix equals its column rank, ] must havep; linearly
independent rows. Say we have labelled the elementsRyf; so that the rst
pi rows of U] are linearly independent.

Let A = (&) be thep, p matrix whose rows are the rstp;, rows of
[U]. (Thus A is a square submatrix of J].) Since the rows ofA are linearly
independent, we have

X
det(A) = a @ @ (p) 60;

a; q) ap (p) Of the above sum in nonzero. Sindd is order-raising, this
means that [why?]y, >x ) forl Kk p. Hencethemap : P! Py
dened by (xk) =Yy 1( is an order-matching, as desired.

The case wherU is onto rather than one-to-one is proved by a completely
analogous argument. O

Note. Although it does not really help in understanding the theoryit
is interesting to regard a one-to-one order-raising operat as a \quantum
order-matching.” Rather than choosing a single element = (x) that is
matched with x 2 P;, we choose all ppssible elemenis2 Pi., satisfying
y > x at the same time. IfU(x) = ., ¢y (wherec, 2 R), then we
are choosingy with \weight" c,. As explained in the proof of Lemma 4.5
below, we \break the symmetry" and obtain a single matched ement (x)
by choosing some nonvanishing term in the expansion of a detenant.
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We now want to apply Proposition 4.4 and Lemma 4.5 to the bocda
algebraB,. For each 0 i< n, we need to de ne a linear transformation
U :R(Bn)i! R(Bp)i+1, and then prove it has the desired properties. We
simply de ne U; to be the simplest possible order-raising operator, namely
for x 2 (Bp)i, let X

Ui(x) = y: (4.2)
y2(Bn)j+1
y>X
Note that since B); is a basis forR(B,);, equation (4.2) does indeed de ne
a unique linear transformationU; : R(B,)i ! R(By)i+1. By de nition U is
order-raising; we want to show thaty; is one-to-one foi < n=2 and onto for
I n=2. There are several ways to show this using only elementaipdar
algebra; we will give what is perhaps the simplest proof, thugh it is quite
tricky. The idea is to introduce \dual" operators D; : R(B,)i ! R(B,)i 1to
the U;'s (D stands for \down"), de ned by

X
Di(y) = X; (4.3)

x2(Bn)j 1
X<y

forally 2 (B,)i. Let [U;] denote the matrix of U; with respect to the bases
(Bn)i and (Bn)i+1, and similarly let [D;] denote the matrix ofD; with respect

to the bases B,); and (B,); 1. A key observation which we will use later is
that

[Din]=[U]; (4.4)
l.e., the matrix [Dj+1] is the transpose of the matrix [U;] [why?]. Now let
i : R(Bp)i ! R(B,)i denote the identity transformation on R(B,);, i.e.,
li(u) = u for all u 2 R(B,)i. The next lemma states (in linear algebraic
terms) the fundamental combinatorial property ofB, which we need. For

this lemma setU, = 0 and Dy = 0 (the O linear transformation between the
appropriate vector spaces).

46 Lemma. LetO i n. Then
D1 U U D; = (n 2I)|| (45)

(Linear transformations are multiplied right-to-left, so AB (u) = A(B(u)).)
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Proof. Let x 2 (Bp);. We need to show that if we apply the left-hand side
of (4.5) to x, then we obtain (0  2i)x. We have

0 1

X
Di+1Ui(x) = Din ygi
jyj=i+l
X X"’
= z:
jyj=i+l jzj=i
Xy zy
If x;z 2 (Bp); satisfy jx\ zj <i 1, then there is noy 2 (B,)j+1 such that
x yandz y. Hence the coe cient ofz in D+, U;(x) when it is expanded
in terms of the basis B,); is 0. If jx\ zj =i 1, then there is one sucly,
namely,y = x [ z. Finally if x = z then y can be any element of B,)i+1
containing x, and there aren i suchy in all. It follows that

X
DisaUi(X)=(n 1i)x+ z: (4.6)
2=t 1
By exactly analogous reasoning (which the reader should dhkg, we have for
X 2 (Bn)i that X
U 1Di(x) = ix + Z: 4.7)

jzj=i
ix\ zj=i 1

Subtracting (4.7) from (4.6) yields Dix1 Ui U 1Dj)(x) = (n  2i)x, as
desired. O

4.7 Theorem. The operator U; de ned above is one-to-one if < n=2 and
isontoifi n=2.

Proof. Recall that [D;]=[U; :]'. From linear algebra we know that a (rect-
angular) matrix times its transpose ispositive semide nite (or just semide -
nite for short) and hence has nonnegative (real) eigenvalues. Bgmma 4.6
we have

Di+1U = U 1Di+(n 2|)||

Thus the eigenvalues oD, U; are obtained from the eigenvalues df ;D;
by addingn 2i. Since we are assuming that 2i > 0, it follows that the
eigenvalues oDj., U; are strictly positive. HenceD;.; U; is invertible (since
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it has no O eigenvalues). But this implies thatU; is one-to-one [why?], as
desired.

The case  n=2is done by a \dual" argument (or in fact can be deduced
directly from the i < n=2 case by using the fact that the poseB,, is \self-
dual," though we will not go into this). Namely, from the fact that

UiDi+1 = Di+2Ui+1 +(2| +2 n)|i+1
we get that U;D;., is invertible, so nowU; is onto, completing the proof. [

Combining Proposition 4.4, Lemma 4.5, and Theorem 4.7, we tain the
famous theorem of Sperner.

4.8 Corollary. The boolean algebr#, has the Sperner property.

It is natural to ask whether there is a less indirect proof of @ollary
4.8. In fact, several nice proofs are known; we give one dueDavid Lubell,
mentioned before De nition 4.2. Lubell's proof of Sperner's theorem.
First we count the total number of maximal chains; = Xg < X1 < <
Xn = f1;:::;ng in B,. There aren choices forx;, then n 1 choices for
X,, etc., so there aren! maximal chains in all. Next we count the number of
maximal chainsxy < X1 < <Xj=X< < X which contain a given
elementx of rank i. There arei choices forx;, theni 1 choices forx,, up
to one choice forx;. Similarly there aren i choices forxjs;, thenn i+1
choices forx;., , etc., up to one choice fox,. Hence the number of maximal
chains containingx isi!(n i)l

Now let A be an antichain. Ifx 2 A, then let C, be the set of maximal
chains of B,, which contain x. SinceA is an antichain, the setsC,, x 2 A
are pairwise disjoint. Hence

[ X
I G o= 1CxJ
X2A %A

C ONI(n ()

X2A

Since the total number of maximal chains in theC,'s cannot exceed the total
number n! of maximal chains inB,, we have

CON(n Ot !

X2A
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Divide both sides byn! to obtain

X 1
. 1:
x2A  (X)
Since r|1 is maximized wheni = bn=2c, we have
1 1
n n !
bn=2¢c (%)

forall x 2 A (orall x 2 By). Thus

X 1
n 1;
x2A bn=2c
or equivalently,
n
jAj :
A bn=2c

Since anZC is the size of the largest level d8,,, it follows that B, is Sperner.

There is another nice way to show directly thatB, is Sperner, namely,
by constructing an explicit order-matching : (B,)i ! (Bn)i+1 Wheni <
n=2. We will dene by giving an example. Letn = 21, i = 9, and

be a sequence of 1's, wherea; = 1if i 2 S,anda = 1 ifi 62S. For the
set S above we get the sequence (writing for 1)

111 1 11 1 11
Replace any two consecutive terms 1 with 00:
1100 00 100 00100
Ignore the O's and replace any two consecutive terms 1with 00:
1000000 0000 00100

Continue:
00000000 0000 00100
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At this stage no further replacement is possible. The nonzeterms consist
of a sequence of 's followed by a sequence of 1's. There is at least one
sincei < n=2. Let k be the position (coordinate) of the last ; herek = 16.
Dene (S)= S[f kg= S[f 16g. The reader can check that this procedure
gives an order-matching. In particular, why is injective (one-to-one), i.e.,
why can we recovelS from (S)?

It can be checked that if we glue together the order-matchirsg(B,,); !
(Bn)i+1 fori<n=2, along with an obvious dual constructionB,); ! (Bn)i 1
for i > n=2 then we obtain more than just a partition of B, into saturated
chains passing through the middle leveh(even) or middle two levels it odd),
as in the proof of Proposition 4.4. We in fact have the additimal property
that these chains are allsymmetric, i.e., they begin at some level n=2
and end at leveln i. Such a decomposition of a rank-symmetric, rank-
unimodal graded posefP into saturated chains is called ssymmetric chain
decomposition A symmetric chain decomposition implies that for any 1,
the largest size of a union of antichains is equal to the largest size of a
union of j levels of P (Exercise 4.7). (The Sperner property corresponds to
the casej = 1). It can be a challenging problem to decide whether certai
posets have a symmetric chain decomposition (e.g., ExeeiS), though we
will not discuss this topic further here.

In view of the above elegant proof of Lubell and the explicit@scription of
an order-matching : (Bn)i! (Bn)i+1, the reader may be wondering what
was the point of giving a rather complicated and indirect prof using linear
algebra. Admittedly, if all we could obtain from te linear ajebra machinery
we have developed was just another proof of Sperner's themrethen it would
have been hardly worth the e ort. But in the next section we wil show how
Theorem 4.7, when combined with a little nite group theory,can be used to
obtain many interesting combinatorial results for which snple, direct proofs
are not known.

References for Chapter 4

For further information on combinatorial aspects of partidly ordered sets
in general, see P. Fishburn [32], R. Stanley [101, Ch. 3], awd Trotter [106].
Sperner's theorem (Corollary 4.8) was rst proved by E. Speer [93]. The
elegant proof of Lubell appears in [68]. A general referenoa the Sperner
property is the book by K. Engel [31]. For more general resglton the com-
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binatorics of nite sets, see |. Anderson [3]. The linear a&braic approach to
the Sperner property discussed here is due independently M Pouzet [80]
(further developed by Pouzet and Rosenberg [81]) and R. Stag [94][96].
For further information on explicit order matchings, symméric chain decom-
positions, etc., see the text of Anderson [3] mentioned abav
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Chapter 5

Group actions on boolean
algebras.

Let us begin by reviewing some facts from group theory. Supp®that X is
an n-element set and thatG is a group. We say thatG acts onthe setX if
for every element of G we associate a permutation (also denoted) of X,
such that forallx 2 X and ; 2 G we have

(=0 -

Thus [why?] an action ofG on X is the same as a homomorphisim: G !
Sx, whereSx denotes the symmetric group of all permutations oK. We
sometimes write X instead of (X).

5.1 Example. (a) Let the real number act on the xy-plane by rotation
counterclockwise around the origin by an angle of radians. It is easy to
check that this de nes an action of the groupR of real numbers (under
addition) on the xy-plane. The kernel of this action, i.e., the kernel of the
homomorphism' : R! Sge, is the cyclic subgroup oR generated by 2.

(b) Now let 2 R act by translation by a distance to the right (i.e.,
adding (; 0)). This yields a completely di erent action ofR on the xy-plane.
This time the action is faithful, i.e., the kernel is the trivial subgroupf Og.

(c) Let X = fa;b;c;dyand G = Z, Z, = 1(0;0);(0;1);(1;0);(1;1)g.
Let G act as follows:

(0;1) a=Db; (0;1) b=a; (0;1) c=c; (0;1) d=d
(3;0) a=a; (1;0) b=b; (1;0) c=d; (3;0) d=c:

a7
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The reader should check that this does indeed de ne an actioin particular,
since (2 0) and (0; 1) generateG, we don't need to de ne the action of (Q0)
and (1; 1) | they are uniquely determined.

(d) Let X and G be as in (c), but now de ne the action by

(0;1) a=b; (0;1) b=a; (0;1) c=d; (0;1) d=c
(3;0) a=c; (3;0) b=4d; (3;0) c=4a; (1;0) d=b:

Again one can check that we have an action &, Z, onfa;b;c;d. The
two actions of G = Z, Z, that we have just de ned are quite di erent;
for instance, in the rst action we have some elements of xed by some
nonidentity element of G (such as (Q1) c = c), while the second action
fails to have this property. See also Example 5.2(c,d) belofr another
fundamental way in which the two actions di er.

Recall what is meant by anorbit of the action of a groupG on a setX .
Namely, we say that two elements;y of X are G-equivalentif (x) =y
for some 2 G. The relation of G-equivalence is an equivalence relation,
and the equivalence classes are called orbits. Thysand y are in the same
orbit if (x) = y for some 2 G. The orbits form a partition of X, i.e,
they are pairwise-disjoint, nonempty subsets oK whose union isX. The
orbit containing x is denotedGx; this is sensible notation sinc&x consists
of all elements (x) where 2 G. Thus Gx = Gy if and only if x andy are
G-equivalent (i.e., in the sameG-orbit). The set of all G-orbits is denoted
X=G.

5.2 Example. (a) In Example 5.1(a), the orbits are circles with center (0)
(including the degenerate circle whose only point is {0)).

(b) In Example 5.1(b), the orbits are horizontal lines. Notehat although
in (a) and (b) the same groupG acts on the same seX, the orbits are
di erent.

(c) In Example 5.1(c), the orbits aref a; g and f c; dg.

(d) In Example 5.1(d), there is only one orbitf a; b; c; @. Again we have
a situation in which a group G acts on a setX in two di erent ways, with
di erent orbits.

We wish to consider the situation whereX = B,,, the boolean algebra of
rank n (so jBnj = 2"). We begin by de ning an automorphism of a poset
P to be an isomorphism' : P ! P. (This de nition is exactly analogous
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to the de nition of an automorphism of a group, ring, etc.) The set of all
automorphisms ofP forms a group, denoted AutP) and called theautomor-
phism groupof P, under the operation of composition of functions (just as
is the case for groups, rings, etc.)

Now consider the cas® = B,,. Any permutation off1;:::;ng acts on

(x)= "1 (i1); (i2);::00 (W) (5.1)

This action of on B,, is an automorphism [why?]; in particular, ifjxj = i,
then alsoj (x)j = i. Equation (5.1) de nes an action of the symmetric group

to show that every automorphism ofB,, is of the form (5.1) for 2 S,.) In
particular, any subgroupG of S, acts onB,, via (5.1) (where we restrict
to belong to G). In what follows this action is always meant.

5.3 Example. Let n = 3, and let G be the subgroup ofS 3 with elements
e and (1,2). Here e denotes the identity permutation, and (using disjoint
cycle notation) (1; 2) denotes the permutation which interchanges 1 and 2,
and xes 3. There are six orbits ofG (acting on B3). Writing e.g. 13 as
short for f 1; 3g, the six orbits aref;g , f1;2g, f3g, f12g, f 13,239, and f 123.

We now de ne the class of posets which will be of interest to usere.
Later we will give some special cases of particular interest

Let G be a subgroup ofS,. De ne the quotient posetB,=G as follows:
The elements ofB,=G are the orbits of G. If o and o® are two orbits, then
dene o 0o°in B,=Gif there existx 2 oandy 2 o°such thatx vy in B,.
(It's easy to check that this relation is indeed a partial order.)

5.4 Example. (a) Let n = 3 and G be the group of order two generated
by the cycle (1, 2), as in Example 5.3. Then the Hasse diagram &3=G is
shown below, where each element (orbit) is labeled by one tf elements.

q123
@

@
139 @q2
Q@

3 @@
q a1
@
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(b) Let n =5 and G be the group of order ve generated by the cycle
(1;2;3;4;5). Then Bs=G has Hasse diagram

2345

L1234
Q@

@
12 @ a24
Hy
Hy
1249 HIa3
@

One simple property of a quotient poseB,=G is the following.

5.5 Proposition. The quotient posetB,=G de ned above is graded of rank
n and rank-symmetric.

Proof. We leave as an exercise the easy proof thB},=G is graded of rank
n, and that the rank of an elemento of B,=G is just the rank in B, of any
of the elementsx of 0. Thus the number of elements;(B,=G) of rank i is
equal to the number of orbitso 2 (B,);i=G. If x 2 B, then let x denote the
set-theoretic complement ok, i.e.,

x=11:::;ng x=1f1 i n:i6XQ:
Then fxy;:::;X; g is an orbit of i-element subsets of1;:::; ng if and only if
fx1;::%x091s an orbit of (n  i)-element subsets [why?]. Heng€B,)i=G =
j(Bn)n i=G], soB,=G is rank-symmetric. O
Let 2 S,. We associate with a linear transformation (still denoted
)
:R(Bn)i! R(Bp); by the rule
0 1
X X
@ CXA = G (X);

X2 (Bn)i X2 (Bn)i



51

where eachc, is a real number. (This de nes an action ofS,, or of any
subgroup G of S, on the vector spaceR(B,);.) The matrix of  with
respect to the basis B,); is just a permutation matrix, i.e., a matrix with
one 1 in every row and column, and O's elsewhere. We will beengsted in
elements ofR(B,); which are xed by every element of a subgrou® of S,,.
The set of all such elements is denoted(B,,)C, so

R(B,)® =fv2R(B,)i: (v)=vforall 2 Gg:

5.6 Lemma. A basis forR(B,)® consists of the elements

whereo 2 (B,)i=G, the set ofG-orbits for the action of G on (B,);.

Proof. First note that if ois an orbitandx 2 o, then by de nition of orbit we
have (x)2 oforall 2 G (orall 2 S,). Since permutes the elements
of (By)i, it follows that permutes the elements ob. Thus (v,) = Vo,
soV, 2 R(B,)E. Itis clear that the v,'s are linearly independent since any
x 2 (Bn)i appears with nonzero coe cient in exactly onev,.

It remains to show that thevy's spanR(B,)?, i.e., anyv = ,, 5 ) GX 2
R(B,)® can be written as a linear combination of/,'s. Givenx 2 (B,);, let
Gy =1 2 G: (x)= xg, the stabilizer of x. We leave as an exercise the
standard factthat (x) = (x) (where ; 2 G)ifandonlyif and belong
to the same left coset of5, i.e., G, = G 4. It follows that in the multiset
of elements (x), where ranges over all elements d& and x is xed, every
elementy in the orbit Gx appears #G, times, and no other elements appear.
In other words,

X
(X) = JGxj Vex:
2G

(Do not confuse the orbitGx with the subgroup G«!) Now apply to v and
sumon all 2 G. Since (v) = v (becausev 2 R(B,)¢), we get
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iGj v

11
—~
<
~

x2)%Bn)i 2G

G (#Gx) Vox:
x2(Bn)

Dividing by jGj expressew as a linear combination of the elementsgy (or
Vo), as desired. O

Now let us consider the e ect of applying the order-raising erator U;
to an elementv of R(B,,)°.

5.7 Lemma. If v2 R(B,)€, then U;(v) 2 R(B,)S,; .

Proof. Note that since 2 G is an automorphism ofB,, we havex <y
in By if and only if (x) < (y)in By. It follows [why?] that if x 2 (By);
then

U ()= (Uix):

SinceU; and are linear transformations, it follows by linearity thatU; (u) =
Ui(u) for all u2 R(B,);. (In other words, U; = U;.) Then

(Ui(v)) = U( (v)
= U(v),

soU;(v) 2 R(B,)E, , as desired.
We come to the main result of this section, and indeed our mairesult
on the Sperner property.

5.8 Theorem. Let G be a subgroup o6,. Then the quotient poseB,=G
is graded of rankn, rank-symmetric, rank-unimodal, and Sperner.
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Proof. Let P = B,=G. We have already seen in Proposition 5.5 thaP

is graded of rankn and rank-symmetric. We want to de ne order-raising
operatorsOi: RP; ! RPj;; and order-lowering operatorsﬁi: RP; ! RP; ;.

Let us rst consider just U,. The idea is to identify the basis element, of
RBr? with the basis elemento of RP, and to let Oi : RP; ! RPj;; correspond
to the usual order-raising operatot;: R(B,)i ! R(Bn)i+1. More precisely,
suppose that the order-raising operatot; for B,, given by (4.2) satis es

X
Ui (Vo) = Co:00Veo; (5.2)
0%2(Bn)i+1 =G

whereo 2 (Bn);=G. (Note that by Lemma 5.7, U;(Vv,) does indeed have the
form given by (5.2).) Then de ne the linear operator0;: R((B,)i=G) !
R((Bn)i=0) by «
0i(0) = Coo00”
0%2(Bn)i+1 =G

Note. We can depict the \transport of U; to U," by a commutative diagram

(R r9 |+1
y:
O;
R(Bn:G)i ! R(Bn:G)i+1

The arrows pointing down are the linear transformations indced byv, 7! o
The map obtained by applying the top arrow followed by the rigtmost down
arrow is the same as applying the leftmost down arrow followéy the bottom
arrow.

We claim that 0; is order-rgalsmg We need to show that i€y 6 O, then
o°> 0in B,=G. Sincevep = 50X’ the only way ¢, 8 0 in (5.2) is for
somex®2 o°to satisfy x°> x for somex 2 o. But this is just what it means
for 0®> o, so0; is order-raising.

Now comes the heart of the argument. We want to show thab; is one-
to-one fori < n=2. Now by Theorem 4.7U; is one-to-one for < n=2. Thus
the restriction of U; to the subspaceR(B,)° is one-to-one. (The restriction
of a one-to-one function is always one-to-one.) Bl and 0, are exactly the
same transformation, except for the names of the basis elamts on which
they act. Thus Oi is also one-to-one for< n=2.
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An exactly analogous argument can be applied tB; instead ofU;. We
obtain one-to-one order-lowering operatorB; : R(B,)¢ ! R(B,)¢, fori>
n=2. It follows from Proposition 4.4, Lemma 4.5, and (4.4) thaB,=G is
rank-unimodal and Sperner, completing the proof. O

We will consider two interesting applications of Theorem 8. For our rst
application, we letn = 7 for somem 1, and letM = f1;:::;mg. Let

X = “g , the set of all two-element subsets d¥l . Think of the elements ofX
as (possible) edges of a graph with vertex skt. If By is the boolean algebra
of all subsets ofX (soByx and B, are isomorphic), then an elemenk of By
is a collection of edges on the vertex séfl, in other words, just a simple
graph onM. De ne a subgroupG of Sx as follows: Informally, G consists
of all permutations of the edges"g that are induced from permutations
of the verticesM. More precisely, if 2 S, then dene » 2 Sx by
Afisjg) = f (i); (j)g. Thus G is isomorphic toS .

When are two graphsx;y 2 Bx in the same orbit of the action ofG on
Bx ? Since the elements o just permute vertices, we see thak andy are
in the same orbit if we can obtainx from y by permuting vertices. This is
just what it means for two simple graphsx and y to be isomorphic | they
are the same graph except for the names of the vertices (thing of edges
as pairs of vertices). Thus the elements &y =G are isomorphism classe®f
simple graphs on the vertex seM ). In particular, #( Bx =G) is the number
of nonisomorphicm-vertex simple graphs, and #(Bx =G);) is the number of
nonisomorphic such graphs with edges. We havex y in Bx =G if there
is some way of labelling the vertices of and y so that every edge ok is an
edge ofy. Equivalently, somespanning subgraplof y (i.e., a subgraph ofy
with all the vertices of y) is isomorphic tox, as illustrated in Figure 5.1 for
the casem = 4. Hence by Theorem 5.8 there follows the following result,
which is by no means obvious and has no known non-algebrai®pf.

5.9 Theorem. (a) Fix m 1. Let p; be the number of nonisomorphic

IS symmetric and unimodal.

(b) Let T be a collection of simple graphs witin vertices such that no
element of T is isomorphic to a spanning subgraph of another elementTf
Then # T is maximized by takingT to consist of all nonisomorphic simple

graphs withb} 7 c edges.
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Figure 5.1: The poseByx =G of nonisomorphic graphs with four vertices

Our second example of the use of Theorem 5.8 is somewhat masbtle
and will be the topic of the next section.

Digression: edge reconstruction. Much work has been done on \re-
construction problems," that is, trying to reconstruct a mahematical struc-
ture such as a graph from some of its substructures. The mostnfious of
such problems isvertex reconstruction given a simple graphG on p vertices

graphs, canG be uniquely reconstructed? It is important to realize that he
vertices areunlabelled so givenG; we don't know for anyj which vertex is
v;. The famousvertex reconstruction conjecture(still open) states that for

graph obtained fromG by removing the edges.

Edge Reconstruction Conjecture. A simple graphG can be uniquely
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edge-deleted subgraphs.

Note. As in the case of vertex-reconstruction, the subgraphd; are
unlabelled. The reason for including the number of verticeis that for a
graph with no edges, we havéH,;:::;Hyg = ;, so we need to specify the
number of vertices to obtainG.

Note. It can be shown that if G can be vertex-reconstructed, then
G can be edge reconstructed. Hence the vertex-reconstructiconjecture
implies the edge-reconstruction conjecture.

The techniques developed above to analyze group actions ayolean alge-
bra can be used to prove a special case of the edge-reconsiobacconjecture.
Note that a simple graph with p vertices has at most ) edges.

5.10 Theorem. Let G be a simple graph witlp vertices andq > % P edges.
Then G is edge-reconstructible.

Proof. Let P; be the set of all simple graphs with edges on the vertex sey],

so #P; = (?) . Let RP; denote the real vector space with basiB;. De ne a
linear transformation ;: RP;! RP; ; by

i()= 1+ + i
where q;:::; i are the (labelled) graphs obtained from by deleting a
single edge. By Theorem 4.7,; is injective for i > % S . (Think of ; as

adding edges to thecomplementof , i.e., the graph with vertex set [p] and
edge set ' E().)

The symmetric groupS , acts onPq by permuting the vertices, and hence
acts onRPy, the real vector space with bgsi®,. A basis for the xed space
(RPg)®r consists of the distinct sums™= 2s, (), where 2 P, We

may identify ~with the unlabelledgraph isomorphic to , since ™= if and
only if and °are isomorphic. Just as in the proof of Theorem 5.8, when
we restrict ¢ to (RPg)S» for g > 1 © we obtain an injection 4: (RPg)S !
(RPq 1)°°. In particular, for nonisomorphic unlabelled graphs™; ~° with p

vertices, we have
~ -~ ~0 — ~0 ~0.
1+ + = o() 6 )= 0+ oy

Hence the unlabelled graphsy;:::; 7 determine 7 as desired. O
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Polynomials with real zeros  There are many other techniques than
the linear algebra used to prove Theorem 5.8 for showing thaequences
are unimodal. Here we will discuss a technique based on simmnalysis
(calculus) for showing that sequences are unimodal. In faete will consider
some stronger properties than unimodality.

A sequenceng; a;;:::; a, of real numbers is calledogarithmically concave
or log-concavefor short, if a> a ja4 for 1 i n 1. We say that
ao; a1;:::; ay is strongly log-concavef lq2 h by forl i n 1, where
b = a=" . Strong log-concavity is equivalent to [why?]

1 .
&  l+s 1+ &g 1 0o %

from which it follows that strong log-concavity implies logconcavity.
Assume now that eachs; 0. Does log-concavity then imply unimodal-

ity? The answer isno, a counterexample being ;10; 0; 1. However, only this

type of counterexample can occur, as we now explain. We sayattthe se-

a; 60, and a, 6 0, then & 6 0.

5.11 Proposition. Let = (ap;a;;:::;a,) be a sequence of nonnegative real
numbers with no internal zeros. If is log-concave, then is unimodal.

Proof. Otherwise there would exist1 i n 1forwhicha {>a; a1,
S0&’ <aj 1841 - O

Now we come to a fundamental method for proving log-concayit
5.12 Theorem (I. Newton). Let

XX o,
Pp)=" bx=" T ax

p; by @i o by, is strongly log-concave, or equivalently, the sequergeay;:::;

Proof. Let degP(x) = d. By the Fundamental Theorem of Algebra,P (x)
has exactlyd real zeros. Suppose that is a zero of multiplicity m > 1,
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soP(x) = (x )™L(x) for some polynomiallL (x) satisfyingL( ) 6 0. A
simple computation shows that is a zero ofP{x) (the derivative of P (x))
of multiplicty m 1. Moreover, if <  are both zeros oP (x), then Rolle's
theorem shows thatPqx) has a zero satisfying < < . It follows
[why?] that PY{x) has at leastd 1 real zeros. Since deggqx) = d 1 we
see thatPq{x) has exactlyd 1 real zeros and no other zeros.

Let Q(x) = cﬁli—llP(x). Thus Q(x) is a polynomial of degree at most
n i+ 1 with only real zeros. Let R(x) = x" *1Q(1=x), a polynomial of
degree at mostn i +1. The zeros ofR(x) are just reciprocals of those
zeros ofQ(x) not equal ot O, with possible new zeros at 0. At any rate, all
zeros ofR(x) are real. Now letS(x) = cﬂ(”ni'illR(x), a polynomial of degree
at most two. By Rolle's theorem (with a suitable handling of raltiple zeros
as above), every zero dR(x) is real. An explicit computation yields

n!
S(x) = S (a X2 +2aX + @ ):

If & 1 = O then trivially a2 a 1a+1. Otherwise S(x) is a quadratic
polynomial. Since it has real zeros, its discriminant is nanegative. But

=2 a&)® 4da 184 =4a& @ 184) O

has no internal zeros. Suppose to the contrary that for some< j <k we
havea; > 0;a =0;a > 0. By arguing as in the previous paragraph we will
obtain a polynomial of the formc+ dx¥ ' with only real zeros, wheres; d > 0.
But sincek i 2 we have that every such polynomial has a nonreal zero
[why?], a contradiction which completes the proof. O

In order to give combinatorial applications of Theorem 5.1%e need to
nd polynomials with real zeros whose coe cients are of conibatorial in-
terest. One such example appears in Exercise 9.6, based oa fhct that the
characteristic polynomial of a symmetric matrix has only ral zeros.

References for Chapter 5

The techniques developed in this section had their origing ipapers of
L. H. Harper [51] and M. Pouzet and I. G. Rosenberg, [81]. Thdosest
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treatment to ours appears in a paper of R. P. Stanley [96]. T&ilatter
paper also contains the proof of Theorem 5.10 (edge recomstiion) given
here. This result was rst proved by L. Lowasz [67] by an inalision-exclusion
argument. The conditionq > % P in Theorem 5.10 was improved taj >
p(log, p 1) by V. Maller [73] (generalizing the argument of Lovasz)and by
I. Krasikov and Y. Roditty [63] (generalizing the argument 6 Stanley).

For further information on Newton's Theorem 5.12, see e.g..®l. Hardy,
J. E. Littlewood, and G. Polya [50, p. 52]. For a general surgy on uni-
modality, log-concavity, etc., see Stanley [98], with a sagl by F. Brenti
[12].



Chapter 6

Young diagrams and g-binomial
coe cients.

A partition  of an integern Ois a gequence = ( 1; 2;:::) of integers
i 0 satisfying 1 2 and . , i = n. Thus all but nitely
many ; are equal to 0. Each ; > 0O is called apart of . We sometimes
suppress 0's from the notation for , e.g., (5§2;2;1), (5;2;2;1,;0;0;0), and
(5;2;2;1;0;0;:::) all represent the same partition (of 10, with four parts).

If is a partition of n, then we denote thisby " norj j=n.

6.1 Example. There are seven partitions of 5, namely (writing e.g. 221 as
short for (2;2;1)): 5, 41, 32, 311, 221, 2111, and 11111.

The subject of partitions of integers has been extensivelyedeloped, and
we will only be concerned here with a small part related to ouprevious
discussion. Given positive integersm and n, let L(m; n) denote the set of all
partitions with at most m parts and with largest part at mostn. For instance,
L(2;3) = f; ;1;2;3;11 21; 31,22 32, 33y. (Note that we are denoting by
; the unique partition (0;0;:::) with no parts.) If = ( 1; »;:::) and

= ( 1; 2;:::) are partitions, then de ne if i for all i.
This makes the set of all partitions into a very interesting pset, denoted
Y and calledYoung's lattice (hamed after the British mathematician Alfred
Young, 1873{1940). (It is called \Young's lattice" rather than \Young's
poset” because it turns out to have certain properties whicke ne a lattice.
However, these properties are irrelevant to us here, so wdlwiot bother to
de ne the notion of a lattice.) We will be looking at some proprties of Y
in Section 8. The partial ordering onY, when restricted toL (m; n), makes

63
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33
4 22 32
3 21 22 31
2 11 2 21 3
1 1 11 2

f f 1
f

Figure 6.1: The latticesL(1;4), L(2;2), and L(2; 3)

L(m;n) into a poset which also has some fascinating properties. gtire 6.1
below showd (1;4), L(2;2), and L(2; 3), while Figure 6.2 showd.(3; 3).

There is a nice geometric way of viewing partitions and the getL (m;n).
The Young diagram (sometimes just called thediagram) of a partition is
a left-justi ed array of squares, with ; squares in theith row. For instance,
the Young diagram of (4 3; 1; 1) looks like:

If dots are used instead of boxes, then the resulting diagram called a
Ferrers diagram The advantage of Young diagrams over Ferrers diagrams is
that we can put numbers in the boxes of a Young diagram, whicheawill do

in Section 7. Observe thatL (m; n) is simply the set of Young diagram<D
ttinginan m nrectangle (where the upper-left (northwest) corner dd is
the same as the northwest corner of the rectangle), ordereg imclusion. We
will always assume that when a Young diagrai is contained in a rectangle
R, the northwest corners agreelt is also clear from the Young diagram point
of view that L(m;n) and L(n; m) are isomorphic partially ordered sets, the



Figure 6.2: The latticeL (3; 3)
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iIsomorphism being given by transposing the diagram (i.enterchanging rows
and columns). If has Young diagramD, then the partition whose diagram
is D! (the transpose ofD) is called theconjugateof and is denoted ° For
instance, (43;1;1)°= (4;2;2;1), with diagram

6.2 Proposition. The posetL (m; n) is graded of rankmn and rank-symmetric.
The rank of a partition is justj j (the sum of the parts of or the number
of squares in its Young diagram).

Proof. As in the proof of Proposition 5.5, we leave to the reader ewghing
except rank-symmetry. To show rank-symmetry, consider theomplement
of inanm n rectangleR, i.e., all the squares oR except for . (Note
that depends onm and n, and not just .) For instance, inL(4;5), the
complement of (43;1; 1) looks like

If we rotate the diagram of by 180 then we obtain the diagram of a
partition ~ 2 L(m;n) satisfyingj j+]~] = mn. This correspondence between
and ~ shows thatL (m; n) is rank-symmetric. O

Our main goal in this section is to show thatL (m; n) is rank-unimodal
and Sperner. Let us writep;(m;n) as short for p;(L(m; n)), the number of
elements ofL (m;n) of rank i. Equivalently, p;(m;n) is the number of par-
titions of i with largest part at most n and with at most m parts, or, in
other words, the number of distinct Young diagrams withi squares which
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tinside an m n rectangle (with the same northwest corner, as explained
previously). Though not really necessary for this goal, itsi nonetheless in-
teresting to obtain some information on these numberng (m;n). First let us
consider the total numberjL(m;n)j of elements inL(m; n).

m+n
m

6.3 Proposition. We havejL(m;n)j =

Proof. We will give an elegant combinatorial proof, based on the fathat
M+N i AAtial +A tha Atimmbhar Af canIIanAAaE = A = = = = =
m

is either N or E, and there arem N's (and hencen E's) in all. We will
associate a Young diagranb contained in anm n rectangleR with such
a sequence as follows. Begin at the lower left-hand corner Bf and trace
out the southeast boundary ofD, ending at the upper right-hand corner of
R. This is done by taking a sequence of unit steps (where eacltuatg of R
IS one unit in length), each step either north or east. Recorthe sequence of
steps, usingN for a step to the north andE for a step to the east.
Example.Let m=5,n=6, =(4;3;1;1). ThenR and D are given by:

The corresponding sequence df's and E's isNENNEENENEE .
It is easy to see (left to the reader) that the above correspdence gives
a bijection between Young diagram® ttinginan m n rectangleR, and
sequences om N's and n E's. Hence the number of diagrams is equal to
m*" , the number of sequences. O
We now consider how many elements &f(m; n) have ranki. To this end,
let g be an indeterminate; and given ldenefj]=1+ q+ ¢+ +
g ' Thus[1]=1,[2] =1+ ¢, [3] =1+ q+ ¢f, etc. Note that[j]is a
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polynomial in q whose value atq = 1 is just j (denoted []q-1 = j). Next
dene[j]'=[1][2] [j]forj 1,andset[0]!=1. Thus[1]!=1, [2]!=1+q,
Bll'=@Q+ Q@+ g+ F)=1+2g+2¢ + ¢ etc., and []lq=1 = j!. Finally
denefork | O,

kK [K]!

j Ok e
The expression ;‘ is called ag-binomial coe cient (or Gaussian coe cient).
Since []lg=1 = r!, it is clear that

Kk Kk |

j g=1 J

One sometimes says that}‘ is a \g-analogue" of the binomial coe cient

k
i

6.4 Example. We have ;‘ = k"j [why?]. Moreover,
Kk Kk
= =1
0 Kk
k k

= =[kl=1+ + P+ + !
1 K 1 [K] g+ q q

4 _ 4B _
2 IR

5
= 5 =1+ q+2¢+20+2d" + P + of:

1+ q+2d+ ¢+ o

5
2

In the above example, :‘ was always a polynomial ing (and with non-
negative integer coe cients). It is not obvious that this is always the case,
but it will follow easily from the following lemma.

6.5 Lemma. We have

| | |
wheneverk 1, with the \initial conditions" § =1, Jk =0ifj< Oor
j >k (the same intial conditions satis ed by the binomial coe cents Jk )-

(6.1)
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Proof. This is a straightforward computation. Speci cally, we hae

k_1+qkjg 1 _[k 1]!_+qkj_[k 1]!_
j j 1 [I'k 1 j] [ 'k ]
[k 1] 1. o !
i 'k 1 g1 01 Kk j]
[k 1] [k jlI+d[]
[ 1k 1 jI' [k j]
[k 1] [K]
[ 1'k 1 jI'[lk j]
K

J

Note that if we put g=1 in (6.1) we obtain the well-known formula

k k 1 k 1
. . + ;
J J ] 1
which is just the recurrence de ning Pascal's triangle. Ths equation (6.1)
may be regarded as @-analogue of the Pascal triangle recurrence.
We can regard equation (6.1) as a recurrence relation for tligbinomial

coe cients. Given the initial conditions of Lemma 6.5, we ca use (6.1) in-
ductively to compute :‘ for any k andj. From this it is obvious by induction

that the g-binomial coe cient * is a polynomial inqwith nonnegative inte-
ger coe cients. The following theorem gives an even strongeesult, namely,
an explicit combinatorial interpretation of the coe cients.

6.6 Theorem. Let pi(m;n) denote the number of elements df(m;n) of

rank i. Then
X : m + n
pi(m;n)d = ; (6.2)
i 0 m

(Note. The sum on the left-hand side is really anite sum, sincep;(m; n) =
Oifi>mn.)

Proof. Let P(m;n) denote the left-hand side of (6.2). We will show that

P0;0)=1; andP(m;n)=0if m<Oorn< 0 (6.3)
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P(m;n)= P(m;n 1)+ q'"P(m 1;n): (6.4)

Note that equations (6.3) and (6.4) completely determine®(m;n). On
the other hand, substitutingk = m+ n andj = m in (6.1) shows that

MmN also satis es (6.4). Moreover, the initial conditions of Leima 6.5
show that ™*" also satises (6.3). Hence (6.3) and (6.4) imply that
P(m;n) = mr;” , SO to complete the proof we need only establish (6.3)
and (6.4).

Equation (613) is clear, since. (0; n) consists of a single point (the empty
partition ;), so ; ,pi(0;n)q = 1; while L(m;n) is empty (or unde ned, if
you prefer) ifm< 0 orn< 0,

The crux of the proof is to show (6.4). Taking the coe cient ofq of both
sides of (6.4), we see [why?] that (6.4) is equivalent to

p(m;n) = p(m;n 1)+ p (m 1n): (6.5)

Consider a partition ~ i whose Young diagranD tsinan m n rectangle
R. If D does not contain the upper right-hand corner oR, then D ts in

anm (n 1) rectangle, so there arg;(m;n 1) such partitions . If on
the other hand D does contain the upper right-hand corner oR, then D
contains the whole rst row of R. When we remove the rst row ofR, we
have left a Young diagram of sizé n which tsinan(m 1) n rectangle.
Hence there argy ,(m 1;n) such , and the proof follows [why?]. O

Note that if we setq = 1 in (6.2), then the left-hand side becomes
#L(m;n) and the right-hand side ™'" , agreeing with Proposition 6.3.

Note: There is another well-known interpretation of :‘ , this time not
of its coe cients (regarded as a polynomial ing), but rather at its valuesfor
certain g. Namely, supposg] is the power of a prime. Recall that there is
a eld Fq (unique up to isomorphism) with g elements. Then one can show
that :‘ is equal to the number of -dimensional subspaces ofladimensional
vector space over the eldF,. We will not discuss the proof here since it is
not relevant for our purposes.

As the reader may have guessed by now, the podgim; n) is isomorphic
to a quotient poset Bs=G for a suitable integers > 0 and nite group G
acting on Bs. Actually, it is clear that we must have s = mn sinceL(m;n)
has rankmn and in generalBs=G has ranks. What is not so clear is the
right choice of G. To this end, let R = Ry, denote anm n rectangle of
squares. For instanceRss is given by the 15 squares of the diagram
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We now de ne the groupG = G, as follows. It is a subgroup of the group
Sr of all permutations of the squares oR. A permutation in G is allowed
to permute the elements in each row @R in any way, and then to permute the
rows themselves oR in any way. The elements of each row can be permuted
in n! ways, so since there aren rows there are a total ofn!™ permutations
preserving the rows. Then them rows can be permuted inm! ways, so it
follows that the order of G, is given by mIn!™. (The group Gn,, is called
the wreath productof S,, and S ,, denotedS,0S, or S, wr S,,. However,
we will not discuss the general theory of wreath products he)

6.7 Example. Supposem =4 and n =5, with the boxes of X labelled as
follows.

12| 3] 4 5
6| 7|8 910
11|12|13[14| 15
16|17| 18 19 2(

Then a typical permutation in G(4;5) looks like

16|20] 1719| 18
411|5| 2|3
12113/15|14| 11
79| 6|10 8

e, (16)=1, (20)=2, etc.

We have just de ned a groupG,,, of permutations of the setR, of
squares of airm  n rectangle. HenceG,,, acts on the boolean algebr&g of
all subsets of the seR. The next lemma describes the orbits of this action.
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6.8 Lemma. Every orbit o of the action of G,,, on Bg contains exactly one
Young diagramD (i.e., exactly one subseD R such thatD is left-justi ed,
and if ; is the number of elements dD in row i of R, then 2

m)-

Proof. Let S be a subset oR, and suppose thatS has ; elements in rowi.
If 2 Gy, and S has ; elements in rowi, then q;:::; ,, IS just some

D in the orbit S is the one of shape = ( 1;:::; m). It's easy to see
that the Young diagram D of shape is indeed in the orbit S. For by
permuting the elements in the rows oR we can left-justify the rows ofS, and
then by permuting the rows ofR themselves we can arrange the row sizes of
S to be in weakly decreasing order. Thus we obtain the Young djeam D

as claimed. O

We are now ready for the main result of this section.
6.9 Theorem. The quotient poseBg,,, =Gnn iS isomorphic toL(m;n).

Proof. Each element ofBr=G,,, contains a unique Young diagranD by
Lemma 6.8. Moreover, two di erent orbits cannot contain thesame Young
diagram D since orbits are disjoint. Thus the map : Bg=G,, ! L(m;n)
dened by ' (D ) = is a bijection (one-to-one and onto). We claim that
in fact ' is an isomorphism of partially ordered sets. We need to showe
following: Let o and o be orbits of G, (i.e., elements oBr=G,,). Let D
andD be the unique Young diagrams iro and o , respectively. Then there

existD 2 oandD 2 o satisfyingD D if and only if in L(m;n).
The \if" part of the previous sentence is clear, for if then D

D . So assume there exisD 2 oand D 2 o satisfying D D . The

lengths of the rows ofD, written in decreasing order, are 1;:::; n, and

similarly for D . Since each row oD is contained in a row ofD , it follows
that for each 1 | m, D has at leastj rows of size at least ;. Thus
the length ; of the j th largest row of D is at least as large as;. In other
words, j» as was to be proved. O

Combining the previous theorem with Theorem 5.8 yields:

6.10 Corollary. The posetsL(m;n) are rank-symmetric, rank-unimodal,
and Sperner.
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Note that the rank-symmetry and rank-unimodality of L(m;n) can be
rephrased as follows: The-binomial coecient ™" has symmetric and
unimodal coe cients. While rank-symmetry is easy to prove $ee Proposi-
tion 6.2), the unimodality of the coe cients of ™*" is by no means ap-
parent. It was rst proved by J. Sylvester in 1878 by a proof snilar to
the one above, though stated in the language of the invariartheory of bi-
nary forms. For a long time it was an open problem to nd a comimatorial
proof that the coe cients of mr; " are unimodal. Such a proof would give
an explicit injection (one-to-one function) : L(m;n); ! L(m;n)j.; for
i < %mn. (One diculty in nding such maps Is to make use of the hy-
pothesis thati < %mn.) Finally around 1989 such a proof was found by K.
M. O'Hara. However, O'Hara's proof has the defect that the mas are not
order-matchings. Thus her proof does not prove thdt(m;n) is Sperner, but
only that it's rank-unimodal. It is an outstanding open proldem in algebraic
combinatorics to nd an explicit order-matching : L(m;n); ! L(m;n)is+;
fori< Imn.

Note that the Sperner property ofL (m; n) (together with the fact that the
largest level is in the middle) can be stated in the followingimple terms: The
largest possible collectiorC of Young diagrams tting in an m n rectangle
such that no diagram inCis contained in another diagram inC is obtained
by taking all the diagrams of size%mn. Although the statement of this fact
requires almost no mathematics to understand, there is no &wn proof that
doesn't use algebraic machinery. (The several known algelr proofs are all
closely related, and the one we have given is the simplest.pi©llary 6.10 is
a good example of the e cacy of algebraic combinatorics.

An application to number theory. There is an interesting application
of Corollary 6.10 to a number-theoretic problem. Fix a poske integer k.
For a nite subset Sof R* =f 2 R: > 0g, and for a real number > 0,
de ne ( )

s X
fw(S; )=# T2 K : t=
27

In other words, f(S; ) is the number ofk-element subsets o6 whose el-
ements sum to . For instance,f3(f1;3;4;6;79;11) = 2, since 1+3+7 =
1+4+6=11.

Given positive integersk < n, our object is to maximizef(S; ) subject
to the condition that # S = n. We are free to choose botls and , but k
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and n are xed. Call this maximum value hy(n). Thus

he(n) = max f«(S; ):
What sort of behavior can we expect of the maximizing s&? If the elements
of S are \spread out,” say S = f1;2;4;8;:::;2" 1g, then all the subset
sums ofS are distinct. Hence for any 2 R* we havefy(S; ) = 0 or 1.
Similarly, if the elements ofS pre \yr_\related" (e.g., linearly independent over
the rationals, such asS = f1; 2, 3;; ?2g), then again all subset sums are
distinct and f¢(S; ) = 0 or 1. These considerations make it plausible that
we should takeS = [n] = f1;2;:::;ng and then choose appropriately. In
other words, we are led to the conjecture that for an 2 Rn+ and 2 R*,
we have

f(S; ) fwlnl; ) (6.6)

for some 2 R* to be determined.
First let us evaluatef([n]; ) forany . This will enable us to determine
the value of in (6.6). Let S= fiy;:::;ixg [n] with

1 i1<i2< <ik n, i1+ +ik: . (67)
Letj, =i, r.Then(since1+2+ +k= ')
. . . : . k+1
n k jk Jka1 Ji 0 Ji+ = 5 (6.8)
Conversely, giverj;:::; ]k satisfying (6.8) we can recovel; : : :; iy satisfying

(6.8). Now let

k+1

Note that (S) is a partition of the integer 5

and with largest part at mostn k. Thus

fnl )= P (oykin k), (6.9)

with at most k parts

or equivalently,

f(nl; )g (%)=
()
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By the rank-unimodality (and rank-symmetry) of L(n k; k) (Corollary 6.10),
the largest coe cient of ' is the middle one, that is, the coe cient of
bk(n k)=2c. It follows that for xed k and n, f¢([n]; ) is maximized for

= bk(n k)=2c+ k+21 = bk(n + 1)=2c. Hence the following result is
plausible.

6.11 Theorem. LetS2 R, 2 R*,andk2 P. Then
fx(S; ) fx([n]; bk(n + 1) =2c):
Proof. Let S= fa;;:::;a,gwith0 <a; < <a,. Let T andU be distinct

and U = fa,;:::5;8,0 with i <i; < <igandj; <j,< <jk.

observation is the following:

Claim. The elements (T ) and (U ) are incomparable inL(k;n k),
l.e., neither (T ) (U)nor (U) (T).

Proof of claim. Suppose not, say (T ) (U) to be de nite. Thus
by de nition of L(k;n k) we havei, r j, rforl r k. Hence
i jr for 1 r k, so alsog;, 8, (sincea; < < a,). But
a, + +aq, = g, + + @, by assumption, soa;, = g, for all r. This
contradicts the assumption thatT and U are distinct and proves the claim.

It is now easy to complete the proof of Theorem 6.11. Supposeat

By the claim, f (S;);:::; (S;)g is an antichain inL(k;n k). Hencer
cannot exceed the size of the largest antichain In(k; n k). By Theorem 6.6
and Corollary 6.10, the size of the largest antichain ib(k;n k) is given by
Pok(n k)=2c(K;n k). By equation (6.9) this number is equal tof  ([n]; bk(n +
1)=2c). In other words,

r o fi([n]; bk(n + 1) =2c);
which is what we wanted to prove. O

Note that an equivalent statement of Theorem 6.11 is thal(n) is equal
to the coe cient of g*(" ¥=2¢in " [why?].

Variation on a theme.  Suppose that in Theorem 6.11 we do not want
to specify the cardinality of the subsets of. In other words, for any 2 R

and any nite subsetS R*, de ne «
f(S; )=#fT S t= o
t2T
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432

43

321

M(4)

Figure 6.3: The posetdM (1), M (2), M (3) and M (4)

How large canf (S; ) be if we require #S = n? Call this maximum value
h(n). Thus
h(n) = max f(S; ): (6.10)

S R*
#S=n

For instance, ifS = f1;2;3gthen f (S;3) = 2 (coming from the subsetd 1; 29
and f 3g). This is easily seen to be best possible, i.d(3) = 2.

We will nd h(n) in a manner analogous to the proof of Theorem 6.11.
The big di erence is that the relevant posetM (n) is not of the form B,=G,
so we will have to prove the injectivity of the order-raisingoperator U; from
scratch. Our proofs will be somewhat sketchy; it shouldn't & di cult for
the reader who has come this far to Il in the details.

Let M (n) be the set of all subsets ofr], with the ordering A B
if the elements ofA area; > a, > > a; and the elements ofB are
b, > b, > > by, wherej kanda Rkbforl i . (The empty set;
is the bottom element ofM (n).) Figure 6.3 showsM (1), M (2), M (3), and
M (4).
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It is easy to see thatM (n) is graded of rank ”‘;1 . The rank of the subset

rank(T) = a + + ay: (6.11)
It follows [why?] that the rank-generating function ofM (n) is given by
(") |
F(M(n);q) = #M(n)d =1+ g+ ) @+ d):

i=0
De ne linear transformations

U :RM (n)i I RM (n)i+1; Di :RM (n)i ' RM (n)i 1

X
Ui (X) y; X2 M(n)

y2M (n)j41
X<y

X

Di(x) c(v;X)v; x 2 M (n)i;

v2MV£Q)i 1
where the coe cient c(v;x) is de ned as follows. Let the elements o¥ be
a; > >a; > 0 and the elements ok beb; > > by > 0. Sincex covers
v, there is a uniquer for whicha, = b 1 (and ax = by for all other k). In
the caseb = 1 we seta, = 0. (E.g., if x is given by 5> 4> 1 andv by
5> 4,thenr =3 and a3 =0.) Set

( n+l .
2 1

(n a)n+a +1); ifa >0

if a, =0
c(v;Xx) =

It is a straightforward computation (proof omitted) to obtain the com-
mutation relation

n+1 .
DU U 1D = 5 20 1y; (6.12)

wherel; denotes the identity linear transformation onRM (n);. Clearly by

de nition U; is order-raising. We want to show thaty; is injective (one-to-

one) fori < % ”;1 . We can't argue as in the proof of Lemma 4.6 that; ;D;
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is semide nite since the matrices ofJ; ; and D; are no longer transposes of
one another. Instead we use the following result from lineatgebra. For two
proofs, see pp. 331-333 &elected Papers on Algebrs. Montgomery, et al.,
eds.), Mathematical Association of America, 1977.

6.12 Lemma. LetV andW be nite-dimensional vector spaces over a eld.
letA:V! WandB :W ! V be linear transformations. Then

x9mV det(AB  xI) = x™W det(BA xI):
In other words, AB and BA have the same nonzero eigenvalues.

We can now prove the key linear algebraic result.

6.13 Lemma. The linear transformation U; is injective for i < % ”;1 and

. . . 1 n+1
surjective (onto) fori 3 ™

Proof. We prove by induction oni that D;.; U; has positive real eigenvalues

fori< % ”‘;1 . Fori =0 this is easy to check since dinRM (n), = 1. Assume
for somei < % n+l 1, i.e., assume thatD;U; ; has positive eigenvalues.

By Lemma 6.12,U; ;D; has nonnegative eigenvalues. By (6.12), we have

n+1 .
Di+1 Ui = U 1D; + 5 2

n+1

Thus the eigenvalues oD,y U are ™) 2i more than those ofU; ;D;.
Since ”;1 2i > 0, it follows that Dj.; U; has positive eigenvalues. Hence it
is invertible, soU; is injective. Similarly (or by \symmetry") U; is surjective

: 1 n+l
for i 5 5 - O

The main result on the posetdM (n) now follows by a familiar argument.

6.14 Theorem. The posetM (n) is graded of rank ”‘;1 , rank-symmetric,
rank-unimodal, and Sperner.

Proof. We have already seen thatM (n) is graded of rank ”;1 and rank-

symmetric. By the previous lemma,U; is injective for i < % ”;1 and
surjective for i % ”‘;1 The proof follows from Proposition 4.4 and

Lemma 4.5. O
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Note. As a consequence of Theorem 6.14, the polynomi{M (n); q) =
(1+ g1+ ) (1+ g") has unimodal coe cients. No combinatorial proof
of this fact is known, unlike the situation forL(m;n) (where we mentioned
the proof of O'Hara above).

We can now determineh(n) (as de ned by equation (6.10)) by an argu-
ment analogous to the proof of Theorem 6.11.

6.15 Theorem. LetS2 R and 2 R*. Then

1 n+1
ts) k5, = h(n):
Proof. Let S = fay;:::;a,g with 0 < a; < < a, LetT and U be
distinct subsets ofS with the same element sums, say = fa;,;:::;a;gand
U=fag;:iia,0with ry <r,< <rjands; <s;< < sy. Dene

T =fryiinrjgandU = fsg;iii;80,s0T ;U 2 M(n). The following
fact is proved exactly in the same way as the analogous fact fo(m; n) (the
claim in the proof of Theorem 6.11) and will be omitted here.

Fact. The elementsT and U are incomparable inM (n), i.e., neither
T U norU T.

It is now easy to complete the proof of Theorem 6.15. Supposeat
Si;::0; S are distinct subsets ofS with the same element sums. By the

size of the largest antichain irM (n). By Theorem 6.14, the size of the largest
antichain in M (n) is the sizepb%(nzl )c of the middle rank. By equation (6.11)
this number is equal tof ([n]; b% ”‘;1 ¢). In other words,

1 n+1 )

2 2 ’

which is what we wanted to prove. O

t f [n];

Note. Theorem 6.15 is known as th&veak Erdys-Moser conjecture The
original (strong) Erdys-Moser conjecture deals with the @aseS R rather
than S R*. There is a di erence between these two cases; for instance,
h(3) = 2 (corresponding toS = f1;2;3gand = 3), while the setf 1;0;1g
has four subsets whose elements sum to O (including the empty set). &
you see where the proof of Theorem 6.15 breaks down if we allBw R?)
The original Erd)s-Moser conjecture asserts that if & =2m + 1, then

f(S; ) f(f m m+1;:::;mg;0): (6.13)
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This result can be proved by a somewhat tricky modi cation ofthe proof
given above for the weak case; see Exercise 6.3. No proof o Hrdys-
Moser conjecture (weak or strong) is known other than the ondicated
here (sometimes given in a more sophisticated context, aspéained in the
next Note).

Note. The key to the proof of Theorem 6.15 is the de nition ofJ; and
D; which gives the commutation relation (6.12). The reader malge wonder-
ing how anyone managed to discover these de nitions (espaity that of D;).
In fact, the original proof of Theorem 6.15 was based on themesentation
theory of the orthogonal Lie algebrao(2n+1; C). In this context, the de ni-
tions of U; and D; are built into the theory of the \principal subalgebras" of
o(2n+1;C). R. A. Proctor was the rst to remove the representation thery
from the proof and present it solely in terms of linear algelr

References for Chapter 6

For a undergraduate level introduction to the theory of paritions, see
Andrews and Eriksson, [5]. A more extensive treatment is ggn by Andrews
[4], while a brief introduction appears in [101x1.8].

As already mentioned in the text, the rank-unimodality ofL (m;n), that
is, of the coe cients of the g-binomial coe cient mn:” , Is due to J. J.
Sylvester [105], with a combinatorial proof later given by KM. O'Hara [76].
An explication of O'Hara's work was given by D. Zeilberger [14].

The unimodality of the coe cients of the polynomial (1+q)(1+ ¢?)  (1+
q") is implicit in the work of E. B. Dynkin [29][30, p. 332]. J. W.B. Hughes
was the rst to observe explicitly that this polynomial arises as a special
case of Dynkin's work. The Spernicity ofL(m;n) and M (n), and a proof
of the Erdys-Moser conjecture were rst given by Stanley |g. It was men-
tioned in the text above that R. A. Proctor [82] was the rst to remove the
representation theory from the proof and present it solelyniterms of linear
algebra.



Chapter 7

Enumeration under group
action.

In Sections 5 and 6 we considered the quotient posBt,=G, where G is a
subgroup of the symmetric groufs ,. If p; is the number of elements of rank

unimodal. Thus it is natural to ask whether there is some nicermula for the
numbersp;. For instance, in Theorem 5.9 is the number of nonisomorphic
graphs with m vertices (wheren = 7 ) and i edges; is there some nice
formula for this number? For the groupGn,,, = S, 0S, of Theorem 6.6 we
Bbtain_ed a simple generating function fop; (i.e., a formula for the polynomial

i pid), but this was a very special situation. In this section we Wipresent
a general theory for enumerating inequivalent objects sufgt to a gEoup of
symmetries, which will include a formula for the generatindunction , pigf
as a special case, wheg is the number of elements of rank of B,=G. The
chief architect of this theory is G. RPolya (though much of itwas anticipated
by J. H. Red eld [85]) and hence is often calle@lya's theory of enumeration
or just Rolya theory. See the references at the end of this chapter for further
historical information.

Polya theory is most easily understood in terms of \colorigs" of some ge-

ometric or combinatorial object. For instance, consider aow of ve squares:

In how many ways can we color the squares usimgcolors? Each square can

83
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be colored any of then colors, so there are® ways in all. These colorings
can by indicated as

A|B|C|D|E

whereA;B; C; D;E are the ve colors. Now assume that we are allowed to
rotate the ve squares 180, and that two colorings are considered the same
if one can be obtained from the other by such a rotation. (We nyahink that
we have cut the row of ve squares out of paper and colored theon one
side.) We say that two colorings areequivalentif they are the same or can be
transformed into one another by a 180rotation. The rst naive assumption

is that every coloring is equivalent to exactly one other (kmdes itself), so
the number of inequivalent colorings is®°=2. Clearly this reasoning cannot
be correct sincen®=2 is not always an integer! The problem, of course, is
that some colorings stay the same when we rotate 180In fact, these are
exactly the colorings

A/B|C|B|A

whereA; B; C are any three colors. There ar@® such colorings, so the total
number of inequivalent colorings is given by

1 . . . ,
é(number of colorings which don't equal their 180rotation)

+(number of colorings which equal their 180 rotation

= %(n5 n%) + n®
1
= é(n5 + n3):

Polya theory gives a systematic method for obtaining formlas of this sort
for any underlying symmetry group.

The general setup is the following. LeX be a nite set, and G a subgroup
of the symmetric groupS x . Think of G as a group of symmetries oX . Let
C be another set (which may be in nite), which we think of as a geof
\colors." A coloring of X is a functionf : X ! C. For instance, X could
be the set of four squares of a 2 2 chessboard, labelled as follows:
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Let C = fr;b; yg (the colors red, blue, and yellow). A typical coloring of
X would then look like

rib
yi|r

The above diagram thus indicates the functiorf : X ! C given by f (1) =
rf2)=b;f(3)=vy;f(4)=r.

Note. We could work in the slightly greater generality of a groupG
acting on the setX, i.e., we are given a homomorphisth: G ! Sy that
need not be injective. However, we then have a well-de neddnced injective
homomorphism :H ! Sy, whereH = G=ker' . The results obtained
below forH are identical to those we get foG, so nothing is lost by assuming
that ' is injective. In this case we can identifyG with its image ' (G).

We de ne two coloringsf and g to be equivalent(or G-equivalent when

it is necessary to specify the group), denotefl g or f ¢ g, if there exists
an element 2 G such that

g( (x)) = f(x)forall x 2 X:

We may write this condition more succinctly asg = f, whereg denotes
the composition of functions (from right to left). It is easyto check, using
the fact that G is a group, that is an equivalence relation. One should
think that equivalent functions are the same \up to symmetry"

7.1 Example. Let X be the 2 2 chessboard andC = fr;b;yg as above.
There are many possible choices of a symmetry gro@ and this will af-
fect when two colorings are equivalent. For instance, codsr the following
groups:

G, consists of only the identity permutation (1)(2)(3)(4).
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G, is the group generated by a vertical re ection. It consists fothe
two elements (1)(2)(3)(4) (the identity element) and (% 2)(3;4) (the
vertical re ection).

G3 is the group generated by a re ection in the main diagonal. It
consists of the two elements (1)(2)(3)(4) (the identity elment) and
(1)(4)(2; 3) (the diagonal re ection).

G4 is the group of all rotations ofX . It is a cyclic group of order four
with elements (1)(2)(3)(4), (L 2;4; 3), (1;4)(2; 3), and (1; 3;4; 2).

Gs is the dihedral group of all rotations and re ections ofX . It has
eight elements, namely, the four elements @&, and the four re ections
(1;2)(3:4), (1;3)(2;4), (1)(4)(2;3), and (2)(3)(L; 4).

G; is the symmetric group ofall 24 permutations ofX . Although this
is a perfectly valid group of symmetries, it no longer has angonnec-
tion with the geometric representation ofX as the squares of a 2 2
chessboard.

Consider the inequivalent colorings ofX with two red squares, one blue
square, and one yellow square, in each of the six cases above.

(G1) There are twelve colorings in all with two red squares, ondue square,

and one yellow square, and all are inequivalent under the wal group
(the group with one element). In general, wheneveG is the trivial
group then two colorings are equivalent if and only if they a& the same
[why?].

(G2) There are now six inequivalent colorings, represented by

rir r{b| |r|y byl |r|b|] |r|y

bly riy rib rir yl|r b|r

Each equivalence class contains two elements.

(G3) Now there are seven classes, represented by

r rir by ylb| |r|b bl r ylr

y| |y|b|l |r|r r|r y|r ryy rib
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The rst ve classes contain two elements each and the last wclasses
only one element. AlthoughG, and Gz are isomorphic as abstract
groups, as permutation groups they have a di erent structug. Speci -
cally, the generator (1 2)(3; 4) of G, has two cycles of length two, while
the generator (1)(4)(2 3) has two cycles of length one and one of length
two. As we will see below, it is the lengths of the cycles of trdements
of G that determine the sizes of the equivalence classes. Thipkins
why the number of classes fo6, and G3 are di erent.

(G4) There are three classes, each with four elements. The sizeeach

(Gs)

(Ge)

class is equal to the order of the group because none of theocinigs
have any symmetry with respect to the group, i.e., for any coting
f, the only group element that xes f (sof = f) is the identity

( =MEG)4).

Under the full dihedral group there are now two classes.
rir rib
bly y|r

The rst class has eight elements and the second four elemsntIn
general, the size of a class is the index i@ of the subgroup xing
some xed coloring in that class [why?]. For instance, the fagroup
xing the second coloring above isf (1)(2)(3)(4); (1;4)(2)(3)g, which
has index four in the dihedral group of order eight.

Under the group S 4 of all permutations of the squares there is clearly
only one class, with all twelve colorings. In general, for grset X if the
group is the symmetric groupS x then two colorings are equivalent if
and only if each color appears the same number of times [why?]
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Our object in general is to count the number of equivalence adses of
colorings which use each color a speci ed number of times. Wall put the
information into a generating function| a polynomial whose coe cients are
the numbers we seek. Consider for example the s€f the groupG = Gs (the
dihedral group), and the setC = fr;b;yg of colors in Example 7.1 above.
Let (i;); k) be the number of inequivalent colorings using redtimes, blue
j times, and yellowk times. Think of the colorsr; b;y asvariables and form
the polynomial

X .
Fo(rb;y) = (i k)r'oy*:

i+ +k=4

Note that we sum only overi; j; k satisfyingi+ j + k = 4 since a total of four
colors will be used to color the four-element set. The reader should check
that

Fo(ibyy) = (rf+ 1+ y)+(rio+ rb®+ riy+ ry* + By + by’)
+2(r?0 + r2y? + BPy?) + 2(r?by+ rb?y + rby?):

For instance, the coe cient of r2by is two because, as we have seen above,
there are two inequivalent colorings using the colorsr;b;y. Note that
Fs(r;b;y) is a symmetric function of the variablesr;b;y (i.e., it stays the
same if we permute the variables in any way), because insofas counting
inequivalent colorings goes, it makes no di erence whatameswe give the
colors. As a special case we may ask for ttatal number of inequivalent col-
orings with four colors. This obtained by settingr = b=y =1in Fg(r;b;y)
[why?], yieldingFs(1;1;,1)=3+6+2 3+2 3=21.

What happens to the generating functior=g in the above example when

of red)? Clearly all that matters are themultiplicities of the colors, without
regard for their order. In other words, there are ve cases:aj all four colors
the same, (b) one color used three times and another used on¢e two
colors used twice each, (d) one color used twice and two otkewnce each,
and (e) four colors used once each. These ve cases corresptmthe ve
partitions of 4, i.e., the ve ways of writing 4 as a sum of posive integers
without regard to order: 4, 3+1,2+2,2+1+1,1+1+1+1. Our generating
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function becomes

X
+2  rfrf+2 rrrc+3
i<j _ig L i<j<k<l
J'I<k
where the indices in each sum lie between 1 amd If we set all variables
equal to one (obtaining the total number of colorings withn colors), then

simple combinatorial reasoning yields

1
Fe(1;4:::5;1) = n+n(n 1)+2 2 +2n n2 +3
1
= g(n4+2n3+3n2+2n): (7.1)

Note that the polynomial (7.1) has the following descriptia: The denomina-
tor 8 is the order of the groupGs, and the coe cient of n' in the numerator
is just the number of permutations inGs with i cycles! For instance, the
coe cient of n?is 3, andGs has the three elements (12)(3;4), (1;3)(2;4),
and (1;4)(2; 3) with two cycles. We want to prove a general result of this
nature.

The basic tool which we will use is a simple result from the tloey of
permutation groups known aBurnside's lemma It was actually rst proved
by Cauchy whenG is transitive (i.e., jY=G =1 in Lemma 7.2 below) and by
Frobenius in the general case, and is sometimes called thauchy-Frobenius
lemma

7.2 Lemma (Burnside's lemma) Let Y be a nite set andG a subgroup of
Sy. Foreach 2 G, let

Fix()=fy2Y: (y)=yg

so #Fix( ) is the number of cycles of length one in the permutation Let
Y =G be the set of orbits of5. Then

1 X
iY=G=—  #Fix( ):
#G 6

Firjryry;
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An equivalent form of Burnside's lemma is the statement thathe average
number of elements oY xed by an element of G is equal to the number of
orbits. Before proceeding to the proof, let us consider an axple.

7.3 Example. LetY = fa;b;c;d,
G = f(a)(D(c)(d); (a;B(c; d); (a; 9(b; I; (a; d)(b; §g;

and

G°= f(a)(B(0)(d); (a; B(O)(d); (a)(B)(c; d; (a; B(c; d)g:
Both groups are isomorphic toZ, Z, (compare Example 5.1(c) and (d)).
By Burnside's lemma the number of orbits ofG is %(4 +0+0+0) = 1.
Indeed, given any two elements;j 2 Y, it is clear by inspection that there
isa 2 G (which happens to be unique) such that (i) = j. On the other
hand, the number of orbits ofG%is 2(4 + 2 + 2 + 0) = 2. Indeed, the two
orbits arefa; by and f c; dg.

Proof of Burnside's lemma. Fory2YletGy=f 2G: y=yg

(the set of permutations xing y). Then
1 X
ag JFx(C)l
2G 2G y2Y

Now (as in the proof of Lemma 5.6) the multiset of elements y, 2 G,
contains every element in the orbitGy the same number of times, namely
# G=# Gy times. Thusy occurs #G5Gyj times among the vy, so

#G
—— =# Gy
# Gy Y
Thus
X X
X ey = LY #e
4G 4G __#Gy
2G y2Y
- #Gy'
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How many times does a term # O appear in the above sum, wher® is
a xed orbit? We are asking for the number ofy such that Gy = O. But
Gy= O ifand only ify 2 O, so # O appears #O times. Thus each orbit
gets counted exactly once, so the above sum is equal to the rhen of orbits.

7.4 Example. How many inequivalent colorings of the vertices of a regular
hexagonH are there usingn colors, under cyclic symmetry? LeG, be the
set of alln-colorings ofH . Let G be the group of all permutations ofG, which
permute the colors cyclically, sdG = Zg. We are asking for the number of
orbits of G [why?]. We want to apply Burnside's lemma, so for each of the
six elements of G we need to compute the number of colorings xed by
that element. Let be a generator ofG.

=1 (the identity): All n® colorings are xed by .

;1. Only the n colorings with all colors equal are xed.

= 2; 4 Any coloring of the formababalis xed (writing the colors
linearly in the order they appear around the hexagon, stamig at any
xed vertex). There are n choices fora and n for b, son? colorings in
all.

= 3. The xed colorings are of the formabcabgcson? in all.

Hence by Burnside's lemma, we have
H — 1 6 3 2 .
number of orbits = 6(n + n°+2n°+2n):

The reader who has followed the preceding example will have trouble
understanding the following result.

7.5 Theorem. Let G be a group of permutations of a nite seX . Then the
number Ng(n) of inequivalent (with respect toG) n-colorings of X is given

by 1 X
- c( ).
Ng(n) e "M (7.2)
2G

wherec( ) denotes the number of cycles of



92 CHAPTER 7. ENUMERATION UNDER GROUP ACTION.

Proof. Let , denote the action of 2 G on the setG, of n-colorings of
X . We want to determine the set Fix( ,), so that we can apply Burnside's
lemma. LetC be the set ofn colors. Iff : X I C is a coloring xed by

then for all x 2 X we have

fF)= o f(x)= 1 (x):

Thus f 2 Fix( ) if and only if f (x) = f ( (x)). Hencef (x) = f ( k(x)) for
any k 1 [why?]. The elements/ of X of the form *(x) for k 1 are just
the elements of the cycle of containing x. Thus to obtain f 2 Fix( ,),
we should take the cyclesq;:::; ¢y of and color each element of; the
same color. There aran choices for each;, son® ) colorings in all xed by
. In other words, #Fix( ,) = n®), and the proof follows by Burnside's
lemma. O

We would now like not just to count the total number of inequivalent
colorings with n-colors, but more strongly to specify the number of occureas
of each color. We will need to use not just the numbea( ) of cycles of each

2 G, but rather the lengths of each of the cycles of. Thus given a
permutation of an n-element setX, de ne the type of to be

where hasg i-cycles. For instance, if =4;7;3;8;2;10,11, 1;6;9; 5, then
type( ) = type (1;4,8)(2;7,115)(3)(6;109)
= (1;0;2;1,0;0;0;0;0; 0; 0):

P
Note that we always have
to be the monomial

_ici = n [why?]. De ne the cycle indicator of

Z = zizg ozt

(Many other notations are used for the cycle indicator. These ofZ comes

from the German word Zyklus for cycle. The original paper of Rolya was
written in German.) Thus for the example above, we hav& = z;75z,.

Now given a subgroupG of S, the cycle indicator (or cycle index poly-

nomial) of G is de ned by
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7.6 Example. If X consists of the vertices of a square ar@d is the group
of rotations of X (a cyclic group of order 4), then

1
Zg = Zr(zi1 + 25+ 22):
If re ections are also allowed (sdG is the dihedral group of order 8), then
Zg = %(zi1 + 325+ 2752, + 224):

We are now ready to state the main result of this section.

7.7 Theorem (Polya's theorem, 1937) Let G be a group of permutations of
the n-element setX . Let C = fry;ry;:::g be a set of colors. Let (iq;iz;:::)
be the number of inequivalent (under the action &) coloringsf : X ! C

such that colorr; is usedi; times. De ne
X

Fo(ryra;ii:) = (ig;ig;zz0)ritr

(Thus Fg is a polynomial or a power series in the variablas;ry;:::, de-
pending on whether or noC is nite or in nite.) Then

Fo(rora;:ii) = Zo(ratrotrs+  r2+r2+r2+ coiod+rb+rk+ )
(In other words, substitute , r! for z in Zg.)
Before giving the proof let us consider an example.

7.8 Example. Suppose thatin Example 7.6 our set of colors& = fa; b; c; @,
and that we take G to be the group of cyclic symmetries. Then

Fe(a;b;c;d

% (@a+ b+ c+d+(a®+ P+ 2+ d)?+2(a*+ 1+ c*+ dY)
= (a*+ )+(ab+ )+2(al+ )+3(abc+ ) +6abed:

An expression such asaf?+ ) stands for the sum of all monomials in the
variablesa; b; c; dwith exponents 2 2; 0; 0 (in some order). The coe cient of

all such monomials is 2, indicating two inequivalent colongs using one color
twice and another color twice. If insteadG were the full dihedral group, we
would get

Fe(a;b;c;d

% (a+ b+ c+ d)?*+3(a%+ P+ 2+ d?)?

+2(a+ b+ c+ d)?(@+ P+ 2+ d)+2(a+ b+t + df)
(a*+ )+(ab+ )+2(a’P+ )+2(a’bc+ )+ 3abced:
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Proof of Polya's theorem. Let#X =tandi; + i, + = t, where
eachij 0. Leti = (ig;ip; ), and let G denote the set of all colorings
of X with color r; usedi; times. The groupG acts onG, since iff 2 G
and 2 G,then f 2 C. (\Rotating" a colored object does not change
how many times each color appears.) Let; denote the action of on G.
We want to apply Burnside's lemma to compute the number of oiits, so we
need to nd #Fix( ;).

In order for f 2 Fix( ;), we must colorX so that (a) in any cycle of ,
all the elements get the same color, and (b) the colas appearsi; times.
Consider the product v

Ho= (h+rps )00
j

where ¢ ( ) is the number of j -cycles (cycles of length)) of . When we
expand this product as a sum of monomials}'r}? , we get one of these
monomials by choosing a ternt} from each factor ofH and multiplying
these terms together. Choosingj, corresponds to coloring all the elements
of somej-cycle with ry. Since a factorr} + r} + occurs preciselyg ()
times in H , choosing a termr} from every factor corresponds to coloring
X so that every cycle is monochromatic (i.e., all the elementsf that cycle
get the same color). The product of these terms, will be the monomial
ri'r¥?> , where we have used colay a total of j, times. It follows that the
coecient of ri*r2  in H is equal to #Fix( ;). Thus

H = #Fix( )rirrg (7.3)
Now sum both sides of (7.3) over all 2 G and divide by #G. The left-hand
side becomes

1 XY .
ey (rh+rh+ O = Zg(ra+ 4+ r2+r3+ i)
2G j
On the other hand, the ['ight-hand side begomes
X 1 X _ -
%G #FEIX( ) ri'r;
i 2G

By Burnside's lemma, the expression in brackets is just theumber of orbits
of ; acting on G, i.e., the number of inequivalent colorings using colar, a
total of i; times, as was to be proved.
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7.9 Example. (Necklaces) Anecklaceof length ™ is a circular arrangement
of * (colored) beads. Two necklaces are considered the same éythare
cyclic rotations of one another. LetX be a set of (uncolored) beads, say
X = f1;2;:::; 9. Regarding the beads as being placed equidistantly on a
circleinthe order 1, 2:::; ", let G be the cyclic group of rotations ofX . Thus

if isthe cycle (£2;:::;),then G = f1;; 2:::; g. For example, if

" =6 then the elements ofG are

° = ()QE)HE)E)
= (1,2,3/4,5,6)

2 = (1;35)(246)

? = (L,9(25)36)

4 = (1;53)(2:6,4)

® = (1,6,54;3;2):
In general, if d is the greatest common divisor om and ~ (denoted d =
gcd(m; '), then ™ hasd cycles of length’=d. An integer m satis es 1
m ~andgcdfm; ) = difandonlyifl m=d “=dandgcdMm=d; =d = 1.
Hence the number of such integemn is given by the Euler phi-function (or
totient function) (*=d), which by de nition is equal to the number of integers

1 i "=dsuch that gcd(; =d) = 1. Recall that (k) can be computed by
the formula
Y 1
(k) = k 1 = (7.4)
pjk p
p prime

For instance, (1000) =1000(1 3)(1 %) =400. Putting all this together

Zg(z1;::05,2) = < (=d)zly;
dj’
or (substituting "=d for d),
1x t=

di

There follows from Rolya's theorem the following result (oiginally proved by
P. A. MacMahon (1854{1929) before Polya discovered his geral result).
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7.10 Theorem. (a) The number N-(n) of n-colored necklaces of length

IS given by
1 X
N-(n)= < (=d)n¢: (7.5)
dj’
(b) We have
1 X d d =d
Fo(riraii) = < (d(rp+r+ )™
dj°
Note: (b) reduces to (a) ifr; = r, = = 1. Moreover, since clearly
N-(1) =1, putting n =1 in (7.5) yields the famous identity

di’

What if we are allowed to ip necklaces over, not just rotate hem? Now
the group becomes the dihedral group of order 2and the corresponding
inequivalent colorings are calledlihedral necklaces We leave to the reader
to work out the cycle enumerators

0 1
i @X =d 2_m 1 mA - if > =
> (d)zy" + mzizy' “+ mz;'A; if " =2m
o 0 1

1 X “d .~ om -
?@ (dyz, "+ 2120 A, if S =2m+1:
o

7.11 Example. n-colored *proper* 4-necklaces ?7?

7.12 Example. Let G = S-, the group of all permutations off 1;2;:::;°g=
X. Thus for instance

1
Zs,(21; 22, ) (—S(zf +3212, +223)

1
Zs,(z1; 22, 23, 22) Z1(21‘+62§zz+32§+8zlz3+624):

It is easy to count the number of inequivalent colorings ilG. If two colorings
of X use each color the same number of times, then clearly thereseme
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permutation of X which sends one of the colorings to the other. Henc&
consists of a single orbit. Thus
X o
Fs.(ry;ra;iii) = rirg
i1tigs+ ="
the sum of all monomials of degree.
To count the total number of inequivalentn-colorings, note that

X . 1

‘ 0Fg\(rl;rz;:::)x = T 100 1)

(7.6)

since if we expand each factor on the right-hand side into trmriesp i 0 r{ X!

and multiply, the coe cient of x will just be the sum of all monomials of
degree. For xed n, let f,(*) denote the number of inequivalenn-colorings
of X. Sincef,(") = Fs.(1;1;:::;1) (n 1's in all), there follows from (7.6)
that X

. 1
faC)X = ———:
0
The right-hand side can be expanded (e.g. by Taylor's thearg as
1 X n+°> 1 .
— = . X :
@ ",
Hence -
. n+
fn() = . :

It is natural to ask whether there might be a more direct proof such a
simple result. This is actually a standard result in elememiry enumerative
combinatorics. For xed ° and n we want the number of solutions toi; +
i+ +1i, =" innonnegative integers. Setting; = i; +1, this is the same
as the number of solutions tdk; + ks, + + k, = ~ + n in positive integers.
Place * + n dots in a horizontal line. There are’ + n 1 spaces between
the dots. Choosen 1 of these spaces and draw a vertical bar in them in
b= ™. ways. For example, ifn =5 and * = 6, then one way of
drawing the bars is

S S
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The number of dots in each \compartment,” read from left to rght, gives

corresponding to the original solution 1+2+1+0+2 =6 (i.e., one element
of X coloredr,, two elements colored,, one colored 3, and two coloredrs).
Since this correspondence between solutionsitot i, + + i, = "~ and sets
of bars is clearly a bijection, we get"*. ! solutions as claimed.

Recall (Theorem 7.5) that the number of inequivalenin-colorings of X
(with respect to any groupG of permutations of X ) is given by

X
i nc( )’

#G
2G

wherec( ) denotes the number of cycles of. Hence forG = S- we get the
identity

1% o) n+ 1
s \

2S-

= \—1'n(n+1)(n+2) (n+ " 1)
Multiplying by ! yields

n‘d=nn+1)(n+2) (n+ > 1) (7.7)
2S-

Equivalently [why?], if we de ne c('; k) to be the number of permutations in
S- with k cycles (called asignless Stirling number of the rst king, then
X
(kXK= x(x +1)(x+2) (x+ 1)
k=1

For instance, x(x + 1)(x + 2)(x +3) = x*+6x3 + 11x? + 6X, so (taking
the coe cient of x?) eleven permutations inS, have two cycles, namely,
(123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)2), (234)(1), (243)(1),
(12)(34), (13)(24), (14)(23).

Although it was easy to compute the generating functiofrs. (ro;ro;:::)

we can still ask whether there is a formula of some kind for thipolynomial.
First we determine explicitly its coe cients.
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P
7.13 Theorem. Let ici = . The number of permutations 2 S-

with ¢ cycles of lengthi (or equivalently, the coe cient of z7*z3? in

Example. The number of permutations inS ;5 with three 1-cycles, two
2-cycles, and two 4-cycles is 181° 3! 22 21 4% 2! =851;350 500.

Proof of Theorem 7.13. Fix ¢ = (c¢;¢;::0) and let X, be the set
of all permutations 2 S- with ¢ cycles of lengthi. Given a permutation

= aya a in S+, construct a permutationf ( ) 2 X. as follows. Let

be (@c,+1;8c,+2); (Bc+358c,44 )5 01y (Bep42¢, 158c,42¢,)- Then let the 3-cycles
off () be (A +2c,+1 7 Aci+2.cp42 3 Acy+2.cp+3 )s (Bey+2co+4 5 Bey+2.cp+5 5 Aoy +2cp+6 )y - o

(A +2c,43¢5 25 Bcy+2c+305 1) Aey+2c+3¢5)s €LC., continuing until we reacha: and
have produced a permutation inX.. For instance, if* = 11;¢, = 3;¢, =

2.c,=1,and =4:;9,6;11,7;1;3;8,10, 2,5, then

f()=4)O)6)(11;7)(1;3)(8;10 2 5):

We have de ned a functionf : S- ! X.. Given 2 X, whatis#f 1( ),
the number of permutations sentto by f ? A cycle of lengthi can be written
in i ways, namely,

(bshbp; i) = (bpsbss i) = =(hsbskyiiiih o)
Moreover, there arec! ways to order thec cycles of lengthi. Hence
#1 1 )= clole! 190223
the same number for any 2 X.. It follows that

#S-

¢ lc! 161 2¢2
N

clc,! Jc12¢2 ’

as was to be proved.
As for the polynomial Zs. itself, we have the following result. Write
expy = €.

7.14 Theorem. We have
X . X2 x3
Zs. (Z1;2;::0)X =exp zpX + 22? + 233 +
0
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Proof. There are some sophisticated ways to prove this theorem whitex-
plain" why the exponential function appears, but we will be ontent here
with a \naive" proof. Write

I T S x2 x3
gt = & &%z gB | I
X nyn X nyon X ny3n
_ Z'x Zhx Z3x
n! 2"n! 3"n!
n 0 n 0 n O

When we multiply this product out, the coe cient of z'z2  x, where
=g t2c+ , is given by
1 1 N

1ecy120ec,) 1 1o 12%,!

C

By Theorem 7.13 this is just the coe cient of z;* z5? inZs.(z1;22;:::), as
was to be proved. O

As a check of Theorem 7.14, set eacgh= n to obtain
X

2 3
X X
@t ni+niz+

Zs. (n;n;::)x
0
I A

- enlog(l x) 1
_ 1
@ xn
X
= " (%
0
X n+ 1

the last step following from the easily checked equality " =( 1) "*. !.
Equating coe cients of x in the rst and last terms of the above string of
equalities gives

n+° 1

Zs.(n;n;:::)
nn+l) (n+° 1)
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agreeing with Theorem 7.5 and equation (7.7).
Theorem 7.14 has many enumerative applications. We give osech
result here as an example.

7.15 Proposition. Let f (n) be the number of permutationsv 2 S,, of odd
order. Equivalently,wX = 1 for some oddk. Then

12 3 52 (n 1)%) neven

f =
(n) 12 32 52 (n 2)2 n; nodd:

Proof. A permutation has odd order if and only if all its cycle lengtks are
odd. Hence [why?]
f(n)= nlZs (z =1; i odd;z =0; i even)

Making this substitution in Theorem 7.14 gives

X XN x3 x5
f — = + —+ — +
- (n) py exp X 3 z
Since log(l x)= x+ % + § + , Wwe get [why?]
X x" 1
f(n)m = exp E( log(1 x)+log(1l+ x))
no ’
1 1+x
= exp éIog T x
r
— 1+ X.
1 X

MVe therefore need to nd the coe cients in the power series gansion of
(1+ x)=(1 x)at x=0. There is a simple trick for doing so:
r

1+x _
- 1+ 1 2y 1=2
o T A a )
X =
= arx PO
m
m O
X =
= ( 1)m r]T']Z (X2m + X2m+1);

m 0
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where by de nition

1= 1

m m!

1 3 2m 1
2 2 2

iS now a routine computation to check that the coe cient of x"=n! in
(1+ x)=(1 x) agrees with the desired value df (n). O

Quotients of boolean algebra. We will show how to apply RPolya
theory to the problem of counting the number of elements of gen rank in a
guotient posetBy =G. HereX is a nite set, By is the boolean algebra of all
subsets ofX , and G is a group of permutations ofX (with an induced action
on Bx). What do colorings of X have to do with subsets? The answer is
very simple: A 2-coloringf : X !'f 0;1g corresponds to a subse®; of X by
the usual rule

s2S () f(s)=1:

Note that two 2-coloringsf and g are G-equivalent if and only if S; and S
are in the same orbit ofG (acting on By ). Thus the number of inequivalent
2-coloringsf of X with i values equal to 1 is just #Bx =G);, the number of
elements oBx =G of ranki. As an immediate application of Polya's theorem
(Theorem 7.7) we obtain the following result.

7.16 Corollary. We have
X .
#(Bx=G)id = Zo(1+ q;1+ 1+ ;i)
Proof. If (i;j ) denotes the number of inequivalent 2-colorings of with
the colors 0 and 1 such that O is useg times and 1 is used times (so
I+ ) =# X), then by Polya's theorem we have
X .
()XY = Za(x + y; x>+ y%x3+ y3 o)
i5j
Setting x = gandy =1 yields the desired result [why?]. O

Combining Corollary 7.16 with the rank-unimodality of Bx =G (Theo-
rem 5.8) yields the following corollary.

7.17 Corollary. For any nite group G of permutations of a nite set X,
the polynomialZg(1+ q;1+ ¢?; 1+ ¢;:::) has symmetric, unimodal, integer
coe cients.
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7.18 Example. (a) Forthe posetP of Example 5.4(a) we havé& = f(1)(2)(3);(1; 2)(3)g,
S0Zg(21;22;23) = 3(Z3 + 212,). Hence

X3

A+ @Pras Qi+ @)

1+2q+202+ O

# P)d

i=0

(b) For the poset P of Example 5.4(b) we haveG = f(1)(2)(3)(4)(5),
(1:2,3;4,5), (1, 3,5, 2,4), (1,4, 2,5; 3), (1, 5,4, 3; 2)9, S0Zc(Z1; 225 Z3; 243 Z5) =
(23 +412s). Hence

xo _
(# Pi)d

i=0

s 1+ Q7+ 41+ )

1+ g+2+2q°+ o' + o

(c) Let X be the squares of a 2 2 chessboard, labelled as follows:

1] 2
4

Let G be the wreath productS, 0S,, as de ned in Section 6. Then
G =1(1)(2)()4); (1;2)(3)(4); (1)(2)(3;4); (1;2)(3; 4);
(1;3)(2;4); (1;4)(2;3); (1; 3, 2,4); (1, 4, 2; 3)g;

SO
1
Z26(21;,20: 23, 24) = g(zi1 +27272, + 323 + 22,):

oy
3+
0
N—r
Q.
I

5 0+ Q21+ P+ ) +3(0+ PP +2(1+ o)

1+ q+2c8+ o+ ¢
4

2

agreeing with Theorem 6.6.
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Using more sophisticated methods (such as the representatitheory of
the symmetric group), the following generalization of Coltary 7.17 can be
proved: LetP(q) be any polynomial with symmetric, unimodal, nonnegative,
integer coe cients, such as 1+q+3¢F +3¢¢+8q*+3°+3¢°+ g’ + ¢f or
P+ (=0+0g+ +0q'+P+f+0g’+ +0q). Then the polynomial
Zs(P(Q);P(c®);P(c®);:::) has symmetric, unimodal, nonnegative, integer
coe cients.

Graphs. A standard application of Polya theory is to the enumeration
of nonisomorphic graphs. We saw at the end of Section 5 thatM is an
m-element vertex set,X = "g ,and S@ is the group of permutations of
X induced by permutations ofM, then an orbit of i-element subsets oX
may be regarded as an isomorphism class of graphs on the veget M with
i-edges. Thus #Bx =S &); is the number of nonisomorphic graphs (without
loops or multiple edges) on the vertex sei with i edges. It follows from
Corollary 7.16 that if g (m) denotes the number of nonisomorphic graphs
with m vertices andi edges, then

&) |
g(Mmd = Zgp (1+ q;l+ 51+ g%
i=0

Thus we would like to compute the cycle enumeratcﬂs(n%) (z1;22;::0). If two
permutations and ofM have the same cycle type (number of cycles of each
length), then their actions onX also have the same cycle type [why?]. Thus
for each possible cycle type of a permutation d¥ (i.e., for each partition

of m) we need to compute the induced cycle type oX. We also know
from Theorem 7.13 the number of permutations oM of each type. For
small values ofm we can pick some permutation of each type and compute
directly its action on X in order to determine the induced cycle type. For
m =4 we have:

CYCLE INDUCED CYCLE

LENGTHS PERMUTATION LENGTHS
OF NUMBER 0 OF ©

1,111 (1)(@2)(B)(4) (12)(13)(14)(23)24)(34) 11,1111

1
2,11 6 (L2)3)(4) (12)(1223)(1424)(34) 2211
31 8 (L,2,3)(4) (12,2313)(14 24 34) 33
2,2 3 (L2)(3;4) (12)(1324)(14 23)(34) 22,1;1
4 6 (1 23;4) (12, 23,34,14)(13 24) 42
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It follows that
1
Z 0 (21; 22, 23, 24 25, Z6) = Z‘r(zf +9727% + 875 + 6 2,24):
4

If we setz; =1+ d and simplify, we obtain the polynomial

X6
g@d =1+ q+2¢°+3q° +2d" + ¢ + -

i=0
Suppose that we instead wanted to count the numbédr; (4) of nonisomorphic
graphs with four vertices andi edges, where now we allow at mostvo edges
between any two vertices. We can takd1, X, and G = S as before, but
now we have three colors: red for no edges, blue for one edga] gellow
for two edges. A monomiak'b y* corresponds to a coloring withi pairs of
vertices having no edges between them,pairs having one edge, an# pairs
having two edges. The total numbere of edges ig + 2k. Hence if we let
r=1;b= qg;y= ¢, then the monomialr't y* becomesyj *?* = ¢¢. It follows
that

i 1)
h@d = Zgo@+a+ 1+ g+ a1+ + %)

i=0

Ja (L4 % P +9(1+ q+ 1+ &+ )’
H(L+ G+ )2+ B(L+ o+ YL+ of + of)

1+ q+3F+58+8q" +9° +12°+9q’ +8f +5¢°
+3q10+ q11+ q12:

The total number of nolgisomorphic graphs on four vertices Wi edge multi-
plicities at most two is  ; h;(4) = 66.

It should now be clear that if we restrict the edge multiplidy to be r,
then the corresponding generating function izsgz) (1+g+f+ +q L1+

o+ o+ + 0 ?:::). Inparticular, to obtain the total number N(r; 4)
of nonisomorphic graphs on four vertices with edge multiglity at most r,
we simply set eaclg; = r, obtaining

N(;4) = Zso(nnnnnr)

1
= 2—4(r6 +9r% +14r2):
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This is the same as number of inequivalent-colorings of the setX = '\g

(where #M = 4) [why?].

Of course the same sort of reasoning can be applied to any nuenlof ver-
tices. For ve vertices our table becomes the following (usg such notation
as P to denote a sequence of ve 1's).

CYCLE INDUCED CYCLE
LENGTHS PERMUTATION LENGTHS
OF NO. 0 OF ©
i 1 WEE)MAOG) (12)(13)  (45) 1
2:18 10 (2)(3)(4)(B) (12)(13;23)(14 25)(15 25)(34)(35)(45) 214
312 20 (12,3)(4)(5) (12; 23,13)(14, 24; 34)(15, 25; 35)(45) 31
221 15  (32)3;4)(5) (12)(13,24)(14 23)(15 25)(34)(35 45) 212
4,1 30 (2 2;3;4)(5) (12;23,34;14)(13 24)(15 25, 35;45) L2
3,2 20 (2,2, 3)(4;5) (12, 23, 13)(14 25; 34; 15, 24; 35)(45) 631
5 24 (1 2;3;4;5) (12; 23, 34; 45, 15)(13 24; 35, 14; 25) 5
Thus

- 120
from which we compute
X0 _
g (5)d

i=0

|
(/)
ag
~
[E
+
0
H
+
Q
=
+
o]
N
[S)
N—r

1+ q+2q2+4q3+6q4+6q5+6q6+4q7+2q8+ o+ gt

For an arbitrary number m = # M of vertices there exist explicit formulas
for the cycle indicator of the induced action of 2 Sy on ™ | thereby
obviating the need to compute ° explicitly as we did in the above tables,
but the overall expression forZ s@ cannot be simpli ed signi cantly or put
into a simple generating functlon as we did in Theorem 7.14.0F reference
we record

- 15 3 2
Zséz) = (z1 +152/75 + 402323 + 452375 + 90212,73 + 1202, 2,737

+144z28 + 157325 + 902,2,7; + 4023 + 1202323)

1
—_(21°+102}23+202,23+157225+302,25+2021 2326 +24 22)



107

Moreover ifu(n) denotes the number of nonisomorphic simple graphs with
vertices, then

=(1:;1,2,4,11; 34,156 1044 12346 274668120051681018997864)

A table of u(n) for n 75 is given at
http://www.research.att.com/ njas/sequences/b000088.txt
In particular,

u(75) = 9196577679054591811705531139323117987344395723
0555232344598910500368551136102062542965342147
8723210428876893185920222186100317580740213865
7140377683043095632048495393006440764501648363
4760490012493552274952950606265577383468983364
6883724923654397496226869104105041619919159586
8518775275216748149124234654756641508154401414
8480274454866344981385848105320672784068407907
1134767688676890584660201791139593590722767979
8617445756819562952590259920801220117529208077
0705444809177422214784902579514964768094933848
3173060596932480677345855848701061537676603425
1254842843718829212212327337499413913712750831
0550986833980707875560051306072520155744624852
0263616216031346723897074759199703968653839368
77636080643275926566803872596099072

a number of 726 digits! Compare

2(§) 726
~er = :919657767905459180910'<";

which agrees withu(75) to 17 signi cant digits [why?].
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References for Chapter 7

Burnside's lemma (Lemma 7.2) was actually rst stated and pyved by
Frobenius [39, end oi4]. Frobenius in turn credits Cauchy [20, p. 286] for
proving the lemma in the transitive case. Burnside, in the st edition of his
book [17,x118{119], attributes the lemma to Frobenius, but in the secul
edition [18] this citation is absent. For more on the historyof Burnside's
lemma, see [74] and [112]. Many authors now call this resulié Cauchy-
Frobenius lemma. The cycle indicatoZg(z;; z5;:: ;) (where G is a subgroup
of S,) was rst considered by J. H. Red eld [85], who called it thegroup
reduction function, denoted Grf(G). G. Polya [78] independently de ned the
cycle indicator, proved the fundamental Theorem 7.7, and ga numerous
applications. For an English translation of Rolya's paper see [79]. Much
of Polya's work was anticipated by Red eld. For interesting historical in-
formation about the work of Red eld and its relation to Polya theory, see
[47][49][66][86] (all in the same issue dburnal of Graph Theory). The
Wikipedia article \John Howard Red eld" also gives informaion and refer-
ences on the interesting story of the rediscovery and sigeance of Red eld's
work.

The application of Rolya's theorem to the enumeration of naisomorphic
graphs appears in Polya's original paper [78]. For much adftbnal work on
graphical enumeration, see the text of Harary and Palmer [{8

Subsequent to Polya's work there have been a huge number ojomsitions,
applications, and generalizations of Rolya theory. An exaple of a nice
generalization appears in Exercise 7.11. We mention herdythe nice survey
[15] by N. G. de Bruijn.

Theorem 7.14 (the generating function for the cycle indicat Zs. of the
symmetric group S-) goes back to Frobenius (see [40, bottom of p. 152 of
GA]) and Hurwitz [57, x4]. It is clear that they were aware of Theorem 7.14,
even if they did not state it explicitly.
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Chapter 8

A glimpse of Young tableaux.

We de ned in Section 6 Young's latticeY, the poset of all partitions of all
nonnegative integers, ordered by containment of their Yowndiagrams.

Here we will be concerned with the counting of certain walksiithe Hasse
diagram (considered as a graph) of . Note that sinceY is in nite, we cannot
talk about its eigenvalues and eigenvectors. We need di eretechniques for
counting walks. (It will be convenient to denote the length ba walk by n,
rather than by * as in previous sections.)

Note that Y is a graded poset (of in nite rank), with Y; consisting of all
partitions of i. In other words, we haveY = Y[ Y{[ (disjoint union),

115



116 CHAPTER 8. A GLIMPSE OF YOUNG TABLEAUX.

where every maximal chain intersects each lev¥] exactly once. We callY;
the ith level of Y.

Since the Hasse diagram oY is a simple graph (no loops or multiple
edges), a walk of lengtm is speci ed by a sequence?; *;:::; " of vertices
of Y. We will call a walk in the Hasse diagram of a poset hlasse walk
Each ' is a partition of some integer, and we have either (a)' < '*! and
ii=j3™) Lor( "> "andj'j=j"j+1. A step of type
(@) is denoted by U (for \up,” since we move up in the Hasse diagram),
while a step of type (b) is denoted byD (for \down"). If the walk W has

then we say thatW is of type ALA, 1 AoA;. Note that the type of a
walk is written in the opposite order to that of the walk. This is because
we will soon regardU and D as linear transformations, and we multiply
linear transformationsright-to-left (opposite to the usual left-to-right reading
order). For instance (abbreviating a partition ( 1;:::; m)as i m), the
walk;;1;2;1;11;111;, 211, 221, 22, 21; 31; 41 is of typeUUDDUUUUDUU =
U2D2uU“DuU?.

There is a nice combinatorial interpretation of walks of tye U" which
begin at;. Such walks are of course just saturated chains= °< !<

< " In other words, they may be regarded as sequences of Young
diagrams, beginning with the empty diagram and adding one mesquare at
each step. An example of a walk of typ&® is given by

f

We can specify this walk by taking the nal diagram and insefing ani into
squares if s was added at theith step. Thus the above walk is encoded by
the \tableau"

Such an object is called astandard Young tableauxor SYT). It consists
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of the Young diagramD of some partition of an integern, together with

appears exactly once, and every row and columniiscreasing We call the
shapeof the SYT , denoted =sh( ). For instance, there are ve SYT of
shape (22;1), given by

1/2| |1]2| |1]3 1] 3 1] 4
3|4 [3]5] [2]4 2|5 2|5
5] 4] o] 4] | 3]

Let f denote the number of SYT of shape, so for instancef %21 =5,
The numbersf have many interesting properties; for instance, there is a
famous explicit formula for them known as the Frame-RobinseThrall hook
formula. For the sake of completeness we state this formulatiout proof,
though it is not needed in what follows.

Let u be a square of the Young diagram of the partition . De ne the
hook H (u) of u (or at u) to be the set of all squares directly to the right ol
or directly below u, including u itself. The size (number of squares) dfl (u)
is called thehook lengthof u (or at u), denoted h(u). In the diagram of the
partition (4;2;2) below, we have inserted the hook length(u) inside each
squareu.

65|21
3|2
211

8.1 Theorem (hook length formula). Let " n. Then

|
f = Qn—
uz ()
Here the notationu 2 means thatu ranges over all squares of the Young
diagram of .

For instance, the diagram of the hook lengths of = (4; 2; 2) above gives

8l

' =85213221

56:
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In this section we will be concerned with the connection beten SYT
and counting walks in Young's lattice. Ifw = A A, 1 A; is some word
in Uand D and ° n, then let us write (w; ) for the number of Hasse
walks in'Y of type w which start at the empty partition ; and end at . For
instance, (UDUU;11) = 2, the corresponding walks being;1;2;1;11 and
;;1;12;,1;11. Thus in particular (U"; )= f [why?]. In a similar fashion,
since the number of Hasse walks of typ@"U" which begin at;, go up to a
partition ° n, and then back down to; is given by f )2, we have

X
(DU = (F ) (8.1)

Our object is to nd an explicit formula for (w; ) of the form f ¢,
where ¢, does not depend on . (It is by no meansa priori obvious that
such a formula should exist.) In particular, sincd © = 1, we will obtain by
setting = ; a simple formula for the number of (closed) Hasse walks of
type w from ; to ; (thus including a simple formula for (8.1)).

There is an easy condition for the existence @ny Hasse walks of type
w from ; to , given by the next lemma.

8.2 Lemma. Supposewv = D%*U'«  Ds2U"2D*U":, wherer; 0Oands;
0. Let ~ n. Then there exists a Hasse walk of typg from ; to if and
only if:

(ri s)=n

(ri s) Oforl1 | k:
i=1

Proof. Sincg, eachU moves up one level and eacB moves down one level,
we see that :(Fi (ri sj)is the level at which a walk of typew beginning at
; ends. Hence K. s)=ji=n. |

After  1_, (ri+s) steps we will be atlevel !_, (ri si). Since the lowest
level is level 0, we must have J;:1(ri s) Oforl | k.

The easy proof that the two conditions of the lemma arsu cient for
the existence of a Hasse walk of type from ; to is left to the reader. O

If wis a word inU and D satisfying the conditions of Lemma 8.2, then
we say thatw is avalid -word. (Note that the condition of being a valid
-word depends only onj j.)
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The proof of our formula for (w; ) will be based on linear transforma-
tions analogous to those de ned by (4.2) and (4.3). As in Saoh 4 let RY;
be the real vector space with basi¥;. De ne two linear transformations
U :RY;! RYj:; andD;:RY;! RY; ; by

X
U( )=
T+l
X
Di( )= ,
il
forall " i. Forinstance (using abbreviated notation for partitions)

U,1(54422211) = 64422211 + 55422211 + 54432211 + 54422221 + 504211

D,1(54422211) = 44422211 + 54322211 + 54422111 + 5442221

It is clear [why?] that if r is the number ofdistinct (i.e., unequal) parts of ,
then U;( ) is a sum ofr + 1 terms and D;( ) is a sum ofr terms. The next
lemma is an analogue foX¥ of the corresponding result foB, (Lemma 4.6).

8.3 Lemma. Foranyi 0 we have
Di+1Ui Ui 1Di = ||, (82)
the identity linear transformation on RY;.

Proof. Apply the left-hand side of (8.2) to a partition of i, expand in terms
of the basisY;, and consider the coe cient of a partition . If 6 and
can be obtained from by adding one squares to (the Young diagram of)

and then removing a (necessarily di erent) square, then there is exactly
one choice o and t. Hence the coe cient of in D+, Uj( ) is equal to 1.
But then there is exactly one way to remove a square from and then add
a square to get , namely, removet and adds. Hence the coe cient of in
U :Di( ) is also 1, so the coe cient of when the left-hand side of (8.2) is
applied to is O.

Ifnow 6 andwe cannotobtain by adding a square and then deleting

a square from (i.e., and dier in more than two rows), then clearly
when we apply the left-hand side of (8.2) to, the coe cient of  will be 0.
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Finally consider the case = . Letr be the number of distinct (unequal)
parts of . Then the coe cient of in Di+; Ui( )isr+1, while the coe cient
of in U Di( )isr, since there arer + 1 ways to add a square to and
then remove it, while there arer ways to remove a square and then add it
back in. Hence when we apply the left-hand side of (8.2) tg the coe cient
of isequal to 1.

Combining the conclusions of the three cases just consideérghows that
the left-hand side of (8.2) is justl;, as was to be proved. O

We come to one of the main results of this section.

8.4 Theorem. Let be a partition andw = AA, 1 A; avalid -word.
Let S, = fi: Aj = Dg. Foreachi 2 S, let & be the number oD's in w to
the right of A;, and leth be the number ol's in w to the right of A;. Thus
a b is the level we occupy irY before taking the ste@\j = D. Then

Y
(w; )=f (b a&):
i2Sw
Before proving Theorem 8.4, let us give an example. Suppose =
UD?U?DU® = UUUDDUUDUUU and =(2;2;1). Then S, = f4;7;8g
anda; =0, by=3,a;,=1, by =5, ag=2, hk =5. We have also seen earlier
that f 221 = 5. Thus

(w; )=5@3 0)5 15 2)=180:

Proof. Proof of Theorem 8.4. For notational simplicity we will omit the
subscripts from the linear transformationdJ; and D;. This should cause no
confusion since the subscripts will be uniquely determinealy the elements
on which U and D act. For instance, the expressio DUU( ) where i
must meanU; ;1 Di+, U421 Ui( ); otherwise it would be unde ned sinceJ; and
D; can only act on elements oRY;, and moreovery; raises the level by one
while D; lowers it by one.

By (8.2) we can replaceDU in any word y in the letters U and D by
UD + |I. This replacesy by a sum of two words, one with one fewed and
the other with one D moved one space to the right. For instance, replacing
the rst DU in UUDUDDU by UD + | yieldsUUUDDDU + UUDDU. If
we begin with the wordw and iterate this procedure, replacing ©U in any
word with UD + |, eventually there will be noU's to the right of any D's and
the procedure will come to an end. At this point we will have gxessedw
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as a linear combination (with integer coe cients) of words 6 the form U'D! .
Since the operation of replacindU with UD + | preserves the di erence
between the number olU's and D's in each word, all the wordsU'D! which
appear will havei | equal to some constanth (namely, the number ofU's
minus the number ofD's in w). Speci cally, say we have
X
w = rij (W)U'D’; (8.3)
i j=n
where eachr;; (w) 2 Z. (We also denerj(w)=0if i< Oorj< 0.) We
claim that the r; (w)'s are uniquely determined byw. Equivalently [why?],
if we have X
d;U'D! =0 (8.4)
i j=n
(as an identity of linear transformations acting on the spaeRY for any k),
where eachd; 2 Z (or dj 2 R, if you prefer), then eachd; = 0. Let j°
be the least integer for whichdjo, 0 6 0. Let * j9 and apply both sides
of (8.4) to . The left-hand side has exactly one nonzero term, namely, ¢h
term with j = j°[why?]. The right-hand side, on the other hanti is 0, a
contradiction. Thus the r; (w)'s are unique.
Now apply U on the left to (8.3). We get

X _ _
Uw = rj (Wyu'**Dl:
i5j
Hence (using uniqueness of the, 's) there follows [why?]
rj (UwW) = ri 15 (w): (8.5)

We next want to apply D on the left to (8.3). It is easily proved by
induction on i (left as an exercise) that

DU' = UD+iU' % (8.6)
(We interpret U ! as being 0, so that (8.6) is true foi = 0.) Hence
X o
Dw = rij (w)DU'D’
N

= rj (W)(U'D +iU' HDI;
iij

1The phrase \the right-hand side, on the other hand" does not nean the left-hand side!



122 CHAPTER 8. A GLIMPSE OF YOUNG TABLEAUX.

from which it follows [why?] that
Fj (DW) = rij (W) + (i + 1)risg; (W): (8.7)
Settingj =0 in (8.5) and (8.7) yields
Fio(Uw) = 1i 1,0(W) (8.8)

Fio(Dw) = (i +1)ris10(W): (8.9)

Now let (8.3) operate on;. SinceD!(;) =0 for all j > 0, we getw(;) =
Mo(W)U"(;). Thus the coe cient of in w(;) is given by

(w; )= rno(w) (U"; )= rpof

where as usual " n. It is easy to see from (8.8) and (8.9) that

Y
Mo(w) = (b &)

j2Sw
and the proof follows. O

Note. Itis possible to give a simpler proof of Theorem 8.4, but therpof
we have given is useful for generalizations not appearingrée

An interesting special case of the previous theorem allows to evaluate
equation (8.1).

8.5 Corollary. We have

X
(D"U";;)= (f )?=n

n

Proof. When w = D"U" in Theorem 8.4 we haveS, = fn+1;n+
2;::02ng, 8 =n i+1, and b = n, from which the proof is immediate.

Note (for those familiar with the representation theory of nite groups).
It can be shown that the numbersf , for ° n, are the degrees of the
irreducible representations of the symmetric groufs,. Given this, Corol-
lary 8.5 is a special case of the result that the sum of the sqes of the
degrees of the irreducible representations of a nite grou@ is equal to the
order #G of G. There are many other intimate connections between the rep-
resentation theory ofS ,,, on the one hand, and the combinatorics of Young's
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lattice and Young tableaux, on the other. There is also an edant combina-
torial proof of Corollary 8.5, based on theRSK algorithm (after Gilbert de

Beauregard Robinson, Craige Schensted, and Donald Knuthj &obinson-
Schensted correspondencgith many fascinating properties and with deep
connections with representation theory. In the Appendix tahis section we
give the de nition of the RSK algorithm.

We now consider a variation of Theorem 8.4 in which we are nabvecerned
with the type w of a Hasse walk fromt to w, but only with the number of
steps. For instance, there are three Hasse walks of lengthrék from; to the
partition 1, given by ;;1;;:;1;;;1,2;1; and;;1;11;1. Let ('; ) denote the
number of Hasse walks of length from ; to . Note the two following easy
facts:

(F1) (; )=0Ounless” j j(mod2).

(F2) (C; )is the coecient of in the expansion of D + U) (;) as a
linear combination of partitions.

Because of (F2) it is important to write (D + U) as a linear combination
of terms U'D/, just as in the proof of Theorem 8.4 we wrote a words in U
and D in this form. Thus de ne integ(ers b (°) by

(D+U) = b ()U'D!: (8.10)
i
Just as in the proof of Theorem 8.4, the numberk; (*) exist and are well-
de ned.

8.6 Lemma. We havel; (")=0if °~ i jisodd. If" i j=2mthen
N
bj () = Zn i Tl (8.11)
Proof. The assertion for” i | odd is equivalent to (F1) above, so
assume i ] is even. The proof is by induction on'. It's easy to check

that (8.11) holds for* = 1. Now assume true for some xed 1. Using
(8.10) we obtain
X

b (+1)UD! = (D+U)*
ij X o
(D+U) b()u'D
X ij
b ()(DU'D! + U™ D):
]
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In the proof of Theorem 8.4 we saw thaDU' = U'D + iU' ! (see equation
(8.6)). Hence we get

X X o _ _ _ _

b C+1)UD = K ()UD™+iu' D+ UMD (8.12)

N] N]
As mentioned after (8.10), the expansion off + U) *! in terms of U'D/ is
unique. Hence equating coe cients ofU'D! on both sides of (8.12) yields
the recurrence

b C+1)= by 1O)+(i+Dha;()+ b 450 (8.13)

It is a routine matter to check that the function "!=2"i!j Im! satis es the same
recurrence (8.13) ady; ('), with the same intial condition kyy(0) = 1. From
this the proof follows by induction.

From Lemma 8.6 it is easy to prove the following result.

8.7 Theorem. Let® nand ° n,with™ n even. Then
;)= n(135 C n L) :

Proof. Apply both sides of (8.10) to; . SinceU'D!(;) =0 unlessj =0,
we get

. X _
(D+U) () = bo(HU'(;)
X X
= ho() f
Since by Lemma 8.6 we havhy(') = . @35 ( i 1)when iis

even, the proof follows from (F2).

Note. The proof of Theorem 8.7 only required knowing the value of
ho("). However, in Lemma 8.6 we computety; (') for all j. We could have
carried out the proof so as only to computdyo(’), but the general value of
b; (7) is so simple that we have included it too.

8.8 Corollary. The total number of Hasse walks ity of length2m from ;
to ; is given by
(2m;;)=1 35 (2m 1)



125

Proof. Simply substitute = ; (son=0)and = =2m in Theorem 8.7.

The fact that we can count various kinds of Hasse walks iM suggests
that there may be some nite graphs related toY whose eigenvalues we can
also compute. This is indeed the case, and we will discuss tienplest case
here. LetY; i; denote the restriction of Young's latticeY to ranksj 1 and
j. Identify Y, 1; with its Hasse diagram, regarded as a (bipartite) graph.
Let p(i) = # Y;, the number of partitions ofi. (The function p(i) has been
extensively studied, beginning with Euler, though we will ot discuss its
fascinating properties here.)

8.9 Theorem. The eigenvalues of; ; are given as followsQ is an eig&-n-
value of multiplicity p(j) p(j 1);andforl s j, the numbers " s
are eigenvalues of multiplicityp(j s) p(j s 1).

Proof. Let A denote the adjacency matrix ofY; 1j. SinceRY; 1 =
RY; 1 RY, (vector space direct sum), any vectov 2 RY; ; can be written
uniquely asv = v, 1+ vj, wherev; 2 RY;. The matrix A acts on the vector
spaceRY; 1; as follows [why?]:

A(V)=D(v)+ Uy 1): (8.14)

Just as Theorem 4.7 followed from Lemma 4.6, we deduce frormhraa 8.3
that for any i we have thatU; : RY; ! RY;.; is one-to-one andD; : RY; !
RY; 1 is onto. It follows in particular that

dim(ker(D;)) = dim RY; dimRY; ;
= p(i) p@ 1)

where ker denotes kernel.
Case 1.Letv 2 ker(Dj), sov=v;. ThenAv = Dv =0. Thus ker(D;) is
an eigenspace oA for the eigenvalue 0, so O is an eigenvalue of multiplicity

atleastp(j) p(j 1).
Case 2.Letv 2 ker(Dg) forsome O s | 1. Let

v = IOj sU 1 s(v)+ U S(v):

Note that v 2 RY; 3, with v, ; = PIsuU * s(v) and v = U S(v).
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Using equation (8.6), we compute

U|(o )+ D(vp)
j sU S(v)+ DU S(v)
i sU W)+ U DW)+(j sU *° Yv)
i sU c(W+(i U ° H(v)

] S Vv: (8.15)

A(v)

It's easy to verify (using the fact thatU is one-to-one) that ifv(1);:: :; v(t)
is a basis for kerDs), th%n v(1) ;:::;v(t) are linearly mdependent Hence
by (8.15) we have that s is an eigenvalue oA of multiplicity at least
t = dim(ker( Ds)) = p(s) p(S 1).

We have found a total of

Xl
pG) pG D+2  (p(s) p(s 1))=p( 1)+p@)

s=0

elgenVBIues oA . (The factor 2 above arises from the fact that both Pi—s ] s
and s are eigenvalues.) Since the grapl; 1; hasp(j 1)+ p(j)
vertlces we have found all its eigenvalues.

An elegant combinatorial consequence of Theorem 8.9 is tr@ldwing.

8.10 Corollary. Fix j 1. The number of ways to choose a partition of
j, then delete a square from (keeping it a partition), then insert a square,
then delete a square, etc., for a total oh insertions andm deletions, ending
back at , is given by
X
PG ) p(G s 1™ m>0: (8.16)

s=1

Proof. Exactly half the closed walks inY; 1; of length 2n begin at

an element ofY; [why?]. Hence ifY; 1; has eigenvalues;:::; ;, then by
Corollary 1.3 the desired number of walks is given by( 2™ +  + 2M).
Using the values of 1;:::;  given by Theorem 8.9 yields (8 16).

For instance, whenj = 7, equation (8.16) becomes 4 +22™ +2 3™ +
4 +5M+7M Whenm = 1 we get 30, the number of edges of the grapt.;
[why?].
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APPENDIX 1: THE RSK ALGORITHM

We will describe a bijection between permutations 2 S, and pairs
(P; Q) of SYT of the same shape ~ n. De ne a near Young tableauNYT)
to be the same as an SYT, except that the entries can be any drstt integers,
not necessarily the integers;®;:::;n. Let P; denote the entry in rowi and
columnj of P. The basic operation of the RSK algorithm consists of the
row insertion P k of a positive integerk into an NYT P = (P;). The
operation P  k is de ned as follows: Letr be the least integer such that
Py > k. If no suchr exists (i.e., all elements of the rst row ofP are
less thanr), then simply placek at the end of the rst row. The insertion
process stops, and the resulting NYT i® k. If, on the other hand,r does
exist then replaceP;, by k. The elementk then \bumps" Py, := k%into the
second row, i.e., inserk®into the second row ofP by the insertion rule just
described. Eitherk®is inserted at the end of the second row, or else it bumps
an elementk" to the third row. Continue until an element is inserted at the
end of a row (possibly as the rst element of a new row). The ralling array
isP k.

8.11 Example. Let
3 7 9 14
6 11 12
P= 10 16
13
15

ThenP  8is shown below, with the elements inserted into each row {leer
by bumping or by the nal insertion in the fourth row) in boldface. Thus
the 8 bumps the 9, the 9 bumps the 11, the 11 bumps the 16, and thé is
inserted at the end of a row. Hence

3 7 8 14

6 9 12
(P 8= 10 11

13 16

15

We omit the proof, which is fairly straightforward, that if P is an NYT,
then so isP k. We can now describe the RSK algorithm. Let =
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a8, a, 2 S,. We will inductively construct a sequenceRy; Qo), (P1; Q1),
115 (Pn; Qp) of pairs (P;; Qi) of NYT of the same shape, wherd®; and Q
each havel squares. First, de ne Po; Qo) = (;;;). If (P 1;Q;i 1) have been
de ned, then setP; = P; 1 a;. In other words, P; is obtained fromP; ;
by row inserting 8. Now de ne Q; to be the NYT obtained from Q; ; by
inserting i so that Q; and P; have the same shape. (The entries @; ;
don't change; we are simply placing into a certain new square and not row-

inserting it into Q; ;.) Finally let (P; Q) = ( Pn; Qn). We write

8.12 Example. Let
(P; Q) are as follows:

AN AN AN
~Nw ~Nw ~Nw
(o] D

NP
W
)]

47

EQSK

(P; Q).

= 42736152 S;. The pairs (P1;Q1);:::, (P7,Q7) =

Qi

N NP
~w W
a1

N
~w
ol

135
24
67

8.13 Theorem. The RSK algorithm de nes a bijection between the symmet-
ric group S, and the set of all pairdP; Q) of SYT of the same shape, where

the shape is a partition of n.

Proof (sketch). The key step is to de ne the inverse of RSK. In other
words, if 7! (P; Q), then how can we recover uniquely from (P; Q)? More-
over, we need to nd for any (P; Q). Observe that the position occupied by
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n in Q is the last position to be occupied in the insertion procesSuppose
that k occupies this position inP. It was bumped into this position by some
elementj in the row abovek that is currently the largest element of its row
less thank. Hence we can \inverse bump'k into the position occupied by;j,
and now inverse bumg into the row above it by the same procedure. Even-
tually an element will be placed in the rst row, inverse bumjng another
elementt out of the tableau altogether. Thust was the last element of
to be inserted, i.e., if = aja, a, then a, = t. Now locate the position
occupied byn 1 in Q and repeat the procedure, obtaining, ;. Continuing
in this way, we uniquely construct one element at a time from right-to-left,
such that 7! (P; Q).

Thus we have obtained a bijective proof of Corollary 8.5, thas,

X
(f )?=nt:
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APPENDIX 2: PLANE PARTITIONS

In this appendix we show how a generalization of the RSK algtrm leads
to an elegant generating function for a two-dimensional geralization of
integer partitions. A plane partition of an integern 0 is a two-dimensional

array =( i), 10fintegers j; O thatis weakly decreasing in rows and
columns, i.e.,
j i+13 j i +1
P
such that .. i = n. It follows that all but nitely many ; are O, and

[
these O's arejomitted in writing a particular plane partiticm . Given a plane
partition , we writej j = n to denote that is a plane partition ofn. More
generally, ifL is any array of nonnegative integers we writglj for the sum
of the parts (entries) ofL.
There is one plane partition of 0, namely, all ; = O, denoted ;. The
plane partitions of the integers 0 n 3 are given by

;1 2 11 1 3 21 111 11 2 1
1 1 1 1:
1

If pp(n) denotes the number of plane partitions of, then pp(0) = 1, pp(1) =
1, pp(2) = 3, and pp(3) = 6.
Our object is to give a formula for the generating function
X
F(x) = pp(nN)x" =1+ x +3x2+6x3+13x*+24x° +
n 0

More generally, we will consider plane partitons with at mdsr rows and at
most s columns, i.e., j; =0fori>r orj>s. As a simple warmup, let us
rst consider the case of ordinary partitions =( 1; ,;:::) of n.

8.14 Proposition. Let ps(n) denote the number of partitions oh with at
most s parts. Equivalently, ps(n) is the number of plane partitions oh with
at most one row and at moss columns [why?].Then

X \&
ps(n)x"= (1 xf) &
n 0 k=1
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Proof. First note that the partition  has at mosts parts if and only if the
conjugate partition °de ned in ChapterF6 has largest part at mosts. Thus
it su ces to nd the generating function =, ,p2(n)x", wherep2(n) denotes
the number of partitions ofn whose largest part is at moss. Now expanding
each factor (1 x¥) ! as a geometric series give?

L S S S

1 xk
k=1 k=1 my 1

How do we get a coe cient ofx"? We must choose a ternx™«* from each
factor of the product, 1 k s, so that

Xs

n= myK:

k=1
But such a choice is the same as choosing the partitionof n such that the
part k occursmy times. For instance, ifs = 4 and we choosen; =5, m, =0,
ms3 = 1, my = 2, then we have chosen the partition =(4;4;3;1;1;1;1;1)
of 16. Hence the coe cient ofx" is the number of partitions of n whose
largest part is at mosts, as was to be proved. O

Note that Proposition 8.14 is \trivial" in the sense that it can be seen
by inspection. There is an obvious correspondence betwee) the choice of
terms contributing to the coe cient of x" and (b) partitions of n with largest
part at most r. Although the generating function we will obtain for plane
partitions is equally simple, it will be far less obvious whyt is correct.

Plane partitions have a certain similarity with standard Yaung tableaux,
SO perhaps it is not surprising that a variant of RSK will be aplicable. In-
stead of NYT we will be dealing withcolumn-strict plane partitions (CSPP).
These are plane partitions for which the nonzero elemensdrictly decrease
in each column. An example of a CSPP is given by

7743331
4 331

3 2 : (8.17)
2 1

1

We say that this CSPP hasshape = (7;4;2;2;1), the shape of the Young
diagram which the numbers occupy, and that it has ve rows, sen columns,
and 16 parts (so = 16).
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If P =(P;)isaCSPPandk 1,thenwe de netherow insertionP Kk
as follows: Letr be the least integer such thatP;,, < k. If no suchr exists
(i.e., all elements of the rst row of P are greater thanr), then simply place
k at the end of the rst row. The insertion process stops, and t resulting
CSPP isP k. If, on the other hand,r does exist, then replacd®;, by k.
The elementk then \bumps" P;; := k%into the second row, i.e., inserk®into
the second row oP by the insertion rule just described, possibly bumping a
new elementk®into the third row. Continue until an element is inserted at
the end of a row (possibly as the rst element of a new row). Theesulting
array isP k. Note that this rule is completely analogous to row insertio
for NYT: for NYT an element bumps the leftmost element greatethan it,
while for CSPP an element bumps the leftmost element smallénan it.

8.15 Example. Let P be the CSPP of equation (8.17). Let us row insert 6
into P. The set of elements which get bumped are shown in bold:

7 743 331
4 3 31

3 2

21

1

The nal 1 that was bumped is inserted at the end of the fth row. Thus we
obtain

7763331
4 4 31
(P 5= 3 3
2 2
11

We are now ready to describe the analogue of RSK needed to copiane
partitions. Instead of beginning with a permutation 2 S,, we begin with
anr s matrix A = (g ) of nonnegative integers, called for short an s
N-matrix. We convert A into a two-line array

u; U Un

Wp = ;
A Vi Vo VN

where

Uq U Un
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Ifi<j andu; = uj, thenv; ;.

'IF;he number of columns ofw, equal toji is a&; . (It follows that N =
aj -)

It is easy to see thatw, is uniquely determined byA, and conversely. As an
example, suppose that

g w

(8.18)

N R
PP O
or o
coonN

Then

N W
oW
oW
w N
NN
=N
F NG
NG
N P

is, we start with Py = ; and de ne inductively P, = P; 1  v;. We also start
with Qg = ;, and at the ith step insert u; into Q; ; (without any bumping
or other altering of the elements ofQ; ;) so that P; and Q; have the same

shape. Finally let (P; Q) = ( Py ; Qn) and write A s’ (P; Q).

8.16 Example. Let A be given by equation (8.18). The pairsH;; Q1);:::,
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(Pg; Qo) = ( P; Q) are as follows:

Pi Qi
2 3

21 33
211 333
311 333
2 2
321 333
21 22
3211 3332
21 22
4211 3332
31 22

2 1
4411 3332
32 22
21 11
4421 3332
321 221
21 11

0
It is straightforward to show that if A sk (P;Q), then P and Q are
CSPP of the same shape. We omit the proof of the following kegrhma,
which is analogous to the proof of Theorem 8.13. Let us just t@a crucial

0
property (which is easy to prove) of the correspondende sk (P; Q) which
allows us to recoverA from (P; Q), namely, equal entries ofQ are inserted
from left-to-right. Thus the last number placed into Q is the rightmost
occurrence of the least entry. Hence we can can inverse bunfe thumber in
this position in P to back up one step in the algorithm, just as for the usual

RSK correspondence RSk (P; Q).
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0
8.17 Lemma. The correspondenced frsK (P; Q) is a bijection from the set

of r s matrices of nonnegative integers to the set of pai(®; Q) of CSPP
of the same shape, such that the largest part®fis at mosts and the largest
part of Q is at mostr.

The next step is to convert the pair P; Q) of CSPP of the same shape
into a single plane partition . We do this by \merging" the ith column
of P with the ith column of Q, producing the ith column of . Thus we
rst describe how to merge two partitions and with distinct parts and
with the same number of parts into a single partition = (; ). Draw the
Ferrers diagram of but with each row indented one space to the right of the
beginning of the previous row. Such a diagram is called trehifted Ferrers
diagram of . For instance, if =(5;3;2) then we get the shifted diagram

Do the same for , and then transpose the diagram. For instance, if
=(6;3;1) then we get the transposed shifted diagram

Now merge the two diagrams into a single diagram by identifgg their main
diagonals. For and as above, we get the diagram (with the main diagonal
drawn for clarity):

Dene (; )tobe the partition for which this merged diagram is the Ferers
diagram. The above example shows that

(532 631) = 544211
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Themap (; ) 7! (; ) is clearly a bijection between pairs of partitions
(; ) with k distinct parts, and partitions whose main diagonal (of the
Ferrers diagram) hask dots. Equivalently, k is the largest integerj for which
i . Note that
Ji=iiril O (8.19)
We now extend the above bijection to pairsR; Q) of reverse SSYT of the
same shape. If ' denotes theith column of P and ' the ith column of Q,
then let (P; Q) be the array whoseith columnis ( '; '). For instance, if

4 4 2 1 5322
P= 311 and Q= 4 2 1 ;
2 1
then
4 4 2 1
4 2 21
(P;Q= 4 2
2
2

It is easy to see that (P; Q) is a plane partition. Replace each row of (P; Q)
by its conjugate to obtain another plane partiton YP;Q). With (P;Q) as
above we obtain

BN
BN

P;Q) =

P RPN D
PP NWW

Write jP] for the sum of the elements oP, and write max(P) for the largest
element of P, and similarly for Q. When we mergeP and Q into (P;Q),
max(P) becomes the largest part of (P; Q). Thus when we conjugate each
row, max(P) becomes the number col((P; Q)) of columns of {P; Q) [why?].
Similarly, max(Q) becomes the number row({P; Q)) of rows of (P;Q) and
of {P;Q). In symbols,

maxP = col( {P;Q))
maxQ = row( YP;Q)):

Moreover, it follows from equation (8.19) that
j P:Qi=j (P;Qj=jPj+jQi (P); (8.21)

(8.20)
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where (P) denotes the number of parts oP (or of Q).

We now have all the ingredients necessary to prove the mairstdt of this
appendix.

8.18 Theorem. Let pp,;(n) denote the number of plane partitions af with
at mostr rows and at mosts columns. Then

X Yo¥ .
PP ()X = (1 X" &
n 0 i=1 j=1

Proof. Let A = (&;) be anr s N-matrix. We can combine the bijections
discussed above to obtain a plane partition (A) associated withA. Namely,

0
rst apply RSK to obtain A frsK (P;Q), and then apply the merging process
and row conjugation to obtain (A) = YP;Q). Since a column! of the
two-line array wa occursa; times and results in an insertion of into P and
I into Q, it follows that

- . X -
IP] = jaij
*j
Q= i
i
max(P) = maxfj :a; 60g
max(Q) = maxfi:a; 60g

Hence from equations (8.20) and (8.21), we see that the m#&p7! (A) is
a bijection fromr s N-matrices A to plane partitions with at most r rows
and at most s columns. Moreover,

j (A ;E’J' +jQ  (P)
(i+] Day:
i

Thus the enumeration of plane partitions is reduced to the nah easier enu-
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meration of N-matrices. Speci cally, we have
X X o
PP (N)X" = X!

no row( ) r

|

O e

— x (+i Daj

r sN trices A
g 1

Y ¥ X P
= @ x (+i Daj A
i=1 j=1 aj O
Y ¥ o
= (1 x"*h L
i=1 j=1

O

Write Py (n) for the number of plane partitions ofn with at most r rows.
Letting c! 1 and thenr ! 1  in Theorem 8.18 produces the elegant
generating functions of the next corollary.

8.19 Corollary. We have
X Y

pp; (N)x"

nXO y 1

pp(n)x"

n 0 i1

I
~~
|

Xi) min(i;r) (822)

I
~
=
x_
N—r

(8.23)

Note. Once one has seen the generating function

1
1 x)(@ x3)@ x39)

for one-dimensional (ordinary) partitions and the generang function

1
1 x)(Q x2)2%1 x3)3:::

for two-dimensional (plane) partitions, it is quite naturd to ask about higher-
dimensional partitions. In particular, asolid partition of n is a three-dimensional
array = ( ik )ijk 1 of nonnegative integers, weakly decreasing in each of
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the three coordinate directions, and with elements summing n. Let sol(n)
denote the number of solid partitions ofn. It is easy to see that for any

integer sequencey = 1, a;, ay;:::, there are unique integerdy, by;::: for
which X Y
a,x"= (1 x)Bb:
n 0 i1

For the casea, = sol(n), we have
b=1;kp=3;b=6; =10;b; = 15;
which looks quite promising. Alas, the sequence of exponsrtontinues
20;26;34;46,68,97,120 11223, 186 496 735 53L779:::

The problem of enumerating solid partitions remains open ahis considered
most likely to be hopeless.

References for Chapter 8

Standard Young tableaux (SYT) were rst enumerated by P. A. MacMa-
hon [70, p. 175] (see also [7X%103]). MacMahon formulated his result in
terms of \generalized ballot sequences" or \lattice permuattions” rather than
SYT, but they are easily seen to be equivalent. He stated thesult not in
terms of the products of hook lengths as in Theorem 8.1, but asmore com-
plicated product formula. The formulation in terms of hook éngths is due to
J. S. Frame and appears rst in the paper [37, Thm. 1] of FrameRobinson,
and R. M. Thrall; hence it is sometimes called the \Frame-Radhson-Thrall
hook-length formula.” (The actual de nition of standard Young tableaux is
due to A. Young [113, p. 258].)

Independently of MacMahon, F. G. Frobenius [40, egn. (6)] ¢dined the
same formula for the degree of the irreducible character of S, as MacMa-
hon obtained for the number of lattice permutations of type . Frobenius was
apparently unaware of the combinatorial signi cance of deg , but Young
showed in [113, pp. 260{261] that deg was the number of SYT of shape

, thereby giving an independent proof of MacMahon's result(Young also
provided his own proof of MacMahon's result in [113, Thm. 11}

A number of other proofs of the hook-length formula were sueguently
found. C. Greene, A. Nijenhuis, and H. S. Wilf [46] gave an gant proba-
bilistic proof. A proof of A. Hillman and R. Grassl [55] showsery clearly the
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role of hook lengths, though the proof is not completely bigtive. A bijec-
tive version was later given by C. F. Krattenthaler [61]. Corpletely bijective
proofs of the hook-length formula were rst given by D. S. Frazblau and D.
Zeilberger [38] and by J. B. Remmel [87]. An exceptionallyediant bijective
proof was later found by J.-C. Novelli, I. M. Pak, and A. V. Stganovskii
[75].

The use of the operatord) and D to count walks in the Hasse diagram
of Young's lattice was developed independently, in a more mggral context,
by S. Fomin [35][36] and R. Stanley [97][99]. See also [1¥@.21] for a short
exposition.

The RSK algorithm (known by a variety of other names, either tor-
respondence” or \algorithm" in connection with some subsetf the names
Robinson, Schensted, and Knuth) was rst described, in a raer vague form,
by G. de B. Robinson [88x5], as a tool in an attempted proof of a result
now known as the \Littlewood-Richardson Rule." The RSK algathm was
later rediscovered by C. E. Schensted (see below), but no oaetually ana-
lyzed Robinson's work until this was done by M. van Leeuwen $6x7]. It
is interesting to note that Robinson says in a footnote on pa&g754 that \I
am indebted for this association | to Mr. D. E. Littlewood." Van Leeuwen's
analysis makes it clear that \association I" gives the recding tableau Q of

the RSK algorithm sk (P; Q). Thus it might be correct to say that if

2S,and (P; Q), then the de nition of P is due to Robinson, while
the de nition of Q is due to Littlewood.

No further work related to Robinson's construction was donentil Schen-
sted published his seminal paper [90] in 1961. (For some infation about
the unusual life of Schensted, see [6].) Schensted's puposs the enumera-
tion of permutations in S,, according to the length of their longest increasing
and decreasing subsequences. According to Knuth [62, p. [{26e connec-
tion between the work of Robinson and that of Schensted wasst pointed
out by M.-P. Schutzenberger, though as mentioned above thest person to
describe this connection precisely was van Leeuwen.

Plane partitions were discovered by MacMahon in a series adpers which
were not appreciated until much later. (See MacMahon's bodk1, Sections
IX and X] for an exposition of his results.) MacMahon's rst @per dealing
with plane partitions was [69]. In Article 43 of this paper hegives the de ni-
tion of a plane partition (though not yet with that name). In Article 51 he
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conjectures that the generating function for plane partions is the product
1 x '@ x)*2 x*a xHh*

(our equation (8.23)). In Article 52 he conjectures our equi@n (8.22) and
Theorem 8.18, nally culminating in a conjectured generatig function for
plane partitions of n with at most r rows, at mosts columns, and with largest
part at most t. (See Exercise 8.33.) MacMahon goes on in Articles 56{62
to prove his conjecture in the case of plane partitions withtamost 2 rows
and s columns (the case = 2 of our Theorem 8.18), mentioning on page
662 that an independent solution was obtained by A. R. Forsit (Though a
publication reference is given to Forsyth's paper, apparéw it never actually
appeared.)

We will not attempt to describe MacMahon's subsequent workroplane
partitions, except to say that the culmination of his work apears in [71,
Art. 495], in which he proves his main conjecture from his rspaper [69] on
plane partitions, viz., our Exercise 8.33. MacMahon's prdaes quite lengthy
and indirect.

In 1972 E. A. Bender and D. E. Knuth [7] showed the connectiongbween
the theory of symmetric functions and the enumeration of plee partitions.
They gave simple proofs based on the RSK algorithm of many téts involv-
ing plane partitions, including the rst bijective proof (t he same proof that
we give) of our Theorem 8.18.
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Chapter 9

The Matrix-Tree Theorem.

The Matrix-Tree Theorem is a formula for the number of spanmg trees of
a graph in terms of the determinant of a certain matrix. We beig with the
necessary graph-theoretical background. Léb be a nite graph, allowing
multiple edges but not loops. (Loops could be allowed, but #y turn out to
be completely irrelevant.) We say thatG is connectedif there exists a walk
between any two vertices ofc. A cycle is a closed walk with no repeated
vertices or edges, except for the the rst and last vertex. Aree is a connected
graph with no cycles. In particular, a tree cannot have mulple edges, since
a double edge is equivalent to a cycle of length two. The thre@nisomorphic
trees with ve vertices are given by:

@

L I I I r I I r %r

@ @

%r r %I’

A basic theorem of graph theory (whose easy proof we leave asaercise)
is the following.

9.1 Proposition. Let G be a graph withp vertices. The following conditions
are equivalent.

(@) G is a tree.

(b) G is connected and hap 1 edges.

(c) G is has no cycles and hags 1 edges.

(d) There is a unique path (= walk with no repeated verticesebnveen any
two vertices.

153
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A spanning subgraplof a graphG is a graphH with the same vertex set
asG, and such that every edge dfl is an edge ofs. If G hasqedges, then the
number of spanning subgraphs o& is equal to 2, since we can choose any
subset of the edges @b to be the set of edges dfl . (Note that multiple edges
between the same two vertices are regarded distinguishable in accordance
with the de nition of a graph in Section 1.) A spanning subgrah which is
a tree is called aspanning tree Clearly G has a spanning tree if and only if
it is connected [why?]. An important invariant of a graphG is its number of
spanning trees, called theomplexity of G and denoted (G).

9.2 Example. Let G be the graph illustrated below, with edges, b, c, d,
e.

Then G has eight spanning trees, namelgbg abd acd bcd abe ace bde and
cde(where, e.g.,abcdenotes the spanning subgraph with edge skg; b; @).

9.3 Example. Let G = Kj5, the complete graph on ve vertices. A simple

counting argument shows thatK s has 60 spanning trees isomorphic to the
rst tree in the above illustration of all nonisomorphic trees with ve vertices,

60 isomorphic to the second tree, and 5 isomorphic to the tlirtree. Hence
(Ks) = 125. Itis even easier to verify that (K,) =1, (Ky)=1, (Kj3)=

3, and (K4 = 16. Can the reader make a conjecture about the value of
(Kp) foranyp 1?

Our object is to obtain a \determinantal formula" for (G). For this we
need an important result from matrix theory which is often ontted from a
beginning linear algebra course. (Later (Theorem 10.4) wellprove a more
general determinantal formula without the use of the BinetZauchy theorem.
However, the use of the Binet-Cauchy theorem does a ord sonaglditional
algebraic insight.) This result, known as the Binet-Cauchyheorem (or some-
times as the Cauchy-Binet theorem), is a generalization ohé familiar fact
that if A and B aren n matrices, then detAB) = det( A)det(B) (where
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det denotes determinant). We want to extend this formula to lhe case where
A and B are rectangular matrices whose product is a square matrixq$hat
det(AB) is de ned). In other words, A will be anm n matrix and B an
n m matrix, for somem;n 1.

We will use the following notation involving submatrices. 8pposeA =
(& )isanm nmatrix, withl i m,1 j n,andm n. Given an
m-element subseS off 1; 2;:::; ng, let A[S] denote them m submatrix of A
obtained by taking the columns indexed by the elements &. In other words,
if the elements ofS are given byj; <, < <] m, then A[S] = (&),
wherel i mandl Kk m. Forinstance, if

2 3

1 2 3 4 5
A=4 6 7 8 9 10°
11 12 13 14 15

and S = f2;3;5g, then
3
2 3 5

A[S]=4 7 8 109:
12 13 15

Similarly, let B = (bj) beann mmatrixwithl i n,1 j mand
m n. Let S be anm-element subset of 1;2;:::;ng as above. ThenB[S]
denotes them m matrix obtained by taking the rows of B indexed by S.
Note that A'[S] = A[S]', where! denotes transpose.

9.4 Theorem (the Binet-Cauchy Theorem) Let A = (&;) be anm n

matrix, with 1 i mandl j n. Let B =(hj) be ann m matrix
withl i nandl j m. (ThusAB isanm m matrix.) If m>n,
thendet(AB)=0. If m n, then

X

det(AB) = (detA[S])(det B[S]):;
S

whereS ranges over allm-element subsets dfl; 2;:::;ng.

Before proceeding to the proof, let us give an example. We werijg; j for
the determinant of the matrix (a; ). Suppose

2 3
Cy d]_

B:4C2 d25:
C3 d3

a; a ag

AT b b by
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Then

a; C1 dl + a; ag C1 dl + dpy ag Co d2

bh by c o b b C3 ds b b C; ds

Proof of Theorem 9.4 (sketch). First supposem > n. Since from
linear algebra we know that rankAB) rank(A) and that the rank of an
m n matrix cannot exceedn (or m), we have that rank(AB) n <m.
But AB is anm m matrix, so det(AB) = 0, as claimed.

Now assumem n. We use notation such asVl,s to denote anr S
matrix M. It is an immediate consequence of the de nition of matrix miti-
plication (which the reader should check) that

det(AB) =

Rom  Smn Vion Wom _ RV + SX RW + SY

Tnm Unn Xnn Ynm B TV + UX TW + UY (91)

In other words, we can multiply \block" matrices of suitabledimensions as
if their entries were numbers. Note that the entries of the ght-hand side
of (9.1) all have well-de ned dimensions (sizes), e. RV + SX isanm n
matrix since bothRV and SX arem n matrices.

Now in equation (9.1) letR = I, (the m m identity matrix), S = A,
T=0mm (then mmatrixof 0's), U=1,,V=A W=0mm, X = I,
andY = B. We get

Onm In ln B B Iln B (9.2)

Take the determinant of both sides of (9.2). The rst matrix an the left-hand
side is an upper triangular matrix with 1's on the main diagoal. Hence its
determinant is one. Since the determinant of a product of sque matrices is
the product of the determinants of the factors, we get

A Omm _ Om AB

ln B B ln B (9:3)

It is easy to see [why?] that the determinant on the right-had side of
(9.3)isequalto det(AB). So consider the left-hand side. A nonzero termin
the expansion of the determinant on the left-hand side is oained by taking
the product (with a certain sign) of m + n nonzero entries, no two in the
same row and column (so one in each row and each column). In fi@ular,
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we must choosen entries from the lastm columns. These entries belong to
m of the bottom n rows [why?], say rowsn + s;;m+ S,;:::;m+ Sp. Let
S=1fs;;s:iismg f 1;,2:::;ng. We must choosen  m further entries
from the last n rows, and we have no choice but to choose thel's in those
rowsm+ i for whichi 62S. Thus every term in the expansion of the left-hand
side of (9.3) uses exactlyy m of the 1's in the bottom left block 1.
What is the contribution to the expansion of the left-hand sile of (9.3)

from those terms which use exactly the 1's from rowsm + i wherei 62S?
We obtain this contribution by deleting all rows and columngo which these

1's belong (in other words, delete rown + i and columni wheneveri 2
f1,2;:::;ng S), taking the determinant of the 2n  2m matrix Mg that
remains, and multiplying by an appropriate sign [why?]. Buthe matrix Ms
is in block-diagonal form, with the rst block just the matrix A[S] and the
second block jusB [S]. Hence deMs = (det A[S])(det B[S]) [why?]. Taking
all possible subsets gives

X
detAB = (det A[S])(det B[S]):

Sf 1;2;:5n g
jSj=m
It is straightforward but somewhat tedious to verify that all the signs are +;
we omit the details. This completes the proof.
In Section 1 we de ned the adjacency matrixA (G) of a graph G with

two related matrices. Assume for simplicity thatG has no loops. (This
assumption is harmless since loops have no e ect 0G).)

9.5 De nition. Let G be as above. Gives an orientation o, i.e, for every
edgee with vertices u; v, choose one of the ordered pairsiv) or (v;u). (If
we choose \; v), say, then we think of putting an arrow one pointing from
u to v; and we say thate is directed fromu to v, that u is the initial vertex
and v the nal vertex of e, etc.)

(a) The incidence matrix M (G) of G (with respect to the orientation 0)
is thep g matrix whose (;j )-entry M j is given by

8
< 1, ifthe edgeg has initial vertex v,
M = 1, ifthe edgeg has nal vertex v;
0; otherwise.

(b) The laplacian matrix L (G) of G is thep p matrix whose (;j )-entry
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L is given by
L = m;; if i 6 ] and there arem; edges between; andy,
Y degW); ifi=j,

where degy;) is the number of edges incident te;. (Thus L (G) is symmetric
and does not depend on the orientation.)

Note that every column of M (G) contains one 1, one 1, andq 2
0's; and hence the sum of the entries in each column is 0. Thub toe
rows sum to the O vector, a linear dependence relation whiclhawvs that
rank(M (G)) < p. Two further properties of M (G) and L (G) are given by
the following lemma.

9.6 Lemma. (a) We haveMM '= L.
(b) If G is regular of degreed, then L(G) = dI A(G), where A(G)
denotes the adjacency matrix o6. Hence if G (or A(G)) has eigenvalues
1,000 p then L (G) has eigenvaluesl oind p-

Proof. (a) This is immediate from the de nition of matrix multiplic ation.
Speci cally, for vi;v; 2 V(G) we have
. X
(MM ) = M kM j:
e 2E(G)

If i 6 j, then in order for M M j 6 0, we must have that the edgeg,
connects the vertices; andv;. If this is the case, then one oM j and M
will be 1 and the other 1 [why?], so their product is always 1. Hence
(MM Y = m;, as claimed.

There remains the casé = j. Then M M i will be 1 if g is an edge
with v; as one of its vertices and will be 0 otherwise [why?]. So now wet
(MM Y); =deg(v), as claimed. This proves (a).

(b) Clear by (a), since the diagonal elements dfiIM " are all equal to
d. O

t

Now assume thatG is connected, and letM (G) be M (G) with its last
row removed. ThusM ((G) hasp 1 rows andq columns. Note that the
number of rows is equal to the number of edges in a spanningdref G. We
call M o(G) the reduced incidence matrixof G. The next result tells us the
determinants (up to sign) ofall @ 1) (p 1) submatricesN of M 4. Such
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submatrices are obtained by choosing a s&tof p 1 edges of5, and taking
all columns ofM , indexed by the edges ir5. Thus this submatrix is just
M o[S].

9.7 Lemma. Let S be asetofp 1edges ofG. If S does not form the set
of edges of a spanning tree, thetletM ([S] = 0. If, on the other hand,S is
the set of edges of a spanning tree &f, then detM ([S] = 1.

Proof. If S is not the set of edges of a spanning tree, then some subRebf
S forms the edges of a cycl€ in G. Suppose that the cycleC de ned by

by f; by 1 if in going aroundC we traversef; in the direction of its arrow;
otherwise multiply the column by 1. Then add these modi ed columns.
It is easy to see (check a few small examples to convince yalisthat we
get the O column. Hence the columns d#l ([S] are linearly dependent, so
detM o[S] = 0, as claimed.

Now suppose thatS is the set of edges of a spanning trée. Let e be an
edge ofT which is connected tov, (the vertex which indexed the bottom row
of M , i.e., the row removed to geM ;). The column of M ([S] indexed bye
contains exactly one nonzero entry [why?], which is1. Remove fromM ([S]
the row and column containing the nonzero entry of colume, obtaining a
(p 2) (p 2) matrix M $. Note that det(M ([S]) = det(M ) [why?]. Let
TO%be the tree obtained fromT by contracting the edgee to a single vertex
(so that v, and the remaining vertex ofe are merged into a single vertexi).
Then M § is just the matrix obtained from the incidence matrixM (T9 by
removing the row indexed byu [why?]. Hence by induction on the number
p of vertices (the casep = 1 being trivial), we have det(M J) = 1. Thus
det(M o[S]) = 1, and the proof follows. O

Note. An alternative way of seeing that detM (S) = 1 whenS is the

Then we obtain a lower triangular matrix with  1's on the main diagonal,
so the determinant is 1.
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We have now assembled all the ingredients for the main resuif this
section (due originally to Borchardt). Recall that (G) denotes the number
of spanning trees ofG.

9.8 Theorem (the Matrix-Tree Theorem). Let G be a nite connected graph
without loops, with laplacian matrixL = L (G). Let Lo denoteL with the
last row and column removed (or with theth row and column removed for
anyi). Then

det(Lo) = (G):

Proof. SinceL = MM ' (Lemma 9.6(a)), it follows immediately thatL ¢ =
M oM §. Hence by the Binet-Cauchy theorem (Theorem 9.4), we have

X
det(Lo)=  (detM o[S])(detM L[S]); (9.4)
S

whereS ranges over all p 1)-element subsets df1;2:::; g (or equivalently,
over all (p 1)-element subsets of the set of edges G). Since in general
A'[S] = A[S]', equation (9.4) becomes
X
det(Lo)=  (detM ([S])?: (9.5)
S

According to Lemma 9.7, detiyl ¢[S]) is 1 if S forms the set of edges of a
spanning tree ofG, and is O otherwise. Therefore the term indexed b§ in
the sum on the right-hand side of (9.5) is 1 i§ forms the set of edges of a
spanning tree ofG, and is O otherwise. Hence the sum is equal tqG), as
desired. O

The operation of removing a row and column fronlL (G) may seem
somewhat contrived. We would prefer a description of (G) directly in
terms of L (G). Such a description will follow from the next lemma. Re-
call that the characteristic polynomialof ap p matrix A is de ned to be
det(A xl). Note. Sometimes the characteristic polynomial is de ned to
be detx] A)=( 1)°det(A xI). We will use the de nition det(A xI).

9.9 Lemma. Let M be ap p matrix (with entries in a eld) such that
the sum of the entries in every row and column B Let My be the matrix
obtained fromM by removing the last row and last column (or more generally,
any row and any column). Then the coe cient of x in the characteristic
polynomial det(M  xl) of M is equal to p det(My). (Moreover, the
constant term ofdet(M  xlI) is 0.)
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Proof. The constant term of detM  xl) is det(M), which is O since the
rows ofM sum to O.

For simplicity we prove the rest of the lemma only for removig the last
row and column, though the proof works just as well for any roand column.
Add all the rows of M xI except the last row to the last row. This doesn't
e ect the determinant, and will change the entries of the lasrow all to  x
(since the rows ofM sum to 0). Factor out x from the last row, yielding a
matrix N (x) satisfying det(M xlI )= xdet(N(x)). Hence the coe cient of
x indet(M xlI)is given by det(N(0)). Now add all the columns ofN (0)
except the last column to the last column. This does not e ectet(N (0)).
Because the columns oM sum to O, the last column ofN (0) becomes the
column vector [Q0;:::;0; p]'. Expanding the determinant by the last column

shows that det(N (0)) = p det(My), and the proof follows. O
9.10 Corollary. (a) Let G be a connected (loopless) graph with vertices.
Suppose that the eigenvalues b{G) are i;:::; , 1; p, with ,=0. Then

1

(G)= — :

D 12 p 1
(b) Suppose thatG is also regular of degreal, and that the eigenvalues of
A(G)are q;:::; p 15 p, With ,=d. Then

@=@ D@ ) @ o)
Proof. (a) We have
det(L xI) = (12 X) (p1 X p X

= (1 X2 X (p1 XX

Hence the coe cientofxis 1 » p 1. ByLemma9.9, weget ; , p 1=
p det(Lo). By Theorem 9.8 we have det(,) = (G), and the proof follows.
(b) Immediate from (a) and Lemma 9.6(b). O

Let us look at a couple of examples of the use of the Matrix-TeeTheorem.

9.11 Example. Let G = K, the complete graph onp vertices. NowK, is
regular of degreed = p 1, and by Proposition 1.5 its eigenvalues are 1
(p 1ltimes) andp 1 = d. Hence from Corollary 9.10 there follows the
elegant result

(Kp) = %«p ) (DPi=p 2
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9.12 Example. Let G = C,, the n-cube discussed in Section 2. No®,
is regular of degreen, and by Corollary 2.5 its eigenvalues area 2i with
multiplicity " for0 i n. Hence from Corollary 9.10 there follows the
amazing result

I
|
<
~—
AS]
=
=

(Cn)

A direct combinatorial proof (though not an explicit bijection) was found by
O. Bernardi in 2012.
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APPENDIX: THREE ELEGANT COMBINATORIAL
PROOFS

In this appendix we give three elegant combinatorial proothat the num-
ber of spanning trees of the complete grapki, is p° # (Example 9.11). The
proofs are given in chronological order of their discovery.

First proof (Pnafer). Given a spanning treeT of K, i.e., a tree on the
vertex set p], remove the largest endpoint (leafy and write down the vertex
a; adjacent to v. Continue this procedure until only two vertices remain,

For the tree below, we rst remove 11 and then record 8. Next neove 10
and record 1. Then remove 8 and record 4, etc., ending with tteequence
(8;1,4;4;1;,4,9; 1,9) and leaving the two vertices 1 and 9.

Se—o0 06
11
5 10
°® ® ® ®
4 9 1

o7 2 3

We claim that the map just de ned from trees T on [p] to sequences

clearly [p]® 2 has p? 2 elements. The crucial observation is that the rst
vertex to be removed fromT is the largest vertex ofT missing from the se-
guence [why? | this takes a little thought]. This vertex is adjacenttoa;. For
our example, we get that 11 was the rst vertex removed, and #t 11 is ad-
jacent to 8. We can now proceed recursively. T; denotesT with the largest

missing vertex is 10 (since 11 is not a vertex dh), which is adjacent to 1.
Continuing in this way, we determine one new edge af at each step. At the
end we have foundp 2 edges, and the remaining two unremoved vertices
form the (p 1)st edge.

Second proof (Joyal). A doubly-rooted treeis a tree T with one vertex
u labelled S (for \start") and one vertex v (which may equalu) labelled E
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(\end"). Let t(p) be the number of treesT on the vertex set p], and let d(p)
be the number of doubly-rooted trees orp|. Thus

d(p) = p*t(p); (9.6)

since once we have chosdnthere arep choices foru and p choices forv.
Let T be a doubly-rooted tree. There is a unique path frons to E,

shows such a doubly-rooted tree.

11 10 15 7 5 2 3

S E
6 9 ! 1 4 12 17
14 13 8
Let a; < a, < < ak be the increasing rearrangement of the num-

by (&)= h. Let D be the digraph of , that is, the vertex set ofD is
fap;:::; &0, with a directed edgea; ! b forl i k. Since any permu-
tation of a nite set is a disjoint product of cycles, it follows thatD is
a disjoint union of directed cycles (all edges of each cycleipt in the same
direction as we traverse the cycle). For the example abovegvhavek = 7.

The digraph D is shown below.
2 3 10
7 : D
11 15 5
Now attach to each vertexv of D the same subgrap, that was attached

\below" v in T, and direct the edges of, toward v, obtaining a digraphD.
For our example we get
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4 12 17
0/ 2 3 10
7
11 15 5
1 16
6 /\
14 13 €

The graph Dt has the crucial property that every vertex has outdegree
one, that is, one arrow pointing out. In other words,D+ is the graph of a
function f : [p] ! [p], with vertex set [p] and edgesi ! f (i). Conversely,
given a functionf : [p] ! [p], all the above steps can be reversed to ob-
tain a unique doubly-rooted treeT for which Dt is the graph off. We
have therefore found a bijection from doubly-rooted treesndp] to functions
f:[p]! [p]. Since the number of such functiong is p°, it follows that
d(p) = p°. Then from equation (9.6) we get(p) = p° 2.

Third proof (Pitman). A forest is a graph without cycles; thus every
connected component is a tree. planted forestis a forestF for which every
componentT has a distinguished vertex+ (called theroot of T). Thus if a
componentT hask vertices, then there arek ways to choose the root of .

Let P, be the set of all planted forests onp|. Let uv be an edge of a
forest F 2 P, such that u is closer thanv to the root r of its component.
De ne F to cover the rooted forestF %if F%is obtained by removing the edge
uv from F, and rooting the new tree containingv at v. This de nition of
cover de nes the covering relation of a partial order o®,. Under this partial
order P, is graded of rankp 1. The rank of a forestF in Py is its number
of edges. The diagram below shows the poded.
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2&3 1(22%3 1(23%2

It is an easy exercise to see that an elemeft of P, of rank i coversi
elements and is covered byp( i 1)p elements. We now count in two ways
the number M, of maximal chains ofP,. On the one hand, we can start at
the top. The number of maximal elements oP, is p t(p), where t(p) as
above is the number of trees on the vertex sep][ since there arep ways to
choose the root of such a tree. Once a maximal elemdntis chosen, then
there arep 1 elementsF°that it covers, thenp 2 elements thatF ° covers,
etc., giving

Mp=p t(p(p 1)!= p't(p): (9.7)

On the other hand, we can start at the bottom. There is a uniquelement
F of rank one (the planted forest with no edges), thenp( 1)p elementsF°
that cover F, then (p  2)p elements that coverF° etc., giving

Mp=p° Y(p 1) (9.8)

Comparing equations (9.7) and (9.8) give(p) = p° 2.

Our third proof isn't an explicit bijection like the rsttwo proofs. On the
other hand, it has the virtue of not depending on the names ohe vertices.
Note that in the rst two proofs it is necessary to know when og vertex is
larger than another.

References for Chapter 9



167

The concept of tree as a formal mathematical object goes batk G.
Kirchho and K. G. C. von Staudt. Trees were rst extensively investigated
by A. Cayley, to whom the term \tree" is due. In particular, in [22] Cayley
states the formula (Kp) = pP 2 for the number of spanning trees oK ,, and
he gives a vague idea of a combinatorial proof. Because ofstpaper, Cayley
is often credited with the enumeration of labelled trees. Géey pointed
out, however, that an equivalent result had been proved e&t by C. W.
Borchardt [10]. Moreover, this result appeared even eantign a paper of J.
J. Sylvester [104]. Undoubtedly Cayley and Sylvester couldave furnished
a complete, rigorous proof had they the inclination to do soThe elegant
combinatorial proofs given in the appendix are due to E. P. HPndfer, [83],
A. Joyal, [58, Exam. 12, pp. 15{16] and J. W. Pitman [77].

The Matrix-Tree Theorem (Theorem 9.8) was rst proved by C. W Bor-
chardt [10] in 1860, though a similar result had earlier beepublished by
J. J. Sylvester [104] in 1857. Cayley [21, p. 279] in fact in 38 referred to
the not-yet-published work of Sylvester. For further histaical information
on the Matrix-Tree theorem, see Moon [72, p. 42].

[more??]

Exercise 9.4 is based on a suggestion of P. Venkataramana.
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Chapter 10

Eulerian digraphs and oriented
trees

A famous problem which goes back to Euler asks for what grapfsis there
a closed walk which uses every edge exactly once. (There soa version for
non-closed walks.) Such a walk is called g@fulerian tour (also known as an
Eulerian cycle). A graph which has an Eulerian tour is called arEulerian
graph Euler's famous theorem (the rst real theorem of graph thexy) states
that a graph G without isolated vertices (which clearly would be irrelevat) is
Eulerian if and only if it is connected and every vertex has ewn degree. Here
we will be concerned with the analogous theorem for directegtaphs. We
want to know not just whether an Eulerian tour exists, but howmany there
are. We will prove an elegant determinantal formula for thisiumber closely
related to the Matrix-Tree Theorem. For the case of undireed graphs no
analogous formula is known, explaining why we consider ontiie directed
case.
A (nite) directed graphor digraph

together with a function' : E ! V V (the set of ordered pairs (;Vv) of
elements ofV). If ' (e) = (u;v), then we think of e as an arrow fromu to v.
We then call u the initial vertex andv the nal vertex of e. (These concepts
arose in the de nition of an orientation in De nition 8.5.) A tour in D is
a sequences;; e;:::; g of distinct edges such that the nal vertex ofg is
the initial vertex of e, forall 1 | r 1, and the nal vertex of e is
the initial vertex of e;. A tour is Eulerian if every edge oD occurs at least
once (and hence exactly once). A digraph which has no isoldteertices and

173
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contains an Eulerian tour is called arEulerian digraph Clearly an Eulerian
digraph is connected. Theoutdegreeof a vertex v, denoted outdegy), is
the number of edges o6 with initial vertex v. Similarly the indegreeof v,
denoted indegy), is the number of edges oD with nal vertex v. A loop
(edge of the form y¢; v)) contributes one to both the indegree and outdegree.
A digraph is balancedif indeg(v) = outdeg(v) for all vertices v.

10.1 Theorem. A digraph D is Eulerian if and only if it is connected and
balanced.

move along the tour, whenever we enter a vertex we must exit it, except
at the very end we enter the nal vertexv of g, without exiting it. However,
at the beginning we exitedv without having entered it. Hence every vertex
is entered as often as it is exited and so must have the same degree as
indegree. Thereford is balanced, and as noted abov@ is clearly connected.
Now assume thatD is balanced and connected. We may assume thBt
has at least one edge. We rst claim that for any edge of D, D has a tour
for which e = e,. If e; is a loop we are done. Otherwise we have entered
the vertex n( e;) for the rst time, so since D is balanced there is some exit
edgee,. Either n( &) = init( ;) and we are done, or else we have entered
the vertex n(e;) once more than we have exited it. Sinc® is balanced
there is new edgess with n( &) = init( e3). Continuing in this way, either
we complete a tour or else we have entered the current vertemag more than
we have exited it, in which case we can exit along a new edgen&D has
nitely many edges, eventually we must complete a tour. Thu® does have
a tour which usese;.

r = g, the number of edges db. Assume to the contrary thatr < q. Since in
moving alongC every vertex is entered as often as it is exited (with inig;)
exited at the beginning and entered at the end), when we remevhe edges
of C from D we obtain a digraphH which is still balanced, though it need
not be connected. However, sincB is connected, at least one connected
componentH; of H contains at least one edge and has a vert@in common
with C [why?]. SinceH; is balanced, there is an edge of H; with initial
vertex v. The argument of the previous paragraph shows thdt; has a tour
CPof positive length beginning with the edge. But then when moving along
C, when we reachv we can take the \detour" C°before continuing with C.
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This gives a tour of length longer tharr, a contradiction. Hencer = g, and
the theorem is proved. O

Our primary goal is to count the number of Eulerian tours of a@nnected
balanced digraph. A key concept in doing so is that of an orited tree.
An oriented tree with root v is a ( nite) digraph T with v as one of its
vertices, such that there is a unique directed path from anyertex u to v.
In other words, there is a unique sequence of edg®s:::;e such that (a)
init(e;) = u, (b) n(g)=v,and (c) n(g) =init( e4y) forl i r 1.
It's easy to see that this means that the underlying undireed graph (i.e.,
\erase" all the arrows from the edges off) is a tree, and that all arrows
in T \point toward" v. There is a surprising connection between Eulerian
tours and oriented trees, given by the next result (due to de fijn and van
Aardenne-Ehrenfest). This result is sometimes called theEST Theorem,
after deBruijn, van Aardenne-Ehrenfest,Smith, and T utte. However, Smith
and Tutte were not involved in the original discovery.

10.2 Theorem. Let D be a connected balanced digraph with vertex 3ét
Fix an edgee of D, and letv = init( €). Let (D;v) denote the number
of oriented (spanning) subtrees oD with root v, and let (D;e) denote the
number of Eulerian tours ofD starting with the edgee. Then

Y
(D;e)= (D;v) (outdeg(u) 21): (10.1)
u2vVv
Proof. Let e = e;;&;:::;€& be an Eulerian tour E in D. For each vertex

u 6 v, let e(u) be the \last exit" from u in the tour, i.e., let e(u) = g where
init(e(u)) = u and init(e) 6 u forany k >j .

Claim #1. The vertices ofD, together with the edgese(u) for all vertices
u 6 v, form an oriented subtree oD with root v.

Proof of Claim #1. This is a straightforward veri cation. Let T be the
spanning subgraph oD with edgese(u), u 6 v. Thus if jVj = p, then T has
p vertices andp 1 edges [why?]. There are three items to check to insure
that T is an oriented tree with rootv:

(a) T does not have two edgef and f  satisfying init(f ) = init( f 9. This
is clear since bothf and f °can't be last exits from the same vertex.

(b) T does not have an edgé with init( f) = v. This is clear since by
de nition the edges of T consist only of last exits from vertices other
than v, so no edge off can exit fromv.
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(c) T does not have a (directed) cycl€. For supposeC were such a cycle.
Let f be that edge ofC which occurs after all the other edges o in
the Eulerian tour E. Let f °be the edge ofC satisfying n(f) =init( f9
(= u, say). We can't haveu = v by (b). Thus when we enteru via
f, we must exitu. We can't exit u via f °sincef occurs afterf %in E.
Hencef %is not the last exit from u, contradicting the de nition of T.

It's easy to see that conditions (a){(c) imply that T is an oriented tree with
root v, proving the claim.

Claim #2. We claim that the following converse to Claim #1 is true.
Given a connected balanced digrap® and a vertexv, let T be an oriented
(spanning) subtree oD with root v. Then we can construct an Eulerian tour
E as follows. Choose an edgg with init( ) = v. Then continue to choose
any edge possible to continue the tour, except we never checasn edgef
of E unless we have to, i.e., unless it's the only remaining edgeiteng the
vertex at which we stand. Then we never get stuck until all edgs are used,
so we have constructed an Eulerian touE. Moreover, the set of last exits
of E from verticesu 6 v of D coincides with the set of edges of the oriented
tree T.

Proof of Claim #2. SinceD is balanced, the only way to get stuck is to
end up atv with no further exits available, but with an edge still unusel.
Suppose this is the case. At least one unused edge must be & éx# edge,
l.e., an edge ofl [why?]. Letu be a vertex ofT closest tov in T such that
the unique edgef of T with init( f) = u is not in the tour. Let y = n( f).
Supposey 6 v. Since we entery as often as we leave it, we don't use the
last exit from y. Thusy = v. But then we can leavev, a contradiction. This
proves Claim #2.

We have shown that every Eulerian tourE beginning with the edgee
has associated with it a \last exit" oriented subtreeT = T(E) with root
v = init( €). Conversely, given an oriented subtred with root v, we can
obtain all Eulerian tours E beginning with e and satisfying T = T(E) by
choosing for each vertexu 6 v the order in which the edges fronu, except
the edge ofT, appear inE; as well as choosing the order in which all the
edges fromv except for e appear in E. ThusAor each vertexu we have
(outdeg(u) 1)! choices, so for eacli we have - ,(outdeg(u) 1)! choices.
Since there are (G; v) choices forT, the proof is complete. O

10.3 Corollary. Let D be a connected balanced digraph, and iebe a vertex
of D. Then the number (D;v) of oriented subtrees with roov is independent
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of v.

Proof. Let e be an edge with initial vertexv. By equation (10.1), we need
to show that the number (G; e) of Eulerian tours beginning witheis indepen-
dentofe. But e;e, egisanEuleriantourifandonlyifee.; eee & 1
is also an Eulerian tour, and the proof follows [why?]. O

What we obviously need to do next is nd a formula for (G;v). Such a
formula is due to W. Tutte in 1948. This result is very similarto the Matrix-
Tree Theorem, and indeed we will show (Example 10.6) that thielatrix-Tree
Theorem is a simple corollary to Theorem 10.4.

and with |; loops at vertexv;. Let L (D) be thep p matrix de ned by

8
< my; if i 6 ] and there arem;; edges with
Lij = . initial vertex v; and nal vertex v;
outdeg(y;) Ii; ifi=j.

(Thus L is the directed analogue of the laplacian matrix of an undated
graph.) LetL, denoteL with the last row and column deleted. Then

detLo= (D;vyp): (10.2)

Note. If we remove theith row and column fromL instead of the last row
and column, then equation (10.2) still holds with, replaced withv;.

Proof (sketch). Induction on g, the number of edges oD. The fewest
number of edges whictb can have isp 1 (sinceD is connected). Suppose
then that D hasp 1 edges, so that as an undirected grapb is a tree. If
D is not an oriented tree with rootv,, then some vertexv; 6 v, of D has
outdegree O [why?]. TherL, has a zero row, so ddt, =0 = (D;vp). If
on the other handD is an oriented tree with rootv,, then an argument like
that used to prove Lemma 9.7 (in the case wheS8 is the set of edges of a
spanning tree) shows thatdeL,=1= (D;vy).

Now assume thatD hasq > p 1 edges, and assume the theorem for
digraphs with at mostq 1 edges. We may assume that no eddgeof D
has initial vertex v, since such an edge belongs to no oriented tree with root
v and also makes no contribution toL . It then follows, since D has at
least p edges, that there exists a vertexu 6 v of D of outdegree at least
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two. Let e be an edge with inite) = u. Let D; be D with the edge e
removed. LetD, be D with all edgese® removed such that init() = init( €’
and "8 e. (Note that D, is strictly smaller than D since outdegq) 2.)
By induction, we have detl 4(D;) = (D3;Vp) and detLo(D2) = (D2;vp).
Clearly (D;vp) = (D1;vp) + (D2;Vvp), since in an oriented treeT with
root v, there is exactly one edge whose initial vertex coincidesttwithat of
e. On the other hand, it follows immediately from the multilinearity of the
determinant [why?] that

detLo(D) = det Lo(Dl) + det Lo(Dz):
From this the proof follows by induction.

10.5 Corollary. Let D be a connected balanced digraph with vertex &t

tours of D with rst edge e is given by

Y
(D;e) =(det Lo(D)) (outdeg(u) 1)&
u2v

Equivalently (sinceD is balanced, so Lemma 9.9 applies), if (D) has eigen-
values q;:::; pwith , =0, then

1 Y
(D;e)= - 4 p 1 (outdeg(u) 1)h
p u2v
Proof. Combine Theorems 10.2 and 10.4. O

10.6 Example. (the Matrix-Tree Theorem revisited) Let G be a connected
loopless undirected graph. Le6 be the digraph obtained fromG by replac-

ing each edgee = uv of G with a pair of directed edgesu! vandv! wu.

Clearly G is balanced and connected. Choose a vertexof G. There is

an obvious one-to-one correspondence between spanning$€ of G and

oriented spanning treesf of G with root v, namely, direct each edge of

toward v. Moreover, L (G) = L (G) [why?]. Hence the Matrix-Tree Theorem
is an immediate consequence of the Theorem 10.4.

10.7 Example. (the e cient mail carrier) A mail carrier has an itinerary of
city blocks to which he (or she) must deliver mail. He wants t@accomplish
this by walking along each block twice, once in each direchpthus passing
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along houses on each side of the street. The blocks form theges of a
graph G, whose vertices are the intersections. The mail carrier weansimply
to walk along an Eulerian tour in the digraphG of the previous example.
Making the plausible assumption that the graph is connecteahot only does
an Eulerian tour always exist, but we can tell the mail carrie how many
there are. Thus he will know how many di erent routes he can tee to avoid
boredom. For instance, suppos6 is the 3 3 grid illustrated below.
[ [

I I

[ [

This graph has 128 spanning trees. Hence the number of mailrear
routes beginning with a xed edge (in a given direction) is 12 1¥213! =
12288. The total number of routes is thus 12288 times twice élnumber of
edges [why?], viz., 12288 24 = 294912. Assuming the mail carrier delivered
mail 250 days a year, it would be 1179 years before he would &&we repeat
a route!

10.8 Example. (binary de Bruijn sequences) Abinary sequences just a
sequence of 0's and 1's. Ainary de Bruijn sequenceof degreen is a bi-
nary sequenceA = a;a, ax such that every binary sequencd, b, of
length n occurs exactly once as a \circular factor” ofA, i.e., as a sequence
aa+1  a+n 1, Where the subscripts are taken modula if necessary. For
instance, some circular factors of the sequenabcdefgare a, bcde fgah and
defga Note that there are exactly 2 binary sequences of lengtim, so the
only possible length of a binary de Bruijn sequence of degreas 2" [why?].
Clearly any cyclic shift aja.; amaj;a, & ; of a binary de Bruijn se-
quencea;a, ap is also a binary de Bruijn sequence, and we call two such
sequencegquivalent This relation of equivalence is obviously an equivalence
relation, and every equivalence class contains exactly osequence beginning
with n O's [why?]. Up to equivalence, there is one binary de Bruijreguence
of degree two, namely, 0011. It's easy to check that there ao inequivalent
binary de Bruijn sequences of degree three, namely, 00010&hd 00011101.
However, it's not clear at this point whether binary de Bruip sequences exist
for all n. By a clever application of Theorems 10.2 and 10.4, we will honly
show that such sequences exist for all positive integens but we will also
count the number of them. It turns out that there are lots of them. For
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instance, the number of inequivalent binary de Bruijn sequeees of degree
eight is equal to

1329227995784915872903807060280344576

The reader with some extra time on his or her hands is invitedtwrite down

these sequences. De Bruijn sequences are named after Naol&overt de
Bruijn, who published his work on this subject in 1946. Howe, it was

discovered in 1975 that de Bruijn sequences had been earlozeated and
enumerated by C. Flye Sainte-Marie in 1894. De Bruijn sequeas have a
number of interesting applications to the design of switchg networks and
related topics.

Our method of enumerating binary de Bruijn sequences will b set
up a correspondence between them and Eulerian tours in a cart directed
graph D,,, the de Bruijn graph of degreen. The graphD, has 2 ! vertices,
which we will take to consist of the 2 ! binary sequences of length 1. A
pair (a;a, an 1;kb, b, 1) of vertices forms an edge dD,, if and only if
apaz a, 1= bb b, , ie.,eisanedgeifthe lasin 2 terms of init(e)
agree with the rst n 2 terms of n(e). Thus every vertex has indegree two
and outdegree two [why?], s®, is balanced. The number of edges &f, is
2". Moreover, it's easy to see thaD,, is connected (see Lemma 10.9). The
graphsD3; and D4 look as follows:

() 000
00 001 100
01 10 .
010
11 011 110
111

Suppose thatE = e;e,  ex is an Eulerian tour inD,,. If n( &) is the
binary sequencesia, @& 1, then replaceg in E by the last bit a., ;. It
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IS easy to see that the resulting sequencdE) = a;.n 1820 1 @np 1S a
binary de Bruijn sequence, and conversely every binary de ijn sequence
arises in this way. In particular, sinceD, is balanced and connected there
exists at least one binary de Bruijn sequence. In order to couthe total
number of such sequences, we need to compute déD,). One way to
do this is by a clever but messy sequence of elementary row acolumn
operations which transforms the determinant into trianguhr form. We will
give instead an elegant computation of the eigenvalues bfD,) based on
the following simple lemma.

10.9 Lemma. Letu andv be any two vertices oD,,. Then there is a unique
(directed) walk fromu to v of lengthn 1.

Proof. Supposeu = a;a, a, 1 andv = by, b, ;. Then the unique
path of lengthn 1 fromu to v has vertices

qdy a, 1,83 A, 1byazay  an by

an 1o by b by g
O

10.10 Theorem. The eigenvalues ot (D,) are O (with multiplicity one)
and 2 (with multiplicity 2" 1 1).

Proof. Let A (D,) denote the directed adjacency matrix oD,, i.e., the rows
and columns are indexed by the vertices, with

1, if (u;v) is an edge

Aw = 0: otherwise

Now Lemma 10.9 is equivalent to the assertion tha&" *= J, the2» 1 20 !

matrix of all 1's [why?]. If the eigenvalues oA are i;::: x» 1, then the
eigenvalues ol = A" tare | *:::; on L. By Lemma 1.4, the eigenvalues

ofJare 2 ! (once)and 0 (2 ! 1 times). Hence the eigenvalues & are
2 (once, where is an (h 1)-st root of unity to be determined), and 0
(2" 1 1times). Since the trace oA is 2, it follows that =1, and we have
found all the eigenvalues oA.
Now L (D,) =21 A(D,) [why?]. Hence the eigenvalues df are 2
2 n 1, and the proof follows from the above determination of
1,000 on 1. O
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10.11 Corollary. The numberBg(n) of binary de Bruijn sequences of degree
n beginning withn O's is equal to22" * . The total numberB (n) of binary
de Bruijn sequences of degree is equal to22" .

Proof. By the above discussionBg(n) is the number of Eulerian tours inD,,
whose rst edge the loop at vertex 00 0. Moreover, the outdegree of every
vertex of D,, is two. Hence by Corollary 10.5 and Theorem 10.10 we have

1

n 1 n 1
> 122 l:22 n:

Bo(n) =

Finally, B(n) is obtained from By(n) by multiplying by the number 2" of
edges, and the proof follows. O

Note that the total number of binary sequences of length™2is N = 22",
By the previous corollary, the number of these which are de Bijn sequences
is just  N. This suggests the following problem, solved by H. Bidkhoend
S. Kishore. LetA, be the set of all binary sequences of length 2Let B, be
the set of binary de Bruijn sequences of degree Find an explicit bijection
" :B, B ,!A ,, thereby giving a combinatorial proof of Corollary 10.11.

References for Chapter 10

The characterization of Eulerian digraphs given by Theoreni0.1 is a
result of I. J. Good [43], while the fundamental connectiondiween oriented
subtrees and Eulerian tours in a balanced digraph that was ed to prove
Theorem 10.2 was shown by T. van Aardenne-Ehrenfest and N. Ge Bruijn
[2, Thm. 5a]. This result is sometimes called the BEST Theamg after
de Bruijn, van AardenneEhrenfest, Smith, and Tutte. However, Smith
and Tutte were not involved in the original discovery. (In [2] Smith and
Tutte give a determinantal formula for the number of Euleria tours in a
special class of balanced digraphs. Van Aardenne-Ehrenfasd de Bruijn
refer to the paper of Smith and Tutte in a footnote added in prof.) The
determinantal formula for the number of oriented subtreesf@ directed graph
(Theorem 10.4) is due to Tutte [109, Thm. 3.6].

De Bruijn sequences are named from the paper [14] of de Bryipwhere
they are enumerated in the binary case. However, it was dise&ved by R.
Stanley in 1975 that this work had been done earlier by C. Fly8ainte-Marie
[34] in 1894, as reported by de Bruijn [16]. The generalizati to d-ary de
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Bruijn sequences (Exercise 10.2) is to to T. van Ardenne-Eémfest and de
Bruijn [1]. Some recent work in this area appears in a specigsue [102] of
Discrete Mathematics Some amusing applications to magic are given by P.
Diaconis and R. Graham [28, Chs. 2{4].



Chapter 11

Cycles, bonds, and electrical
networks.

11.1 The cycle space and bond space.

In this section we will deal with some interesting linear akgra related to
the structure of a directed graph. LetD = (V;E) be a digraph. A function
f :E! R s called acirculation if for every vertexv 2 V, we have
X X
f(e)= f(e): (11.2)

e2E e2E
init( e)= v n( e)=v

Thus if we think of the edges as pipes anfd as measuring the ow (quantity
per unit of time) of some commodity (such as oil) through the ipe in the
speci ed direction (so that a negative value of (€) means a ow of jf (e)]
in the direction opposite the direction ofe), then equation (11.1) simply
says that the amount owing into each vertex equals the amounowing

out. In other words, the ow is conservative The gure below illustrates a
circulation in a digraph D.

3

187
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Let C= G denote the set of all circulations orD. Clearly if f;g 2 C
and ; 2 Rthen f + g 2C. HenceCis a (real) vector space, called the
cycle spaceof D. Thus if q= jEj, then G is a subspace of the-dimensional
vector spaceRE of all functionsf :E ! R.

What do circulations have do with something \circulating," and what
does the cycle space have to do with actual cycles? To see (thde ne a
circuit or elementary cyclen D to be a set of edges of a closed walignoring
the direction of the arrows with no repeated vertices except the rst and
last. Suppose thatC has been assigned an orientation (direction of travel)
0. (Note that this meaning of orientation is not the same as thaappearing
in De nition 9.5.)

De ne a function fc : E ! R (which also depends on the orientatioro,
though we suppress it from the notation) by

8
< 1; if e2 C and e agrees witho

fc(e) = . 1, if e2 C and e is opposite too
" 0; otherwise

It is easy to see thatf¢ is a circulation. Later we will see that the circu-
lations f¢c span the cycle spac€, explaining the terminology \circulation”

and \cycle space." The gure below shows a circui€ with an orientation o,

and the corresponding circulatiorf ¢.
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@ 3 @D
A

-3 @O
® 5@ °

Figure 11.1: A function and its coboundary

Given a functionp: V! R, dene a new function p : E! R, called
the coboundary of p, by

p(e) = p(v) p(u); if u=init( € andv = n( e).

Figure 11.1 shows a digrap® with the value p(v) of some functionp:V ! R
indicated at each vertexv, and the corresponding values (€) shown at each
edgee.

One should regard as an operator which takes an elememtof the vector
spaceR" of all functionsV ! R and produces an element of the vector space
RE of all functionsE ! R. It is immediate from the de nition of that is
linear, i.e.,

(p+q)= p+ g

1The term \coboundary" arises from algebraic topology, but we will not explain the
connection here.
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for all p;g2 RV and ; 2 R. Thus is simply a linear transformation
:RY 1 RE between two nite-dimensional vector spaces.

A function g: E ! R is called apotential dierence onD if g= p for
somep:V ! R. (Later we will see the connection with electrical networks
that accounts for the terminology \potential di erence.”) Let B = Bp be the
set of all potential di erences onD. Thus B is just the image of the linear
transformation and is hence a real vector space, called ttend spaceof
D.

Let us explain the reason behind the terminology \bond spaceA bondin
a digraphD is a setB of edges such that (a) removin® from D disconnects
some (undirected) component oD (that is, removing B creates a digraph
which has more connected components, as an undirected gragitan D), and
(b) no proper subset ofB has this property. A subset of edges satisfying (a)
is called acutset so a bond is just a minimal cutset. Suppose, for example,
that D is given as follows (with no arrows drawn since they are irlant to
the de nition of bond):

Then the bonds are the six subsetab; de; acd; bce; ace; bcd

Let B be a bond. Suppos® disconnects the component(% E9 into two
pieces (a bond always disconnects some component into ekativo pieces
[why?]) with vertex setS in one piece andS in the other. Thus S[ S= V°
andS\ S=;. Dene

[S;S] = fe2 E : exactly one vertex ofe lies in S and one lies inSg:

Clearly B = [S;S]. It is often convenient to use the notation §;S] for a
bond.
Given a bondB =[S;S] of D, dene a functiongg : E! R by

8
< 1 ifinit(e)2S, n(e)2S

Os(€) = . 1, ifinit(e)2 S, n(e)2 S
' 0; otherwise.
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Note that gg really depends not just onB, but on whether we write B as
[S;S] or [S; S]. Writing B in the reverse way simply changes the sign g .
Whenever we deal withgs we will assume that some choicB = [S;S] has
been made.

Now note that gg = p, where

(v) = 1, ifv2S
PV) = 0 ifv2sS:

Hencegs 2 B, the bond space oD. We will later see that B is in fact
spanned by the functionsys, explaining the termininology \bond space."

11.1 Example. In the digraph below, open (white) vertices indicate an
element ofS and closed (black) vertices an element @& for a certain bond
B =[S;S]. The elements ofB are drawn with solid lines. The edges are
labelled by the values ofgs, and the vertices by the functionp for which

O = P.

Recall that in De nition 9.5 we de ned the incidence matrixM (G) of a
loopless undirected graplG with respect to an orientationo. We may just
as well think of G together with its orientation o as a directed graph. We
also will allow loops. Thus ifD = (V;E) is any ( nite) digraph, de ne the
incidence matrixM = M (D) to be thep g matrix whose rows are indexed
by V and columns byE, as follows. The entry in rowv 2 V and column
e 2 E is denotedm,(e) and is given by

8
< 1, if v=init( €) and eis not a loop
my(e) = . 1, ifv= n( e) and eis not a loop
0; otherwise
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For instance, ifD is given by

@

then

@
3
1 1 1 00

M@D)=4 1 1 0 1 05:
0 0 1 10

11.2 Theorem. The row space oM (D) is the bond spac8p. Equivalently,
the functionsm, : E! R, wherev ranges over all vertices oD, spanB.

Proof. Let g= p be a potential di erence onD, so

g(e) Kn(e)  plinit( &)
p(v)m,(e):

v2V

P
Thusg=,y p(v)rrb, sog belongs to the row space dfl .

Conversely, ifg= ", a(v)m, is in the row space oM , whereq:V !
R, theng= q 2B. O
We now de ne a scalar product (or inner product) on the spacRF by
X
hgi = f(egle);

e2E

foranyf;g 2 RE. If we think of the numbersf (e) and g(e) as the coordinates
off and g with respect to the basisE, then If; gi is just the usual dot product
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of f and g. Because we have a scalar product, we have a notion of what it
means forf and g to be orthogonal viz., if;gi = 0. If V is any subspace of
RE, then de ne the orthogonal complement/? of V by

V? = ff 2 RE :1f;gi =0 for all g2 REg:
Recall from linear algebra that
dimV +dim V? =dim RE =# E: (11.2)

Furthermore, V? ° = V. Let us also note that since we are working over
R, we haveV \V ? = f0g. Thus RE =V V ? (direct sum).

Intuitively there is a kind of \duality" between elementary cycles and
bonds. Cycles \hold vertices together," while bonds \tearthem apart." The
precise statement of this duality is given by the next result

11.3 Theorem. The cycle and bond spaces @ are related byC = B?.
(Equivalently, B = C*.)

Proof. Letf :E! R. Thenf is a circulation if and only if

my(e)f (e) =0
e2E

for all v 2 V [why?]. But this is exactly the condition thatf 2B~ O

11.2 Bases for the cycle space and bond space.

We want to examine the incidence matrixM (D) in more detail. In particu-
lar, we would like to determine which rows and columns &fl (D) are linearly
independent, and which span the row and column spaces. As aaitary, we
will determine the dimension of the spaceB and C. We begin by de ning
the supportkf k off : E'! R to be the set of edges 2 E for which f (e) 6 0.

11.4 Lemma. If 06 f 2 C, then kf k contains an undirected circuit.

Proof. If not, then kf k has a vertex of degree one [why?], which is clearly
impossible. O

115 Lemma. If 06 g2 B, then kgk contains a bond.
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Proof. Let 06 g2 B, sog= p forsomep:V ! R. Choose a vertexv
which is incident to an edge okgk, and set

U=fu2V:pu)= pV)g:

Let U =V U. Note that U 6 ;, since otherwisep is constant sog = 0.
Sinceg(e) 6 0 for all e2 [U;U] [why?], we have thatkgk contains the cutset
[U;U]. Since a bond is by de nition a minimal cutset, it follows that kgk
contains a bond. O

A matrix B is called abasis matrix of B if the rows of B form a basis
for B. Similary de ne a basis matrix C of C.

Recall the notation of Theorem 9.4: LetA be a matrix with at least as
many columns as rows, whose columns are indexed by the eletaesf a set
T.1fS T, then A[S] denotes the submatrix ofA consisting of the columns
indexed by the elements of. In particular, A[e] (short for A[f eg]) denotes
the column of A indexed bye. We come to our rst signi cant result about
bases for the vector spacel® and C.

11.6 Theorem. Let B be a basis matrix oB, and C a basis matrix ofC.
(Thus the columns ofB and C are indexed by the edges2 E of D.) Let
S E, Then:

(i) The columns of B [S] are linearly independent if and only ifS is acyclic
(i.e., contains no circuit as an undirected graph).

(i) The columns of C[S] are linearly independent if and only ifS contains
no bond.

Proof. The columns ofB [S] are linearly dependent if and only if there exists
a functionf : E! R such that

f(e) 6 0 for somee2 S

f(e) =0 for all e62S

f (e)B [e] = O; the column vector of 0's (11.3)

e2E
The last condition is equivalent tolf;m,i = 0 forall v 2 V, i.e,, f is a
circulation. Thus the columns ofB [S] are linearly dependent if and only if
there exists a nonzero circulatiorf such that kfk S. By Lemma 11.4,

X
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kf k (and thereforeS) contains a circuit. Conversely, ifS contains a circuit
Cthen 06 fc 2Candkfck=C S, sofc denes a linear dependence
relation (11.3) among the columns. Hence the columns Bf[S] are linearly
independent if and only if S is acyclic, proving (i). (Part (i) can also be
deduced from Lemma 9.7.)

The proof of (ii) is similar and is left as an exercise. O

11.7 Corollary. Let D = (V;E) be a digraph withp vertices, q edges, and
k connected components (as an undirected graph). Then

dimB
dimC

p k
q p+k

Proof. For any matrix X, the rank of X is equal to the maximum number of
linearly independent columns. Now leB be a basis matrix ofB. By Theo-
rem 11.6(i), the rank of B is then the maximum size (number of elements)
of an acyclic subset oE. In each connected componerd; of D, the largest
acyclic subsets are the spanning trees, whose number of edggpp(D;) 1,
wherep(D;) is the number of vertices ofD;. Hence

Xk
rank B

(p(Di) 1)
i=1

= p k

Since dimB +dim C=dim RE = gby equation (11.2) and Theorem 11.3, we
have
dmC=q (p kl=q9g p+k:

(It is also possible to determine dinC by a direct argument similar to our
determination of dimB.) O

The numberq p+ k (which should be thought of as the number of
independent cycles inD) is called the cyclomatic number of D (or of its
undirected versionG, since the direction of the edges have no e ect).

Our next goal is to describe explicit bases & and B. Recall that a forest
is an undirected graph without circuits, or equivalently, adisjoint union of
trees. We extend the de nition of forest to directed graphs yignoring the
arrows, i.e., a directed graph is a forest if it has no circistas an undirected
graph. Equivalently [why?], dimC= 0.
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Pick a maximal forestT of D = (V;E). Thus T restricted to each com-
ponent of D is a spanning tree. Ifeis an edge oD not in T, then it is easy
to see thatT [ e contains a unique circuitCe.

11.8 Theorem. Let T be as above. Then the s& of circulations f¢,., ase
ranges over all edges d not in T, is a basis for the cycle spac€.

Proof. The circulations fc, are linearly independent, since for eacle 2
E(D) E(T)only fc, doesn't vanish one. Moreover,

#S=#E(D) #E(T)=q pt+ k=dmC
soS is a basis. I

11.9 Example. Let D be the digraph shown below, with the edges; b; cof
T shown by dotted lines.

Orient each circuit C; in the direction of the added edge, i.e.fc, (t) = 1.

Then the basis matrix C of C corresponding to the basidc,;fc,;fc, Is

given by 2 3
0O 1 1100

c=4 1 1 10 1 05: (11.4)
0O 0 10012

We next want to nd a basis for the bond spaceB analogous to that of
Theorem 11.8.

11.10 Lemma. LetT be a maximal forestoD = (V;E). LetT =D E(T)
(the digraph obtained fromD by removing the edges af), called a cotreeif
D is connected. Lete be an edge off. Then E(T ) [ e contains a unique
bond.

Proof. RemovingE (T ) from D leaves a maximal fores®, so removing one
further edgee disconnects some component &f. HenceE(T ) [ e contains
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a bondB. It remains to show that B is unique. Removinge from T breaks
some component off into two connected graphsT; and T, with vertex sets
S andS. It follows [why?] that we must haveB =[S;S], soB is unique. O

Let T be a maximal forest of the digraphD, and let e be an edge ofT.
By the previous lemma,E(T )[ econtains a unique bondB.. Let gs, be the
corresponding element of the bond spad&, chosen for de niteness so that

Os.(€) = 1.

11.11 Theorem. The set of functionsgg,, as e ranges over all edges of,
is a basis for the bond spadB.

Proof. The functions gs, are linearly independent, since onlgg, is nonzero
one?2 E(T). Since

#E(T)=p k=dim B;

it follows that the gg.'s are a basis foiB. O

11.12 Example. Let D and T be as in the previous diagram. Thus a basis

for B is given by the functionsgg,; 0s,; 9s.. The corresponding basis matrix
is given by 2 3

1 00010

B=4010110

001111

S:

Note that the rows of B are orthogonal to the rows of the matrixC of
equation (11.4), in accordance with Theorem 11.3. Equivaity, BC ' = 0,
the 3 3 zero matrix. (In general,BC ' willhave g p+ k rows andp k
columns. Here it is just a coincidence that these two numbeese equal.)

The basis matricesC+ and B 1 of C and B obtained from a maximal
forest T have an important property. A real matrix m n matrix A with
m n is said to beunimodular if every m m submatrix has determinant
0, 1, or 1. For instance, the adjacency matrixM (D) of a digraph D is
unimodular, as proved in Lemma 9.7 (by showing that the expaion of the
determinant of a full submatrix has at most one nonzero term)

11.13 Theorem. Let T be a maximal forest oD. Then the basis matrices
Ct of Cand B 1 of B are unimodular.
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Proof. First consider the caseCt. Let P be a full submatrix of C (so
P hasq p+ k rows and columns). Assume d&® 6 0. We need to
show detP = 1. Since def 6 O, it follows from Theorem 11.6(ii) that
P = C+[T,] for the complementT, of some maximal foresfl;. Note that
the rows of the matrix C[T,] are indexed byT and the columns byT;.
Similarly the rows of the basis matrixC 1, are indexed byT, and the columns
by E (the set of all edges oD). Hence it makes sense to de ne the matrix
product

Z = CT[Tl]CTl;

a matrix whose rows are indexed byf and columns byE.

Note that the matrix Z is a basis matrix for the cycle spac€ since its
rows are linear combinations of the rows of the basis matrig , and it has
full rank since the matrix C+[T,] is invertible. Now C+,[T;] = Iy (the
identity matrix indexed by T,), soZ[T,]= C+[T,]. Thus Z agrees with the
basis matrix C+ in columnsT,. Hence the rows oZ C+ are circulations
supported on a subset of;. SinceT; is acyclic, it follows from Lemma 11.4
that the only such circulation is identically 0, soZ = C+.

We have just shown that

Cq[T,]Cr, = C+:
Restricting both sides toT , we obtain
Cr[MICH[T]=C+[T ]=1I1:
Taking determinants yields
det(C+[T,])det(C+,[T ) =1:

Since all the matrices we have been considering have integstries, the
above determinants are integers. Hence

as was to be proved.
A similar proof works forB . O
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11.3 Electrical networks.

We will give a brief indication of the connection between th@bove discus-
sion and the theory of electrical networks. LeD be a digraph, which for
convenience we assume ennectedand loopless Suppose that at each edge
e there is a voltage (potential di erence)V, from init(e) to n( €), and a cur-
rent | in the direction of e (so a negative currentl . indicates a current of
jlej In the direction opposite toe). Think of V and | as functions on the
edges, i.e., as elements of the vector spaRE. There are three fundamental
laws relating the quantitiesV, and .

Kirchho 's First Law. | 2 Co. In other words, the current owing
into a vertex equals the current owing out. In symbols,
X X
le = le;

init( e)= v n( e)=v

for all verticesv2 V.

Kirchho 's Second Law.  V 2 Cj = B. In other words, the sum of the
voltages around any circuit (calledoopshby electrical engineers), taking into
account orientations, isO.

Ohm's Law. If edgee has resistanceR. > 0, then Ve = [Re.

The central problem of electrical network theory dealing wih the above
three lawg is the following: Which of the 3y quantities V; 1., Re need to
be specied to uniquely determine all the others, and how cawe nd or
stipulate the solution in a fast and elegant way? We will be ewerned here
only with a special case, perhaps the most important speciedse in practical
applications. Namely, suppose we apply a voltagé, at edgee,, with resis-

solution, since we can actually build a network meeting thepgci cations of
the problem.) Note that if we have quantitiesV;; |;; R; satisfying the three
network laws above, then for any scalar the quantities Vi; | i;R; are also
a solution. This means that we might as well assume that, = 1, since we

20f course the situation becomes much more complicated wheme introducesdynamic
network elements like capacitors, alternating current, et.
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can always multiply all voltages and currents afterwards byvhatever value
we want V, to be.

As an illustration of a simple method of computing the total esistance of
a network, the following diagram illustrates the notion of aseries connection
D, + D, and aparallel connectionD; k D, of two networks D, and D, with
a distinguished edgee at which a voltage is applied.

If R(D) denotes the total resistance V.=l of the network D together
with the distinguished edgee, then it is well-known and easy to deduce from
the three network Laws that

R(D1+ Dy) R(D1) + R(D2)

1 1 .1
R(D; k D5) R(D1) R(D2)’

A network that is built up from a single edge by a sequence ofrges and
parallel connections is called aeries-parallel network An example is the
following, with the distinguished edges shown by a broken line from bottom
to top.
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The simplest network which is not a series-parallel networand has no mul-
tiple edges (as an undirected graph) is called thé&/heatstone bridgeand is
illustrated below. (The direction of the arrows has been clsen arbitrarily.)
We will use this network as our main example in the discussidhat follows.

We now return to an arbitrary connected loopless digrapl, with cur-
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rents |, voltagesV;, and resistancesRR; at the edgese. Recall that we are

current if and only if it is orthogonal to the bond spaceB (Theorem 11.3 and
Kirchho 's First Law), it follows that any basis for B de nes a complete and
minimal set of linear relations satis ed by thel;'s (namely, the relation that
| is orthogonal to the basis elements). In particular, the bas matrix C+

de nes such a set of relations. For example, D is the Wheatstone bridge
shown above and ifT = fe;; e;esg, then we obtain the following relations
by adding the edgese;;e;es of T inturnto T .

|1 |3 |4 =0
ly+ls+1,+1g = O (11.5)
l4+ 15+ Ig 0

These three (=p 1) equations give all the relations satis ed by thel;'s
alone, and the equations are linearly independent.

Similary if V is a voltage then it is orthogonal to the cycle spac€. Thus
any basis forC de nes a complete and minimal set of linear relations satied
by the V;'s (namely, the relation that V is orthogonal to the basis elements).
In particular, the basis matrix Ct de nes such a set of relations. Continuing
our example, we obtain the following relations by adding thedgeses; es; €5
of T inturnto T.

Vl V2 + V3 =0
Vl V2 + V4 V5 =0 (116)
Vot+ V5 = 1;

These three (=q p+ k) equations give all the relations satis ed by theV;'s
alone, and the equations are linearly independent.

In addition, Ohm's Law gives theq 1 equationsV, = Rjl;,1 i q 1.
We have atotalof p k)+(q p+Kk)+(g 1)=2q 1 equations in the
290 lunknownsl; (1 i qgandV;(1 i q 1). Moreover, itis easyto

see that these § 1 equations are linearly independent, using the fact that
we already know that just the equations involving thel;'s alone are linearly
independent, and similarly theV;'s. Hence this system of @ 1 equations in
290 1 unknowns has a unique solution. We have now reduced the plein
to straightforward linear algebra. However, it is possibldo describe the
solution explicitly. We will be content here with giving a fomula just for the
total resistanceR(D) = Vg=lqg= 1=l
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Write the 2q 1 equations in the formofa (g 1) 2gmatrix K. The

column V; of the matrix keeps track of the constant terms of the equatits.
The rows of K are given rst by the equations among thel;'s, then the
Vi's, and nally Ohm's Law. For our example of the Wheatstone hidge, we
obtain the matrix

Is[le| Vi Vo Vs Vi Vs|Ve]

[N

2 13 14

1 0 1 1 0/0J0 0 0 0 0O
0 1 1 1 01/ 0 0 0 0 0O
0 0 0 1 11/ 0 0 0 0 0O
0 0 0 0 00/ 1 1 1 0 0O
«=| 0 0 0 0 00 1 1 0 1 1[0
00 0 0 00/ 0 1 0 0 1|1
R, 0 0 0 00/ 1 0 0 0 00O
OR, 0 0 00 0 1 0 0 0O
0O 0OR; 0 00/ 0 0 1 0 00
0 0 OR, 00/ 0O 0 0 1 0|0
0 0 0 ORs;/0[ O 0 O 0 1|0

We want to solve forlq by Cramer's rule. Call the submatrix consisting of
all but the last column X. Let Y be the result of replacing thel ; column of
X by the last column ofK . Cramer's rule then asserts that

_ detY
97 detX

We evaluate detX by taking a Laplace expansion along the rstp 1 rows.
In other words,

X
detX = det(X[[p 1LS]) detX[[p 1F:S]):  (11.7)

S

where (a)S indexes all p 1)-element subsets of the columns, (Y [[p 1]; S]
denotes the submatrix ofX consisting of entries in the rstp 1 rows and
in the columns S, (c) X[[p 1J% S] denotes the submatrix ofX consisting
of entries in the last 21 p rows and in the columns other thanS. In
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det(X[[p 1];S])= 1 by Theorem 11.13. Ifl; 62S, then the |, column of
X[[p 1J;S] will be zero. Hence to get a nonzero term in (11.7), we must
havee, 2 S. The matrix X[[p 1] S] will have one nonzero entry in each
of the rst g p+1 columns, namely, the resistanceR; whereg is not an
edge ofT;. This accounts forq p+ 1 entries from the lastq 1 rows of
X[[p 1F;S]. The remainingp 2 of the lastq 1 rows have available only
one nonzero entry each, a 1 in the columns indexed by, whereg is an
edge ofT, other than e,. Hence we need to choose p+1 remaining entries
from rows p through g and columns indexed byv; for g not edge ofT;. By
Theorems 11.6(ii) and 11.13, this remaining submatrix haseterminant 1.
It follows that

Y
det(X[[p 1];S]) det(X[[p 1J;S]) = R
€ 6E (T1)
Hence by (11.7), we get 0 1
X Y
detX = @ RA; (11.8)
T1 € 6E (T1)

whereT; ranges over all spanning trees & containing e,. A careful analysis
of the signs shows that all signs in (11.8) are plus, so we nally arrive athe

remarkable formula
X Y

detX = R;:

spanning trees T3 e 6F (Tl)
containing  eq 1

For example, ifD is the Wheatstone bridge as above, and if we abbreviate
Ri=a Ry, = b, Rz=c¢ R4 = d, Rs = g then

detX = abc+ abd+ abe+ ace+ ade+ bcd+ bde+ cde:

Now suppose we replace columip in X by column V, in the matrix K,
obtaining the matrix Y. There is a unique nonzero entry in the new column,
so it must be chosen in any nonzero term in the expansion of dét The
argument now goes just as it did for deX , except we have to choos& to

correspond to a spanning tred; that doesn't contain g,. We therefore obtain
X Y
detY = R;:

spanning trees  Tq ej 6 (T1)
not containing eq €j 6 eq

3To be inserted.
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For example, for the Wheatstone bridge we get

detY = ac+ ad+ ae+ bc+ bd+ be+ cd+ ce:

Recall that | ; = det('Y)=det(X) and that the total resistance of the net-
work is 1=l4. Putting everything together gives our main result on elecical
networks.

11.14 Theorem. In the situation described above, the total resistance ofeth
network is given by

X Y
R;
1 spanning trees T1 €j 6E (Tl)
R(D) - - - contagg\g eq Y
lq R
spanning trees  Tg ej 6E (Tq)
not containing eq €] 6 eq
11.15 Corollary. If the resistancesR;;:::;Ry 1 are all equal to one, then

the total resistance of the network is given by

R(D) = 1 _ number of spanning trees containing,
lq  number of spanning trees not containingy’
In particular, if Ry = = Rq 1 = 1, then the total resistance, when

reduced to lowest termsa=h has the curious property that the number (D)
of spanning trees oD is divisible by a+ b.

11.4 Planar graphs (sketch).

A graph G is planar if it can be drawn in the plane R? without crossing
edges. A drawing ofG in this way is called aplanar embedding
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If the vertices and edges of a planar embedding Gfare removed fromR?,
then we obtain a disjoint union of open sets, called theegions (or faceg of
G. (More precisely, these open sets are the regions of the @armbedding
of G. Often we will not bother to distinguish between a planar grph and a
planar embedding if no confusion should result.) LeR = R(G) be the set
of regions ofG, and as usualV (G) and E (G) denote the set of vertices and
edges ofG, respectively.

Note. If G is simple (no loops or multiple edges) then it can be shown
that there exists a planar embedding with edges as straighines and with
regions (regarding as the sequence of vertices and edgesmiad by walking
around the boundaries of the regions) preserved.

The dual G of the planar embedded graplG has vertex setR(G) and
edge sefE (G) = fe : e2 E(G)g. If eis an edge ofG, then letr and r°be
the regions on its two sides. (Possibly = r% there are ve such edges in the
example above.) Then de nee to connectr and r®. We can always draw
G to be planar, letting e and e intersect once. IfG is connected then every
region of G contains exactly one nonisolated vertex d6 and G = G.
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11.16 Example. Let G consist of two disjoint edges. Theis has one vertex
and two loops, whileG is a three-vertex path. The unbounded region of
G contains two vertices ofG, and G 6 G.

Orient the edges of the planar graplG in any way to get a digraphD.
Let r be an interior (i.e., bounded) region oD. An outside edgeof r is an
edgee such that r lies on one side of the edge, anddi erent region lies on
the other side. The outside edges of any interior regiande ne a circulation
(shown as solid edges in the diagram below), and these cimaibns (asr
ranges over all interior regions oD) form a basis for the cycle spac€&s of
G.
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Given the orientation D of G, orient the edges ofG as follows
walk along e in the direction of its orientation, e points to our right.

. as we

\\‘~~—_@)Q/
11.17 Theorem. Letf :E(G)! R. Denef :E(G)! Rbyf (e)=
f(e). Then
f2Bs , f 2Cg
f2C , f 2Bg:
11.18 Proposition.

The setS is the set of edges of a spanning trde of G
ifand only if S =fe :
11.19 Corollary.

e2 Sgq is the set of edges of a cotreE of G .
(G)= (G)
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For nonplanar graphs there is still a notion of a \dual" objet, but it is
no longer a graph but rather something called anatroid. Matroid theory is
a ourishing subject which may be regarded as a combinatoti@abstraction
of linear algebra.

11.5 Squaring the square.

A squared rectanglds a rectangle partitioned into nitely many (but more
than one) squares. A squared rectangle erfect if all the squares are of
di erent sizes. The earliest squared rectangle was found tB36; its size is
33 32 and consists of nine squares:

10

18
14

The question then arose: does there exist a perfect squarepiare? An
isolated example with 55 squares was found by Sprague in 193%hen
Brooks, Smith, Stone, and Tutte developed a network theorypproach which
we now explain.

The Smith diagram D of a squared rectangle is a directed graph whose
vertices are the horizontal line segments of the squared tacgle and whose



210CHAPTER 11. CYCLES, BONDS, AND ELECTRICAL NETWORKS.

pole

pole

Figure 11.2: A Smith diagram

squares are the edges, directed from top to bottom. The top nex (cor-
responding to the top edge of the rectangle being squared)dathe bottom
vertex (corresponding to the bottom edge) are callegoles Label each edge
by the side length of the square to which it corresponds. Figel 11.2 shows
the Smith diagram of the (perfect) squared rectangle above.

The following result concerning Smith diagrams is straigfbrward to ver-
ify.
11.20 Theorem. (a) If we setl, and V. equal to the label of edge then

Kirchho 's two laws hold (so R, = 1) except at the poles.

(b) The Smith diagram is planar and can be drawn without sesdion of
poles. Joining the poles by an edge from the bottom to the topeg a
3-connected graph, i.e., a connected graph that remains cacted when
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one or two vertices are removed.

Call the 3-connected graph of Theorem 11.20 thextendedSmith diagram
of the squared rectangle. If we label the new edge between poles by the
horizontal length b of the squared rectangle and se¥,, = |, = b then
Kirchho 's two laws hold at all vertices.

e pole

-

~

~epole

We therefore have a recipe for searching for perfect squaresttangles
and squares: start listing all 3-connected planar graphs. HEn choose an
edgee; to apply a voltage V;. Put a resistanceR, = 1 at the remaining
edgese. Solve forl. (= V) to get a squared rectangle, and hope that one of
these will be a square. One example found by Brooks et al. was112 75
rectangle with 14 squares. It was given to Brooks' mother asjigsaw puzzle,
and she found a di erent solution ! We therefore have found asquared
square (though not perfect):
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D 75X 75

112 x 112 G

Building on this idea, Brooks et al. nally found two 422 593 per-
fect rectangles with thirteen squares, all 26 squares beiod di erent sizes.
Putting them together as above gives a perfect squared sgearThis example
has two defects: (a) it contains a smaller perfect squaredatangle (and is
therefore not simple), and (b) it contains a \cross" (four squares meeting
a point). They eventually found a perfect squared square wit69 squares
without either of these defects. It is now known (thanks to amputers) that
the smallest order (number of squares) of a perfect squareguare is 21. It
is unique and happens to be simple and crossfree. See the glelow. It is
known that the number (up to symmetry) of simple perfect squaed squares
of ordern forn 21is 18;12 26,160 441, 1152 :::.
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ac 27
50
8
19
15 11
2 6
9|7 24
29 25 | 18
4
42
33 37

References for Chapter 11

The theory of cycle spaces and bond spaces developed hereitgadrigins
with the pioneering work of G. Kirchho [60] in 1847.

The proof given here of Theorem 11.13 is due to W. T. Tutte [110n
1965.

A nice account of the history of squaring the square due to Tte appears
in a Scientic American column by Martin Gardner [42]. See also [111]
for another article by Tutte. A further survey article on this topic is by
Kazarino and Weitzenkamp [59].
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Chapter 12

Miscellaneous gems of algebraic
combinatorics.

12.1 The 100 prisoners

An evil warden is in charge of 100 prisoners (all with di erennames). He
puts a row of 100 boxes in a room. Inside each box is the name dafi&rent
prisoner. The prisoners enter the room one at a time. Each pdner must
open 50 of the boxes, one at a time. If any of the prisoners doest see
his or her own name, then they are all killed. The prisoners ngahave a
discussion before the rst prisoner enters the room with thboxes, but after
that there is no further communication. A prisoner may not lave a message
of any kind for another prisoner. In particular, all the boxes are shut once
a prisoner leaves the room. If all the prisoners choose 50 bsexat random,
then each has a success probability of 1/2, so the probabylithat they are
not killed is 2 1%, not such good odds. Is there a strategy that will increase
the chances of success? What is the best strategy?

It's not hard to see that the prisoners can achieve a successbpability
of greater than 2 1. For instance, suppose that the rst prisoner opens
the rst 50 boxes and the second prisoner opens the last 50. ttlie rst
prisoner succeeds (with probability 1/2), then the rst prisoner's name is
guaranteed not to be in one of the boxes opened by the secondspner, so
the second prisoner's probability of success is 50/99. Eaphir of prisoners
can do this strategy, increasing the overall success prolilip to (25 =99)>°,
still an extremely low number. Can they do signi cantly better?

217
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12.1 Theorem. There exists a strategy with a success probability of

X004
1 - =0:3118278207
j=51 ]

Proof. The prisoners assign themselves the number2i: ::; 100 by whatever
method they prefer. Each prisoner is assigned a dierent numer. The
prisoners memorize everyone's number. They regard the bexavhich are
lined up in a row, as being numbered ;P;:::;100 from left-to-right. A
prisoner with number k rst goes to box k. If the prisoner sees his name,
then he breathes a temporary sigh of relief, and the next poser enters.
Otherwise the rst prisoner will see the name of some other [goner, say with
number n;. He then opens boxn; and repeats the procedure, so whenever
he opens a boXB that doesn't contain his own name, the next box that he
opens has the number of the prisoner whose name appears in Bax

What is the probability of success of this strategy? Suppodbat box i
contains the name of the prisoner numbered(i). Thus is a permutation of
1;2;:::;100. The boxes opened by prisonérare those containing the names
of prisoners with numbers (i), 2(i), 3(i), etc. If k is the length of the
cycle containing , then the prisoner will see his name after opening theh
box. This will happen wheneverk  50. Thus all prisoners see their names
if and only if every cycle of has length at most 50. If does not have this
property, then it has exactly one cycle of lengtin > 50. There are '* ways
to choose the elements of the cycle and ( 1)! ways to arrange them in a
cycle. There are then (100 r)! ways to arrange the other elements of.
Thus the number of permutations 2 S ;o9 with a cycle of length more than
50 is

100 100!
(r D200 r)= —:

(There are more clever ways to see this.) Thus the probabifitof success,
I.e., the probability that hasno cycle of length more than 50, is

1 %’0@!_1 X0

1.
100!r=51 r r=51 r

as claimed. O
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If we apply the above argument to & prisoners rather than 100, then we
get a success probability of

| XX
r=n+l r=1 r=1 r

From calculus we know that there is a constant = 0:577215665 , known

as Euler's constant for which
!

lim

logh = :
n!l g

r=1

It follows thatas n!1 |, the success probability of the prisoners is
nIlilrn (1 log2n+logn)=1 log2=0:3068528194

It seems quite amazing that no matter how many prisoners therare, they
can always achieve a success probability of over 30%!

Note. It can be shown that the above strategy is in facoptimal, i.e.,
no strategy achieves a higher probability of success. Thegaf, however, is
not easy.

12.2 Oddtown

The village of Oddtown has a population oh people. Inhabitants of Oddtown
like to form clubs. Every club has an odd number of members, drevery
pair of clubs share an even number of members.

12.2 Theorem. There are at mostn clubs.

Proof. Let k be the number of clubs. De ne a matrixM = (M;) over the
two-element eld F, as follows. The rows oM are indexed by the clubsC;
and the columns by the inhabitantsx; of Oddtown. Set

1; X 2 Ci

M = 0; otherwise

The matrix M is called theincidence matrix corresponding to the clubs and
their members.
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In general, letS be a subset of], and let s 2 Z" be the characteristic

vector of S, i.e., s=(ay;:::;a,) where
_ Li2s
&= 0 iexs:

If T is another subset ofij], then the key observation is that the scalar (dot)
product of sand tisgivenby s 1 =#( S\ T). Hence if we now work
over F,, then

1, if#( S\ T)is odd

S TT 0 if#(S\ T)is even (12.1)

Let A = MM ' ak k matrix. By equation (12.1) and the assumption
that every club has an odd number of members, we see that mairagonal
elements ofA are 1. Similarly the o -diagonal elements ofA are 0O, so
A = Iy, the k k identity matrix. Hence rank(A) = k.

Recall that if B isak m matrix and C isanm n matrix (over some
eld), then rank(BC) rank(B) (as well as rankBC) rank(C)), since for
any matrix D, rank(D) = dimimage(D). Hence, sinceM hasn columns,

n rank(M) rank(MM ') =rank(A) = k:
]

While Theorem 12.2 can be proved without linear algebra, thproof is
not easy.

12.3 Complete bipartite partitions of Kn

Figure 12.1 show the six edges of the complete graph, partitioned (ac-
cording to the edge label) into the edge sets of the three cotate bipartite
graphsKs.1, K21, and K 1.;. Clearly we can extend this construction, achiev-
ing a partition of the edgesE (K,,) of K, into the edge sets oh 1 complete
bipartite graphs. Speci cally, Let E; be the set of edges incident to a xed
vertex v. Thus E; is the edge set of a complete bipartite grapt, 1.
RemoveE; from E(K,) and proceed by induction, obtaining a partition of
E(Kpy) into the edges ofK,, 1.1, Ky 21;:::, Ki1. The question thus arises
as to whetherE(K,) can be partitioned into fewer than n 1 edge sets of
complete bipartite graphs.
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Figure 12.1: A decomposition of the edges Kf, into three complete bipartite
graphs

12.3 Theorem. If E(K,) is the disjoint union of the edge sets oh complete
bipartite graphs, thenm n 1.

Proof. Let E(K,) = E(B1)[ E(B1)[ [ E(Bm) (disjoint union), where By
is a complete bipartite graph with vertex bipartition (X; Yk) (S0 X\ Y = ;).
Forl 1 n,deneann n matrix Ag by

(A = 0; otherwise

P
All nonzero rows ofAy are equal, so rankfy) = 1. Let S = E‘:l Ay. For
i 8 ], exactly one of the Z2n numbers Ay); and (Awj;i, 1 k m, is equal
to 1, since every edgg of K, appears in onek (By) with either i 2 X and
] 2 Yy, orelsej 2 X¢ andi 2 Y. Hence

S+S'=J |
where as usual isthen nall 1's matrix, and | isthen n identity matrix.
Claim. If T is any real matrix satisfyingT + T' = I, then rank(T)
n 1

Suppose to the contrary that rank) n 2. Then T has (at least)
two linearly independent eigenvectorx;y such that Tx = Ty = 0 [why?].
SinceJ has rank one, the spacbx;yi spanned byx andy contains a nonzero
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vector z satisfying Jz = 0 [why?]. Then fromT+ Tt!=J | andTz=0
we get z = T'z. Take the dot product with z' on the left. We get
j zj®? = 2'T'z

= (Z'T'2)"! (since a1l 1 matrix is symmetric)

= Z7'Tz (since in general AB)' = B'AY)
0 (sinceTz=0);
contradicting z 6 0. Hence the claim is proved, so in particular rankf)
n 1. Bubis general rank@ + B) rank(A) + rank( B) [why?]. Therefore

from S = ., Ac and rank(Ax) = 1 we get rank(S) m. It follows that
m n 1, completing the proof. O

12.4 The nonuniform Fisher inequality

A balanced incomplete block desigiBIBD) with parameters (v;k; ;r;b) is
a v-element setX and a collection A of k-element subsets (blocks), with
# A = b, such that any two points x;y 2 X lie in exactly blocks, and
each point is in exactlyr blocks. We also assume thak < v, which is the
reason for the word \incomplete." We can draw a BIBD as a bipdite graph
with vertex bipartition ( X; A). There is an edge fronx 2 X to A 2 A if
X 2 A. Thus the degree of each vertex 2 X isr, and the degree of each
vertex A 2 A is k. It follows that vr = kb (the total number of edges of the
graph). We can also count the number of two-element sets ofgebs that are
incident to the same vertex ofA. On the one hand, since each vertex iA
has degreek this number isb ‘; . On the other hand, each pair of points in

. . . _ k .
X are mutually adjacent to points in A, so we get , = b, . Alittle

manipulation shows that these two equalities are equivaleto
vr=kb; (v 1)=r(k 1)

the usual form in which they are written.

R. A. Fisher showed in 1940 thab v. This inequality was generalized
by R. C. Bose in 1949. The most convenient way to state Bosefsequalities,
known as thenonuniform Fisher inequality, is to reverse the roles of points
and blocks. Thus consider the elements of X to be sets whose elements are
the blocksA 2 A that contain them. In other words, we have a collection
Cy;::1; C, of r-element sets whose union containspoints Xi;:::; X, Each
point is in exactly k of the sets. Finally, #(C;\ C;)= foralli 6 j.
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that for all i 6 ] we have#( Ci\ C;) = for somel <b (independent
ofi andj). Thenv b

Proof. Case 1: some #C; = . Then all other C;'s contain C; and are
disjoint otherwise, so

Vot Py B

from Ci  from all C;6C;

Case 2:all #C; > . Let ; = # C > 0. Let M be the incidence

matrix of the set systemCy;:::;C,, i.e., the rows ofM correspond to the
Ci's and the columns to the elementsy;:::; X, of X, with
o 1 X 2 G
My = 0; X 6Xi:

Let A = MM . The hypotheses imply thatA = J + G, whereJ as usual

Claim: rank(A) = v (i.e., A is invertible). We would then have
v=rank(A) rank(M) b;

the last inequality becauseM hasb columns.

As in the proof of Theorem 4.7, a real symmetric matriXB is positive
semide nite if it has nonnegative eigenvalues. Equivalely; by basic linear
algebra,uB u' 0 for all row vectorsu of length v. MoreoverB is positive
de nite (and so has positive eigenvalues) ifiB u* > 0 for all u 6 0.

Now we easily compute that

u(Jd +G)ut = (ug+ +u)?+ Ui+ + u2>0

forall u6 0. Thus A = J + G is positive de nite and hence of full rank
V. ]

12.5 Odd neighborhood covers

Consider anm n grid graph. The casan = 3, n = 4 is shown in Figure 12.2.
At each vertex is a turned on light bulb and also a switch that lsanges the
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Figure 12.2: The 3 4 grid graph

state of its bulb and those of its neighbors (adjacent vertes). Can all the
lights be turned o ?

This problem was open for many years until in 1989 K. Sutnerhen a
graduate student, showed using automata theory that the amgr if yes for
any ( nite) graph! More explicitly, let G be a nite graph with a turned on
light bulb at each vertex. At each vertex is a switch that chages the state
of that vertex and all its neighbors. Then it is possible to tan o all the
lights. We will give a modi cation of a simpler proof due to Y.Caro based
on linear algebra.

Without loss of generality we may assume thaG is simple. Ifv 2 V(G),
then the neighborhoodN (v) of v is the set consisting ofv and all vertices
adjacent tov. A little thought shows that we need to prove the following
result.

12.5 Theorem. There exists a subsé® V = V(G) such that#( S\ N (v))
is odd for allv 2 V. (It follows that switching at the verticesy 2 S turns all
the lights o0 .)

vector of S, i.e.,
1, vi2S
0; v 62S:

Note that switching at S turns all the lights o if and only if s(A +1)=y.
Hence we need to show thay 2 row(A + |) [why?].

Let us recall from linear algebra some standard facts abouttbogonal
subspaces. LeK be a eld, and for u;v 2 K" let u v be the usual dot
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product (2.1) ofu andv, sou v2 K. If W is a subspace oK ", then de ne
the orthogonal subspac&V? by

W? =fu2 K" :u v=0forall v2 Wg:

Let d = dim W. SinceW? is the set of solutions tod linearly independent
homogeneous linear equations [why?], we have

dimW +dim W? = n: (12.2)

Note that by de nition of > we haveW  W?. By equation 12.2 and
the equation obtained from it by replacingW with W?, we get dimw =
dim(W?)?. Hence

(W?)? = W: (12.3)
Note. Though irrelevant here, let us point out that if K has characteristic
0 then W\ W? = f0g, but that this fact need not hold in characteristic
p6o0.

Now by equation (12.3) the vectory = (1;1;:::;1) (or any vector in F})
lies in the row space oA + | if and only if it is orthogonal to every vector
in row(A + 1)? =ker(A + 1). Thus we need to show that if A + | )v! =0,
then v y = 0. Equivalently, if yv' 6 0 then (A + 1)v' 6 0. Note that (a)
yvt 8 0 means thev has an odd number of 1's, and (b)A + | )v! is the sum
of the rows ofA + | indexed by the positions of the 1's inv. Thus we need
to show that A + | does not have an odd number of rows summing to O.

vi; ;% and all edges of% between two of these vertices. Leh; be the
(i;J )-entry of A + |. Since ikzl by =0for1l | n,andeachh =1, it
follows that every vertex ofH has odd degree. Since [why?]

degl)=2 #E(H);
V2V (H)

we have thatk =# V(H) is even, completing the proof. O

12.6 Circulant Hadamard matrices

For our next \gem of algebraic combinatorics," we will provile some variety
by leaving the realm of linear algebra and looking at some spie algebraic
number theory.



226CHAPTER 12. MISCELLANEOUS GEMS OF ALGEBRAIC COMBINATORICS .

An n n matrix H is a Hadamard matrix if its entries are 1 and its
rows are orthogonal. Equivalently, its entries are 1 and HH'! = nl. In
particular [why?],

detH = n"™2: (12.4)

It is easy to see that ifH isann n Hadamard matrix thenn =1, n =2, or
n =4m for some integerm 1. It is conjectured that the converse is true,
l.e., for every suchn there exists ann n Hadamard matrix.

An n  n matrix A = (b) is acirculant if it has the form b = & |

for someag; a;;:::;a, 1, where the subscripti | is taken modulon. For
instance, 2 3
abocd
~f8dab CZ
A= g cdab
b c da
is a circulant. Let A = (& ;) be ann n circulant, and let = €™,
a primitive nth root of unity. It is straightforward to compute that for
0 j<n the column vector [t 1; Z;:::; (" Vit is an eigenvector ofA
with eigenvalueag + la;+ Ja,+ + ™ Vg, ;. Hence
Y1 _ _ _
det(A)=  (ao+ 'ay+ Fa+ + " Mg ) (12.5)

j=0

Note that the matrix

2 3
1 1 1 1

§11 1 12
1 1 1 1
1 1 1 1

is both a Hadamard matrix and a circulant.

Conjecture Let H be ann n circulant Hadamard matrix. Thenn =1
orn=4.

The rst signi cnat work on this conjecture is due to R. J. Turyn. He
showed that there does not exist a circulant Hadamard matriof order 8n,
and he also excluded certain other orders of the form 4(@+ 1). Turyn's
proofs use the machinery of algebraic number theory. Here well give a
proof for the special cas@ = 2%, k 3, where the algebraic number theory
can be \dumbed down" to elementary commutative algebra andeld theory.
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(Only in Theorem 12.14 do we use a little Galois theory, whictan be avoided
with a bit more work.) It would be interesting to nd similar p roofs for other
values ofn.

12.6 Theorem. There does not exist a circulant Hadamard matriXd of
order 2, k 3.

Note. It is curious that the numbers ¥ (k  2) are the easiest multiples
of 4 to show arenot the orders of circulant Hadamard matrices, while on
the other hand the numbers 2 (k 1) are the easiest numbers to shoare
the orders of Hadamard matrices. To see thatds the order of a Hadamard
matrix H, rst note that the case k = 1 is trivial. It is routine to show that
if H, is a Hadamard matrix of ordera and H, is a Hadamard matrix of order
b, then the tensor (or Kronecker) productA B is a Hadamard matrix of
order ah It follows that there exists a Hadamard matrix of order &, k 1.

From now on we assuma = 2K and = €?=2, Clearly is a zero of
the polynomial p(x) = x* " + 1. We will be working in the ring Z[ ], the
smallest subring ofC containing Q and . Write Q( ) for the quotient eld
of Z[ ], i.e., the eld obtained by adjoining to Q.

12.7 Lemma. The polynomialpx(x) is irreducible overQ.

Proof. If p«(x) is reducible then so ispc(x + 1). A standard fact about
polynomial factorization is Gauss' lemma, namely, an integl polynomial
that factors over Q also factors overZ. If p(x);q(x) 2 Z[x], write p(x)

g(x) (mod 2) to mean that the coe cients of p(x) q(x) are even. Now [why?]

p(x+1) (x+1)Z "+1 x% "(mod2)
Hence any factorization ofpy(x + 1) over Z into two factors of degree at least
one has the formp(x +1) = ( x" + 2a)(x% + 2b), wherer + s=2K Yanda;b

are polynomial of degrees less thanand s, respectively. Hence the constant
term of pc(x + 1) is divisible by 4, a contradiction. O

It follows by elementary eld theory that every elementu 2 Z[ ] can be
uniquely written in the form

ush+b +b*+ +hop "™ h2Z:
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The basis for our proof of Theorem 12.6 is the two di erent wag to
compute detH given by equations (12.4) and (12.5), yielding the formula

y1 _ _ .
(ag+ Jag+ Fap+ + (M Dig )= 2= k1 (12.6)
i=0

Thus we have a factorization inZ[ ] of X2t Algebraic number theory is
concerned with factorization of algebraic integers (and @hls) in algebraic
number elds, so we have a vast amount of machinery availabte show that
no factorization (12.6) is possible (under the assumptiorhait eacha; = 1).
Compare Kummer's famous approach toward Fermat's Last Theem (which
led to his creation of algegbraic number theory), in which heansidered the
equationx" + y" = z"as © ,_, (x+ y)= z".

We are continuing to assume thatH = (g ;) is ann n circulant
Hadamard matrix. We will denote the eigenvalues dfl by

j=atal+a i+ +a,, O

128 Lemma. ForO j n 1we have

jjj: n.

Thus 8“ the factors appearing on the left-hand side of (13.6ave absolute
value' n.

First proof (naive). Let H; denote theith row of H, and let denote the
usual dot product. Then

i = (atal+ +a . ") (ara T+ +a, s V)
Hi Hi+(Hi Hp) 4+ (Hz Hg) #+  +(Hy H,) O D

By the Hadamard property we haveH,; H; = n, while H; Hy = 0 for
2 k n, and the proof follows.

Second proof (algebraic). The matrix pl—ﬁH is a real orthogonal matrix.
By linear algebra, all its eigenvaluéﬁs have absolute value Hence all eigen-
values ; of H have absolute value n.

12.9 Lemma. We have
2=(1 )™, (12.7)

whereu is a unit in Z[ ].
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Proof. Put x =1 in
y1 _
X"2 41 = x N
j=0
i odd

to get 2 = Qj (1 7). Since

1 =@ Ha+ + + b

it suces to show that 1 + + + 1 1is a unit whenj is odd. Let
ji  1(modn). Then

i+ + + 1 hHt =

Oy j,-)j 27[ ];

as desired. O
12.10 Lemma. We haveZ[ =1 )= F,.

Proof. Let R = Z[ ][=5(1 ). Theinteger 2 is nota unitinZ[ ], e.g., because
1=2 is not an algebraic integer. Thus by Lemma 12.9, 1 is also not a unit.
HenceR 6 0.

For all j we have / =1 in R since =1 in R. Hence all elements oR
can be written as ordinary integersm. But 0 = 2 in R by Lemma 12.9, so
the only elements ofR are 0 and 1. O

12.11 Lemma. Forall0 j n 1thereis an integerh; 0 such that
o+ral+ad+  +a, . " U=y )Y

wherey; is a unitin Z[ ].

Proof. Since 2 is a multiple of 1 by Lemma 12.9, we have by (12.6) that

Y1 _ _ _
(@+tal+ad+ +a, ;" Y)=0
j=0

inZ[ 11 ). SinceZ[ ]=(1 ) is an integral domain by Lemma 12.10,
some factorag + a, ' + + a, ; " Y s divisible by 1 . Divide this



230CHAPTER 12. MISCELLANEOUS GEMS OF ALGEBRAIC COMBINATORICS .

factor and the right-hand side of (12.6) by 1 , and iterate the procedure.
We continue to divide a factor of the left-hand side and the ght-hand side
by 1 until the right-hand side becomes the unitu. Hence each factor of
the original product has the formv(1 )", wherev is a unit. O

12.12 Corollary. Either o= 12 Z[ Jor 1= ¢2 Z[ ]. (Infact, both o= ;2
Z[ ]and 1= 2 Z[ ], as will soon become apparent, but we don't need this
fact here.)

Proof. By the previous lemma, each; has the formv;(1  )". If hy h;
then o= 12 Z[ ]; otherwise =42 Z[ ]. O

We now need to appeal to a result of Kronecker on elements @f ]
of absolute value one. For completeness we include a prooftlos result,
beginning with a lemma. Recall that if is an algebraic number (the zero
of an irreducible polynomialf (x) 2 Q[x]), then a conjugateof is any zero
of f (x). Also recall that a complex number is analgebraic integerif is a
zero of amonic polynomial with integer coe cients.

12.13Lemma. Let be an algebraic integer such thatand all its conjugates
have absolute value one. Thenis a root of unity.

Proof. Suppose the contrary. Let deg() = d, i.e., [Q( ): Q] = d. Now , 2,
3..:: are all distinct and hence in nitely many of them have the prgerty
that no two are conjugate. Each ! 2 Q[ ] and so is the root of a monic
integral polynomial of degree at most. If i; ;:::; 4 are the conjugates
of , then all the conjugates of ! are among 4, %;:::; L. Hence each’
satis es the hypothesis that all its conjugates have absdie value 1 (and !
is an algebraic integer). Thus therth elementary symmetric functione, in

I and its conjugates has at mostﬁj terms, each of absolute value 1, so
j&] f . Moreover, e, 2 Z since ! is an algebraic integer. It follows that

there are only nitely many possible polynomials that can behe irreducible
monic polynomials with roots one of the I's, contradicting the fact that
there are in nitely many I's for which no two are conjugate. O

12.14 Theorem (Kronecker). Let be any root of unity and 2 Z[ ] with
j i=1. Then is a root of unity.

Proof. Since 2 Z[ ], we see that is an algebraic integer. We use the basic
fact from Galois theory that the Galois group of the extensio eld Q( )=Q
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is abelian. Let be a conjugate of , so = w( ) for some automorphism
w of Q( ). Apply w to the equation = 1. Since complex conjugation is
an automorphism ofQ( ) it commutes with w, so we obtain = 1. Hence
all the conjugates of have absolute value one, so is a root of unity by the
previous lemma. O

For our next result, we need the standard algebraic fact thaif =
€=M | a primitive mth root of unity, then [Q( ) : Q] = (m) (the Euler
-function). Equivalently, the unique monic polynomial ,(x) whose zeros
are the primitive mth roots of unity is irreducible. This polynomial is by
de nition given by X
m(X) = (x )
1) m
ged(j;m )=1
and is called acyclotomic polynomial Lemma 12.7 is the case = n (= 2¥).
12.15 Lemma. If 2 Z[ ]is a root of unity, then = ' for somer 2 Z.

Proof. Suppose not. It is easy to see that then either is a primitive 2™th
root of unity for somem >k, or else ® is a primitive pth root of unity for
some odd primep and somes 1. In the former case

[Q():Ql= (@M=2M*>2'= (29=[Q():Ql

a contradiction. In the latter case, ° is a primitive pnth root of unity, so
[Q(°):Ql= (pn)=(p 1) (N)> (nN)=[Q(): Q]

again a contradiction. O

We now have all the ingredients to complete the proof of Theem 12.6.
Note that we have yet to use the hypothesis thag; = 1. By Lemma 12.8
we have

J1=d =] o0=4=1:
Hence by Corollary 12.12, Theorem 12.14 and Lemma 12.15 wevday =

' 1 for somer. Expand o and ' ; uniquely as integer linear combina-
tionsof I, ; < :::; 2

o = dtat tap 1= pﬁ

(a0 an=2)*+ (& an=2a) + )

(& @&=2er) (41 A=2ers1) +

.
1
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Equating coe cients of © yields pﬁ = &  an=p+r. Since eachy; = 1,
we must haven 4, completing the proof.

12.7 P-recursive functions

A function f: N ! R is called polynomially recursive or P-recursive for

Pa(n)f (n+ d)+ Py 1(n)f(n+d 1)+ + Po(n)f(n)=0 (12.8)

foralln O.

For instance, the Fibonacci sequendg, is P-recursive sincé,., Fpi1
Fn=0forall n 0. Hered=2 and Py(n) = P1(n) =1, Po(n) = 1. This
situation is quite special since the polynomial®;(n) are constants Another
P-recursive function isf (n) = n!, sincef(n+1) (n+21)f(n) =0 for all
n 0.

Let P denote the set of allP-recursive functionsf : N! R. Our goal in
this section is to prove thatP is an R-algebra that is, for any f;g 2 P and
;2 R, we have

f + g2P; fg2P:

There is one techical problem that needs to be dealt with be#® proceeding
to the proof. We would like to conclude from equation (12.8)hat

f(n+d)= %(Pd )+ + Po(n)): (12.9)

This formula, however, is problematical wherPy(n) = 0. This can happen
only for nitely many n, so equation (12.9) is valid fom su ciently large.

Thus we want to deal with functionsf (n) only for n su ciently large. To

this end, denef gif f(n) = g(n) for all but nitely many n. Clearly

is an equivalence relation; the equivalence classes ardethbermsat 1 of
functionsf : N! R. The germ containingf is denoted f]. Write G for the
set of all germs.

12.16 Lemma. (a) If f is P-recursive andf g, then g is P-recursive.
In other words, the property ofP -recursiveness is compatible with the
equivalence relation .
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(b) Write RN for the real vector space of all functions: N! R. Let ; 2
Randf;fo;o 2 RN If f; f,andg, @, then f 1+ g,
f,+ g,andf,gp  fo0. In other words, linear combinations and
multiplication are compatible with the equivalence relation . Thus
the setG has the structure of anR-algebra, i.e., a real vector space and
a ring (with obvious compatibility properties such aéf )g=f(g) =

(fg)).

Proof. (a) Suppose thatf (n) = g(n) for all n > nQ Let (12.8) be the
recurrence satis ed byf . Multiply both sides by j":oo(n j)- We then
get a recurrence relation satis ed byg. Henceg is P-recursive.

(b) This is clear.
]

Let R[n] denote the ring of real polynomials im. Let R(n) denote the
quotient eld of R[n], i.e., the eld of all rational functions P (n)=Q(n), where
P;Q 2 R[n]. Suppose thatf 2 RN and R 2 R(n). Then f (n)R(n) is de ned
for n su ciently large (i.e., when the denominator of R(n) is nonzero). Thus
we can de ne the germf(n)R(n)] 2 G to be the germ of any function that
agrees withf (n)R(n) for n suciently large. It is easy to see that this
de nition of scalar multiplication makes G into a vector space over the eld
R(n). We now come to the key characterization oP -recursive functions (or
their germs).

12.17 Lemma. A function f 2 RN is P-recursive if and only if the vector
spaceV; over R(n) spanned by the germg (n)], [f (n+1)], [f(n+2)];:::is
nite-dimensional.

Proof. Suppose thatf (n) satis es equation (12.8). LetV? be the vector

so dinmgmy VP d. Equation (12.9) shows that f (n + d)] 2 V2. Substitute
n+1 for n in equation (12.9). We get that f (n+ d+1)] is in the span (over

in VP, we get that ff (n+ d+ 1)] 2 V% Continuing in this way, we get by
induction on k that f (n+ d+ k) 2V°forallk 0, soVP= V;. Thus V; is
nite-dimensional.

Conversely, assume that dign) Vi < 1 . Then for somed, the germs
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this linear dependence relation and clear denominators teeiga recurrence
(12.8) satis ed by f . Hencef is P-recursive. O

We now have all the ingredients necessary for the main resuf this
section.

12.18 Theorem. Letf;,g 2P and ; 2R.
@ f + g2P
(b) fg 2P

Proof. (a) By Lemma 12.17 it su ces to show that dimV¢ , 4 < 1 . Now
by de nition, the direct sumV; V 4 is the vector space consisting of
all linear combinations [u] + [v], where ] 2 Vi and [v] 2 V4 and

2 R(n). In particular, V; V 4 contains all the germs [f (n+ k)] +

[gin+ k]l=[f (n+ k)]+ g(n+ k)], kK 0. Hence

Now if V and W are subspaces of some vector space, thén W is
spanned by the union of a basis fov and basis forW. In particular, if
V and W are nite-dimensional, then dim(v W) dimV +dim W.
Hence

dmV¢ .4 dim(V; Vg) dimV; +dim Vy< 1 ;
as was to be proved.

(b) The proof is analogous to (a), except that instead of the icect sum
V  « W we need thetensor productV W over the eld K. Recall
from linear algebra thatV « W may be thought of (somewhat naively)
as the vector space spanned by all symbols w, wherev 2 V and
w 2 W, subject to the conditions

(VitVva) w = v wW+vy, w
v (wp+ wp) V. W+ VvV W

v w=v w= (Vv w);



12.7. P-RECURSIVE FUNCTIONS 235

where is a scalar. A standard consequence is thatVf has the basis
fvi;::i;vmgand W has the basigw;;:::;wyg, thenV ¢ W has the
basisvi w;,forl i mand1l j n. In particular,

dmV ¢ W = (dim v)(dim W):

Now by the basic \universality" property of tensor products there is a
unique linear transformation' : Vi gmy Vg ! G satisfying

F(n+ D] oln+ )" [F(n+i)g(n+ )

The image of contains all germsf (n+i)g(n+i)], soVy; image( ).
Thus

dimVig  dim(V;  reny Vg) = (dim Vi)(dim Vg) < 1 ;

and the proof follows.

References for Chapter 12

The 100 prisoners problem was rst considered by P. B. Miltsen. It
appeared in a paper with A. Gal [41]. Further information onthe history of
this problem, together with a proof of optimality of the prisoners' strategy,
is given by E. Curtin and M. Warshauer [23].

The Oddtown theorem is due to E. R. Berlekamp [8]. Theorem 12.0n
decomposingK,, into complete bipartite subgraphs is due to R. L. Graham
and H. O. Pollak [44][45].

For Fisher's original proof of the inequalityv b for BIBD's and Bose's
nonuniform generalization, see [33] and [11].

Sutner's original proof of the odd neighborhood theorem (Tdorem 12.5)
appears in [103], while the simpler proof of Y. Caro may be fod in [19].

The circulant Hadamard matrix conjecture was rst mentional in print
by H. J. Ryser [89, p. 134], though its precise origin is obseu The work
of Turyn mentioned in the text appears in [107][108]. Some m® recent
progress is due to B. Schmidt [91].

While P-recursive functions and their cousins th® - nite series of Exer-
cise 12.21 were known to 19th century analysts, the rst systnatic treatment
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of them did not appear until the paper of Stanley [95] in 198Qyhich includes
a statement and proof of Theorem 12.18. For an exposition,es&tanley [100,
x6.4].
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