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Basic Notation

P positive integers

N nonnegative integers

Z integers

Q rational numbers

R real numbers

C complex numbers

[n] the set f 1; 2; : : : ; ng for n 2 N (so [0] = ; )

Zn the group of integers modulon

Fq the �nite �eld with q elements

# S or jSj cardinality (number of elements) of the �nite setS

S �[ T the disjoint union of S and T, i.e., S [ T, whereS \ T = ;

2S the set of all subsets of setS
� S

k

�
the set ofk-element subsets ofS

�� S
k

��
the set ofk-element multisets onS

KS the vector space with basisS over the �eld K

Bn the poset of all subsets of [n], ordered by inclusion

[xn ]F (x) coe�cient of xn in the polynomial or power seriesF (x)

� ij the Kronecker delta, which equals 1 ifi = j and 0 otherwise

jL j the sum of the parts (entries) ofL, if L is any array of nonnegative integers
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`(� ) length (number of parts) of the partition �

p(n) number of partitions of the integern � 0



Chapter 1

Walks in graphs.

Given a �nite set S and integer k � 0, let
� S

k

�
denote the set ofk-element

subsets ofS. A multiset may be regarded, somewhat informally, as a set
with repeated elements, such asf 1; 1; 3; 4; 4; 4; 6; 6g. We say that a multiset
M is on a set S if every element ofM belongs toS. Thus the multiset in
the example above is on the setS = f 1; 3; 4; 6g and also on any set containg
S. Let

�� S
k

��
denote the set ofk-element multisubsets onS. For instance, if

S = f 1; 2; 3g then (using abbreviated notation),

�
S
2

�
= f 12; 13; 23g;

��
S
2

��
= f 11; 22; 33; 12; 13; 23g:

A (�nite) graph G consists of avertex set V = f v1; : : : ; vpg and edge set
E = f e1; : : : ; eqg, together with a function ' : E !

�� V
2

��
. We think that

if ' (e) = uv (short for f u; vg), then e connectsu and v or equivalently e is
incident to u and v. If there is at least one edge incident tou and v then
we say that the verticesu and v are adjacent. If ' (e) = vv, then we calle a
loop at v. If several edgese1; : : : ; ej (j > 1) satisfy ' (e1) = � � � = ' (ej ) = uv,
then we say that there is amultiple edgebetweenu and v. A graph without
loops or multiple edges is calledsimple. In this case we can think ofE as
just a subset of

� V
2

�
[why?].

The adjacency matrix of the graphG is the p� p matrix A = A (G), over
the �eld of complex numbers, whose (i; j )-entry aij is equal to the number of
edges incident tovi and vj . Thus A is a real symmetric matrix (and hence
has real eigenvalues) whose trace is the number of loops inG. For instance,
if G is the graph
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6 CHAPTER 1. WALKS IN GRAPHS.

1

3

54

2

then

A (G) =

2

6
6
6
6
4

2 1 0 2 0
1 0 0 0 1
0 0 0 0 0
2 0 0 0 1
0 1 0 1 1

3

7
7
7
7
5

:

A walk in G of length` from vertex u to vertex v is a sequencev1; e1; v2; e2; : : : ,
v` ; è ; v`+1 such that:

� eachvi is a vertex ofG

� eachej is an edge ofG

� the vertices ofei are vi and vi +1 , for 1 � i � `

� v1 = u and v`+1 = v.

1.1 Theorem. For any integer ` � 1, the (i; j )-entry of the matrix A (G)`

is equal to the number of walks fromvi to vj in G of length`.

Proof. This is an immediate consequence of the de�nition of matrix multi-
plication. Let A = ( aij ). The (i; j )-entry of A (G)` is given by

(A (G)` ) ij =
X

aii 1 ai 1 i 2 � � � ai ` � 1 j ;

where the sum ranges over all sequences (i1; : : : ; i ` � 1) with 1 � i k � p.
But since ars is the number of edges betweenvr and vs, it follows that the
summandaii 1 ai 1 i 2 � � � ai ` � 1 j in the above sum is just the number (which may
be 0) of walks of length̀ from vi to vj of the form

vi ; e1; vi 1 ; e2; : : : ; vi ` � 1 ; è ; vj
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(since there areaii 1 choices fore1, ai 1 i 2 choices fore2, etc.) Hence summing
over all (i1; : : : ; i ` � 1) just gives the total number of walks of length̀ from vi

to vj , as desired.

We wish to use Theorem 1.1 to obtain an explicit formula for the number
(A (G)`) ij of walks of length` in G from vi to vj . The formula we give will
depend on the eigenvalues ofA (G). The eigenvalues ofA (G) are also called
simply the eigenvalues ofG. Recall that a real symmetricp � p matrix M
has p linearly independent real eigenvectors, which can in fact be chosen to
be orthonormal (i.e., orthogonal and of unit length). Letu1; : : : ; up be real
orthonormal eigenvectors forM , with corresponding eigenvalues� 1; : : : ; � p.
All vectors u will be regarded asp� 1 column vectors. We lett denote trans-
pose, sout is a 1� p row vector. Thus the dot (or scalar or inner) product of
the vectorsu and v is given byutv (ordinary matrix multiplication). In par-
ticular, ut

i uj = � ij (the Kronecker delta). Let U = ( uij ) be the matrix whose
columns areu1; : : : ; up, denotedU = [ u1; : : : ; up]. Thus U is an orthogonal
matrix, so

Ut = U� 1 =

2

6
6
6
6
4

ut
1

�
�
�

ut
p

3

7
7
7
7
5

;

the matrix whose rows areut
1; : : : ; ut

p. Recall from linear algebra that the
matrix U diagonalizesM , i.e.,

U� 1MU = diag( � 1; : : : ; � p);

where diag(� 1; : : : ; � p) denotes the diagonal matrix with diagonal entries
� 1; : : : ; � p.

1.2 Corollary. Given the graphG as above, �x the two verticesvi and vj .
Let � 1; : : : ; � p be the eigenvalues of the adjacency matrixA (G). Then there
exist real numbersc1; : : : ; cp such that for all ` � 1, we have

(A (G)` ) ij = c1� `
1 + � � � + cp� `

n :

In fact, if U = ( urs ) is a real orthogonal matrix such thatU� 1A U = diag( � 1; : : : ; � p),
then we have

ck = uik ujk :
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Proof. We have [why?]

U� 1A `U = diag( � `
1; : : : ; � `

p):

Hence
A ` = U � diag(� `

1; : : : ; � `
p)U

� 1:

Taking the (i; j )-entry of both sides (and usingU� 1 = Ut ) gives [why?]

(A ` ) ij =
X

k

uik � `
kujk ;

as desired.

In order for Corollary 1.2 to be of any use we must be able to compute the
eigenvalues� 1; : : : ; � p as well as the diagonalizing matrixU (or eigenvectors
ui ). There is one interesting special situation in which it is not necessary to
compute U. A closed walkin G is a walk that ends where it begins. The
number of closed walks inG of length ` starting at vi is therefore given by
(A (G)` ) ii , so thetotal number f G(`) of closed walks of length̀ is given by

f G(`) =
pX

i =1

(A (G)` ) ii

= tr( A (G)` );

where tr denotes trace (sum of the main diagonal entries). Now recall that
the trace of a square matrix is the sum of its eigenvalues. If the matrix M
has eigenvalues� 1; : : : ; � p then [why?] M ` has eigenvalues� `

1; : : : ; � `
p. Hence

we have proved the following.

1.3 Corollary. SupposeA (G) has eigenvalues� 1; : : : ; � p. Then the number
of closed walks inG of length` is given by

f G(`) = � `
1 + � � � + � `

p:

We now are in a position to use various tricks and techniques from linear
algebra to count walks in graphs. Conversely, it is sometimes possible to
count the walks by combinatorial reasoning and use the resulting formula to
determine the eigenvalues ofG. As a �rst simple example, we consider the
complete graphK p with vertex set V = f v1; : : : ; vpg, and one edge between
any two distinct vertices. ThusK p hasp vertices and

� p
2

�
= 1

2p(p � 1) edges.
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1.4 Lemma. Let J denote thep � p matrix of all 1's. Then the eigenvalues
of J are p (with multiplicity one) and 0 (with multiplicity p � 1).

Proof. Since all rows are equal and nonzero, we have rank(J ) = 1. Since a
p� p matrix of rank p� m has at leastm eigenvalues equal to 0, we conclude
that J has at leastp � 1 eigenvalues equal to 0. Since tr(J ) = p and the
trace is the sum of the eigenvalues, it follows that the remaining eigenvalue
of J is equal top.

1.5 Proposition. The eigenvalues of the complete graphK p are as follows:
an eigenvalue of� 1 with multiplicity p � 1, and an eigenvalue ofp � 1 with
multiplicity one.

Proof. We haveA (K p) = J � I , whereI denotes thep� p identity matrix. If
the eigenvalues of a matrixM are � 1; : : : ; � p, then the eigenvalues ofM + cI
(where c is a scalar) are� 1 + c; : : : ; � p + c [why?]. The proof follows from
Lemma 1.4.

1.6 Corollary. The number of closed walks of length̀ in K p from some
vertex vi to itself is given by

(A (K p)` ) ii =
1
p

((p � 1)` + ( p � 1)(� 1)` ): (1.1)

(Note that this is also the number of sequences(i1; : : : ; i ` ) of numbers1; 2; : : : ; p
such thati1 = i , no two consecutive terms are equal, andi ` 6= i1 [why?].)

Proof. By Corollary 1.3 and Proposition 1.5, the total number of closed walks
in K p of length ` is equal to (p � 1)` + ( p � 1)(� 1)` . By the symmetry of
the graph K p, the number of closed walks of length̀ from vi to itself does
not depend oni . (All vertices \look the same.") Hence we can divide the
total number of closed walks byp (the number of vertices) to get the desired
answer.

A combinatorial proof of Corollary 1.6 is quite tricky (Exercise 1.1). Our
algebraic proof gives a �rst hint of the power of algebra to solve enumerative
problems.

What about non-closed walks inK p? It's not hard to diagonalize ex-
plicitly the matrix A (K p) (or equivalently, to compute its eigenvectors), but
there is an even simpler special argument. We have

(J � I )` =
`X

k=0

(� 1)` � k

�
`
k

�
J k ; (1.2)
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by the binomial theorem.1 Now for k > 0 we haveJ k = pk� 1J [why?], while
J 0 = I . (It is not clear a priori what is the \correct" value of J 0, but in
order for equation (1.2) to be valid we must takeJ 0 = I .) Hence

(J � I )` =
`X

k=1

(� 1)` � k

�
`
k

�
pk� 1J + ( � 1)` I:

Again by the binomial theorem we have

(J � I )` =
1
p

((p � 1)` � (� 1)` )J + ( � 1)` I: (1.3)

Taking the (i; j )-entry of each side wheni 6= j yields

(A (K p)` ) ij =
1
p

((p � 1)` � (� 1)` ): (1.4)

If we take the (i; i )-entry of (1.3) then we recover equation (1.1). Note the
curious fact that if i 6= j then

(A (K p)` ) ii � (A (K p)` ) ij = ( � 1)` :

We could also have deduced (1.4) from Corollary 1.6 using
pX

i =1

pX

j =1

�
A (K p)`

�
ij

= p(p � 1)` ;

the total number of walks of length` in K p. Details are left to the reader.
We now will show how equation (1.1) itself determines the eigenvalues

of A (K p). Thus if (1.1) is proved without �rst computing the eigenvalues
of A (K p) (which in fact is what we did two paragraphs ago), then we have
another means to compute the eigenvalues. The argument we will give can
be applied to any graphG, not just K p. We begin with a simple lemma.

1.7 Lemma. Suppose� 1; : : : ; � r and � 1; : : : ; � s are nonzerocomplex numbers
such that for all positive integers̀ , we have

� `
1 + � � � + � `

r = � `
1 + � � � + � `

s: (1.5)

Then r = s and the � 's are just a permutation of the� 's.
1We can apply the binomial theorem in this situation becauseI and J commute. If

A and B are p � p matrices that don't necessarily commute, then the best we can say is
(A + B )2 = A2 + AB + BA + B 2, and similarly for higher powers.
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Proof. We will use the powerful method ofgenerating functions. Let x be a
complex number whose absolute value (or modulus) is close to0. Multiply
(1.5) by x` and sum on all ` � 1. The geometric series we obtain will
converge, and we get

� 1x
1 � � 1x

+ � � � +
� r x

1 � � r x
=

� 1x
1 � � 1x

+ � � � +
� sx

1 � � sx
: (1.6)

This is an identity valid for su�ciently small (in modulus) c omplex num-
bers. By clearing denominators we obtain a polynomial identity. But if two
polynomials in x agree for in�nitely many values, then they are the same
polynomial [why?]. Hence equation (1.6) is actually valid for all complex
numbersx (ignoring values ofx which give rise to a zero denominator).

Fix a complex number 6= 0. Multiply (1.6) by 1 � x and let x ! 1= .
The left-hand side becomes the number of� i 's which are equal to , while
the right-hand side becomes the number of� j 's which are equal to [why?].
Hence these numbers agree for all , so the lemma is proved.

1.8 Example. Suppose thatG is a graph with 12 vertices, and that the
number of closed walks of length̀ in G is equal to 3� 5` + 4 ` + 2( � 2)` + 4.
Then it follows from Corollary 1.3 and Lemma 1.7 [why?] that the eigenvalues
of A (G) are given by 5; 5; 5; 4; � 2; � 2; 1; 1; 1; 1; 0; 0.

References for Chapter 1

The connection between graph eigenvalues and the enumeration of walks
is considered \folklore." The subject ofspectral graph theory, which is con-
cerned with the spectrum (multiset of eigenvalues) of various matrices asso-
ciated with graphs, began around 1931 in the area of quantum chemistry.
The �rst mathematical paper was published by L. Collatz and U. Sinogowitz
in 1957. A good general reference is the book2 [24] by Cvetkovi�c, Doob,
and Sachs. Two textbooks on this subject are by Cvetkovi�c, Rowlinson, and
Simi�c [25] and by Brouwer and Haemers [13].

2All citations to the literature refer to the bibliography be ginning on page 242.



Chapter 2

Cubes and the Radon
transform.

Let us now consider a more interesting example of a graphG, one whose
eigenvalues have come up in a variety of applications. LetZ2 denote the
cyclic group of order 2, with elements 0 and 1, and group operation being
addition modulo 2. Thus 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0. Let Zn

2

denote the direct product ofZ2 with itself n times, so the elements ofZn
2 are

n-tuples (a1; : : : ; an ) of 0's and 1's, under the operation of component-wise
addition. De�ne a graph Cn , called then-cube, as follows: The vertex set of
Cn is given by V(Cn) = Zn

2 , and two verticesu and v are connected by an
edge if they di�er in exactly one component. Equivalently,u + v has exactly
one nonzero component. If we regardZn

2 as consisting ofreal vectors, then
these vectors form the set of vertices of ann-dimensional cube. Moreover,
two vertices of the cube lie on an edge (in the usual geometricsense) if and
only if they form an edge ofCn . This explains why Cn is called then-cube.
We also see that walks inCn have a nice geometric interpretation | they
are simply walks along the edges of ann-dimensional cube.

We want to determine explicitly the eigenvalues and eigenvectors of Cn .
We will do this by a somewhat indirect but extremely useful and powerful
technique, the �nite Radon transform. Let V denote the set of all functions
f : Zn

2 ! R, where R denotes the �eld of real numbers.1 Note that V
is a vector space overR of dimension 2n [why?]. If u = ( u1; : : : ; un) and

1For abelian groups other than Zn
2 it is necessary to use complex numbers rather than

real numbers. We could use complex numbers here, but there isno need to do so.

15



16 CHAPTER 2. CUBES AND THE RADON TRANSFORM.

v = ( v1; : : : ; vn ) are elements ofZn
2 , then de�ne their dot product by

u � v = u1v1 + � � � + unvn ; (2.1)

where the computation is performed modulo 2. Thus we regardu � v as an
element ofZ2. The expression (� 1)u�v is de�ned to be the real number +1
or � 1, depending on whetheru � v = 0 or 1, respectively. Since for integers
k the value of (� 1)k depends only onk (mod 2), it follows that we can treat
u and v as integer vectors without a�ecting the value of (� 1)u�v. Thus, for
instance, formulas such as

(� 1)u�(v+ w) = ( � 1)u�v+ u�w = ( � 1)u�v(� 1)u�w

are well-de�ned and valid. From a more algebraic viewpoint,the map Z !
f� 1; 1g sendingn to (� 1)n is a group homomorphism, where of course the
product on f� 1; 1g is multiplication.

We now de�ne two important bases of the vector spaceV. There will be
one basis element of each basis for eachu 2 Zn

2 . The �rst basis, denotedB1,
has elementsf u de�ned as follows:

f u(v) = � uv ; (2.2)

the Kronecker delta. It is easy to see thatB1 is a basis, since anyg 2 V
satis�es

g =
X

u2 Zn
2

g(u)f u (2.3)

[why?]. HenceB1 spansV, so since #B1 = dim V = 2 n , it follows that B1 is
a basis. The second basis, denotedB2, has elements� u de�ned as follows:

� u(v) = ( � 1)u�v:

In order to show that B2 is a basis, we will use an inner product onV (denoted
h�; �i ) de�ned by

hf; g i =
X

u2 Zn
2

f (u)g(u):

Note that this inner product is just the usual dot product with respect to
the basisB1.

2.1 Lemma. The setB2 = f � u : u 2 Zn
2g forms a basis forV.
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Proof. Since #B2 = dim V (= 2 n ), it su�ces to show that B2 is linearly
independent. In fact, we will show that the elements ofB2 are orthogonal.
We have

h� u; � v i =
X

w2 Zn
2

� u(w)� v(w)

=
X

w2 Zn
2

(� 1)(u+ v)�w :

It is left as an easy exercise to the reader to show that for anyy 2 Zn
2 , we

have
X

w2 Zn
2

(� 1)y�w =
�

2n ; if y = 0
0; otherwise.

where 0 denotes the identity element ofZn
2 (the vector (0; 0; : : : ; 0)). Thus

h� u; � v i = 0 if and only u + v = 0, i.e., u = v, so the elements ofB2 are
orthogonal (and nonzero). Hence they are linearly independent as desired.

We now come to the key de�nition of the Radon transform.
Given a subset � of Zn

2 and a function f 2 V , de�ne a new function
� � f 2 V by

� � f (v) =
X

w2 �

f (v + w):

The function � � f is called the (discrete or �nite ) Radon transform of f (on
the group Zn

2 , with respect to the subset �).
We have de�ned a map � � : V ! V . It is easy to see that � � is a linear

transformation; we want to compute its eigenvalues and eigenvectors.

2.2 Theorem. The eigenvectors of� � are the functions� u, whereu 2 Zn
2 .

The eigenvalue� u corresponding to� u (i.e., � � � u = � u � u) is given by

� u =
X

w2 �

(� 1)u�w :
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Proof. Let v 2 Zn
2 . Then

� � � u(v) =
X

w2 �

� u(v + w)

=
X

w2 �

(� 1)u�(v+ w)

=

 
X

w2 �

(� 1)u�w

!

(� 1)u�v

=

 
X

w2 �

(� 1)u�w

!

� u(v):

Hence

� � � u =

 
X

w2 �

(� 1)u�w

!

� u;

as desired.

Note that because the� u 's form a basis forV by Lemma 2.1, it follows
that Theorem 2.2 yields a complete set of eigenvalues and eigenvectors for
� � . Note also that the eigenvectors� u of � � are independent of �; only the
eigenvalues depend on �.

Now we come to the payo�. Let � = f � 1; : : : ; � ng, where � i is the i th
unit coordinate vector (i.e., � i has a 1 in positioni and 0's elsewhere). Note
that the j th coordinate of � i is just � ij (the Kronecker delta), explaining
our notation � i . Let [� � ] denote the matrix of the linear transformation
� � : V ! V with respect to the basisB1 of V given by (2.2).

2.3 Lemma. We have[� � ] = A (Cn ), the adjacency matrix of then-cube.

Proof. Let v 2 Zn
2 . We have

� � f u(v) =
X

w2 �

f u(v + w)

=
X

w2 �

f u+ w(v);

sinceu = v + w if and only if u + w = v. There follows [why?]

� � f u =
X

w2 �

f u+ w : (2.4)
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Equation (2.4) says that the (u; v)-entry of the matrix � � is given by

(� � )uv =
�

1; if u + v 2 �
0; otherwise:

Now u + v 2 � if and only if u and v di�er in exactly one coordinate. This
is just the condition for uv to be an edge ofCn , so the proof follows.

2.4 Corollary. The eigenvectorsEu (u 2 Zn
2 ) of A (Cn ) (regarded as linear

combinations of the vertices ofCn , i.e., of the elements ofZn
2 ) are given by

Eu =
X

v2 Zn
2

(� 1)u�vv: (2.5)

The eigenvalue� u corresponding to the eigenvectorEu is given by

� u = n � 2! (u); (2.6)

where! (u) is the number of1's in u. (The integer ! (u) is called theHam-
ming weight or simply the weight of u.) Hence A (Cn) has

� n
i

�
eigenvalues

equal ton � 2i , for each 0 � i � n.

Proof. For any function g 2 V we have by (2.3) that

g =
X

v

g(v)f v:

Applying this equation to g = � u gives

� u =
X

v

� u(v)f v =
X

v

(� 1)u�vf v: (2.7)

Equation (2.7) expresses the eigenvector� u of � � (or even � � for any � � Zn
2 )

as a linear combination of the functionsf v. But � � has the same matrix
with respect to the basis of thef v 's asA (Cn ) has with respect to the vertices
v of Cn . Hence the expansion of the eigenvectors of �� in terms of the f v 's
has the same coe�cients as the expansion of the eigenvectorsof A (Cn ) in
terms of the v's, so equation (2.5) follows.

According to Theorem 2.2 the eigenvalue� u corresponding to the eigen-
vector � u of � � (or equivalently, the eigenvectorEu of A (Cn)) is given by

� u =
X

w2 �

(� 1)u�w: (2.8)
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Now � = f � 1; : : : ; � ng, and � i � u is 1 if u has a one in itsi th coordinate and is
0 otherwise. Hence the sum in (2.8) hasn � ! (u) terms equal to +1 and! (u)
terms equal to� 1, so� u = ( n � ! (u)) � ! (u) = n � 2! (u), as claimed.

We have all the information needed to count walks inCn .

2.5 Corollary. Let u; v 2 Zn
2 , and suppose that! (u + v) = k (i.e., u and v

disagree in exactlyk coordinates). Then the number of walks of length̀in
Cn betweenu and v is given by

(A ` )uv =
1
2n

nX

i =0

kX

j =0

(� 1)j

�
k
j

��
n � k
i � j

�
(n � 2i )` ; (2.9)

where we set
� n� k

i � j

�
= 0 if j > i . In particular,

(A ` )uu =
1
2n

nX

i =0

�
n
i

�
(n � 2i )` : (2.10)

Proof. Let Eu and � u be as in Corollary 2.4. In order to apply Corollary 1.2,
we need the eigenvectors to be ofunit length (where we regard thef v 's as
an orthonormal basis ofV). By equation (2.5), we have

jEu j2 =
X

v2 Zn
2

(( � 1)u�v)2 = 2 n :

Hence we should replaceEu by E 0
u = 1

2n= 2 Eu to get an orthonormal basis.
According to Corollary 1.2, we thus have

(A ` )uv =
1
2n

X

w2 Zn
2

Euw Evw � `
w:

Now Euw by de�nition is the coe�cient of f w in the expansion (2.5), i.e.,
Euw = ( � 1)u+ w (and similarly for Ev), while � w = n � 2! (w). Hence

(A ` )uv =
1
2n

X

w2 Zn
2

(� 1)(u+ v)�w(n � 2! (w)) ` : (2.11)

The number of vectorsw of Hamming weight i which havej 1's in common
with u + v is

� k
j

�� n� k
i � j

�
, since we can choose thej 1's in u + v which agree
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with w in
� k

j

�
ways, while the remainingi � j 1's of w can be inserted in the

n � k remaining positions in
� n� k

i � j

�
ways. Since (u + v) � w � j (mod 2), the

sum (2.11) reduces to (2.9) as desired. Clearly settingu = v in (2.9) yields
(2.10), completing the proof.

It is possible to give a direct proof of equation (2.10) avoiding linear al-
gebra, though we do not do so here. Thus by Corollary 1.3 and Lemma 1.7
(exactly as was done forK n ) we have another determination of the eigen-
values ofCn . With a little more work one can also obtain a direct proof of
(2.9). Later in Example 9.9.12, however, we will use the eigenvalues ofCn to
obtain a combinatorial result for which no nonalgebraic proof is known.

2.6 Example. Setting k = 1 in (2.9) yields

(A ` )uv =
1
2n

nX

i =0

��
n � 1

i

�
�

�
n � 1
i � 1

��
(n � 2i )`

=
1
2n

n� 1X

i =0

�
n � 1

i

�
(n � 2i )`+1

n � i
: �

Note (for those familiar with the representation theory of �nite groups).
The functions � u : Zn

2 ! R are just the irreducible (complex) characters
of the group Zn

2 , and the orthogonality of the � u 's shown in the proof of
Lemma 2.1 is the usual orthogonality relation for the irreducible characters
of a �nite group. The results of this chapter extend readily to any �nite
abelian group. Exercise 5 does the caseZn , the cyclic group of ordern.
For nonabelian �nite groups the situation is much more complicated because
not all irreducible representations have degree one (i.e.,are homomorphisms
G ! C), and there do not exist formulas as explicit as the ones for abelian
groups.

We can give a little taste of the situation for arbitrary groups as follows.
Let G be a �nite group, and let M (G) be its multiplication table. Regard
the entries ofM (G) as commuting indeterminates, so thatM (G) is simply
a matrix with indeterminate entries. For instance, let G = Z3. Let the
elements ofG be a; b; c, where saya is the identity. Then

M (G) =

2

4
a b c
b c a
c a b

3

5 :
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We can compute that detM (G) = ( a+ b+ c)(a+ !b + ! 2c)(a+ ! 2b+ !c ), where
! = e2�i= 3. In general, whenG is abelian, Dedekind knew that detM (G)
factors into certain explicit linear factors overC. Theorem 2.2 is equivalent
to this statement for the group G = Zn

2 [why?]. Equation (12.5) gives the
factorization for G = Zn . (For eachw 2 G one needs to interchange the row
indexed by the group elementw with the row indexed by w� 1 in order to
convert the group determinant to the circulant matrices of equation (12.5),
but these operations only a�ect the sign of the determinant.) Dedekind
asked Frobenius about the factorization of detM (G), known as the group
determinant, for nonabelian �nite G. For instance, letG = S 3, with elements
(in cycle notation) a = (1)(2)(3), b = (1 ; 2)(3), c = (1 ; 3)(2), d = (1)(2 ; 3),
e = (1 ; 2; 3), f = (1 ; 3; 2). Then det(M (G)) = f 1f 2f 2

3 , where

f 1 = a + b+ c + d + e+ f

f 2 = � a + b+ c + d � e � f

f 3 = a2 � b2 � c2 � d2 + e2 + f 2 � ae� af + bc+ bd+ cd� ef:

Frobenius showed that in general, for each conjugacy classK of G there is
an irreducible homogeneous polynomialf K of some degreedK for which

det M (G) =
Y

K

f dK
K :

Note that taking the degree of both sides gives #G =
P

K d2
K . Frobenius'

result was a highlight in his development of group representation theory.
The numbersdK are just the degrees of the irreducible (complex) represen-
tations of G. For the symmetric groupS n , these degrees are the numbers
f � of Theorem 8.1, and Appendix 1 to Chapter 8 gives a bijective proof thatP

� (f � )2 = n!.

References for Chapter 2

The Radon transform �rst arose in a continuous setting in thepaper [84]
of J. K. A. Radon and has been applied to such areas as computerized tomog-
raphy. The �nite version was �rst de�ned by E. Bolker [9]. For some further
applications to combinatorics see J. Kung [64]. For the Radon transform on
the n-cube Zn

2 , see P. Diaconis and R. Graham [27]. For the generalization
to Zn

k , see M. DeDeo and E. Velasquez [26].
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For an exposition of the development of group representation theory by
Frobenius and other pioneers, see the survey articles of Hawkins [52][53][54].



Chapter 3

Random walks.

Let G be a �nite graph. We consider a random walk on the vertices ofG
of the following type. Start at a vertex u. (The vertex u could be chosen
randomly according to some probability distribution or could be speci�ed
in advance.) Among all the edges incident tou, choose one uniformly at
random (i.e., if there arek edges incident tou, then each of these edges is
chosen with probability 1=k). Travel to the vertex v at the other end of the
chosen edge and continue as before fromv. Readers with some familiarity
with probability theory will recognize this random walk as aspecial case of
a �nite state Markov chain. Many interesting questions may be asked about
such walks; the basic one is to determine the probability of being at a given
vertex after a given number̀ of steps.

Suppose vertexu hasdegreedu,i.e., there aredu edges incident tou (count-
ing loops at u once only). Let M = M (G) be the matrix whose rows and
columns are indexed by the vertex setf v1; : : : ; vpg of G, and whose (u; v)-
entry is given by

Muv =
� uv

du
; (3.1)

where � uv is the number of edges betweenu and v (which for simple graphs
will be 0 or 1). Thus Muv is just the probability that if one starts at u,
then the next step will be tov. An elementary probability theory argument
(equivalent to Theorem 1.1) shows that if̀ is a positive integer, then (M ` )uv

is equal to probability that one ends up at vertexv in ` steps given that one
has started atu. Suppose now that the starting vertex is not speci�ed, but
rather we are given probabilities� u summing to 1 and that we start at vertex
u with probability � u. Let P be the row vectorP = [ � v1 ; : : : ; � vp ]. Then again

27
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an elementary argument shows that ifPM ` = [ � v1 ; : : : ; � vp ], then � v is the
probability of ending up at v in ` steps (with the given starting distribution).
By reasoning as in Section 1, we see that if we know the eigenvalues and
eigenvectors ofM , then we can compute the crucial probabilities (M ` )uv

and � u .
Since the matrix M is not the same as the adjacency matrixA , what

does all this have to do with adjacency matrices? The answer is that in one
important caseM is just a scalar multiple ofA . We say that the graphG
is regular of degreed if each du = d, i.e., each vertex is incident tod edges.
In this case it's easy to see thatM (G) = 1

dA (G). Hence the eigenvectors
Eu of M (G) and A (G) are the same, and the eigenvalues are related by
� u(M ) = 1

d � u(A ). Thus random walks on a regular graph are closely related
to the adjacency matrix of the graph.

3.1 Example. Consider a random walk on then-cube Cn which begins at
the \origin" (the vector (0 ; : : : ; 0)). What is the probability p` that after `
steps one is again at the origin? Before applying any formulas, note that
after an even (respectively, odd) number of steps, one must be at a vertex
with an even (respectively, odd) number of 1's. Hencep` = 0 if ` is odd.
Now note that Cn is regular of degreen. Thus by (2.6), we have

� u(M (Cn )) =
1
n

(n � 2! (u)) :

By (2.10) we conclude that

p` =
1

2nn`

nX

i =0

�
n
i

�
(n � 2i )` :

Note that the above expression forp` does indeed reduce to 0 wheǹis odd.

References for Chapter 3

Random walks on graphs is a vast subject, of which we have barely
scratched the surface.



Chapter 4

The Sperner property.

In this section we consider a surprising application of certain adjacency ma-
trices to some problems in extremal set theory. An importantrole will also
be played by �nite groups. In general, extremal set theory isconcerned with
�nding (or estimating) the most or least number of sets satisfying given set-
theoretic or combinatorial conditions. For example, a typical easy problem
in extremal set theory is the following: What is the most number of subsets
of an n-element set with the property that any two of them intersect? (Can
you solve this problem?) The problems to be considered here are most con-
veniently formulated in terms of partially ordered sets, orposets for short.
Thus we begin with discussing some basic notions concerningposets.

4.1 De�nition. A poset (short for partially ordered set) P is a �nite set,
also denotedP, together with a binary relation denoted � satisfying the
following axioms:

(P1) (reexivity) x � x for all x 2 P

(P2) (antisymmetry) If x � y and y � x, then x = y.

(P3) (transitivity) If x � y and y � z, then x � z.

One easy way to obtain a poset is the following. LetP be any collection
of sets. If x; y 2 P, then de�ne x � y in P if x � y as sets. It is easy to see
that this de�nition of � makesP into a poset. If P consists ofall subsets
of an n-element setS, then P is called a (�nite) boolean algebraof rank n
and is denoted byBS. If S = f 1; 2; : : : ; ng, then we denoteBS simply by Bn .
Boolean algebras will play an important role throughout this section.

31
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There is a simple way to represent small posets pictorially.The Hasse
diagram of a posetP is a planar drawing, with elements ofP drawn as dots.
If x < y in P (i.e., x � y and x 6= y), then y is drawn \above" x (i.e., with a
larger vertical coordinate). An edge is drawn betweenx and y if y covers

x, i.e., x < y and no elementz is in between, i.e., noz satis�es x <
z < y . By the transitivity property (P3), all the relations of a �n ite poset
are determined by the cover relations, so the Hasse diagram determinesP.
(This is not true for in�nite posets; for instance, the real numbers R with
their usual order is a poset with no cover relations.) The Hasse diagram of
the boolean algebraB3 looks like

f

23

3

123

1312

21

We say that two posetsP and Q are isomorphic
if there is a bijection (one-to-one and onto function)' : P ! Q such

that x � y in P if and only if ' (x) � ' (y) in Q. Thus one can think that
two posets are isomorphic if they di�er only in the names of their elements.
This is exactly analogous to the notion of isomorphism of groups, rings,
etc. It is an instructive exercise (see Exercise 4.1 to draw Hasse diagrams
of the one poset of order (number of elements) one (up to isomorphism),
the two posets of order two, the �ve posets of order three, andthe sixteen
posets of order four. More ambitious readers can try the 63 posets of order
�ve, the 318 of order six, the 2045 of order seven, the 16999 oforder eight,
the 183231 of order nine, the 2567284 of order ten, the 46749427 of order
eleven, the 1104891746 of order twelve, the 33823827452 of order thirteen,
the 1338193159771 of order fourteen, the 68275077901156 oforder �fteen,
and the 4483130665195087 of order sixteen. Beyond this the number is not
currently known.

A chain C in a poset is a totally ordered subset ofP, i.e., if x; y 2 C then
either x � y or y � x in P. A �nite chain is said to have length n if it has
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n + 1 elements. Such a chain thus has the formx0 < x 1 < � � � < x n . We say
that a �nite poset is graded of rankn if every maximal chain has lengthn.
(A chain is maximal if it's contained in no larger chain.) For instance, the
boolean algebraBn is graded of rankn [why?]. A chain y0 < y 1 < � � � < y j is
said to besaturated if eachyi +1 coversyi . Such a chain need not be maximal
since there can be elements ofP smaller than y0 or greater than yj . If P is
graded of rankn and x 2 P, then we say thatx hasrank j , denoted� (x) = j ,
if some (or equivalently, every) saturated chain ofP with top element x has
length j . Thus [why?] if we let Pj = f x 2 P : � (x) = j g, then P is a
disjoint union P = P0 �[ P1 �[ � � � �[ Pn , and every maximal chain ofP has the
form x0 < x 1 < � � � < x n where � (x j ) = j . We call Pi the i th level of P.
We write pj = jPj j, the number of elements ofP of rank j . For example, if
P = Bn then � (x) = jxj (the cardinality of x as a set) and

pj = # f x � f 1; 2; : : : ; ng : jxj = j g =
�

n
j

�
:

(Note that we use bothjSj and # S for the cardinality of the �nite set S.)
We say that a graded posetP of rank n (always assumed to be �nite)

is rank-symmetric if pi = pn� i for 0 � i � n, and rank-unimodal if p0 �
p1 � � � � � pj � pj +1 � pj +2 � � � � � pn for some 0� j � n. If P is both
rank-symmetric and rank-unimodal, then we clearly have

p0 � p1 � � � � � pm � pm+1 � � � � � pn ; if n = 2m

p0 � p1 � � � � � pm = pm+1 � pm+2 � � � � � pn ; if n = 2m + 1:

We also say that the sequencep0; p1; : : : ; pn itself or the polynomial F (q) =
p0 + p1q + � � � + pnqn is symmetric or unimodal, as the case may be. For
instance, Bn is rank-symmetric and rank-unimodal, since it is well-known
(and easy to prove) that the sequence

� n
0

�
;
� n

1

�
; : : : ;

� n
n

�
(the nth row of Pas-

cal's triangle) is symmetric and unimodal. Thus the polynomial (1 + q)n is
symmetric and unimodal.

A few more de�nitions, and then �nally some results! Anantichain in a
poset P is a subsetA of P for which no two elements are comparable, i.e.,
we can never havex; y 2 A and x < y . For instance, in a graded posetP the
\levels" Pj are antichains [why?]. We will be concerned with the problemof
�nding the largest antichain in a poset. Consider for instance the boolean
algebra Bn . The problem of �nding the largest antichain in Bn is clearly
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equivalent to the following problem in extremal set theory:Find the largest
collection of subsets of ann-element set such that no element of the collection
contains another. A good guess would be to take all the subsets of cardinality
bn=2c (where bxc denotes the greatest integer� x), giving a total of

� n
bn=2c

�

sets in all. But how can we actually prove there is no larger collection? Such
a proof was �rst given by Emanuel Sperner in 1927 and is known as Sperner's
theorem. We will give three proofs of Sperner's theorem in this section: one
proof uses linear algebra and will be applied to certain other situations; the
second proof is an elegant combinatorial argument due to David Lubell in
1966; while the third proof is another combinatorial argument closely related
to the linear algebra proof. We present the last two proofs for their \cultural
value." Our extension of Sperner's theorem to certain othersituations will
involve the following crucial de�nition.

4.2 De�nition. Let P be a graded poset of rankn. We say that P has the
Sperner propertyor is a Sperner posetif

maxf # A : A is an antichain ofPg = maxf # Pi : 0 � i � ng:

In other words, no antichain is larger than the largest levelPi .

Thus Sperner's theorem is equivalent to saying thatBn has the Sperner
property. Note that if P has the Sperner property there may still be an-
tichains of maximum cardinality other than the biggestPi ; there just can't
be any bigger antichains.

4.3 Example. A simple example of a graded poset that fails to satisfy the
Sperner property is the following:

We now will discuss a simple combinatorial condition which guarantees
that certain graded posetsP are Sperner. We de�ne anorder-matching from
Pi to Pi +1 to be a one-to-one function � : Pi ! Pi +1 satisfying x < � (x)
for all x 2 Pi . Clearly if such an order-matching exists thenpi � pi +1

(since � is one-to-one). Easy examples show that the converse is false, i.e.,
if pi � pi +1 then there need not exist an order-matching fromPi to Pi +1 .
We similarly de�ne an order-matching from Pi to Pi � 1 to be a one-to-one
function � : Pi ! Pi � 1 satisfying � (x) < x for all x 2 Pi .
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4.4 Proposition. Let P be a graded poset of rankn. Suppose there exists
an integer 0 � j � n and order-matchings

P0 ! P1 ! P2 ! � � � ! Pj  Pj +1  Pj +2  � � �  Pn : (4.1)

Then P is rank-unimodal and Sperner.

Proof. Since order-matchings are one-to-one it is clear that

p0 � p1 � � � � � pj � pj +1 � pj +2 � � � � � pn :

HenceP is rank-unimodal.
De�ne a graph G as follows. The vertices ofG are the elements ofP.

Two vertices x; y are connected by an edge if one of the order-matchings
� in the statement of the proposition satis�es� (x) = y. (Thus G is a
subgraph of the Hasse diagram ofP.) Drawing a picture will convince you
that G consists of a disjoint union of paths, including single-vertex paths
not involved in any of the order-matchings. The vertices of each of these
paths form a chain inP. Thus we have partitioned the elements ofP into
disjoint chains. SinceP is rank-unimodal with biggest levelPj , all of these
chains must pass throughPj [why?]. Thus the number of chains is exactly
pj . Any antichain A can intersect each of these chains at most once, so the
cardinality jAj of A cannot exceed the number of chains, i.e.,jAj � pj . Hence
by de�nition P is Sperner.

It is now �nally time to bring some linear algebra into the picture. For
any (�nite) set S, we let RS denote the real vector space consisting of all
formal linear combinations (with real coe�cients) of elements of S. Thus S
is a basis forRS, and in fact we could have simply de�nedRS to be the
real vector space with basisS. The next lemma relates the combinatorics we
have just discussed to linear algebra and will allow us to prove that certain
posets are Sperner by the use of linear algebra (combined with some �nite
group theory).

4.5 Lemma. Suppose there exists a linear transformationU : RPi ! RPi +1

(U stands for \up") satisfying:

� U is one-to-one.

� For all x 2 Pi , U(x) is a linear combination of elementsy 2 Pi +1

satisfying x < y . (We then call U an order-raising operator.)
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Then there exists an order-matching� : Pi ! Pi +1 .
Similarly, suppose there exists a linear transformationU : RPi ! RPi +1

satisfying:

� U is onto.

� U is an order-raising operator.

Then there exists an order-matching� : Pi +1 ! Pi .

Proof. SupposeU : RPi ! RPi +1 is a one-to-one order-raising operator. Let
[U] denote the matrix of U with respect to the basesPi of RPi and Pi +1 of
RPi +1 . Thus the rows of [U] are indexed by the elementsy1; : : : ; ypi +1 of Pi +1

(in some order), and the columns by the elementsx1; : : : ; xpi of Pi . SinceU
is one-to-one, the rank of [U] is equal topi (the number of columns). Since
the row rank of a matrix equals its column rank, [U] must have pi linearly
independent rows. Say we have labelled the elements ofPi +1 so that the �rst
pi rows of [U] are linearly independent.

Let A = ( aij ) be the pi � pi matrix whose rows are the �rst pi rows of
[U]. (Thus A is a square submatrix of [U].) Since the rows ofA are linearly
independent, we have

det(A) =
X

� a1� (1) � � � api � (pi ) 6= 0;

where the sum is over all permutations� of 1; : : : ; pi . Thus some term
� a1� (1) � � � api � (pi ) of the above sum in nonzero. SinceU is order-raising, this
means that [why?] yk > x � (k) for 1 � k � pi . Hence the map� : Pi ! Pi +1

de�ned by � (xk) = y� � 1(k) is an order-matching, as desired.
The case whenU is onto rather than one-to-one is proved by a completely

analogous argument.

Note. Although it does not really help in understanding the theory, it
is interesting to regard a one-to-one order-raising operator as a \quantum
order-matching." Rather than choosing a single elementy = � (x) that is
matched with x 2 Pi , we choose all possible elementsy 2 Pi +1 satisfying
y > x at the same time. If U(x) =

P
y>x cyy (where cy 2 R), then we

are choosingy with \weight" cy . As explained in the proof of Lemma 4.5
below, we \break the symmetry" and obtain a single matched element � (x)
by choosing some nonvanishing term in the expansion of a determinant.
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We now want to apply Proposition 4.4 and Lemma 4.5 to the boolean
algebra Bn . For each 0� i < n , we need to de�ne a linear transformation
Ui : R(Bn ) i ! R(Bn ) i +1 , and then prove it has the desired properties. We
simply de�ne Ui to be the simplest possible order-raising operator, namely,
for x 2 (Bn ) i , let

Ui (x) =
X

y 2 ( B n ) i +1
y>x

y: (4.2)

Note that since (Bn ) i is a basis forR(Bn ) i , equation (4.2) does indeed de�ne
a unique linear transformationUi : R(Bn ) i ! R(Bn ) i +1 . By de�nition Ui is
order-raising; we want to show thatUi is one-to-one fori < n= 2 and onto for
i � n=2. There are several ways to show this using only elementary linear
algebra; we will give what is perhaps the simplest proof, though it is quite
tricky. The idea is to introduce \dual" operators D i : R(Bn ) i ! R(Bn ) i � 1 to
the Ui 's (D stands for \down"), de�ned by

D i (y) =
X

x 2 ( B n ) i � 1
x<y

x; (4.3)

for all y 2 (Bn ) i . Let [Ui ] denote the matrix of Ui with respect to the bases
(Bn ) i and (Bn ) i +1 , and similarly let [D i ] denote the matrix ofD i with respect
to the bases (Bn ) i and (Bn ) i � 1. A key observation which we will use later is
that

[D i +1 ] = [ Ui ]t ; (4.4)

i.e., the matrix [D i +1 ] is the transpose of the matrix [Ui ] [why?]. Now let
I i : R(Bn ) i ! R(Bn ) i denote the identity transformation on R(Bn ) i , i.e.,
I i (u) = u for all u 2 R(Bn ) i . The next lemma states (in linear algebraic
terms) the fundamental combinatorial property ofBn which we need. For
this lemma setUn = 0 and D0 = 0 (the 0 linear transformation between the
appropriate vector spaces).

4.6 Lemma. Let 0 � i � n. Then

D i +1 Ui � Ui � 1D i = ( n � 2i )I i : (4.5)

(Linear transformations are multiplied right-to-left, so AB (u) = A(B(u)).)
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Proof. Let x 2 (Bn ) i . We need to show that if we apply the left-hand side
of (4.5) to x, then we obtain (n � 2i )x. We have

D i +1 Ui (x) = D i +1

0

B
@

X

j y j = i +1
x � y

y

1

C
A

=
X

j y j = i +1
x � y

X

j z j = i
z � y

z:

If x; z 2 (Bn ) i satisfy jx \ zj < i � 1, then there is noy 2 (Bn ) i +1 such that
x � y and z � y. Hence the coe�cient of z in D i +1 Ui (x) when it is expanded
in terms of the basis (Bn ) i is 0. If jx \ zj = i � 1, then there is one suchy,
namely, y = x [ z. Finally if x = z then y can be any element of (Bn ) i +1

containing x, and there aren � i suchy in all. It follows that

D i +1 Ui (x) = ( n � i )x +
X

j z j = i
j x \ z j = i � 1

z: (4.6)

By exactly analogous reasoning (which the reader should check), we have for
x 2 (Bn ) i that

Ui � 1D i (x) = ix +
X

j z j = i
j x \ z j = i � 1

z: (4.7)

Subtracting (4.7) from (4.6) yields (D i +1 Ui � Ui � 1D i )(x) = ( n � 2i )x, as
desired.

4.7 Theorem. The operator Ui de�ned above is one-to-one ifi < n= 2 and
is onto if i � n=2.

Proof. Recall that [D i ] = [ Ui � 1]t . From linear algebra we know that a (rect-
angular) matrix times its transpose ispositive semide�nite (or just semide�-
nite for short) and hence has nonnegative (real) eigenvalues. ByLemma 4.6
we have

D i +1 Ui = Ui � 1D i + ( n � 2i )I i :

Thus the eigenvalues ofD i +1 Ui are obtained from the eigenvalues ofUi � 1D i

by adding n � 2i . Since we are assuming thatn � 2i > 0, it follows that the
eigenvalues ofD i +1 Ui are strictly positive. HenceD i +1 Ui is invertible (since
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it has no 0 eigenvalues). But this implies thatUi is one-to-one [why?], as
desired.

The casei � n=2 is done by a \dual" argument (or in fact can be deduced
directly from the i < n= 2 case by using the fact that the posetBn is \self-
dual," though we will not go into this). Namely, from the fact that

Ui D i +1 = D i +2 Ui +1 + (2 i + 2 � n)I i +1

we get that Ui D i +1 is invertible, so nowUi is onto, completing the proof.

Combining Proposition 4.4, Lemma 4.5, and Theorem 4.7, we obtain the
famous theorem of Sperner.

4.8 Corollary. The boolean algebraBn has the Sperner property.

It is natural to ask whether there is a less indirect proof of Corollary
4.8. In fact, several nice proofs are known; we give one due toDavid Lubell,
mentioned before De�nition 4.2. Lubell's proof of Sperner's theorem.
First we count the total number of maximal chains; = x0 < x 1 < � � � <
xn = f 1; : : : ; ng in Bn . There are n choices forx1, then n � 1 choices for
x2, etc., so there aren! maximal chains in all. Next we count the number of
maximal chainsx0 < x 1 < � � � < x i = x < � � � < x n which contain a given
elementx of rank i . There arei choices forx1, then i � 1 choices forx2, up
to one choice forx i . Similarly there aren � i choices forx i +1 , then n � i + 1
choices forx i +2 , etc., up to one choice forxn . Hence the number of maximal
chains containingx is i !(n � i )!.

Now let A be an antichain. If x 2 A, then let Cx be the set of maximal
chains ofBn which contain x. SinceA is an antichain, the setsCx , x 2 A
are pairwise disjoint. Hence

j
[

x2 A

Cx j =
X

x2 A

jCx j

=
X

x2 A

(� (x))!( n � � (x))!

Since the total number of maximal chains in theCx 's cannot exceed the total
number n! of maximal chains inBn , we have

X

x2 A

(� (x))!( n � � (x))! � n!
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Divide both sides byn! to obtain

X

x2 A

1
� n

� (x)

� � 1:

Since
� n

i

�
is maximized wheni = bn=2c, we have

1
� n

bn=2c

� �
1

� n
� (x)

� ;

for all x 2 A (or all x 2 Bn ). Thus

X

x2 A

1
� n

bn=2c

� � 1;

or equivalently,

jAj �
�

n
bn=2c

�
:

Since
� n

bn=2c

�
is the size of the largest level ofBn , it follows that Bn is Sperner.

�
There is another nice way to show directly thatBn is Sperner, namely,

by constructing an explicit order-matching� : (Bn ) i ! (Bn ) i +1 when i <
n=2. We will de�ne � by giving an example. Let n = 21, i = 9, and
S = f 3; 4; 5; 8; 12; 13; 17; 19; 20g. We want to de�ne � (S). Let (a1; a2; : : : ; a21)
be a sequence of� 1's, whereai = 1 if i 2 S, and ai = � 1 if i 62S. For the
set S above we get the sequence (writing� for � 1)

� � 1 1 1 � � 1 � � � 1 1 � � � 1 � 1 1 � :

Replace any two consecutive terms 1� with 0 0:

� � 1 1 0 0� 0 0 � � 1 0 0 � � 0 0 1 0 0:

Ignore the 0's and replace any two consecutive terms 1� with 0 0:

� � 1 0 0 0 0 0 0� � 0 0 0 0� 0 0 1 0 0:

Continue:
� � 0 0 0 0 0 0 0 0� 0 0 0 0� 0 0 1 0 0:
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At this stage no further replacement is possible. The nonzero terms consist
of a sequence of� 's followed by a sequence of 1's. There is at least one�
sincei < n= 2. Let k be the position (coordinate) of the last� ; herek = 16.
De�ne � (S) = S[ f kg = S[ f 16g. The reader can check that this procedure
gives an order-matching. In particular, why is� injective (one-to-one), i.e.,
why can we recoverS from � (S)?

It can be checked that if we glue together the order-matchings (Bn ) i !
(Bn ) i +1 for i < n= 2, along with an obvious dual construction (Bn ) i ! (Bn ) i � 1

for i > n= 2 then we obtain more than just a partition ofBn into saturated
chains passing through the middle level (n even) or middle two levels (n odd),
as in the proof of Proposition 4.4. We in fact have the additional property
that these chains are allsymmetric, i.e., they begin at some leveli � n=2
and end at leveln � i . Such a decomposition of a rank-symmetric, rank-
unimodal graded posetP into saturated chains is called asymmetric chain
decomposition. A symmetric chain decomposition implies that for anyj � 1,
the largest size of a union ofj antichains is equal to the largest size of a
union of j levels ofP (Exercise 4.7). (The Sperner property corresponds to
the casej = 1). It can be a challenging problem to decide whether certain
posets have a symmetric chain decomposition (e.g., Exercise 5), though we
will not discuss this topic further here.

In view of the above elegant proof of Lubell and the explicit description of
an order-matching� : (Bn ) i ! (Bn ) i +1 , the reader may be wondering what
was the point of giving a rather complicated and indirect proof using linear
algebra. Admittedly, if all we could obtain from te linear algebra machinery
we have developed was just another proof of Sperner's theorem, then it would
have been hardly worth the e�ort. But in the next section we will show how
Theorem 4.7, when combined with a little �nite group theory,can be used to
obtain many interesting combinatorial results for which simple, direct proofs
are not known.

References for Chapter 4

For further information on combinatorial aspects of partially ordered sets
in general, see P. Fishburn [32], R. Stanley [101, Ch. 3], andW. Trotter [106].
Sperner's theorem (Corollary 4.8) was �rst proved by E. Sperner [93]. The
elegant proof of Lubell appears in [68]. A general referenceon the Sperner
property is the book by K. Engel [31]. For more general results on the com-
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binatorics of �nite sets, see I. Anderson [3]. The linear algebraic approach to
the Sperner property discussed here is due independently toM. Pouzet [80]
(further developed by Pouzet and Rosenberg [81]) and R. Stanley [94][96].
For further information on explicit order matchings, symmetric chain decom-
positions, etc., see the text of Anderson [3] mentioned above.
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Chapter 5

Group actions on boolean
algebras.

Let us begin by reviewing some facts from group theory. Suppose that X is
an n-element set and thatG is a group. We say thatG acts on the set X if
for every element� of G we associate a permutation (also denoted� ) of X ,
such that for all x 2 X and �; � 2 G we have

� (� (x)) = ( �� )(x):

Thus [why?] an action ofG on X is the same as a homomorphism' : G !
S X , where S X denotes the symmetric group of all permutations ofX . We
sometimes write� � x instead of � (x).

5.1 Example. (a) Let the real number � act on the xy-plane by rotation
counterclockwise around the origin by an angle of� radians. It is easy to
check that this de�nes an action of the groupR of real numbers (under
addition) on the xy-plane. The kernel of this action, i.e., the kernel of the
homomorphism' : R ! S R2 , is the cyclic subgroup ofR generated by 2� .

(b) Now let � 2 R act by translation by a distance� to the right (i.e.,
adding (�; 0)). This yields a completely di�erent action ofR on the xy-plane.
This time the action is faithful, i.e., the kernel is the trivial subgroupf 0g.

(c) Let X = f a; b; c; dg and G = Z2 � Z2 = f (0; 0); (0; 1); (1; 0); (1; 1)g.
Let G act as follows:

(0; 1) � a = b; (0; 1) � b= a; (0; 1) � c = c; (0; 1) � d = d

(1; 0) � a = a; (1; 0) � b= b; (1; 0) � c = d; (1; 0) � d = c:

47
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The reader should check that this does indeed de�ne an action. In particular,
since (1; 0) and (0; 1) generateG, we don't need to de�ne the action of (0; 0)
and (1; 1) | they are uniquely determined.

(d) Let X and G be as in (c), but now de�ne the action by

(0; 1) � a = b; (0; 1) � b= a; (0; 1) � c = d; (0; 1) � d = c

(1; 0) � a = c; (1; 0) � b= d; (1; 0) � c = a; (1; 0) � d = b:

Again one can check that we have an action ofZ2 � Z2 on f a; b; c; dg. The
two actions of G = Z2 � Z2 that we have just de�ned are quite di�erent;
for instance, in the �rst action we have some elements ofX �xed by some
nonidentity element of G (such as (0; 1) � c = c), while the second action
fails to have this property. See also Example 5.2(c,d) belowfor another
fundamental way in which the two actions di�er.

Recall what is meant by anorbit of the action of a groupG on a setX .
Namely, we say that two elementsx; y of X are G-equivalent if � (x) = y
for some� 2 G. The relation of G-equivalence is an equivalence relation,
and the equivalence classes are called orbits. Thusx and y are in the same
orbit if � (x) = y for some� 2 G. The orbits form a partition of X , i.e,
they are pairwise-disjoint, nonempty subsets ofX whose union isX . The
orbit containing x is denotedGx; this is sensible notation sinceGx consists
of all elements� (x) where � 2 G. Thus Gx = Gy if and only if x and y are
G-equivalent (i.e., in the sameG-orbit). The set of all G-orbits is denoted
X=G.

5.2 Example. (a) In Example 5.1(a), the orbits are circles with center (0; 0)
(including the degenerate circle whose only point is (0; 0)).

(b) In Example 5.1(b), the orbits are horizontal lines. Notethat although
in (a) and (b) the same groupG acts on the same setX , the orbits are
di�erent.

(c) In Example 5.1(c), the orbits aref a; bg and f c; dg.
(d) In Example 5.1(d), there is only one orbitf a; b; c; dg. Again we have

a situation in which a group G acts on a setX in two di�erent ways, with
di�erent orbits.

We wish to consider the situation whereX = Bn , the boolean algebra of
rank n (so jBn j = 2 n ). We begin by de�ning an automorphism of a poset
P to be an isomorphism' : P ! P. (This de�nition is exactly analogous
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to the de�nition of an automorphism of a group, ring, etc.) The set of all
automorphisms ofP forms a group, denoted Aut(P) and called theautomor-
phism groupof P, under the operation of composition of functions (just as
is the case for groups, rings, etc.)

Now consider the caseP = Bn . Any permutation � of f 1; : : : ; ng acts on
Bn as follows: Ifx = f i1; i2; : : : ; ikg 2 Bn , then

� (x) = f � (i1); � (i2); : : : ; � (i k)g: (5.1)

This action of � on Bn is an automorphism [why?]; in particular, if jxj = i ,
then alsoj� (x)j = i . Equation (5.1) de�nes an action of the symmetric group
S n of all permutations of f 1; : : : ; ng on Bn [why?]. (In fact, it is not hard
to show that every automorphism ofBn is of the form (5.1) for � 2 S n .) In
particular, any subgroupG of S n acts onBn via (5.1) (where we restrict�
to belong to G). In what follows this action is always meant.

5.3 Example. Let n = 3, and let G be the subgroup ofS 3 with elements
e and (1; 2). Here e denotes the identity permutation, and (using disjoint
cycle notation) (1; 2) denotes the permutation which interchanges 1 and 2,
and �xes 3. There are six orbits ofG (acting on B3). Writing e.g. 13 as
short for f 1; 3g, the six orbits aref;g , f 1; 2g, f 3g, f 12g, f 13; 23g, and f 123g.

We now de�ne the class of posets which will be of interest to ushere.
Later we will give some special cases of particular interest.

Let G be a subgroup ofS n . De�ne the quotient posetBn=G as follows:
The elements ofBn=G are the orbits of G. If o and o0 are two orbits, then
de�ne o � o0 in Bn=G if there exist x 2 o and y 2 o0 such that x � y in Bn .
(It's easy to check that this relation � is indeed a partial order.)

5.4 Example. (a) Let n = 3 and G be the group of order two generated
by the cycle (1; 2), as in Example 5.3. Then the Hasse diagram ofB3=G is
shown below, where each element (orbit) is labeled by one of its elements.

q

q q

q q

q

@
@

@@

�
�

��
�

�
��

@
@

@@

�
�

��
�

�
��

@
@

@@

;

3 1

13 12

123
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(b) Let n = 5 and G be the group of order �ve generated by the cycle
(1; 2; 3; 4; 5). Then B5=G has Hasse diagram

q

q

q q

q q

q

q

@
@

@@

�
�

��
� � � � � ��

HHHHHHH�
�

��

@
@

@@

;

1

12 13

123 124

1234

12345

One simple property of a quotient posetBn=G is the following.

5.5 Proposition. The quotient posetBn=G de�ned above is graded of rank
n and rank-symmetric.

Proof. We leave as an exercise the easy proof thatBn=G is graded of rank
n, and that the rank of an elemento of Bn=G is just the rank in Bn of any
of the elementsx of o. Thus the number of elementspi (Bn=G) of rank i is
equal to the number of orbitso 2 (Bn ) i =G. If x 2 Bn , then let �x denote the
set-theoretic complement ofx, i.e.,

�x = f 1; : : : ; ng � x = f 1 � i � n : i 62xg:

Then f x1; : : : ; xj g is an orbit of i -element subsets off 1; : : : ; ng if and only if
f �x1; : : : ; �x j g is an orbit of (n � i )-element subsets [why?]. Hencej(Bn ) i =Gj =
j(Bn)n� i =Gj, so Bn=G is rank-symmetric.

Let � 2 S n . We associate with� a linear transformation (still denoted
� )
� : R(Bn ) i ! R(Bn ) i by the rule

�

0

@
X

x2 (B n ) i

cxx

1

A =
X

x2 (B n ) i

cx � (x);
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where eachcx is a real number. (This de�nes an action ofS n , or of any
subgroup G of S n , on the vector spaceR(Bn ) i .) The matrix of � with
respect to the basis (Bn ) i is just a permutation matrix, i.e., a matrix with
one 1 in every row and column, and 0's elsewhere. We will be interested in
elements ofR(Bn ) i which are �xed by every element of a subgroupG of S n .
The set of all such elements is denotedR(Bn )G

i , so

R(Bn)G
i = f v 2 R(Bn ) i : � (v) = v for all � 2 Gg:

5.6 Lemma. A basis for R(Bn )G
i consists of the elements

vo :=
X

x2 o

x;

whereo 2 (Bn ) i =G, the set ofG-orbits for the action of G on (Bn ) i .

Proof. First note that if o is an orbit and x 2 o, then by de�nition of orbit we
have � (x) 2 o for all � 2 G (or all � 2 S n). Since � permutes the elements
of (Bn ) i , it follows that � permutes the elements ofo. Thus � (vo) = vo,
so vo 2 R(Bn )G

i . It is clear that the vo's are linearly independent since any
x 2 (Bn ) i appears with nonzero coe�cient in exactly onevo.

It remains to show that thevo's spanR(Bn)G
i , i.e., anyv =

P
x2 (B n ) i

cxx 2
R(Bn )G

i can be written as a linear combination ofvo's. Given x 2 (Bn ) i , let
Gx = f � 2 G: � (x) = xg, the stabilizer of x. We leave as an exercise the
standard fact that � (x) = � (x) (where �; � 2 G) if and only if � and � belong
to the same left coset ofGx , i.e., �G x = �G x . It follows that in the multiset
of elements� (x), where � ranges over all elements ofG and x is �xed, every
elementy in the orbit Gx appears #Gx times, and no other elements appear.
In other words,

X

� 2 G

� (x) = jGx j � vGx :

(Do not confuse the orbitGx with the subgroup Gx !) Now apply � to v and
sum on all � 2 G. Since� (v) = v (becausev 2 R(Bn )G

i ), we get
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jGj � v =
X

� 2 G

� (v)

=
X

� 2 G

0

@
X

x2 (B n ) i

cx � (x)

1

A

=
X

x2 (B n ) i

cx

 
X

� 2 G

� (x)

!

=
X

x2 (B n ) i

cx � (# Gx ) � vGx :

Dividing by jGj expressesv as a linear combination of the elementsvGx (or
vo), as desired.

Now let us consider the e�ect of applying the order-raising operator Ui

to an elementv of R(Bn )G
i .

5.7 Lemma. If v 2 R(Bn)G
i , then Ui (v) 2 R(Bn )G

i +1 .

Proof. Note that since � 2 G is an automorphism ofBn , we havex < y
in Bn if and only if � (x) < � (y) in Bn . It follows [why?] that if x 2 (Bn ) i

then
Ui (� (x)) = � (Ui (x)) :

SinceUi and � are linear transformations, it follows by linearity thatUi � (u) =
�U i (u) for all u 2 R(Bn ) i . (In other words, Ui � = �U i .) Then

� (Ui (v)) = Ui (� (v))

= Ui (v);

so Ui (v) 2 R(Bn )G
i +1 , as desired. �

We come to the main result of this section, and indeed our mainresult
on the Sperner property.

5.8 Theorem. Let G be a subgroup ofS n . Then the quotient posetBn=G
is graded of rankn, rank-symmetric, rank-unimodal, and Sperner.
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Proof. Let P = Bn=G. We have already seen in Proposition 5.5 thatP
is graded of rankn and rank-symmetric. We want to de�ne order-raising
operatorsÛi : RPi ! RPi +1 and order-lowering operatorsD̂ i : RPi ! RPi � 1.
Let us �rst consider just Ûi . The idea is to identify the basis elementvo of
RB G

n with the basis elemento of RP, and to let Ûi : RPi ! RPi +1 correspond
to the usual order-raising operatorUi : R(Bn ) i ! R(Bn ) i +1 . More precisely,
suppose that the order-raising operatorUi for Bn given by (4.2) satis�es

Ui (vo) =
X

o02 (B n ) i +1 =G

co;o0vo0; (5.2)

whereo 2 (Bn ) i =G. (Note that by Lemma 5.7, Ui (vo) does indeed have the
form given by (5.2).) Then de�ne the linear operatorÛi : R((Bn ) i =G) !
R((Bn ) i =G) by

Ûi (o) =
X

o02 (B n ) i +1 =G

co;o0o0:

Note. We can depict the \transport of Ui to Ûi " by a commutative diagram:

(RBn )G
i

Ui���! (RBn )G
i +1

�=

?
?
y

?
?
y �=

R(Bn=G) i
Ûi���! R(Bn=G) i +1

The arrows pointing down are the linear transformations induced byvo 7! o.
The map obtained by applying the top arrow followed by the rightmost down
arrow is the same as applying the leftmost down arrow followed by the bottom
arrow.

We claim that Ûi is order-raising. We need to show that ifco;o0 6= 0, then
o0 > o in Bn=G. Sincevo0 =

P
x02 o0 x0, the only way co;o0 6= 0 in (5.2) is for

somex0 2 o0 to satisfy x0 > x for somex 2 o. But this is just what it means
for o0 > o, so Ûi is order-raising.

Now comes the heart of the argument. We want to show that̂Ui is one-
to-one for i < n= 2. Now by Theorem 4.7,Ui is one-to-one fori < n= 2. Thus
the restriction of Ui to the subspaceR(Bn )G

i is one-to-one. (The restriction
of a one-to-one function is always one-to-one.) ButUi and Ûi are exactly the
same transformation, except for the names of the basis elements on which
they act. Thus Ûi is also one-to-one fori < n= 2.
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An exactly analogous argument can be applied toD i instead ofUi . We
obtain one-to-one order-lowering operatorŝD i : R(Bn )G

i ! R(Bn )G
i � 1 for i >

n=2. It follows from Proposition 4.4, Lemma 4.5, and (4.4) thatBn=G is
rank-unimodal and Sperner, completing the proof.

We will consider two interesting applications of Theorem 5.8. For our �rst
application, we let n =

� m
2

�
for somem � 1, and let M = f 1; : : : ; mg. Let

X =
� M

2

�
, the set of all two-element subsets ofM . Think of the elements ofX

as (possible) edges of a graph with vertex setM . If BX is the boolean algebra
of all subsets ofX (so BX and Bn are isomorphic), then an elementx of BX

is a collection of edges on the vertex setM , in other words, just a simple
graph on M . De�ne a subgroupG of S X as follows: Informally,G consists
of all permutations of the edges

� M
2

�
that are induced from permutations

of the vertices M . More precisely, if � 2 S m , then de�ne �̂ 2 S X by
�̂ (f i; j g) = f � (i ); � (j )g. Thus G is isomorphic toS m .

When are two graphsx; y 2 BX in the same orbit of the action ofG on
BX ? Since the elements ofG just permute vertices, we see thatx and y are
in the same orbit if we can obtainx from y by permuting vertices. This is
just what it means for two simple graphsx and y to be isomorphic | they
are the same graph except for the names of the vertices (thinking of edges
as pairs of vertices). Thus the elements ofBX =G are isomorphism classesof
simple graphs on the vertex setM ). In particular, #( BX =G) is the number
of nonisomorphicm-vertex simple graphs, and #((BX =G) i ) is the number of
nonisomorphic such graphs withi edges. We havex � y in BX =G if there
is some way of labelling the vertices ofx and y so that every edge ofx is an
edge ofy. Equivalently, somespanning subgraphof y (i.e., a subgraph ofy
with all the vertices of y) is isomorphic to x, as illustrated in Figure 5.1 for
the casem = 4. Hence by Theorem 5.8 there follows the following result,
which is by no means obvious and has no known non-algebraic proof.

5.9 Theorem. (a) Fix m � 1. Let pi be the number of nonisomorphic
simple graphs withm vertices andi edges. Then the sequencep0; p1; : : : ; p(m

2 )
is symmetric and unimodal.

(b) Let T be a collection of simple graphs withm vertices such that no
element ofT is isomorphic to a spanning subgraph of another element ofT.
Then # T is maximized by takingT to consist of all nonisomorphic simple
graphs withb1

2

� m
2

�
c edges.
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Figure 5.1: The posetBX =G of nonisomorphic graphs with four vertices

Our second example of the use of Theorem 5.8 is somewhat more subtle
and will be the topic of the next section.

Digression: edge reconstruction. Much work has been done on \re-
construction problems," that is, trying to reconstruct a mathematical struc-
ture such as a graph from some of its substructures. The most famous of
such problems isvertex reconstruction: given a simple graphG on p vertices
v1; : : : ; vp, let Gi be the subgraph obtained by deleting vertexvi (and all in-
cident edges). Given the multisetf G1; : : : ; Gpg of vertex-deleted subgraphs
graphs, canG be uniquely reconstructed? It is important to realize that the
vertices areunlabelled, so givenGi we don't know for any j which vertex is
vj . The famousvertex reconstruction conjecture(still open) states that for
p � 3 any graphG can be reconstructed from the multisetf G1; : : : ; Gpg.

Here we will be concerned withedgereconstruction, another famous open
problem. Given a simple graphG with edgese1; : : : ; eq, let H i = G � ei , the
graph obtained fromG by removing the edgeei .

Edge Reconstruction Conjecture. A simple graphG can be uniquely
reconstructed from its number of vertices and the multisetf H1; : : : ; Hqg of
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edge-deleted subgraphs.

Note. As in the case of vertex-reconstruction, the subgraphsH i are
unlabelled. The reason for including the number of verticesis that for a
graph with no edges, we havef H1; : : : ; Hqg = ; , so we need to specify the
number of vertices to obtainG.

Note. It can be shown that if G can be vertex-reconstructed, then
G can be edge reconstructed. Hence the vertex-reconstruction conjecture
implies the edge-reconstruction conjecture.

The techniques developed above to analyze group actions on boolean alge-
bra can be used to prove a special case of the edge-reconstruction conjecture.
Note that a simple graph with p vertices has at most

� p
2

�
edges.

5.10 Theorem. Let G be a simple graph withp vertices andq > 1
2

� p
2

�
edges.

Then G is edge-reconstructible.

Proof. Let Pi be the set of all simple graphs withi edges on the vertex set [p],

so #Pi =
� (p

2)
i

�
. Let RPi denote the real vector space with basisPi . De�ne a

linear transformation  i : RPi ! RPi � 1 by

 i (�) = � 1 + � � � + � i ;

where � 1; : : : ; � i are the (labelled) graphs obtained from � by deleting a
single edge. By Theorem 4.7, i is injective for i > 1

2

� p
2

�
. (Think of  i as

adding edges to thecomplementof �, i.e., the graph with vertex set [p] and
edge set

� [p]
2

�
� E(�).)

The symmetric groupS p acts onPq by permuting the vertices, and hence
acts onRPq, the real vector space with basisPq. A basis for the �xed space
(RPq)S p consists of the distinct sums~� =

P
� 2 S p

� (�), where � 2 Pq. We

may identify ~� with the unlabelledgraph isomorphic to �, since ~� = ~� 0 if and
only if � and � 0 are isomorphic. Just as in the proof of Theorem 5.8, when
we restrict  q to (RPq)S p for q > 1

2

� p
2

�
we obtain an injection q : (RPq)S p !

(RPq� 1)S p . In particular, for nonisomorphic unlabelled graphs~� ; ~� 0 with p
vertices, we have

~� 1 + � � � + ~� q =  q(~�) 6=  q(~� 0) = ~� 0
1 + � � � + ~� 0

q:

Hence the unlabelled graphs~� 1; : : : ; ~� q determine ~�, as desired.
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Polynomials with real zeros There are many other techniques than
the linear algebra used to prove Theorem 5.8 for showing thatsequences
are unimodal. Here we will discuss a technique based on simple analysis
(calculus) for showing that sequences are unimodal. In fact, we will consider
some stronger properties than unimodality.

A sequencea0; a1; : : : ; an of real numbers is calledlogarithmically concave,
or log-concavefor short, if a2

i � ai � 1ai +1 for 1 � i � n � 1. We say that
a0; a1; : : : ; an is strongly log-concaveif b2

i � bi � 1bi +1 for 1 � i � n � 1, where
bi = ai =

� n
i

�
. Strong log-concavity is equivalent to [why?]

a2
i �

�
1 +

1
i

� �
1 +

1
n � i

�
ai � 1ai +1 ; 1 � i � n � 1;

from which it follows that strong log-concavity implies log-concavity.
Assume now that eachai � 0. Does log-concavity then imply unimodal-

ity? The answer isno, a counterexample being 1; 0; 0; 1. However, only this
type of counterexample can occur, as we now explain. We say that the se-
quencea0; a1; : : : ; an has no internal zeros if whenever we havei < j < k ,
ai 6= 0, and ak 6= 0, then aj 6= 0.

5.11 Proposition. Let � = ( a0; a1; : : : ; an ) be a sequence of nonnegative real
numbers with no internal zeros. If� is log-concave, then� is unimodal.

Proof. Otherwise there would exist 1� i � n � 1 for which ai � 1 > a i � ai +1 ,
so a2

i < a i � 1ai +1 .

Now we come to a fundamental method for proving log-concavity.

5.12 Theorem (I. Newton). Let

P(x) =
nX

i =0

bi x i =
nX

i =0

�
n
i

�
ai x i

be a real polynomial all of whose zeros are real numbers. Thenthe sequence
b0; b1; : : : ; bn is strongly log-concave, or equivalently, the sequencea0; a1; : : : ; an

is log-concave. Morevover, if eachbi > 0 (so the zeros off (x) are negative)
then the sequenceb0; b1; : : : ; bn has no internal zeros.

Proof. Let degP(x) = d. By the Fundamental Theorem of Algebra,P(x)
has exactly d real zeros. Suppose that� is a zero of multiplicity m > 1,
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so P(x) = ( x � � )mL(x) for some polynomialL(x) satisfying L(� ) 6= 0. A
simple computation shows that� is a zero ofP0(x) (the derivative of P(x))
of multiplicty m � 1. Moreover, if � < � are both zeros ofP(x), then Rolle's
theorem shows thatP0(x) has a zero satisfying � <  < � . It follows
[why?] that P0(x) has at leastd � 1 real zeros. Since degP0(x) = d � 1 we
see thatP0(x) has exactlyd � 1 real zeros and no other zeros.

Let Q(x) = di � 1

dx i � 1 P(x). Thus Q(x) is a polynomial of degree at most
n � i + 1 with only real zeros. Let R(x) = xn� i +1 Q(1=x), a polynomial of
degree at mostn � i + 1. The zeros ofR(x) are just reciprocals of those
zeros ofQ(x) not equal ot 0, with possible new zeros at 0. At any rate, all
zeros ofR(x) are real. Now letS(x) = dn � i � 1

dxn � i � 1 R(x), a polynomial of degree
at most two. By Rolle's theorem (with a suitable handling of multiple zeros
as above), every zero ofR(x) is real. An explicit computation yields

S(x) =
n!
2

(ai � 1x2 + 2ai x + ai +1 ):

If ai � 1 = 0 then trivially a2
i � ai � 1ai +1 . Otherwise S(x) is a quadratic

polynomial. Since it has real zeros, its discriminant � is nonnegative. But

� = (2 ai )2 � 4ai � 1ai +1 = 4( a2
i � ai � 1ai +1 ) � 0;

so the sequencea0; a1; : : : ; an is log-concave as claimed.
It remains to show that if eachai > 0 then the sequencea0; a1; : : : ; an

has no internal zeros. Suppose to the contrary that for somei < j < k we
have ai > 0; aj = 0; ak > 0. By arguing as in the previous paragraph we will
obtain a polynomial of the formc+ dxk� i with only real zeros, wherec; d > 0.
But since k � i � 2 we have that every such polynomial has a nonreal zero
[why?], a contradiction which completes the proof.

In order to give combinatorial applications of Theorem 5.12we need to
�nd polynomials with real zeros whose coe�cients are of combinatorial in-
terest. One such example appears in Exercise 9.6, based on the fact that the
characteristic polynomial of a symmetric matrix has only real zeros.

References for Chapter 5

The techniques developed in this section had their origins in papers of
L. H. Harper [51] and M. Pouzet and I. G. Rosenberg, [81]. The closest
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treatment to ours appears in a paper of R. P. Stanley [96]. This latter
paper also contains the proof of Theorem 5.10 (edge reconstruction) given
here. This result was �rst proved by L. Lov�asz [67] by an inclusion-exclusion
argument. The condition q > 1

2

� p
2

�
in Theorem 5.10 was improved toq >

p(log2 p� 1) by V. M•uller [73] (generalizing the argument of Lov�asz)and by
I. Krasikov and Y. Roditty [63] (generalizing the argument of Stanley).

For further information on Newton's Theorem 5.12, see e.g. G. H. Hardy,
J. E. Littlewood, and G. P�olya [50, p. 52]. For a general survey on uni-
modality, log-concavity, etc., see Stanley [98], with a sequel by F. Brenti
[12].



Chapter 6

Young diagrams and q-binomial
coe�cients.

A partition � of an integern � 0 is a sequence� = ( � 1; � 2; : : : ) of integers
� i � 0 satisfying � 1 � � 2 � � � � and

P
i � 1 � i = n. Thus all but �nitely

many � i are equal to 0. Each� i > 0 is called apart of � . We sometimes
suppress 0's from the notation for� , e.g., (5; 2; 2; 1), (5; 2; 2; 1; 0; 0; 0), and
(5; 2; 2; 1; 0; 0; : : : ) all represent the same partition� (of 10, with four parts).
If � is a partition of n, then we denote this by� ` n or j� j = n.

6.1 Example. There are seven partitions of 5, namely (writing e.g. 221 as
short for (2; 2; 1)): 5, 41, 32, 311, 221, 2111, and 11111.

The subject of partitions of integers has been extensively developed, and
we will only be concerned here with a small part related to ourprevious
discussion. Given positive integersm and n, let L(m; n) denote the set of all
partitions with at most m parts and with largest part at mostn. For instance,
L(2; 3) = f; ; 1; 2; 3; 11; 21; 31; 22; 32; 33g. (Note that we are denoting by
; the unique partition (0; 0; : : : ) with no parts.) If � = ( � 1; � 2; : : : ) and
� = ( � 1; � 2; : : : ) are partitions, then de�ne � � � if � i � � i for all i .
This makes the set of all partitions into a very interesting poset, denoted
Y and calledYoung's lattice (named after the British mathematician Alfred
Young, 1873{1940). (It is called \Young's lattice" rather than \Young's
poset" because it turns out to have certain properties whichde�ne a lattice.
However, these properties are irrelevant to us here, so we will not bother to
de�ne the notion of a lattice.) We will be looking at some properties of Y
in Section 8. The partial ordering onY, when restricted toL(m; n), makes

63
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Figure 6.1: The latticesL(1; 4), L(2; 2), and L(2; 3)

L(m; n) into a poset which also has some fascinating properties. Figure 6.1
below showsL(1; 4), L(2; 2), and L(2; 3), while Figure 6.2 showsL(3; 3).

There is a nice geometric way of viewing partitions and the posetL(m; n).
The Young diagram(sometimes just called thediagram) of a partition � is
a left-justi�ed array of squares, with � i squares in thei th row. For instance,
the Young diagram of (4; 3; 1; 1) looks like:

If dots are used instead of boxes, then the resulting diagramis called a
Ferrers diagram. The advantage of Young diagrams over Ferrers diagrams is
that we can put numbers in the boxes of a Young diagram, which we will do
in Section 7. Observe thatL(m; n) is simply the set of Young diagramsD
�tting in an m � n rectangle (where the upper-left (northwest) corner ofD is
the same as the northwest corner of the rectangle), ordered by inclusion. We
will always assume that when a Young diagramD is contained in a rectangle
R, the northwest corners agree.It is also clear from the Young diagram point
of view that L(m; n) and L(n; m) are isomorphic partially ordered sets, the
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Figure 6.2: The latticeL(3; 3)
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isomorphism being given by transposing the diagram (i.e., interchanging rows
and columns). If � has Young diagramD, then the partition whose diagram
is D t (the transpose ofD) is called theconjugateof � and is denoted� 0. For
instance, (4; 3; 1; 1)0 = (4 ; 2; 2; 1), with diagram

6.2 Proposition. The posetL(m; n) is graded of rankmn and rank-symmetric.
The rank of a partition � is just j� j (the sum of the parts of� or the number
of squares in its Young diagram).

Proof. As in the proof of Proposition 5.5, we leave to the reader everything
except rank-symmetry. To show rank-symmetry, consider thecomplement��
of � in an m � n rectangleR, i.e., all the squares ofR except for � . (Note
that �� depends onm and n, and not just � .) For instance, in L(4; 5), the
complement of (4; 3; 1; 1) looks like

If we rotate the diagram of �� by 180� then we obtain the diagram of a
partition ~� 2 L(m; n) satisfying j� j+ j~� j = mn. This correspondence between
� and ~� shows thatL(m; n) is rank-symmetric.

Our main goal in this section is to show thatL(m; n) is rank-unimodal
and Sperner. Let us writepi (m; n) as short for pi (L(m; n)), the number of
elements ofL(m; n) of rank i . Equivalently, pi (m; n) is the number of par-
titions of i with largest part at most n and with at most m parts, or, in
other words, the number of distinct Young diagrams withi squares which
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�t inside an m � n rectangle (with the same northwest corner, as explained
previously). Though not really necessary for this goal, it is nonetheless in-
teresting to obtain some information on these numberspi (m; n). First let us
consider the total numberjL(m; n)j of elements inL(m; n).

6.3 Proposition. We havejL(m; n)j =
� m+ n

m

�
.

Proof. We will give an elegant combinatorial proof, based on the fact that� m+ n
m

�
is equal to the number of sequencesa1; a2; : : : ; am+ n , where eachaj

is either N or E, and there arem N 's (and hencen E 's) in all. We will
associate a Young diagramD contained in anm � n rectangleR with such
a sequence as follows. Begin at the lower left-hand corner ofR, and trace
out the southeast boundary ofD, ending at the upper right-hand corner of
R. This is done by taking a sequence of unit steps (where each square ofR
is one unit in length), each step either north or east. Recordthe sequence of
steps, usingN for a step to the north andE for a step to the east.

Example. Let m = 5, n = 6, � = (4 ; 3; 1; 1). Then R and D are given by:

The corresponding sequence ofN 's and E's is NENNEENENEE .
It is easy to see (left to the reader) that the above correspondence gives

a bijection between Young diagramsD �tting in an m � n rectangleR, and
sequences ofm N 's and n E 's. Hence the number of diagrams is equal to� m+ n

m

�
, the number of sequences.

We now consider how many elements ofL(m; n) have rank i . To this end,
let q be an indeterminate; and givenj � 1 de�ne [j ] = 1 + q + q2 + � � � +
qj � 1. Thus [1] = 1, [2] = 1 + q, [3] = 1 + q + q2, etc. Note that [j ] is a
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polynomial in q whose value atq = 1 is just j (denoted [j ]q=1 = j ). Next
de�ne [j ]! = [1][2] � � � [j ] for j � 1, and set [0]! = 1. Thus [1]! = 1, [2]! = 1+q,
[3]! = (1 + q)(1 + q + q2) = 1 + 2 q + 2q2 + q3, etc., and [j ]!q=1 = j !. Finally
de�ne for k � j � 0, �

k

j

�
=

[k]!
[j ]![k � j ]!

:

The expression
� k

j

�
is called aq-binomial coe�cient (or Gaussian coe�cient ).

Since [r ]!q=1 = r !, it is clear that
�

k

j

�

q=1

=
�

k
j

�
:

One sometimes says that
� k

j

�
is a \q-analogue" of the binomial coe�cient

� k
j

�
.

6.4 Example. We have
� k

j

�
=

� k
k � j

�
[why?]. Moreover,

�
k

0

�
=

�
k

k

�
= 1

�
k

1

�
=

�
k

k � 1

�
= [ k] = 1 + q+ q2 + � � � + qk� 1

�
4

2

�
=

[4][3][2][1]
[2][1][2][1]

= 1 + q+ 2q2 + q3 + q4

�
5

2

�
=

�
5

3

�
= 1 + q+ 2q2 + 2q3 + 2q4 + q5 + q6:

In the above example,
� k

j

�
was always a polynomial inq (and with non-

negative integer coe�cients). It is not obvious that this is always the case,
but it will follow easily from the following lemma.

6.5 Lemma. We have
�

k

j

�
=

�
k � 1

j

�
+ qk� j

�
k � 1

j � 1

�
; (6.1)

wheneverk � 1, with the \initial conditions"
� 0

0

�
= 1,

� k
j

�
= 0 if j < 0 or

j > k (the same intial conditions satis�ed by the binomial coe�cients
� k

j

�
).
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Proof. This is a straightforward computation. Speci�cally, we have
�

k � 1

j

�
+ qk� j

�
k � 1

j � 1

�
=

[k � 1]!
[j ]![k � 1 � j ]!

+ qk� j [k � 1]!
[j � 1]![k � j ]!

=
[k � 1]!

[j � 1]![k � 1 � j ]!

�
1
[j ]

+
qk� j

[k � j ]

�

=
[k � 1]!

[j � 1]![k � 1 � j ]!
[k � j ] + qk� j [j ]

[j ][k � j ]

=
[k � 1]!

[j � 1]![k � 1 � j ]!
[k]

[j ][k � j ]

=
�

k

j

�
:

Note that if we put q = 1 in (6.1) we obtain the well-known formula
�

k
j

�
=

�
k � 1

j

�
+

�
k � 1
j � 1

�
;

which is just the recurrence de�ning Pascal's triangle. Thus equation (6.1)
may be regarded as aq-analogue of the Pascal triangle recurrence.

We can regard equation (6.1) as a recurrence relation for theq-binomial
coe�cients. Given the initial conditions of Lemma 6.5, we can use (6.1) in-
ductively to compute

� k
j

�
for any k and j . From this it is obvious by induction

that the q-binomial coe�cient
� k

j

�
is a polynomial inq with nonnegative inte-

ger coe�cients. The following theorem gives an even stronger result, namely,
an explicit combinatorial interpretation of the coe�cient s.

6.6 Theorem. Let pi (m; n) denote the number of elements ofL(m; n) of
rank i . Then

X

i � 0

pi (m; n)qi =
�

m + n

m

�
: (6.2)

( Note. The sum on the left-hand side is really a�nite sum, sincepi (m; n) =
0 if i > mn .)

Proof. Let P(m; n) denote the left-hand side of (6.2). We will show that

P(0; 0) = 1; and P(m; n) = 0 if m < 0 or n < 0 (6.3)
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P(m; n) = P(m; n � 1) + qnP(m � 1; n): (6.4)

Note that equations (6.3) and (6.4) completely determineP(m; n). On
the other hand, substituting k = m + n and j = m in (6.1) shows that� m + n

m

�
also satis�es (6.4). Moreover, the initial conditions of Lemma 6.5

show that
� m + n

m

�
also satis�es (6.3). Hence (6.3) and (6.4) imply that

P(m; n) =
� m + n

m

�
, so to complete the proof we need only establish (6.3)

and (6.4).
Equation (6.3) is clear, sinceL(0; n) consists of a single point (the empty

partition ; ), so
P

i � 0 pi (0; n)qi = 1; while L(m; n) is empty (or unde�ned, if
you prefer) if m < 0 or n < 0,

The crux of the proof is to show (6.4). Taking the coe�cient ofqi of both
sides of (6.4), we see [why?] that (6.4) is equivalent to

pi (m; n) = pi (m; n � 1) + pi � n (m � 1; n): (6.5)

Consider a partition � ` i whose Young diagramD �ts in an m � n rectangle
R. If D does not contain the upper right-hand corner ofR, then D �ts in
an m � (n � 1) rectangle, so there arepi (m; n � 1) such partitions � . If on
the other hand D does contain the upper right-hand corner ofR, then D
contains the whole �rst row of R. When we remove the �rst row ofR, we
have left a Young diagram of sizei � n which �ts in an ( m � 1) � n rectangle.
Hence there arepi � n(m � 1; n) such � , and the proof follows [why?].

Note that if we set q = 1 in (6.2), then the left-hand side becomes
# L(m; n) and the right-hand side

� m+ n
m

�
, agreeing with Proposition 6.3.

Note: There is another well-known interpretation of
� k

j

�
, this time not

of its coe�cients (regarded as a polynomial inq), but rather at its valuesfor
certain q. Namely, supposeq is the power of a prime. Recall that there is
a �eld Fq (unique up to isomorphism) with q elements. Then one can show
that

� k
j

�
is equal to the number ofj -dimensional subspaces of ak-dimensional

vector space over the �eldFq. We will not discuss the proof here since it is
not relevant for our purposes.

As the reader may have guessed by now, the posetL(m; n) is isomorphic
to a quotient poset Bs=G for a suitable integers > 0 and �nite group G
acting on Bs. Actually, it is clear that we must have s = mn sinceL(m; n)
has rank mn and in generalBs=G has rank s. What is not so clear is the
right choice of G. To this end, let R = Rmn denote anm � n rectangle of
squares. For instance,R35 is given by the 15 squares of the diagram
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We now de�ne the groupG = Gmn as follows. It is a subgroup of the group
S R of all permutations of the squares ofR. A permutation � in G is allowed
to permute the elements in each row ofR in any way, and then to permute the
rows themselves ofR in any way. The elements of each row can be permuted
in n! ways, so since there arem rows there are a total ofn!m permutations
preserving the rows. Then them rows can be permuted inm! ways, so it
follows that the order of Gmn is given by m!n!m . (The group Gmn is called
the wreath productof S n and S m , denotedS n oS m or S n wr S m . However,
we will not discuss the general theory of wreath products here.)

6.7 Example. Supposem = 4 and n = 5, with the boxes of X labelled as
follows.

6

1 2 3 4 5

7 8 9 10

12 1311 14 15

16 17 18 19 20

Then a typical permutation � in G(4; 5) looks like

19

4 3

12 13

16 20 17 18

1 5 2

15 14 11

9 6 107 8

i.e., � (16) = 1, � (20) = 2, etc.

We have just de�ned a groupGmn of permutations of the setRmn of
squares of anm � n rectangle. HenceGmn acts on the boolean algebraBR of
all subsets of the setR. The next lemma describes the orbits of this action.
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6.8 Lemma. Every orbit o of the action ofGmn on BR contains exactly one
Young diagramD (i.e., exactly one subsetD � R such thatD is left-justi�ed,
and if � i is the number of elements ofD in row i of R, then � 1 � � 2 � � � � �
� m ).

Proof. Let S be a subset ofR, and suppose thatS has � i elements in rowi .
If � 2 Gmn and � � S has � i elements in rowi , then � 1; : : : ; � m is just some
permutation of � 1; : : : ; � m [why?]. There is a unique permutation� 1; : : : ; � m

of � 1; : : : ; � m satisfying � 1 � � � � � � m , so the only possible Young diagram
D in the orbit � � S is the one of shape� = ( � 1; : : : ; � m ). It's easy to see
that the Young diagram D � of shape� is indeed in the orbit � � S. For by
permuting the elements in the rows ofR we can left-justify the rows ofS, and
then by permuting the rows ofR themselves we can arrange the row sizes of
S to be in weakly decreasing order. Thus we obtain the Young diagram D �

as claimed.

We are now ready for the main result of this section.

6.9 Theorem. The quotient posetBRmn =Gmn is isomorphic to L(m; n).

Proof. Each element ofBR=Gmn contains a unique Young diagramD � by
Lemma 6.8. Moreover, two di�erent orbits cannot contain thesame Young
diagram D since orbits are disjoint. Thus the map' : BR=Gmn ! L(m; n)
de�ned by ' (D � ) = � is a bijection (one-to-one and onto). We claim that
in fact ' is an isomorphism of partially ordered sets. We need to show the
following: Let o and o� be orbits ofGmn (i.e., elements ofBR=Gmn ). Let D �

and D � � be the unique Young diagrams ino and o� , respectively. Then there
exist D 2 o and D � 2 o� satisfying D � D � if and only if � � � � in L(m; n).

The \if" part of the previous sentence is clear, for if� � � � then D � �
D � � . So assume there existD 2 o and D � 2 o� satisfying D � D � . The
lengths of the rows ofD, written in decreasing order, are� 1; : : : ; � m , and
similarly for D � . Since each row ofD is contained in a row ofD � , it follows
that for each 1 � j � m, D � has at least j rows of size at least� j . Thus
the length � �

j of the j th largest row of D � is at least as large as� j . In other
words, � j � � �

j , as was to be proved.

Combining the previous theorem with Theorem 5.8 yields:

6.10 Corollary. The posetsL(m; n) are rank-symmetric, rank-unimodal,
and Sperner.
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Note that the rank-symmetry and rank-unimodality of L(m; n) can be
rephrased as follows: Theq-binomial coe�cient

� m + n
m

�
has symmetric and

unimodal coe�cients. While rank-symmetry is easy to prove (see Proposi-
tion 6.2), the unimodality of the coe�cients of

� m + n
m

�
is by no means ap-

parent. It was �rst proved by J. Sylvester in 1878 by a proof similar to
the one above, though stated in the language of the invarianttheory of bi-
nary forms. For a long time it was an open problem to �nd a combinatorial
proof that the coe�cients of

� m + n
m

�
are unimodal. Such a proof would give

an explicit injection (one-to-one function) � : L(m; n) i ! L(m; n) i +1 for
i < 1

2mn. (One di�culty in �nding such maps � is to make use of the hy-
pothesis that i < 1

2mn.) Finally around 1989 such a proof was found by K.
M. O'Hara. However, O'Hara's proof has the defect that the maps � are not
order-matchings. Thus her proof does not prove thatL(m; n) is Sperner, but
only that it's rank-unimodal. It is an outstanding open problem in algebraic
combinatorics to �nd an explicit order-matching � : L(m; n) i ! L(m; n) i +1

for i < 1
2mn.

Note that the Sperner property ofL(m; n) (together with the fact that the
largest level is in the middle) can be stated in the followingsimple terms: The
largest possible collectionC of Young diagrams �tting in an m � n rectangle
such that no diagram inC is contained in another diagram inC is obtained
by taking all the diagrams of size1

2mn. Although the statement of this fact
requires almost no mathematics to understand, there is no known proof that
doesn't use algebraic machinery. (The several known algebraic proofs are all
closely related, and the one we have given is the simplest.) Corollary 6.10 is
a good example of the e�cacy of algebraic combinatorics.

An application to number theory. There is an interesting application
of Corollary 6.10 to a number-theoretic problem. Fix a positive integer k.
For a �nite subset S of R+ = f � 2 R : � > 0g, and for a real number� > 0,
de�ne

f k(S; � ) = #

(

T 2
�

S
k

�
:
X

t2 T

t = �

)

In other words, f k(S; � ) is the number of k-element subsets ofS whose el-
ements sum to� . For instance, f 3(f 1; 3; 4; 6; 7g; 11) = 2, since 1 + 3 + 7 =
1 + 4 + 6 = 11.

Given positive integersk < n , our object is to maximizef k(S; � ) subject
to the condition that # S = n. We are free to choose bothS and � , but k
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and n are �xed. Call this maximum value hk(n). Thus

hk(n) = max
� 2 R+

S � R+
# S = n

f k(S; � ):

What sort of behavior can we expect of the maximizing setS? If the elements
of S are \spread out," say S = f 1; 2; 4; 8; : : : ; 2n� 1g, then all the subset
sums ofS are distinct. Hence for any� 2 R+ we havef k(S; � ) = 0 or 1.
Similarly, if the elements ofS are \unrelated" (e.g., linearly independent over
the rationals, such asS = f 1;

p
2;

p
3; �; � 2g), then again all subset sums are

distinct and f k(S; � ) = 0 or 1. These considerations make it plausible that
we should takeS = [ n] = f 1; 2; : : : ; ng and then choose� appropriately. In
other words, we are led to the conjecture that for anyS 2

� R+

n

�
and � 2 R+ ,

we have
f k(S; � ) � f k([n]; � ); (6.6)

for some� 2 R+ to be determined.
First let us evaluatef k([n]; � ) for any � . This will enable us to determine

the value of � in (6.6). Let S = f i1; : : : ; ikg � [n] with

1 � i1 < i 2 < � � � < i k � n; i 1 + � � � + i k = �: (6.7)

Let j r = i r � r . Then (since 1 + 2 + � � � + k =
� k+1

2

�
)

n � k � j k � j k� 1 � � � � � j 1 � 0; j 1 + � � � + j k = � �
�

k + 1
2

�
: (6.8)

Conversely, givenj 1; : : : ; j k satisfying (6.8) we can recoveri1; : : : ; ik satisfying
(6.7). Hencef k([n]; � ) is equal to the number of sequencesj 1; : : : ; j k satisfying
(6.8). Now let

� (S) = ( j k ; j k� 1; : : : ; j 1):

Note that � (S) is a partition of the integer � �
� k+1

2

�
with at most k parts

and with largest part at most n � k. Thus

f k([n]; � ) = p� � (k +1
2 )(k; n � k); (6.9)

or equivalently,
X

� � (k +1
2 )

f k([n]; � )q� � (k +1
2 ) =

�
n

k

�
:
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By the rank-unimodality (and rank-symmetry) of L(n� k; k) (Corollary 6.10),
the largest coe�cient of

� n
k

�
is the middle one, that is, the coe�cient of

bk(n � k)=2c. It follows that for �xed k and n, f k([n]; � ) is maximized for
� = bk(n � k)=2c +

� k+1
2

�
= bk(n + 1) =2c. Hence the following result is

plausible.

6.11 Theorem. Let S 2
� R+

n

�
, � 2 R+ , and k 2 P. Then

f k(S; � ) � f k([n]; bk(n + 1) =2c):

Proof. Let S = f a1; : : : ; ang with 0 < a 1 < � � � < a n . Let T and U be distinct
k-element subsets ofS with the same element sums, sayT = f ai 1 ; : : : ; ai k g
and U = f aj 1 ; : : : ; aj k g with i1 < i 2 < � � � < i k and j 1 < j 2 < � � � < j k .
De�ne T � = f i1; : : : ; ikg and U� = f j 1; : : : ; j kg, soT � ; U� 2

� [n]
k

�
. The crucial

observation is the following:
Claim. The elements� (T � ) and � (U� ) are incomparable inL(k; n � k),

i.e., neither � (T � ) � � (U� ) nor � (U� ) � � (T � ).
Proof of claim. Suppose not, say� (T � ) � � (U)� to be de�nite. Thus

by de�nition of L(k; n � k) we have i r � r � j r � r for 1 � r � k. Hence
i r � j r for 1 � r � k, so alsoai r � aj r (since a1 < � � � < a n ). But
ai 1 + � � � + ai k = aj 1 + � � � + aj k by assumption, soai r = aj r for all r . This
contradicts the assumption thatT and U are distinct and proves the claim.

It is now easy to complete the proof of Theorem 6.11. Suppose that
S1; : : : ; Sr are distinct k-element subsets ofS with the same element sums.
By the claim, f � (S�

1); : : : ; � (S�
r )g is an antichain in L(k; n � k). Hence r

cannot exceed the size of the largest antichain inL(k; n� k). By Theorem 6.6
and Corollary 6.10, the size of the largest antichain inL(k; n � k) is given by
pbk(n� k)=2c(k; n � k). By equation (6.9) this number is equal tof k([n]; bk(n +
1)=2c). In other words,

r � f k([n]; bk(n + 1) =2c);

which is what we wanted to prove.

Note that an equivalent statement of Theorem 6.11 is thathk(n) is equal
to the coe�cient of qbk(n� k)=2c in

� n
k

�
[why?].

Variation on a theme. Suppose that in Theorem 6.11 we do not want
to specify the cardinality of the subsets ofS. In other words, for any� 2 R
and any �nite subset S � R+ , de�ne

f (S; � ) = # f T � S :
X

t2 T

t = � g:
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Figure 6.3: The posetsM (1), M (2), M (3) and M (4)

How large canf (S; � ) be if we require #S = n? Call this maximum value
h(n). Thus

h(n) = max
� 2 R+

S � R+
# S = n

f (S; � ): (6.10)

For instance, ifS = f 1; 2; 3g then f (S;3) = 2 (coming from the subsetsf 1; 2g
and f 3g). This is easily seen to be best possible, i.e.,h(3) = 2.

We will �nd h(n) in a manner analogous to the proof of Theorem 6.11.
The big di�erence is that the relevant posetM (n) is not of the form Bn=G,
so we will have to prove the injectivity of the order-raisingoperator Ui from
scratch. Our proofs will be somewhat sketchy; it shouldn't be di�cult for
the reader who has come this far to �ll in the details.

Let M (n) be the set of all subsets of [n], with the ordering A � B
if the elements ofA are a1 > a 2 > � � � > a j and the elements ofB are
b1 > b2 > � � � > bk , where j � k and ai � bi for 1 � i � j . (The empty set ;
is the bottom element ofM (n).) Figure 6.3 showsM (1), M (2), M (3), and
M (4).
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It is easy to see thatM (n) is graded of rank
� n+1

2

�
. The rank of the subset

T = f a1; : : : ; akg is
rank(T) = a1 + � � � + ak : (6.11)

It follows [why?] that the rank-generating function ofM (n) is given by

F (M (n); q) =
(n +1

2 )X

i =0

(# M (n) i )qi = (1 + q)(1 + q2) � � � (1 + qn):

De�ne linear transformations

Ui : RM (n) i ! RM (n) i +1 ; D i : RM (n) i ! RM (n) i � 1

by

Ui (x) =
X

y 2 M ( n ) i +1
x<y

y; x 2 M (n) i

D i (x) =
X

v 2 M ( n ) i � 1
v<x

c(v; x)v; x 2 M (n) i ;

where the coe�cient c(v; x) is de�ned as follows. Let the elements ofv be
a1 > � � � > a j > 0 and the elements ofx be b1 > � � � > bk > 0. Sincex covers
v, there is a uniquer for which ar = br � 1 (and ak = bk for all other k). In
the casebr = 1 we set ar = 0. (E.g., if x is given by 5> 4 > 1 and v by
5 > 4, then r = 3 and a3 = 0.) Set

c(v; x) =

( � n+1
2

�
; if ar = 0

(n � ar )(n + ar + 1) ; if ar > 0:

It is a straightforward computation (proof omitted) to obtain the com-
mutation relation

D i +1 Ui � Ui � 1D i =
��

n + 1
2

�
� 2i

�
I i ; (6.12)

where I i denotes the identity linear transformation onRM (n) i . Clearly by
de�nition Ui is order-raising. We want to show thatUi is injective (one-to-
one) for i < 1

2

� n+1
2

�
. We can't argue as in the proof of Lemma 4.6 thatUi � 1D i
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is semide�nite since the matrices ofUi � 1 and D i are no longer transposes of
one another. Instead we use the following result from linearalgebra. For two
proofs, see pp. 331-333 ofSelected Papers on Algebra(S. Montgomery,et al.,
eds.), Mathematical Association of America, 1977.

6.12 Lemma. Let V and W be �nite-dimensional vector spaces over a �eld.
Let A : V ! W and B : W ! V be linear transformations. Then

xdim V det(AB � xI ) = xdim W det(BA � xI ):

In other words, AB and BA have the same nonzero eigenvalues.

We can now prove the key linear algebraic result.

6.13 Lemma. The linear transformation Ui is injective for i < 1
2

� n+1
2

�
and

surjective (onto) for i � 1
2

� n+1
2

�
.

Proof. We prove by induction oni that D i +1 Ui has positive real eigenvalues
for i < 1

2

� n+1
2

�
. For i = 0 this is easy to check since dimRM (n)0 = 1. Assume

for somei < 1
2

� n+1
2

�
� 1, i.e., assume thatD i Ui � 1 has positive eigenvalues.

By Lemma 6.12,Ui � 1D i has nonnegative eigenvalues. By (6.12), we have

D i +1 Ui = Ui � 1D i +
��

n + 1
2

�
� 2i

�
I i :

Thus the eigenvalues ofD i +1 Ui are
� n+1

2

�
� 2i more than those ofUi � 1D i .

Since
� n+1

2

�
� 2i > 0, it follows that D i +1 Ui has positive eigenvalues. Hence it

is invertible, soUi is injective. Similarly (or by \symmetry") Ui is surjective
for i � 1

2

� n+1
2

�
.

The main result on the posetsM (n) now follows by a familiar argument.

6.14 Theorem. The posetM (n) is graded of rank
� n+1

2

�
, rank-symmetric,

rank-unimodal, and Sperner.

Proof. We have already seen thatM (n) is graded of rank
� n+1

2

�
and rank-

symmetric. By the previous lemma,Ui is injective for i < 1
2

� n+1
2

�
and

surjective for i � 1
2

� n+1
2

�
. The proof follows from Proposition 4.4 and

Lemma 4.5.



79

Note. As a consequence of Theorem 6.14, the polynomialF (M (n); q) =
(1 + q)(1 + q2) � � � (1 + qn ) has unimodal coe�cients. No combinatorial proof
of this fact is known, unlike the situation forL(m; n) (where we mentioned
the proof of O'Hara above).

We can now determineh(n) (as de�ned by equation (6.10)) by an argu-
ment analogous to the proof of Theorem 6.11.

6.15 Theorem. Let S 2
� R+

n

�
and � 2 R+ . Then

f (S; � ) � f
�

[n];
�

1
2

�
n + 1

2

���
= h(n):

Proof. Let S = f a1; : : : ; ang with 0 < a 1 < � � � < a n . Let T and U be
distinct subsets ofS with the same element sums, sayT = f ar 1 ; : : : ; ar j g and
U = f as1 ; : : : ; ask g with r1 < r 2 < � � � < r j and s1 < s 2 < � � � < s k . De�ne
T � = f r1; : : : ; r j g and U� = f s1; : : : ; skg, so T � ; U� 2 M (n). The following
fact is proved exactly in the same way as the analogous fact for L(m; n) (the
claim in the proof of Theorem 6.11) and will be omitted here.

Fact. The elementsT � and U� are incomparable inM (n), i.e., neither
T � � U� nor U� � T � .

It is now easy to complete the proof of Theorem 6.15. Suppose that
S1; : : : ; St are distinct subsets ofS with the same element sums. By the
above fact,f S�

1; : : : ; S�
t g is an antichain in M (n). Hencet cannot exceed the

size of the largest antichain inM (n). By Theorem 6.14, the size of the largest
antichain in M (n) is the sizepb1

2 (n +1
2 )c of the middle rank. By equation (6.11)

this number is equal tof ([n]; b1
2

� n+1
2

�
c). In other words,

t � f
�

[n];
�

1
2

�
n + 1

2

���
;

which is what we wanted to prove.

Note. Theorem 6.15 is known as theweak Erd}os-Moser conjecture. The
original (strong) Erd}os-Moser conjecture deals with the caseS � R rather
than S � R+ . There is a di�erence between these two cases; for instance,
h(3) = 2 (corresponding toS = f 1; 2; 3g and � = 3), while the set f� 1; 0; 1g
has four subsets whose elements sum to 0 (including the empty set). (Can
you see where the proof of Theorem 6.15 breaks down if we allowS � R?)
The original Erd}os-Moser conjecture asserts that if #S = 2m + 1, then

f (S; � ) � f (f� m; � m + 1; : : : ; mg; 0): (6.13)
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This result can be proved by a somewhat tricky modi�cation ofthe proof
given above for the weak case; see Exercise 6.3. No proof of the Erd}os-
Moser conjecture (weak or strong) is known other than the oneindicated
here (sometimes given in a more sophisticated context, as explained in the
next Note).

Note. The key to the proof of Theorem 6.15 is the de�nition ofUi and
D i which gives the commutation relation (6.12). The reader maybe wonder-
ing how anyone managed to discover these de�nitions (especially that of D i ).
In fact, the original proof of Theorem 6.15 was based on the representation
theory of the orthogonal Lie algebrao(2n + 1; C). In this context, the de�ni-
tions of Ui and D i are built into the theory of the \principal subalgebras" of
o(2n + 1; C). R. A. Proctor was the �rst to remove the representation theory
from the proof and present it solely in terms of linear algebra.

References for Chapter 6

For a undergraduate level introduction to the theory of partitions, see
Andrews and Eriksson, [5]. A more extensive treatment is given by Andrews
[4], while a brief introduction appears in [101,x1.8].

As already mentioned in the text, the rank-unimodality ofL(m; n), that
is, of the coe�cients of the q-binomial coe�cient

� m + n
m

�
, is due to J. J.

Sylvester [105], with a combinatorial proof later given by K. M. O'Hara [76].
An explication of O'Hara's work was given by D. Zeilberger [114].

The unimodality of the coe�cients of the polynomial (1+ q)(1+ q2) � � � (1+
qn ) is implicit in the work of E. B. Dynkin [29][30, p. 332]. J. W.B. Hughes
was the �rst to observe explicitly that this polynomial arises as a special
case of Dynkin's work. The Spernicity ofL(m; n) and M (n), and a proof
of the Erd}os-Moser conjecture were �rst given by Stanley [94]. It was men-
tioned in the text above that R. A. Proctor [82] was the �rst to remove the
representation theory from the proof and present it solely in terms of linear
algebra.



Chapter 7

Enumeration under group
action.

In Sections 5 and 6 we considered the quotient posetBn=G, where G is a
subgroup of the symmetric groupS n . If pi is the number of elements of rank
i of this poset, then the sequencep0; p1; : : : ; pn is rank-symmetric and rank-
unimodal. Thus it is natural to ask whether there is some niceformula for the
numberspi . For instance, in Theorem 5.9pi is the number of nonisomorphic
graphs with m vertices (wheren =

� m
2

�
) and i edges; is there some nice

formula for this number? For the groupGmn = S n oS m of Theorem 6.6 we
obtained a simple generating function forpi (i.e., a formula for the polynomialP

i pi qi ), but this was a very special situation. In this section we will present
a general theory for enumerating inequivalent objects subject to a group of
symmetries, which will include a formula for the generatingfunction

P
i pi qi

as a special case, wherepi is the number of elements of ranki of Bn=G. The
chief architect of this theory is G. P�olya (though much of it was anticipated
by J. H. Red�eld [85]) and hence is often calledP�olya's theory of enumeration
or just P�olya theory. See the references at the end of this chapter for further
historical information.

P�olya theory is most easily understood in terms of \colorings" of some ge-
ometric or combinatorial object. For instance, consider a row of �ve squares:

In how many ways can we color the squares usingn colors? Each square can

83
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be colored any of then colors, so there aren5 ways in all. These colorings
can by indicated as

CA B ED

whereA; B; C; D; E are the �ve colors. Now assume that we are allowed to
rotate the �ve squares 180� , and that two colorings are considered the same
if one can be obtained from the other by such a rotation. (We may think that
we have cut the row of �ve squares out of paper and colored themon one
side.) We say that two colorings areequivalentif they are the same or can be
transformed into one another by a 180� rotation. The �rst naive assumption
is that every coloring is equivalent to exactly one other (besides itself), so
the number of inequivalent colorings isn5=2. Clearly this reasoning cannot
be correct sincen5=2 is not always an integer! The problem, of course, is
that some colorings stay the same when we rotate 180� . In fact, these are
exactly the colorings

A B C B A

whereA; B; C are any three colors. There aren3 such colorings, so the total
number of inequivalent colorings is given by

1
2

(number of colorings which don't equal their 180� rotation)

+(number of colorings which equal their 180� rotation

=
1
2

(n5 � n3) + n3

=
1
2

(n5 + n3):

P�olya theory gives a systematic method for obtaining formulas of this sort
for any underlying symmetry group.

The general setup is the following. LetX be a �nite set, andG a subgroup
of the symmetric groupS X . Think of G as a group of symmetries ofX . Let
C be another set (which may be in�nite), which we think of as a set of
\colors." A coloring of X is a function f : X ! C. For instance, X could
be the set of four squares of a 2� 2 chessboard, labelled as follows:
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1 2

3 4

Let C = f r; b; yg (the colors red, blue, and yellow). A typical coloring of
X would then look like

y r

r b

The above diagram thus indicates the functionf : X ! C given by f (1) =
r; f (2) = b; f (3) = y; f (4) = r .

Note. We could work in the slightly greater generality of a groupG
acting on the setX , i.e., we are given a homomorphism' : G ! S X that
need not be injective. However, we then have a well-de�ned induced injective
homomorphism  : H ! S X , where H = G=ker' . The results obtained
below forH are identical to those we get forG, so nothing is lost by assuming
that ' is injective. In this case we can identifyG with its image ' (G).

We de�ne two coloringsf and g to be equivalent (or G-equivalent, when

it is necessary to specify the group), denotedf � g or f G� g, if there exists
an element� 2 G such that

g(� (x)) = f (x) for all x 2 X:

We may write this condition more succinctly asg� = f , where g� denotes
the composition of functions (from right to left). It is easyto check, using
the fact that G is a group, that � is an equivalence relation. One should
think that equivalent functions are the same \up to symmetry."

7.1 Example. Let X be the 2� 2 chessboard andC = f r; b; yg as above.
There are many possible choices of a symmetry groupG, and this will af-
fect when two colorings are equivalent. For instance, consider the following
groups:

� G1 consists of only the identity permutation (1)(2)(3)(4).
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� G2 is the group generated by a vertical reection. It consists of the
two elements (1)(2)(3)(4) (the identity element) and (1; 2)(3; 4) (the
vertical reection).

� G3 is the group generated by a reection in the main diagonal. It
consists of the two elements (1)(2)(3)(4) (the identity element) and
(1)(4)(2; 3) (the diagonal reection).

� G4 is the group of all rotations ofX . It is a cyclic group of order four
with elements (1)(2)(3)(4), (1; 2; 4; 3), (1; 4)(2; 3), and (1; 3; 4; 2).

� G5 is the dihedral group of all rotations and reections ofX . It has
eight elements, namely, the four elements ofG4 and the four reections
(1; 2)(3; 4), (1; 3)(2; 4), (1)(4)(2; 3), and (2)(3)(1; 4).

� G6 is the symmetric group ofall 24 permutations ofX . Although this
is a perfectly valid group of symmetries, it no longer has anyconnec-
tion with the geometric representation ofX as the squares of a 2� 2
chessboard.

Consider the inequivalent colorings ofX with two red squares, one blue
square, and one yellow square, in each of the six cases above.

(G1) There are twelve colorings in all with two red squares, one blue square,
and one yellow square, and all are inequivalent under the trivial group
(the group with one element). In general, wheneverG is the trivial
group then two colorings are equivalent if and only if they are the same
[why?].

(G2) There are now six inequivalent colorings, represented by

r r

y

r

r y

r

r

y y

r r

r

y r

r y

rb

b

b

b b

b

Each equivalence class contains two elements.

(G3) Now there are seven classes, represented by

r r

y

r r

y

y

r r

y

r r

r

y r

r

r y r

y r

bb b

b b b b
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The �rst �ve classes contain two elements each and the last two classes
only one element. AlthoughG2 and G3 are isomorphic as abstract
groups, as permutation groups they have a di�erent structure. Speci�-
cally, the generator (1; 2)(3; 4) of G2 has two cycles of length two, while
the generator (1)(4)(2; 3) has two cycles of length one and one of length
two. As we will see below, it is the lengths of the cycles of theelements
of G that determine the sizes of the equivalence classes. This explains
why the number of classes forG2 and G3 are di�erent.

(G4) There are three classes, each with four elements. The size of each
class is equal to the order of the group because none of the colorings
have any symmetry with respect to the group, i.e., for any coloring
f , the only group element� that �xes f (so f � = f ) is the identity
(� = (1)(2)(3)(4)).

r r

y

r r

y

r

y rb b

b

(G5) Under the full dihedral group there are now two classes.

r

y

r r

y rb

b

The �rst class has eight elements and the second four elements. In
general, the size of a class is the index inG of the subgroup �xing
some �xed coloring in that class [why?]. For instance, the subgroup
�xing the second coloring above isf (1)(2)(3)(4) ; (1; 4)(2)(3)g, which
has index four in the dihedral group of order eight.

(G6) Under the group S 4 of all permutations of the squares there is clearly
only one class, with all twelve colorings. In general, for any set X if the
group is the symmetric groupS X then two colorings are equivalent if
and only if each color appears the same number of times [why?].
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Our object in general is to count the number of equivalence classes of
colorings which use each color a speci�ed number of times. Wewill put the
information into a generating function| a polynomial whose coe�cients are
the numbers we seek. Consider for example the setX , the groupG = G5 (the
dihedral group), and the setC = f r; b; yg of colors in Example 7.1 above.
Let � (i; j; k ) be the number of inequivalent colorings using redi times, blue
j times, and yellowk times. Think of the colorsr; b; y asvariables, and form
the polynomial

FG(r; b; y) =
X

i + j + k=4

� (i; j; k )r i bj yk :

Note that we sum only overi; j; k satisfying i + j + k = 4 since a total of four
colors will be used to color the four-element setX . The reader should check
that

FG(r; b; y) = ( r 4 + b4 + y4) + ( r 3b+ rb3 + r 3y + ry 3 + b3y + by3)

+2( r 2b2 + r 2y2 + b2y2) + 2( r 2by+ rb2y + rby2):

For instance, the coe�cient of r 2by is two because, as we have seen above,
there are two inequivalent colorings using the colorsr; r; b; y. Note that
FG(r; b; y) is a symmetric function of the variables r; b; y (i.e., it stays the
same if we permute the variables in any way), because insofaras counting
inequivalent colorings goes, it makes no di�erence whatnames we give the
colors. As a special case we may ask for thetotal number of inequivalent col-
orings with four colors. This obtained by settingr = b= y = 1 in FG(r; b; y)
[why?], yielding FG(1; 1; 1) = 3 + 6 + 2 � 3 + 2 � 3 = 21.

What happens to the generating functionFG in the above example when
we use then colorsr1; r2; : : : ; rn (which can be thought of as di�erent shades
of red)? Clearly all that matters are themultiplicities of the colors, without
regard for their order. In other words, there are �ve cases: (a) all four colors
the same, (b) one color used three times and another used once, (c) two
colors used twice each, (d) one color used twice and two others once each,
and (e) four colors used once each. These �ve cases correspond to the �ve
partitions of 4, i.e., the �ve ways of writing 4 as a sum of positive integers
without regard to order: 4, 3+1, 2+2, 2+1+1, 1+1+1+1. Our gen erating
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function becomes

FG(r1; r2; : : : ; rn) =
X

i

r 4
i +

X

i 6= j

r 3
i r j

+2
X

i<j

r 2
i r 2

j + 2
X

i 6= j
i 6= k
j<k

r 2
i r j r k + 3

X

i<j<k<l

r i r j r kr l ;

where the indices in each sum lie between 1 andn. If we set all variables
equal to one (obtaining the total number of colorings withn colors), then
simple combinatorial reasoning yields

FG(1; 1; : : : ; 1) = n + n(n � 1) + 2
�

n
2

�
+ 2n

�
n � 1

2

�
+ 3

�
n
4

�

=
1
8

(n4 + 2n3 + 3n2 + 2n): (7.1)

Note that the polynomial (7.1) has the following description: The denomina-
tor 8 is the order of the groupG5, and the coe�cient of ni in the numerator
is just the number of permutations inG5 with i cycles! For instance, the
coe�cient of n2 is 3, andG5 has the three elements (1; 2)(3; 4), (1; 3)(2; 4),
and (1; 4)(2; 3) with two cycles. We want to prove a general result of this
nature.

The basic tool which we will use is a simple result from the theory of
permutation groups known asBurnside's lemma. It was actually �rst proved
by Cauchy whenG is transitive (i.e., jY=Gj = 1 in Lemma 7.2 below) and by
Frobenius in the general case, and is sometimes called theCauchy-Frobenius
lemma.

7.2 Lemma (Burnside's lemma). Let Y be a �nite set andG a subgroup of
S Y . For each � 2 G, let

Fix(� ) = f y 2 Y : � (y) = yg;

so #Fix( � ) is the number of cycles of length one in the permutation� . Let
Y=G be the set of orbits ofG. Then

jY=Gj =
1

# G

X

� 2 G

#Fix( � ):
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An equivalent form of Burnside's lemma is the statement thatthe average
number of elements ofY �xed by an element of G is equal to the number of
orbits. Before proceeding to the proof, let us consider an example.

7.3 Example. Let Y = f a; b; c; dg,

G = f (a)(b)(c)(d); (a; b)(c; d); (a; c)(b; d); (a; d)(b; c)g;

and
G0 = f (a)(b)(c)(d); (a; b)(c)(d); (a)(b)(c; d); (a; b)(c; d)g:

Both groups are isomorphic toZ2 � Z2 (compare Example 5.1(c) and (d)).
By Burnside's lemma the number of orbits ofG is 1

4(4 + 0 + 0 + 0) = 1.
Indeed, given any two elementsi; j 2 Y, it is clear by inspection that there
is a � 2 G (which happens to be unique) such that� (i ) = j . On the other
hand, the number of orbits ofG0 is 1

4(4 + 2 + 2 + 0) = 2. Indeed, the two
orbits are f a; bg and f c; dg.

Proof of Burnside's lemma. For y 2 Y let Gy = f � 2 G : � � y = yg
(the set of permutations �xing y). Then

1
# G

X

� 2 G

jFix( � )j =
1

# G

X

� 2 G

X

y 2 Y
� � y = y

1

=
1

# G

X

y2 Y

X

� 2 G
� � y = y

1

=
1

# G

X

y2 Y

# Gy :

Now (as in the proof of Lemma 5.6) the multiset of elements� � y, � 2 G,
contains every element in the orbitGy the same number of times, namely
# G=# Gy times. Thus y occurs #G=jGyj times among the� � y, so

# G
# Gy

= # Gy:

Thus
1

# G

X

� 2 G

#Fix( � ) =
1

# G

X

y2 Y

# G
# Gy

=
X

y2 Y

1
# Gy

:
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How many times does a term 1=# O appear in the above sum, whereO is
a �xed orbit? We are asking for the number ofy such that Gy = O. But
Gy = O if and only if y 2 O , so 1=# O appears #O times. Thus each orbit
gets counted exactly once, so the above sum is equal to the number of orbits.
�

7.4 Example. How many inequivalent colorings of the vertices of a regular
hexagonH are there usingn colors, under cyclic symmetry? LetCn be the
set of alln-colorings ofH . Let G be the group of all permutations ofCn which
permute the colors cyclically, soG �= Z6. We are asking for the number of
orbits of G [why?]. We want to apply Burnside's lemma, so for each of the
six elements� of G we need to compute the number of colorings �xed by
that element. Let � be a generator ofG.

� � = 1 (the identity): All n6 colorings are �xed by � .

� � = �; � � 1: Only the n colorings with all colors equal are �xed.

� � = � 2; � 4: Any coloring of the form abababis �xed (writing the colors
linearly in the order they appear around the hexagon, starting at any
�xed vertex). There are n choices fora and n for b, so n2 colorings in
all.

� � = � 3: The �xed colorings are of the formabcabc, so n3 in all.

Hence by Burnside's lemma, we have

number of orbits =
1
6

(n6 + n3 + 2n2 + 2n):

The reader who has followed the preceding example will have no trouble
understanding the following result.

7.5 Theorem. Let G be a group of permutations of a �nite setX . Then the
number NG(n) of inequivalent (with respect toG) n-colorings of X is given
by

NG(n) =
1

# G

X

� 2 G

nc(� ) ; (7.2)

wherec(� ) denotes the number of cycles of� .
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Proof. Let � n denote the action of� 2 G on the set Cn of n-colorings of
X . We want to determine the set Fix(� n ), so that we can apply Burnside's
lemma. Let C be the set ofn colors. If f : X ! C is a coloring �xed by � ,
then for all x 2 X we have

f (x) = � n � f (x) = f (� (x)) :

Thus f 2 Fix( � n ) if and only if f (x) = f (� (x)). Hence f (x) = f (� k(x)) for
any k � 1 [why?]. The elementsy of X of the form � k(x) for k � 1 are just
the elements of the cycle of� containing x. Thus to obtain f 2 Fix( � n ),
we should take the cycles� 1; : : : ; � c(� ) of � and color each element of� i the
same color. There aren choices for each� i , so nc(� ) colorings in all �xed by
� . In other words, #Fix( � n ) = nc(� ) , and the proof follows by Burnside's
lemma.

We would now like not just to count the total number of inequivalent
colorings withn-colors, but more strongly to specify the number of occurences
of each color. We will need to use not just the numberc(� ) of cycles of each
� 2 G, but rather the lengths of each of the cycles of� . Thus given a
permutation � of an n-element setX , de�ne the type of � to be

type(� ) = ( c1; c2; : : : ; cn );

where � hasci i -cycles. For instance, if� = 4; 7; 3; 8; 2; 10; 11; 1; 6; 9; 5, then

type(� ) = type (1 ; 4; 8)(2; 7; 11; 5)(3)(6; 10; 9)

= (1 ; 0; 2; 1; 0; 0; 0; 0; 0; 0; 0):

Note that we always have
P

i ici = n [why?]. De�ne the cycle indicator of �
to be the monomial

Z � = zc1
1 zc2

2 � � � zcn
n :

(Many other notations are used for the cycle indicator. The use ofZ � comes
from the German word Zyklus for cycle. The original paper of P�olya was
written in German.) Thus for the example above, we haveZ � = z1z2

3z4.
Now given a subgroupG of S X , the cycle indicator (or cycle index poly-

nomial) of G is de�ned by

ZG = ZG(z1; : : : ; zn ) =
1

# G

X

� 2 G

Z � :

Thus ZG (also denotedPG, Cyc(G), etc.) is a polynomial in the variables
z1; : : : ; zn .
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7.6 Example. If X consists of the vertices of a square andG is the group
of rotations of X (a cyclic group of order 4), then

ZG =
1
4

(z4
1 + z2

2 + 2z4):

If reections are also allowed (soG is the dihedral group of order 8), then

ZG =
1
8

(z4
1 + 3z2

2 + 2z2
1z2 + 2z4):

We are now ready to state the main result of this section.

7.7 Theorem (P�olya's theorem, 1937). Let G be a group of permutations of
the n-element setX . Let C = f r1; r2; : : : g be a set of colors. Let� (i1; i2; : : : )
be the number of inequivalent (under the action ofG) colorings f : X ! C
such that colorr j is usedi j times. De�ne

FG(r1; r2; : : : ) =
X

i 1 ;i 2 ;:::

� (i1; i2; : : : )r i 1
1 r i 2

2 � � � :

(Thus FG is a polynomial or a power series in the variablesr1; r2; : : : , de-
pending on whether or notC is �nite or in�nite.) Then

FG(r1; r2; : : : ) = ZG(r1+ r2+ r3+ � � � ; r 2
1 + r 2

2 + r 2
3 + � � � ; : : : ; r j

1+ r j
2+ r j

3+ � � � ):

(In other words, substitute
P

i r j
i for zj in ZG.)

Before giving the proof let us consider an example.

7.8 Example. Suppose that in Example 7.6 our set of colors isC = f a; b; c; dg,
and that we take G to be the group of cyclic symmetries. Then

FG(a; b; c; d) =
1
4

�
(a + b+ c + d)4 + ( a2 + b2 + c2 + d2)2 + 2( a4 + b4 + c4 + d4)

�

= ( a4 + � � � ) + ( a3b+ � � � ) + 2( a2b2 + � � � ) + 3( a2bc+ � � � ) + 6 abcd:

An expression such as (a2b2 + � � � ) stands for the sum of all monomials in the
variablesa; b; c; dwith exponents 2; 2; 0; 0 (in some order). The coe�cient of
all such monomials is 2, indicating two inequivalent colorings using one color
twice and another color twice. If insteadG were the full dihedral group, we
would get

FG(a; b; c; d) =
1
8

�
(a + b+ c + d)4 + 3( a2 + b2 + c2 + d2)2

+ 2( a + b+ c + d)2(a2 + b2 + c2 + d2) + 2( a4 + b4 + c4 + d4)
�

= ( a4 + � � � ) + ( a3b+ � � � ) + 2( a2b2 + � � � ) + 2( a2bc+ � � � ) + 3 abcd:
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Proof of P�olya's theorem. Let # X = t and i1 + i2 + � � � = t, where
each i j � 0. Let i = ( i1; i2; :::), and let Ci denote the set of all colorings
of X with color r j used i j times. The group G acts on Ci , since if f 2 Ci

and � 2 G, then � � f 2 Ci . (\Rotating" a colored object does not change
how many times each color appears.) Let� i denote the action of� on Ci .
We want to apply Burnside's lemma to compute the number of orbits, so we
need to �nd #Fix( � i ).

In order for f 2 Fix( � i ), we must colorX so that (a) in any cycle of� ,
all the elements get the same color, and (b) the colorr j appearsi j times.
Consider the product

H � =
Y

j

(r j
1 + r j

2 + � � � )cj (� ) ;

where cj (� ) is the number of j -cycles (cycles of lengthj ) of � . When we
expand this product as a sum of monomialsr j 1

1 r j 2
2 � � � , we get one of these

monomials by choosing a termr j
k from each factor ofH � and multiplying

these terms together. Choosingr j
k corresponds to coloring all the elements

of somej -cycle with r k . Since a factorr j
1 + r j

2 + � � � occurs preciselycj (� )
times in H � , choosing a termr j

k from every factor corresponds to coloring
X so that every cycle is monochromatic (i.e., all the elementsof that cycle
get the same color). The product of these termsr j

k will be the monomial
r j 1

1 r j 2
2 � � � , where we have used colorr k a total of j k times. It follows that the

coe�cient of r i 1
i r i 2

2 � � � in H � is equal to #Fix( � i ). Thus

H � =
X

i

#Fix( � i )r
i 1
1 r i 2

2 � � � : (7.3)

Now sum both sides of (7.3) over all� 2 G and divide by # G. The left-hand
side becomes

1
# G

X

� 2 G

Y

j

(r j
1 + r j

2 + � � � )cj (� ) = ZG(r1 + r2 + � � � ; r 2
1 + r 2

2 + � � � ; : : : ):

On the other hand, the right-hand side becomes

X

i

"
1

# G

X

� 2 G

#Fix( � i )

#

r i 1
1 r i 2

2 � � � :

By Burnside's lemma, the expression in brackets is just the number of orbits
of � i acting on Ci , i.e., the number of inequivalent colorings using colorr j a
total of i j times, as was to be proved.�
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7.9 Example. (Necklaces) Anecklaceof length ` is a circular arrangement
of ` (colored) beads. Two necklaces are considered the same if they are
cyclic rotations of one another. LetX be a set of` (uncolored) beads, say
X = f 1; 2; : : : ; `g. Regarding the beads as being placed equidistantly on a
circle in the order 1; 2: : : ; `, let G be the cyclic group of rotations ofX . Thus
if � is the cycle (1; 2; : : : ; `), then G = f 1; �; � 2; : : : ; � ` � 1g. For example, if
` = 6 then the elements ofG are

� 0 = (1)(2)(3)(4)(5)(6)

� = (1 ; 2; 3; 4; 5; 6)

� 2 = (1 ; 3; 5)(2; 4; 6)

� 3 = (1 ; 4)(2; 5)(3; 6)

� 4 = (1 ; 5; 3)(2; 6; 4)

� 5 = (1 ; 6; 5; 4; 3; 2):

In general, if d is the greatest common divisor ofm and ` (denoted d =
gcd(m; `)), then � m has d cycles of length`=d. An integer m satis�es 1 �
m � ` and gcd(m; `) = d if and only if 1 � m=d � `=d and gcd(m=d; `=d) = 1.
Hence the number of such integersm is given by the Euler phi-function (or
totient function) � (`=d), which by de�nition is equal to the number of integers
1 � i � `=d such that gcd(i; `=d) = 1. Recall that � (k) can be computed by
the formula

� (k) = k
Y

pj k
p prime

�
1 �

1
p

�
: (7.4)

For instance, � (1000) = 1000(1� 1
2)(1 � 1

5) = 400. Putting all this together
gives the following formula for the cycle enumeratorZG(z1; : : : ; z̀ ):

ZG(z1; : : : ; z̀ ) =
1
`

X

dj`

� (`=d)zd
`=d;

or (substituting `=d for d),

ZG(z1; : : : ; z̀ ) =
1
`

X

dj`

� (d)z`=d
d :

There follows from P�olya's theorem the following result (originally proved by
P. A. MacMahon (1854{1929) before P�olya discovered his general result).
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7.10 Theorem. (a) The number N` (n) of n-colored necklaces of length̀
is given by

N` (n) =
1
`

X

dj`

� (`=d)nd: (7.5)

(b) We have

FG(r1; r2; : : : ) =
1
`

X

dj`

� (d)(r d
1 + r d

2 + � � � )`=d:

Note: (b) reduces to (a) if r1 = r2 = � � � = 1. Moreover, since clearly
N` (1) = 1, putting n = 1 in (7.5) yields the famous identity

X

dj`

� (`=d) = `:

What if we are allowed to ip necklaces over, not just rotate them? Now
the group becomes the dihedral group of order 2`, and the corresponding
inequivalent colorings are calleddihedral necklaces. We leave to the reader
to work out the cycle enumerators

1
2`

0

@
X

dj`

� (d)z`=d
d + mz2

1zm� 1
2 + mzm

2

1

A ; if ` = 2m

1
2`

0

@
X

dj`

� (d)z`=d
d + `z1zm

2

1

A ; if ` = 2m + 1:

7.11 Example. n-colored *proper* 4-necklaces ??

7.12 Example. Let G = S ` , the group of all permutations off 1; 2; : : : ; `g =
X . Thus for instance

ZS 3 (z1; z2; z3) =
1
6

(z3
1 + 3z1z2 + 2z3)

ZS 4 (z1; z2; z3; z4) =
1
24

(z4
1 + 6z2

1z2 + 3z2
2 + 8z1z3 + 6z4):

It is easy to count the number of inequivalent colorings inCi . If two colorings
of X use each color the same number of times, then clearly there issome
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permutation of X which sends one of the colorings to the other. HenceCi

consists of a single orbit. Thus

FS ` (r1; r2; : : : ) =
X

i 1+ i 2+ ���= `

r i 1
1 r i 2

2 � � � ;

the sum of all monomials of degreè.
To count the total number of inequivalentn-colorings, note that

X

` � 0

FS ` (r1; r2; : : : )x` =
1

(1 � r1x)(1 � r2x) � � �
: (7.6)

since if we expand each factor on the right-hand side into theseries
P

j � 0 r j
i x

j

and multiply, the coe�cient of x` will just be the sum of all monomials of
degreè . For �xed n, let f n (`) denote the number of inequivalentn-colorings
of X . Since f n (`) = FS ` (1; 1; : : : ; 1) (n 1's in all), there follows from (7.6)
that X

` � 0

f n (`)x` =
1

(1 � x)n
:

The right-hand side can be expanded (e.g. by Taylor's theorem) as

1
(1 � x)n

=
X

` � 0

�
n + ` � 1

`

�
x` :

Hence

f n (`) =
�

n + ` � 1
`

�
:

It is natural to ask whether there might be a more direct proofof such a
simple result. This is actually a standard result in elementary enumerative
combinatorics. For �xed ` and n we want the number of solutions toi1 +
i2 + � � � + in = ` in nonnegative integers. Settingkj = i j + 1, this is the same
as the number of solutions tok1 + k2 + � � � + kn = ` + n in positive integers.
Place ` + n dots in a horizontal line. There are` + n � 1 spaces between
the dots. Choosen � 1 of these spaces and draw a vertical bar in them in� n+ `� 1

n� 1

�
=

� n+ `� 1
`

�
ways. For example, ifn = 5 and ` = 6, then one way of

drawing the bars is

s s s s s s s s s s s
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The number of dots in each \compartment," read from left to right, gives
the numbersk1; : : : ; kn . For the above example we get 2 + 3 + 2 + 1 + 3 = 11,
corresponding to the original solution 1 + 2 + 1 + 0 + 2 = 6 (i.e., one element
of X coloredr1, two elements coloredr2, one coloredr3, and two coloredr5).
Since this correspondence between solutions toi1 + i2 + � � � + in = ` and sets
of bars is clearly a bijection, we get

� n+ `� 1
`

�
solutions as claimed.

Recall (Theorem 7.5) that the number of inequivalentn-colorings ofX
(with respect to any groupG of permutations ofX ) is given by

1
# G

X

� 2 G

nc(� ) ;

wherec(� ) denotes the number of cycles of� . Hence forG = S ` we get the
identity

1
`!

X

� 2 S `

nc(� ) =
�

n + ` � 1
`

�

=
1
`!

n(n + 1)( n + 2) � � � (n + ` � 1):

Multiplying by `! yields
X

� 2 S `

nc(� ) = n(n + 1)( n + 2) � � � (n + ` � 1): (7.7)

Equivalently [why?], if we de�ne c(`; k ) to be the number of permutations in
S ` with k cycles (called asignless Stirling number of the �rst kind), then

`X

k=1

c(`; k )xk = x(x + 1)( x + 2) � � � (x + ` � 1):

For instance, x(x + 1)( x + 2)( x + 3) = x4 + 6x3 + 11x2 + 6x, so (taking
the coe�cient of x2) eleven permutations inS 4 have two cycles, namely,
(123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2), (234)(1), (243)(1),
(12)(34), (13)(24), (14)(23).

Although it was easy to compute the generating functionFS ` (r1; r2; : : : )
directly without the necessity of computing the cycle indicator ZS ` (z1; : : : ; z̀ ),
we can still ask whether there is a formula of some kind for this polynomial.
First we determine explicitly its coe�cients.
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7.13 Theorem. Let
P

ici = `. The number of permutations� 2 S `

with ci cycles of lengthi (or equivalently, the coe�cient of zc1
1 zc2

2 � � � in
`!ZS ` (z1; : : : ; z̀ )) is equal to `!=1c1c1!2c2c2! � � � .

Example. The number of permutations inS 15 with three 1-cycles, two
2-cycles, and two 4-cycles is 15!=13 � 3! � 22 � 2! � 42 � 2! = 851; 350; 500.

Proof of Theorem 7.13. Fix c = ( c1; c2; : : : ) and let X c be the set
of all permutations � 2 S ` with ci cycles of lengthi . Given a permutation
� = a1a2 � � � a` in S ` , construct a permutation f (� ) 2 X c as follows. Let
the 1-cycles off (� ) be (a1); (a2); : : : ; (ac1 ). Then let the 2-cycles off (� )
be (ac1+1 ; ac1+2 ); (ac1+3 ; ac1+4 ); : : : , (ac1+2 c2 � 1; ac1+2 c2 ). Then let the 3-cycles
of f (� ) be (ac1+2 c2+1 ; ac1+2 c2+2 ; ac1+2 c2+3 ), (ac1+2 c2+4 ; ac1+2 c2+5 ; ac1+2 c2+6 ), : : : ,
(ac1+2 c2+3 c3 � 2; ac1+2 c2+3 c3 � 1; ac1+2 c2+3 c3 ), etc., continuing until we reacha` and
have produced a permutation inX c. For instance, if ` = 11; c1 = 3; c2 =
2; c4 = 1, and � = 4; 9; 6; 11; 7; 1; 3; 8; 10; 2; 5, then

f (� ) = (4)(9)(6)(11 ; 7)(1; 3)(8; 10; 2; 5):

We have de�ned a functionf : S ` ! X c. Given � 2 X c, what is # f � 1(� ),
the number of permutations sent to� by f ? A cycle of lengthi can be written
in i ways, namely,

(b1; b2; : : : ; bi ) = ( b2; b3; : : : ; bi ; b1) = � � � = ( bi ; b1; b2; : : : ; bi � 1):

Moreover, there areci ! ways to order theci cycles of lengthi . Hence

# f � 1(� ) = c1!c2!c3! � � � 1c12c23c3 � � � ;

the same number for any� 2 X c. It follows that

# X c =
# S `

c1!c2! � � � 1c12c2 � � �

=
`!

c1!c2! � � � 1c12c2 � � �
;

as was to be proved. �
As for the polynomial ZS ` itself, we have the following result. Write

expy = ey .

7.14 Theorem. We have
X

` � 0

ZS ` (z1; z2; : : : )x` = exp
�

z1x + z2
x2

2
+ z3

x3

3
+ � � �

�
:
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Proof. There are some sophisticated ways to prove this theorem which \ex-
plain" why the exponential function appears, but we will be content here
with a \naive" proof. Write

ez1x+ z2
x 2

2 + z3
x 3

3 + ��� = ezx � ez2
x 2

2 � ez3
x 3

3 � � �

=

 
X

n� 0

zn
1 xn

n!

!  
X

n� 0

zn
2 x2n

2nn!

!  
X

n� 0

zn
3 x3n

3nn!

!

� � � :

When we multiply this product out, the coe�cient of zc1
1 zc2

2 � � � x` , where
` = c1 + 2c2 + � � � , is given by

1
1c1c1!2c2c2! � � �

=
1
`!

�
`!

1c1c1!2c2c2! � � �

�
:

By Theorem 7.13 this is just the coe�cient of zc1
1 zc2

2 � � � in ZS ` (z1; z2; : : : ), as
was to be proved.

As a check of Theorem 7.14, set eachzi = n to obtain
X

` � 0

ZS ` (n; n; : : : )x` = enx + n x 2

2 + n x 3

3 + ���

= en(x+ x 2

2 + x 3

3 + ��� )

= en log(1� x) � 1

=
1

(1 � x)n

=
X

` � 0

�
� n
`

�
(� x)`

=
X

` � 0

�
n + ` � 1

`

�
x` ;

the last step following from the easily checked equality
� � n

`

�
= ( � 1)`

� n+ `� 1
`

�
.

Equating coe�cients of x` in the �rst and last terms of the above string of
equalities gives

ZS ` (n; n; : : : ) =
�

n + ` � 1
`

�

=
n(n + 1) � � � (n + ` � 1)

`!
;
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agreeing with Theorem 7.5 and equation (7.7).
Theorem 7.14 has many enumerative applications. We give onesuch

result here as an example.

7.15 Proposition. Let f (n) be the number of permutationsw 2 S n of odd
order. Equivalently,wk = 1 for some oddk. Then

f (n) =

(
12 � 32 � 52 � � � (n � 1)2; n even

12 � 32 � 52 � � � (n � 2)2 � n; n odd:

Proof. A permutation has odd order if and only if all its cycle lengths are
odd. Hence [why?]

f (n) = n!ZS n (zi = 1; i odd;zi = 0; i even):

Making this substitution in Theorem 7.14 gives

X

n� 0

f (n)
xn

n!
= exp

�
x +

x3

3
+

x5

5
+ � � �

�
:

Since� log(1 � x) = x + x2

2 + x3

3 + � � � , we get [why?]

X

n� 0

f (n)
xn

n!
= exp

�
1
2

(� log(1 � x) + log(1 + x))
�

= exp
1
2

log
�

1 + x
1 � x

�

=

r
1 + x
1 � x

:

We therefore need to �nd the coe�cients in the power series expansion ofp
(1 + x)=(1 � x) at x = 0. There is a simple trick for doing so:

r
1 + x
1 � x

= (1 + x)(1 � x2)� 1=2

= (1 + x)
X

m� 0

�
� 1=2

m

�
(� x2)m

=
X

m� 0

(� 1)m

�
� 1=2

m

�
(x2m + x2m+1 );
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where by de�nition
�

� 1=2
m

�
=

1
m!

�
�

1
2

� �
�

3
2

�
� � �

�
�

2m � 1
2

�
:

It is now a routine computation to check that the coe�cient of xn=n! inp
(1 + x)=(1 � x) agrees with the desired value off (n).

Quotients of boolean algebra. We will show how to apply P�olya
theory to the problem of counting the number of elements of given rank in a
quotient posetBX =G. HereX is a �nite set, BX is the boolean algebra of all
subsets ofX , and G is a group of permutations ofX (with an induced action
on BX ). What do colorings of X have to do with subsets? The answer is
very simple: A 2-coloringf : X ! f 0; 1g corresponds to a subsetSf of X by
the usual rule

s 2 Sf () f (s) = 1 :

Note that two 2-coloringsf and g are G-equivalent if and only if Sf and Sg

are in the same orbit ofG (acting on BX ). Thus the number of inequivalent
2-coloringsf of X with i values equal to 1 is just #(BX =G) i , the number of
elements ofBX =G of rank i . As an immediate application of P�olya's theorem
(Theorem 7.7) we obtain the following result.

7.16 Corollary. We have
X

i

#( BX =G) i qi = ZG(1 + q;1 + q2; 1 + q3; : : : ):

Proof. If � (i; j ) denotes the number of inequivalent 2-colorings ofX with
the colors 0 and 1 such that 0 is usedj times and 1 is usedi times (so
i + j = # X ), then by P�olya's theorem we have

X

i;j

� (i; j )x i yj = ZG(x + y; x2 + y2; x3 + y3; : : : ):

Setting x = q and y = 1 yields the desired result [why?].

Combining Corollary 7.16 with the rank-unimodality of BX =G (Theo-
rem 5.8) yields the following corollary.

7.17 Corollary. For any �nite group G of permutations of a �nite set X ,
the polynomialZG(1 + q;1 + q2; 1 + q3; : : : ) has symmetric, unimodal, integer
coe�cients.
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7.18 Example. (a) For the posetP of Example 5.4(a) we haveG = f (1)(2)(3); (1; 2)(3)g,
so ZG(z1; z2; z3) = 1

2(z3
1 + z1z2). Hence

3X

i =0

(# Pi )qi =
1
2

�
(1 + q)3 + (1 + q)(1 + q2)

�

= 1 + 2 q+ 2q2 + q3:

(b) For the poset P of Example 5.4(b) we haveG = f (1)(2)(3)(4)(5),
(1; 2; 3; 4; 5), (1; 3; 5; 2; 4), (1; 4; 2; 5; 3), (1; 5; 4; 3; 2)g, soZG(z1; z2; z3; z4; z5) =
1
5(z5

1 + 4z5). Hence

5X

i =0

(# Pi )qi =
1
5

�
(1 + q)5 + 4(1 + q5)

�

= 1 + q+ 2q2 + 2q3 + q4 + q5:

(c) Let X be the squares of a 2� 2 chessboard, labelled as follows:

1 2

3 4

Let G be the wreath productS 2 oS 2, as de�ned in Section 6. Then

G = f (1)(2)(3)(4) ; (1; 2)(3)(4); (1)(2)(3; 4); (1; 2)(3; 4);

(1; 3)(2; 4); (1; 4)(2; 3); (1; 3; 2; 4); (1; 4; 2; 3)g;

so
ZG(z1; z2; z3; z4) =

1
8

(z4
1 + 2z2

1z2 + 3z2
2 + 2z4):

Hence

4X

i =0

(# Pi )qi =
1
4

�
(1 + q)4 + 2(1 + q)2(1 + q2) + 3(1 + q2)2 + 2(1 + q4)

�

= 1 + q+ 2q2 + q3 + q4

=
�

4

2

�
;

agreeing with Theorem 6.6.
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Using more sophisticated methods (such as the representation theory of
the symmetric group), the following generalization of Corollary 7.17 can be
proved: LetP(q) be any polynomial with symmetric, unimodal, nonnegative,
integer coe�cients, such as 1 +q + 3q2 + 3q3 + 8q4 + 3q5 + 3q6 + q7 + q8 or
q5 + q6 (= 0+0 q+ � � � +0q4 + q5 + q6 +0q7 + � � � +0q11). Then the polynomial
ZG(P(q); P(q2); P(q3); : : : ) has symmetric, unimodal, nonnegative, integer
coe�cients.

Graphs. A standard application of P�olya theory is to the enumeration
of nonisomorphic graphs. We saw at the end of Section 5 that ifM is an
m-element vertex set,X =

� M
2

�
, and S (2)

m is the group of permutations of
X induced by permutations ofM , then an orbit of i -element subsets ofX
may be regarded as an isomorphism class of graphs on the vertex set M with
i -edges. Thus #(BX =S (2)

m ) i is the number of nonisomorphic graphs (without
loops or multiple edges) on the vertex setM with i edges. It follows from
Corollary 7.16 that if gi (m) denotes the number of nonisomorphic graphs
with m vertices andi edges, then

(m
2 )X

i =0

gi (m)qi = Z
S (2)

m
(1 + q;1 + q2; 1 + q3; : : : ):

Thus we would like to compute the cycle enumeratorZS (2)
m

(z1; z2; : : : ). If two
permutations� and � of M have the same cycle type (number of cycles of each
length), then their actions onX also have the same cycle type [why?]. Thus
for each possible cycle type of a permutation ofM (i.e., for each partition
of m) we need to compute the induced cycle type onX . We also know
from Theorem 7.13 the number of permutations ofM of each type. For
small values ofm we can pick some permutation� of each type and compute
directly its action on X in order to determine the induced cycle type. For
m = 4 we have:

CYCLE INDUCED CYCLE
LENGTHS PERMUTATION LENGTHS

OF � NUMBER � � 0 OF � 0

1; 1; 1; 1 1 (1)(2)(3)(4) (12)(13)(14)(23)24)(34) 1; 1; 1; 1; 1; 1
2; 1; 1 6 (1; 2)(3)(4) (12)(12; 23)(14; 24)(34) 2; 2; 1; 1
3; 1 8 (1; 2; 3)(4) (12; 23; 13)(14; 24; 34) 3; 3
2; 2 3 (1; 2)(3; 4) (12)(13; 24)(14; 23)(34) 2; 2; 1; 1
4 6 (1; 2; 3; 4) (12; 23; 34; 14)(13; 24) 4; 2
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It follows that

ZS (2)
4

(z1; z2; z3; z4; z5; z6) =
1
24

(z6
1 + 9z2

1z2
2 + 8z2

3 + 6z2z4):

If we set zi = 1 + qi and simplify, we obtain the polynomial

6X

i =0

gi (4)qi = 1 + q+ 2q2 + 3q3 + 2q4 + q5 + q6:

Suppose that we instead wanted to count the numberhi (4) of nonisomorphic
graphs with four vertices andi edges, where now we allow at mosttwo edges
between any two vertices. We can takeM , X , and G = S (2)

4 as before, but
now we have three colors: red for no edges, blue for one edge, and yellow
for two edges. A monomialr i bj yk corresponds to a coloring withi pairs of
vertices having no edges between them,j pairs having one edge, andk pairs
having two edges. The total numbere of edges isj + 2k. Hence if we let
r = 1; b= q; y = q2, then the monomialr i bj yk becomesqj +2 k = qe. It follows
that

i (i � 1)X

i =0

hi (4)qi = Z
S (2)

4
(1 + q+ q2; 1 + q2 + q4; 1 + q3 + q6; : : : )

=
1
24

�
(1 + q+ q2)6 + 9(1 + q+ q2)2(1 + q2 + q4)2

+8(1 + q3 + q6)2 + 6(1 + q2 + q4)(1 + q4 + q8)
�

= 1 + q+ 3q2 + 5q3 + 8q4 + 9q5 + 12q6 + 9q7 + 8q8 + 5q9

+3q10 + q11 + q12:

The total number of nonisomorphic graphs on four vertices with edge multi-
plicities at most two is

P
i hi (4) = 66.

It should now be clear that if we restrict the edge multiplicity to be r ,
then the corresponding generating function isZS (2)

4
(1+ q+ q2 + � � � + qr � 1; 1+

q2 + q4 + � � � + q2r � 2; : : : ). In particular, to obtain the total number N (r; 4)
of nonisomorphic graphs on four vertices with edge multiplicity at most r ,
we simply set eachzi = r , obtaining

N (r; 4) = ZS (2)
4

(r; r; r; r; r; r )

=
1
24

(r 6 + 9r 4 + 14r 2):
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This is the same as number of inequivalentr -colorings of the setX =
� M

2

�

(where #M = 4) [why?].
Of course the same sort of reasoning can be applied to any number of ver-

tices. For �ve vertices our table becomes the following (using such notation
as 15 to denote a sequence of �ve 1's).

CYCLE INDUCED CYCLE
LENGTHS PERMUTATION LENGTHS

OF � NO. � � 0 OF � 0

15 1 (1)(2)(3)(4)(5) (12)(13) � � � (45) 110

2; 13 10 (1; 2)(3)(4)(5) (12)(13; 23)(14; 25)(15; 25)(34)(35)(45) 23; 14

3; 12 20 (1; 2; 3)(4)(5) (12; 23; 13)(14; 24; 34)(15; 25; 35)(45) 33; 1
22; 1 15 (1; 2)(3; 4)(5) (12)(13; 24)(14; 23)(15; 25)(34)(35; 45) 24; 12

4; 1 30 (1; 2; 3; 4)(5) (12; 23; 34; 14)(13; 24)(15; 25; 35; 45) 42; 2
3; 2 20 (1; 2; 3)(4; 5) (12; 23; 13)(14; 25; 34; 15; 24; 35)(45) 6; 3; 1
5 24 (1; 2; 3; 4; 5) (12; 23; 34; 45; 15)(13; 24; 35; 14; 25) 52

Thus

ZS (2)
5

(z1; : : : ; z10) =
1

120
(z10

1 +10z4
1z3

2+20z1z3
3+15z2

1z4
2+30z2z2

4+20z1z3z6+24z2
5);

from which we compute

10X

i =0

gi (5)qi = ZS (2)
5

(1 + q;1 + q2; : : : ; 1 + q10)

= 1 + q+ 2q2 + 4q3 + 6q4 + 6q5 + 6q6 + 4q7 + 2q8 + q9 + q10:

For an arbitrary number m = # M of vertices there exist explicit formulas
for the cycle indicator of the induced action of� 2 S M on

� M
2

�
, thereby

obviating the need to compute� 0 explicitly as we did in the above tables,
but the overall expression forZS (2)

m
cannot be simpli�ed signi�cantly or put

into a simple generating function as we did in Theorem 7.14. For reference
we record

ZS (2)
6

=
1
6!

(z15
1 + 15z7

1z4
2 + 40z3

1z4
3 + 45z3

1z6
2 + 90z1z2z3

4 + 120z1z2z2
3z6

+144z3
5 + 15z3

1z6
2 + 90z1z2z3

4 + 40z5
3 + 120z3z2

6)
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(g0(6); g1(6); : : : ; g15(6)) = (1 ; 1; 2; 5; 9; 15; 21; 24; 24; 21; 15; 9; 5; 2; 1; 1):

Moreover if u(n) denotes the number of nonisomorphic simple graphs withn
vertices, then

(u(0); u(1); : : : ; u(11))

= (1 ; 1; 2; 4; 11; 34; 156; 1044; 12346; 274668; 12005168; 1018997864):

A table of u(n) for n � 75 is given at

http://www.research.att.com/ � njas/sequences/b000088.txt

In particular,

u(75) = 91965776790545918117055311393231179873443957239

0555232344598910500368551136102062542965342147

8723210428876893185920222186100317580740213865

7140377683043095632048495393006440764501648363

4760490012493552274952950606265577383468983364

6883724923654397496226869104105041619919159586

8518775275216748149124234654756641508154401414

8480274454866344981385848105320672784068407907

1134767688676890584660201791139593590722767979

8617445756819562952590259920801220117529208077

0705444809177422214784902579514964768094933848

3173060596932480677345855848701061537676603425

1254842843718829212212327337499413913712750831

0550986833980707875560051306072520155744624852

0263616216031346723897074759199703968653839368

77636080643275926566803872596099072;

a number of 726 digits! Compare

2(75
2 )

75!
= :9196577679054591809� 10726;

which agrees withu(75) to 17 signi�cant digits [why?].
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References for Chapter 7

Burnside's lemma (Lemma 7.2) was actually �rst stated and proved by
Frobenius [39, end ofx4]. Frobenius in turn credits Cauchy [20, p. 286] for
proving the lemma in the transitive case. Burnside, in the �rst edition of his
book [17,x118{119], attributes the lemma to Frobenius, but in the second
edition [18] this citation is absent. For more on the historyof Burnside's
lemma, see [74] and [112]. Many authors now call this result the Cauchy-
Frobenius lemma. The cycle indicatorZG(z1; z2; : : : ) (where G is a subgroup
of S n) was �rst considered by J. H. Red�eld [85], who called it thegroup
reduction function, denoted Grf(G). G. P�olya [78] independently de�ned the
cycle indicator, proved the fundamental Theorem 7.7, and gave numerous
applications. For an English translation of P�olya's paper, see [79]. Much
of P�olya's work was anticipated by Red�eld. For interesting historical in-
formation about the work of Red�eld and its relation to P�olya theory, see
[47][49][66][86] (all in the same issue ofJournal of Graph Theory). The
Wikipedia article \John Howard Red�eld" also gives information and refer-
ences on the interesting story of the rediscovery and signi�cance of Red�eld's
work.

The application of P�olya's theorem to the enumeration of nonisomorphic
graphs appears in P�olya's original paper [78]. For much additional work on
graphical enumeration, see the text of Harary and Palmer [48].

Subsequent to P�olya's work there have been a huge number of expositions,
applications, and generalizations of P�olya theory. An example of a nice
generalization appears in Exercise 7.11. We mention here only the nice survey
[15] by N. G. de Bruijn.

Theorem 7.14 (the generating function for the cycle indicator ZS ` of the
symmetric group S `) goes back to Frobenius (see [40, bottom of p. 152 of
GA]) and Hurwitz [57, x4]. It is clear that they were aware of Theorem 7.14,
even if they did not state it explicitly.
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Chapter 8

A glimpse of Young tableaux.

We de�ned in Section 6 Young's latticeY, the poset of all partitions of all
nonnegative integers, ordered by containment of their Young diagrams.

21

f

1

2

3

4

5

11

111

1111

11111 2111 221 311 32 41

22 31211

Here we will be concerned with the counting of certain walks in the Hasse
diagram (considered as a graph) ofY. Note that sinceY is in�nite, we cannot
talk about its eigenvalues and eigenvectors. We need di�erent techniques for
counting walks. (It will be convenient to denote the length of a walk by n,
rather than by ` as in previous sections.)

Note that Y is a graded poset (of in�nite rank), with Yi consisting of all
partitions of i . In other words, we haveY = Y0 �[ Y1 �[ � � � (disjoint union),

115
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where every maximal chain intersects each levelYi exactly once. We callYi

the i th level of Y.
Since the Hasse diagram ofY is a simple graph (no loops or multiple

edges), a walk of lengthn is speci�ed by a sequence� 0; � 1; : : : ; � n of vertices
of Y. We will call a walk in the Hasse diagram of a poset aHasse walk.
Each � i is a partition of some integer, and we have either (a)� i < � i +1 and
j� i j = j� i +1 j � 1, or (b) � i > � i +1 and j� i j = j� i +1 j + 1. A step of type
(a) is denoted by U (for \up," since we move up in the Hasse diagram),
while a step of type (b) is denoted byD (for \down"). If the walk W has
steps of typesA1; A2; : : : ; An , respectively, where eachA i is either U or D,
then we say that W is of type AnAn� 1 � � � A2A1. Note that the type of a
walk is written in the opposite order to that of the walk. This is because
we will soon regardU and D as linear transformations, and we multiply
linear transformationsright-to-left (opposite to the usual left-to-right reading
order). For instance (abbreviating a partition (� 1; : : : ; � m ) as � 1 � � � � m ), the
walk ; ; 1; 2; 1; 11; 111; 211; 221; 22; 21; 31; 41 is of typeUUDDUUUUDUU =
U2D 2U4DU 2.

There is a nice combinatorial interpretation of walks of type Un which
begin at ; . Such walks are of course just saturated chains; = � 0 < � 1 <
� � � < � n . In other words, they may be regarded as sequences of Young
diagrams, beginning with the empty diagram and adding one new square at
each step. An example of a walk of typeU5 is given by

f

.

We can specify this walk by taking the �nal diagram and inserting an i into
squares if s was added at thei th step. Thus the above walk is encoded by
the \tableau"

21

3 5

4 .

Such an object� is called astandard Young tableaux(or SYT). It consists
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of the Young diagramD of some partition � of an integern, together with
the numbers 1; 2; : : : ; n inserted into the squares ofD, so that each number
appears exactly once, and every row and column isincreasing. We call � the
shapeof the SYT � , denoted� = sh(� ). For instance, there are �ve SYT of
shape (2; 2; 1), given by

1 1 1 1 12

3 5

5

2

4 3

4

5

2

3 4

5 4

3

2 4

3

5 2

.

Let f � denote the number of SYT of shape� , so for instancef (2;2;1) = 5.
The numbers f � have many interesting properties; for instance, there is a
famous explicit formula for them known as the Frame-Robinson-Thrall hook
formula. For the sake of completeness we state this formula without proof,
though it is not needed in what follows.

Let u be a square of the Young diagram of the partition� . De�ne the
hook H (u) of u (or at u) to be the set of all squares directly to the right ofu
or directly below u, including u itself. The size (number of squares) ofH (u)
is called thehook lengthof u (or at u), denoted h(u). In the diagram of the
partition (4 ; 2; 2) below, we have inserted the hook lengthh(u) inside each
squareu.

5

3

2

6 2 1

2

1

8.1 Theorem (hook length formula). Let � ` n. Then

f � =
n!

Q
u2 � h(u)

:

Here the notationu 2 � means thatu ranges over all squares of the Young
diagram of � .

For instance, the diagram of the hook lengths of� = (4 ; 2; 2) above gives

f � =
8!

6 � 5 � 2 � 1 � 3 � 2 � 2 � 1
= 56:
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In this section we will be concerned with the connection between SYT
and counting walks in Young's lattice. If w = AnAn� 1 � � � A1 is some word
in U and D and � ` n, then let us write � (w; � ) for the number of Hasse
walks in Y of type w which start at the empty partition ; and end at � . For
instance, � (UDUU;11) = 2, the corresponding walks being; ; 1; 2; 1; 11 and
; ; 1; 11; 1; 11. Thus in particular � (Un ; � ) = f � [why?]. In a similar fashion,
since the number of Hasse walks of typeD nUn which begin at ; , go up to a
partition � ` n, and then back down to; is given by (f � )2, we have

� (D nUn ; ; ) =
X

� ` n

(f � )2: (8.1)

Our object is to �nd an explicit formula for � (w; � ) of the form f � cw,
where cw does not depend on� . (It is by no means a priori obvious that
such a formula should exist.) In particular, sincef ; = 1, we will obtain by
setting � = ; a simple formula for the number of (closed) Hasse walks of
type w from ; to ; (thus including a simple formula for (8.1)).

There is an easy condition for the existence ofany Hasse walks of type
w from ; to � , given by the next lemma.

8.2 Lemma. Supposew = D sk Ur k � � � D s2Ur 2 D s1Ur 1 , wherer i � 0 and si �
0. Let � ` n. Then there exists a Hasse walk of typew from ; to � if and
only if:

kX

i =1

(r i � si ) = n

jX

i =1

(r i � si ) � 0 for 1 � j � k:

Proof. Since eachU moves up one level and eachD moves down one level,
we see that

P k
i =1 (r i � si ) is the level at which a walk of typew beginning at

; ends. Hence
P k

i =1 (r i � si ) = j� j = n.
After

P j
i =1 (r i + si ) steps we will be at level

P j
i =1 (r i � si ). Since the lowest

level is level 0, we must have
P j

i =1 (r i � si ) � 0 for 1 � j � k.
The easy proof that the two conditions of the lemma aresu�cient for

the existence of a Hasse walk of typew from ; to � is left to the reader.

If w is a word in U and D satisfying the conditions of Lemma 8.2, then
we say that w is a valid � -word. (Note that the condition of being a valid
� -word depends only onj� j.)
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The proof of our formula for � (w; � ) will be based on linear transforma-
tions analogous to those de�ned by (4.2) and (4.3). As in Section 4 let RYj

be the real vector space with basisYj . De�ne two linear transformations
Ui : RYi ! RYi +1 and D i : RYi ! RYi � 1 by

Ui (� ) =
X

� ` i +1
�<�

�

D i (� ) =
X

� ` i � 1
�<�

�;

for all � ` i . For instance (using abbreviated notation for partitions)

U21(54422211) = 64422211 + 55422211 + 54432211 + 54422221 + 544222111

D21(54422211) = 44422211 + 54322211 + 54422111 + 5442221:

It is clear [why?] that if r is the number ofdistinct (i.e., unequal) parts of� ,
then Ui (� ) is a sum ofr + 1 terms and D i (� ) is a sum ofr terms. The next
lemma is an analogue forY of the corresponding result forBn (Lemma 4.6).

8.3 Lemma. For any i � 0 we have

D i +1 Ui � Ui � 1D i = I i ; (8.2)

the identity linear transformation on RYi .

Proof. Apply the left-hand side of (8.2) to a partition � of i , expand in terms
of the basisYi , and consider the coe�cient of a partition � . If � 6= � and �
can be obtained from� by adding one squares to (the Young diagram of)
� and then removing a (necessarily di�erent) squaret, then there is exactly
one choice ofs and t. Hence the coe�cient of � in D i +1 Ui (� ) is equal to 1.
But then there is exactly one way to remove a square from� and then add
a square to get� , namely, removet and adds. Hence the coe�cient of � in
Ui � 1D i (� ) is also 1, so the coe�cient of� when the left-hand side of (8.2) is
applied to � is 0.

If now � 6= � and we cannot obtain� by adding a square and then deleting
a square from� (i.e., � and � di�er in more than two rows), then clearly
when we apply the left-hand side of (8.2) to� , the coe�cient of � will be 0.
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Finally consider the case� = � . Let r be the number of distinct (unequal)
parts of � . Then the coe�cient of � in D i +1 Ui (� ) is r +1, while the coe�cient
of � in Ui � 1D i (� ) is r , since there arer + 1 ways to add a square to� and
then remove it, while there arer ways to remove a square and then add it
back in. Hence when we apply the left-hand side of (8.2) to� , the coe�cient
of � is equal to 1.

Combining the conclusions of the three cases just considered shows that
the left-hand side of (8.2) is justI i , as was to be proved.

We come to one of the main results of this section.

8.4 Theorem. Let � be a partition andw = AnAn� 1 � � � A1 a valid � -word.
Let Sw = f i : A i = Dg. For each i 2 Sw, let ai be the number ofD 's in w to
the right of A i , and let bi be the number ofU's in w to the right of A i . Thus
ai � bi is the level we occupy inY before taking the stepA i = D. Then

� (w; � ) = f �
Y

i 2 Sw

(bi � ai ):

Before proving Theorem 8.4, let us give an example. Supposew =
U3D 2U2DU 3 = UUUDDUUDUUU and � = (2 ; 2; 1). Then Sw = f 4; 7; 8g
and a4 = 0, b4 = 3, a7 = 1, b7 = 5, a8 = 2, b8 = 5. We have also seen earlier
that f 221 = 5. Thus

� (w; � ) = 5(3 � 0)(5 � 1)(5 � 2) = 180:

Proof. Proof of Theorem 8.4. For notational simplicity we will omit the
subscripts from the linear transformationsUi and D i . This should cause no
confusion since the subscripts will be uniquely determinedby the elements
on which U and D act. For instance, the expressionUDUU(� ) where � ` i
must meanUi +1 D i +2 Ui +1 Ui (� ); otherwise it would be unde�ned sinceUj and
D j can only act on elements ofRYj , and moreoverUj raises the level by one
while D j lowers it by one.

By (8.2) we can replaceDU in any word y in the letters U and D by
UD + I . This replacesy by a sum of two words, one with one fewerD and
the other with one D moved one space to the right. For instance, replacing
the �rst DU in UUDUDDU by UD + I yields UUUDDDU + UUDDU. If
we begin with the wordw and iterate this procedure, replacing aDU in any
word with UD + I , eventually there will be noU's to the right of any D 's and
the procedure will come to an end. At this point we will have expressedw
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as a linear combination (with integer coe�cients) of words of the form Ui D j .
Since the operation of replacingDU with UD + I preserves the di�erence
between the number ofU's and D's in each word, all the wordsUi D j which
appear will havei � j equal to some constantn (namely, the number ofU's
minus the number ofD 's in w). Speci�cally, say we have

w =
X

i � j = n

r ij (w)Ui D j ; (8.3)

where eachr ij (w) 2 Z. (We also de�ne r ij (w) = 0 if i < 0 or j < 0.) We
claim that the r ij (w)'s are uniquely determined byw. Equivalently [why?],
if we have X

i � j = n

dij Ui D j = 0 (8.4)

(as an identity of linear transformations acting on the space RYk for any k),
where eachdij 2 Z (or dij 2 R, if you prefer), then eachdij = 0. Let j 0

be the least integer for whichdj 0+ n;j 0 6= 0. Let � ` j 0, and apply both sides
of (8.4) to � . The left-hand side has exactly one nonzero term, namely, the
term with j = j 0 [why?]. The right-hand side, on the other hand1, is 0, a
contradiction. Thus the r ij (w)'s are unique.

Now apply U on the left to (8.3). We get

Uw =
X

i;j

r ij (w)Ui +1 D j :

Hence (using uniqueness of ther ij 's) there follows [why?]

r ij (Uw) = r i � 1;j (w): (8.5)

We next want to apply D on the left to (8.3). It is easily proved by
induction on i (left as an exercise) that

DU i = Ui D + iU i � 1: (8.6)

(We interpret U� 1 as being 0, so that (8.6) is true fori = 0.) Hence

Dw =
X

i;j

r ij (w)DU i D j

=
X

i;j

r ij (w)(Ui D + iU i � 1)D j ;

1The phrase \the right-hand side, on the other hand" does not mean the left-hand side!
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from which it follows [why?] that

r ij (Dw) = r i;j � 1(w) + ( i + 1) r i +1 ;j (w): (8.7)

Setting j = 0 in (8.5) and (8.7) yields

r i 0(Uw) = r i � 1;0(w) (8.8)

r i 0(Dw) = ( i + 1) r i +1 ;0(w): (8.9)

Now let (8.3) operate on; . SinceD j (; ) = 0 for all j > 0, we getw(; ) =
rn0(w)Un (; ). Thus the coe�cient of � in w(; ) is given by

� (w; � ) = rn0(w)� (Un ; � ) = rn0f � ;

where as usual� ` n. It is easy to see from (8.8) and (8.9) that

rn0(w) =
Y

j 2 Sw

(bj � aj );

and the proof follows.

Note. It is possible to give a simpler proof of Theorem 8.4, but the proof
we have given is useful for generalizations not appearing here.

An interesting special case of the previous theorem allows us to evaluate
equation (8.1).

8.5 Corollary. We have

� (D nUn ; ; ) =
X

� ` n

(f � )2 = n!:

Proof. When w = D nUn in Theorem 8.4 we haveSw = f n + 1; n +
2; : : : ; 2ng, ai = n � i + 1, and bi = n, from which the proof is immediate.�

Note (for those familiar with the representation theory of �nite groups).
It can be shown that the numbersf � , for � ` n, are the degrees of the
irreducible representations of the symmetric groupS n . Given this, Corol-
lary 8.5 is a special case of the result that the sum of the squares of the
degrees of the irreducible representations of a �nite groupG is equal to the
order # G of G. There are many other intimate connections between the rep-
resentation theory ofS n , on the one hand, and the combinatorics of Young's
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lattice and Young tableaux, on the other. There is also an elegant combina-
torial proof of Corollary 8.5, based on theRSK algorithm (after Gilbert de
Beauregard Robinson, Craige Schensted, and Donald Knuth) or Robinson-
Schensted correspondence, with many fascinating properties and with deep
connections with representation theory. In the Appendix tothis section we
give the de�nition of the RSK algorithm.

We now consider a variation of Theorem 8.4 in which we are not concerned
with the type w of a Hasse walk from; to w, but only with the number of
steps. For instance, there are three Hasse walks of length three from; to the
partition 1, given by ; ; 1; ; ; 1; ; ; 1; 2; 1; and ; ; 1; 11; 1. Let � (`; � ) denote the
number of Hasse walks of length̀ from ; to � . Note the two following easy
facts:

(F1) � (`; � ) = 0 unless ` � j � j (mod 2).
(F2) � (`; � ) is the coe�cient of � in the expansion of (D + U)` (; ) as a

linear combination of partitions.
Because of (F2) it is important to write (D + U)` as a linear combination

of terms Ui D j , just as in the proof of Theorem 8.4 we wrote a wordw in U
and D in this form. Thus de�ne integersbij (`) by

(D + U)` =
X

i;j

bij (`)Ui D j : (8.10)

Just as in the proof of Theorem 8.4, the numbersbij (`) exist and are well-
de�ned.

8.6 Lemma. We havebij (`) = 0 if ` � i � j is odd. If ` � i � j = 2m then

bij (`) =
`!

2m i ! j ! m!
: (8.11)

Proof. The assertion for` � i � j odd is equivalent to (F1) above, so
assumè � i � j is even. The proof is by induction oǹ . It's easy to check
that (8.11) holds for ` = 1. Now assume true for some �xed̀ � 1. Using
(8.10) we obtain

X

i;j

bij (` + 1) Ui D j = ( D + U)`+1

= ( D + U)
X

i;j

bij (`)Ui D j

=
X

i;j

bij (`)(DU i D j + Ui +1 D j ):
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In the proof of Theorem 8.4 we saw thatDU i = Ui D + iU i � 1 (see equation
(8.6)). Hence we get

X

i;j

bij (` + 1) Ui D j =
X

i;j

bij (`)(Ui D j +1 + iU i � 1D j + Ui +1 D j ): (8.12)

As mentioned after (8.10), the expansion of (D + U)`+1 in terms of Ui D j is
unique. Hence equating coe�cients ofUi D j on both sides of (8.12) yields
the recurrence

bij (` + 1) = bi;j � 1(`) + ( i + 1) bi +1 ;j (`) + bi � 1;j (`): (8.13)

It is a routine matter to check that the function `!=2m i !j !m! satis�es the same
recurrence (8.13) asbij (`), with the same intial condition b00(0) = 1. From
this the proof follows by induction. �

From Lemma 8.6 it is easy to prove the following result.

8.7 Theorem. Let ` � n and � ` n, with ` � n even. Then

� (`; � ) =
�

`
n

�
(1 � 3 � 5 � � � (` � n � 1))f � :

Proof. Apply both sides of (8.10) to; . SinceUi D j (; ) = 0 unless j = 0,
we get

(D + U)` (; ) =
X

i

bi 0(`)Ui (; )

=
X

i

bi 0(`)
X

� ` i

f � �:

Since by Lemma 8.6 we havebi 0(`) =
� `

i

�
(1 � 3 � 5 � � � (` � i � 1)) when ` � i is

even, the proof follows from (F2).�
Note. The proof of Theorem 8.7 only required knowing the value of

bi 0(`). However, in Lemma 8.6 we computedbij (`) for all j . We could have
carried out the proof so as only to computebi 0(`), but the general value of
bij (`) is so simple that we have included it too.

8.8 Corollary. The total number of Hasse walks inY of length2m from ;
to ; is given by

� (2m; ; ) = 1 � 3 � 5 � � � (2m � 1):
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Proof. Simply substitute � = ; (so n = 0) and ` = 2m in Theorem 8.7.
�

The fact that we can count various kinds of Hasse walks inY suggests
that there may be some �nite graphs related toY whose eigenvalues we can
also compute. This is indeed the case, and we will discuss thesimplest case
here. LetYj � 1;j denote the restriction of Young's latticeY to ranks j � 1 and
j . Identify Yj � 1;j with its Hasse diagram, regarded as a (bipartite) graph.
Let p(i ) = # Yi , the number of partitions of i . (The function p(i ) has been
extensively studied, beginning with Euler, though we will not discuss its
fascinating properties here.)

8.9 Theorem. The eigenvalues ofYj � 1;j are given as follows:0 is an eigen-
value of multiplicity p(j ) � p(j � 1); and for 1 � s � j , the numbers�

p
s

are eigenvalues of multiplicityp(j � s) � p(j � s � 1).

Proof. Let A denote the adjacency matrix ofYj � 1;j . SinceRYj � 1;j =
RYj � 1 � RYj (vector space direct sum), any vectorv 2 RYj � 1;j can be written
uniquely asv = vj � 1 + vj , wherevi 2 RYi . The matrix A acts on the vector
spaceRYj � 1;j as follows [why?]:

A (v) = D(vj ) + U(vj � 1): (8.14)

Just as Theorem 4.7 followed from Lemma 4.6, we deduce from Lemma 8.3
that for any i we have that Ui : RYi ! RYi +1 is one-to-one andD i : RYi !
RYi � 1 is onto. It follows in particular that

dim(ker(D i )) = dim RYi � dim RYi � 1

= p(i ) � p(i � 1);

where ker denotes kernel.
Case 1.Let v 2 ker(D j ), so v = vj . Then A v = Dv = 0. Thus ker(D j ) is

an eigenspace ofA for the eigenvalue 0, so 0 is an eigenvalue of multiplicity
at least p(j ) � p(j � 1).

Case 2.Let v 2 ker(Ds) for some 0� s � j � 1. Let

v� = �
p

j � sUj � 1� s(v) + Uj � s(v):

Note that v� 2 RYj � 1;j , with v�
j � 1 = �

p
j � sUj � 1� s(v) and v�

j = Uj � s(v).
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Using equation (8.6), we compute

A (v� ) = U(v�
j � 1) + D(v�

j )

= �
p

j � sUj � s(v) + DU j � s(v)

= �
p

j � sUj � s(v) + Uj � sD(v) + ( j � s)Uj � s� 1(v)

= �
p

j � sUj � s(v) + ( j � s)Uj � s� 1(v)

= �
� p

j � s
�

v� : (8.15)

It's easy to verify (using the fact thatU is one-to-one) that ifv(1); : : : ; v(t)
is a basis for ker(Ds), then v(1)� ; : : : ; v(t)� are linearly independent. Hence
by (8.15) we have that�

p
j � s is an eigenvalue ofA of multiplicity at least

t = dim(ker( Ds)) = p(s) � p(s � 1).
We have found a total of

p(j ) � p(j � 1) + 2
j � 1X

s=0

(p(s) � p(s � 1)) = p(j � 1) + p(j )

eigenvalues ofA . (The factor 2 above arises from the fact that both +
p

j � s
and �

p
j � s are eigenvalues.) Since the graphYj � 1;j has p(j � 1) + p(j )

vertices, we have found all its eigenvalues.�
An elegant combinatorial consequence of Theorem 8.9 is the following.

8.10 Corollary. Fix j � 1. The number of ways to choose a partition� of
j , then delete a square from� (keeping it a partition), then insert a square,
then delete a square, etc., for a total ofm insertions andm deletions, ending
back at� , is given by

jX

s=1

[p(j � s) � p(j � s � 1)]sm ; m > 0: (8.16)

Proof. Exactly half the closed walks inYj � 1;j of length 2m begin at
an element ofYj [why?]. Hence ifYj � 1;j has eigenvalues� 1; : : : ; � r , then by
Corollary 1.3 the desired number of walks is given by12(� 2m

1 + � � � + � 2m
r ).

Using the values of� 1; : : : ; � r given by Theorem 8.9 yields (8.16).�
For instance, whenj = 7, equation (8.16) becomes 4 + 2� 2m + 2 � 3m +

4m + 5m + 7m . When m = 1 we get 30, the number of edges of the graphY6;7

[why?].
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APPENDIX 1: THE RSK ALGORITHM

We will describe a bijection between permutations� 2 S n and pairs
(P; Q) of SYT of the same shape� ` n. De�ne a near Young tableau(NYT)
to be the same as an SYT, except that the entries can be any distinct integers,
not necessarily the integers 1; 2; : : : ; n. Let Pij denote the entry in rowi and
column j of P. The basic operation of the RSK algorithm consists of the
row insertion P  k of a positive integerk into an NYT P = ( Pij ). The
operation P  k is de�ned as follows: Letr be the least integer such that
P1r > k . If no such r exists (i.e., all elements of the �rst row ofP are
less thanr ), then simply placek at the end of the �rst row. The insertion
process stops, and the resulting NYT isP  k. If, on the other hand,r does
exist then replaceP1r by k. The elementk then \bumps" P1r := k0 into the
second row, i.e., insertk0 into the second row ofP by the insertion rule just
described. Eitherk0 is inserted at the end of the second row, or else it bumps
an elementk" to the third row. Continue until an element is inserted at the
end of a row (possibly as the �rst element of a new row). The resulting array
is P  k.

8.11 Example. Let

P =

3 7 9 14
6 11 12
10 16
13
15

Then P  8 is shown below, with the elements inserted into each row (either
by bumping or by the �nal insertion in the fourth row) in boldf ace. Thus
the 8 bumps the 9, the 9 bumps the 11, the 11 bumps the 16, and the16 is
inserted at the end of a row. Hence

(P  8) =

3 7 8 14
6 9 12
10 11
13 16
15

:

We omit the proof, which is fairly straightforward, that if P is an NYT,
then so is P  k. We can now describe the RSK algorithm. Let� =
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a1a2 � � � an 2 S n . We will inductively construct a sequence (P0; Q0), (P1; Q1),
: : : ; (Pn ; Qn ) of pairs (Pi ; Qi ) of NYT of the same shape, wherePi and Qi

each havei squares. First, de�ne (P0; Q0) = ( ; ; ; ). If ( Pi � 1; Qi � 1) have been
de�ned, then set Pi = Pi � 1  ai . In other words, Pi is obtained from Pi � 1

by row inserting ai . Now de�ne Qi to be the NYT obtained from Qi � 1 by
inserting i so that Qi and Pi have the same shape. (The entries ofQi � 1

don't change; we are simply placingi into a certain new square and not row-
inserting it into Qi � 1.) Finally let ( P; Q) = ( Pn ; Qn ). We write � RSK�! (P; Q).

8.12 Example. Let � = 42736152 S 7. The pairs (P1; Q1); : : : , (P7; Q7) =
(P; Q) are as follows:

Pi Qi

4 1

2 1
4 2

2 7 1 3
4 2

2 3 1 3
4 7 2 4

2 3 6 1 3 5
4 7 2 4

1 3 6 1 3 5
2 7 2 4
4 6

1 3 5 1 3 5
2 6 2 4
4 7 6 7

8.13 Theorem. The RSK algorithm de�nes a bijection between the symmet-
ric group S n and the set of all pairs(P; Q) of SYT of the same shape, where
the shape� is a partition of n.

Proof (sketch). The key step is to de�ne the inverse of RSK. In other
words, if � 7! (P; Q), then how can we recover� uniquely from (P; Q)? More-
over, we need to �nd� for any (P; Q). Observe that the position occupied by
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n in Q is the last position to be occupied in the insertion process.Suppose
that k occupies this position inP. It was bumped into this position by some
element j in the row abovek that is currently the largest element of its row
less thank. Hence we can \inverse bump"k into the position occupied byj ,
and now inverse bumpj into the row above it by the same procedure. Even-
tually an element will be placed in the �rst row, inverse bumping another
element t out of the tableau altogether. Thust was the last element of�
to be inserted, i.e., if� = a1a2 � � � an then an = t. Now locate the position
occupied byn� 1 in Q and repeat the procedure, obtainingan� 1. Continuing
in this way, we uniquely construct� one element at a time from right-to-left,
such that � 7! (P; Q). �

Thus we have obtained a bijective proof of Corollary 8.5, that is,

X

� ` n

(f � )2 = n!:



130 CHAPTER 8. A GLIMPSE OF YOUNG TABLEAUX.

APPENDIX 2: PLANE PARTITIONS

In this appendix we show how a generalization of the RSK algorithm leads
to an elegant generating function for a two-dimensional generalization of
integer partitions. A plane partition of an integern � 0 is a two-dimensional
array � = ( � ij )�;j � 1 of integers� ij � 0 that is weakly decreasing in rows and
columns, i.e.,

� ij � � i +1 ;j ; � ij � � i;j +1 ;

such that
P

i;j � i;j = n. It follows that all but �nitely many � ij are 0, and
these 0's are omitted in writing a particular plane partition � . Given a plane
partition � , we write j� j = n to denote that � is a plane partition of n. More
generally, if L is any array of nonnegative integers we writejL j for the sum
of the parts (entries) ofL.

There is one plane partition of 0, namely, all� ij = 0, denoted ; . The
plane partitions of the integers 0� n � 3 are given by

; 1 2 11 1 3 21 111 11 2 1
1 1 1 1

1
:

If pp(n) denotes the number of plane partitions ofn, then pp(0) = 1, pp(1) =
1, pp(2) = 3, and pp(3) = 6.

Our object is to give a formula for the generating function

F (x) =
X

n� 0

pp(n)xn = 1 + x + 3x2 + 6x3 + 13x4 + 24x5 + � � � :

More generally, we will consider plane partitons with at most r rows and at
most s columns, i.e.,� ij = 0 for i > r or j > s . As a simple warmup, let us
�rst consider the case of ordinary partitions� = ( � 1; � 2; : : : ) of n.

8.14 Proposition. Let ps(n) denote the number of partitions ofn with at
most s parts. Equivalently,ps(n) is the number of plane partitions ofn with
at most one row and at mosts columns [why?].Then

X

n� 0

ps(n)xn =
sY

k=1

(1 � xk)� 1:
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Proof. First note that the partition � has at mosts parts if and only if the
conjugate partition � 0 de�ned in Chapter 6 has largest part at mosts. Thus
it su�ces to �nd the generating function

P
n� 0 p0

s(n)xn , wherep0
s(n) denotes

the number of partitions ofn whose largest part is at mosts. Now expanding
each factor (1� xk)� 1 as a geometric series gives

sY

k=1

1
1 � xk

=
sY

k=1

 
X

mk � 1

xmk k

!

:

How do we get a coe�cient of xn? We must choose a termxmk k from each
factor of the product, 1� k � s, so that

n =
sX

k=1

mkk:

But such a choice is the same as choosing the partition� of n such that the
part k occursmk times. For instance, ifs = 4 and we choosem1 = 5, m2 = 0,
m3 = 1, m4 = 2, then we have chosen the partition� = (4 ; 4; 3; 1; 1; 1; 1; 1)
of 16. Hence the coe�cient ofxn is the number of partitions � of n whose
largest part is at mosts, as was to be proved.

Note that Proposition 8.14 is \trivial" in the sense that it can be seen
by inspection. There is an obvious correspondence between (a) the choice of
terms contributing to the coe�cient of xn and (b) partitions of n with largest
part at most r . Although the generating function we will obtain for plane
partitions is equally simple, it will be far less obvious whyit is correct.

Plane partitions have a certain similarity with standard Young tableaux,
so perhaps it is not surprising that a variant of RSK will be applicable. In-
stead of NYT we will be dealing withcolumn-strict plane partitions (CSPP).
These are plane partitions for which the nonzero elementsstrictly decrease
in each column. An example of a CSPP is given by

7 7 4 3 3 3 1
4 3 3 1
3 2
2 1
1

: (8.17)

We say that this CSPP hasshape� = (7 ; 4; 2; 2; 1), the shape of the Young
diagram which the numbers occupy, and that it has �ve rows, seven columns,
and 16 parts (so� ` 16).
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If P = ( Pij ) is a CSPP andk � 1, then we de�ne therow insertion P  k
as follows: Letr be the least integer such thatP1;r < k . If no such r exists
(i.e., all elements of the �rst row ofP are greater thanr ), then simply place
k at the end of the �rst row. The insertion process stops, and the resulting
CSPP is P  k. If, on the other hand, r does exist, then replaceP1r by k.
The elementk then \bumps" P1r := k0 into the second row, i.e., insertk0 into
the second row ofP by the insertion rule just described, possibly bumping a
new elementk00into the third row. Continue until an element is inserted at
the end of a row (possibly as the �rst element of a new row). Theresulting
array is P  k. Note that this rule is completely analogous to row insertion
for NYT: for NYT an element bumps the leftmost element greater than it,
while for CSPP an element bumps the leftmost element smallerthan it.

8.15 Example. Let P be the CSPP of equation (8.17). Let us row insert 6
into P. The set of elements which get bumped are shown in bold:

7 7 4 3 3 3 1
4 3 3 1
3 2
2 1
1

:

The �nal 1 that was bumped is inserted at the end of the �fth row. Thus we
obtain

(P  5) =

7 7 6 3 3 3 1
4 4 3 1
3 3
2 2
1 1

:

We are now ready to describe the analogue of RSK needed to count plane
partitions. Instead of beginning with a permutation� 2 S n , we begin with
an r � s matrix A = ( aij ) of nonnegative integers, called for short anr � s
N-matrix. We convert A into a two-line array

wA =
�

u1 u2 � � � uN

v1 v2 � � � vN

�
;

where

� u1 � u2 � � � � � uN
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� If i < j and ui = uj , then vi � vj .

� The number of columns ofwA equal to i
j is aij . (It follows that N =P

aij .)

It is easy to see thatwA is uniquely determined byA, and conversely. As an
example, suppose that

A =

2

4
1 0 0 2
1 1 1 0
2 1 0 0

3

5 : (8.18)

Then

wA =
�

3 3 3 2 2 2 1 1 1
2 1 1 3 2 1 4 4 2

�
:

We now insert the numberv1; v2; : : : ; vN successively into a CSPP. That
is, we start with P0 = ; and de�ne inductively Pi = Pi � 1  vi . We also start
with Q0 = ; , and at the i th step insert ui into Qi � 1 (without any bumping
or other altering of the elements ofQi � 1) so that Pi and Qi have the same

shape. Finally let (P; Q) = ( PN ; QN ) and write A RSK
0

�! (P; Q).

8.16 Example. Let A be given by equation (8.18). The pairs (P1; Q1); : : : ,



134 CHAPTER 8. A GLIMPSE OF YOUNG TABLEAUX.

(P9; Q9) = ( P; Q) are as follows:

Pi Qi

2 3

2 1 3 3

2 1 1 3 3 3

3 1 1 3 3 3
2 2

3 2 1 3 3 3
2 1 2 2

3 2 1 1 3 3 3 2
2 1 2 2

4 2 1 1 3 3 3 2
3 1 2 2
2 1

4 4 1 1 3 3 3 2
3 2 2 2
2 1 1 1

4 4 2 1 3 3 3 2
3 2 1 2 2 1
2 1 1 1

It is straightforward to show that if A RSK
0

�! (P; Q), then P and Q are
CSPP of the same shape. We omit the proof of the following key lemma,
which is analogous to the proof of Theorem 8.13. Let us just note a crucial

property (which is easy to prove) of the correspondenceA RSK
0

�! (P; Q) which
allows us to recoverA from (P; Q), namely, equal entries ofQ are inserted
from left-to-right. Thus the last number placed into Q is the rightmost
occurrence of the least entry. Hence we can can inverse bump the number in
this position in P to back up one step in the algorithm, just as for the usual
RSK correspondence� RSK�! (P; Q).
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8.17 Lemma. The correspondenceA RSK
0

�! (P; Q) is a bijection from the set
of r � s matrices of nonnegative integers to the set of pairs(P; Q) of CSPP
of the same shape, such that the largest part ofP is at mosts and the largest
part of Q is at most r .

The next step is to convert the pair (P; Q) of CSPP of the same shape
into a single plane partition � . We do this by \merging" the i th column
of P with the i th column of Q, producing the i th column of � . Thus we
�rst describe how to merge two partitions � and � with distinct parts and
with the same number of parts into a single partition� = � (�; � ). Draw the
Ferrers diagram of� but with each row indented one space to the right of the
beginning of the previous row. Such a diagram is called theshifted Ferrers
diagram of � . For instance, if � = (5 ; 3; 2) then we get the shifted diagram

Do the same for� , and then transpose the diagram. For instance, if
� = (6 ; 3; 1) then we get the transposed shifted diagram

Now merge the two diagrams into a single diagram by identifying their main
diagonals. For� and � as above, we get the diagram (with the main diagonal
drawn for clarity):

De�ne � (�; � ) to be the partition for which this merged diagram is the Ferrers
diagram. The above example shows that

� (532; 631) = 544211:
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The map (�; � ) 7! � (�; � ) is clearly a bijection between pairs of partitions
(�; � ) with k distinct parts, and partitions � whose main diagonal (of the
Ferrers diagram) hask dots. Equivalently, k is the largest integerj for which
� j � j . Note that

j� j = j� j + j� j � `(� ): (8.19)

We now extend the above bijection to pairs (P; Q) of reverse SSYT of the
same shape. If� i denotes thei th column of P and � i the i th column of Q,
then let � (P; Q) be the array whosei th column is � (� i ; � i ). For instance, if

P =
4 4 2 1
3 1 1
2

and Q =
5 3 2 2
4 2 1
1

;

then

� (P; Q) =

4 4 2 1
4 2 2 1
4 2
2
2

:

It is easy to see that� (P; Q) is a plane partition. Replace each row of� (P; Q)
by its conjugate to obtain another plane partition� 0(P; Q). With � (P; Q) as
above we obtain

� 0(P; Q) =

4 3 2 2
4 3 1 1
2 2 1 1
1 1
1 1

:

Write jPj for the sum of the elements ofP, and write max(P) for the largest
element ofP, and similarly for Q. When we mergeP and Q into � (P; Q),
max(P) becomes the largest part of� (P; Q). Thus when we conjugate each
row, max(P) becomes the number col(� 0(P; Q)) of columns of� 0(P; Q) [why?].
Similarly, max(Q) becomes the number row(� 0(P; Q)) of rows of � (P; Q) and
of � 0(P; Q). In symbols,

maxP = col( � 0(P; Q))

maxQ = row( � 0(P; Q)):
(8.20)

Moreover, it follows from equation (8.19) that

j� 0(P; Q)j = j� (P; Q)j = jPj + jQj � � (P); (8.21)
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where � (P) denotes the number of parts ofP (or of Q).

We now have all the ingredients necessary to prove the main result of this
appendix.

8.18 Theorem. Let pprs (n) denote the number of plane partitions ofn with
at most r rows and at mosts columns. Then

X

n� 0

pprs (n)xn =
rY

i =1

sY

j =1

(1 � x i + j � 1)� 1:

Proof. Let A = ( aij ) be an r � s N-matrix. We can combine the bijections
discussed above to obtain a plane partition� (A) associated withA. Namely,

�rst apply RSK to obtain A RSK
0

�! (P; Q), and then apply the merging process
and row conjugation to obtain � (A) = � 0(P; Q). Since a column i

j of the
two-line array wA occursaij times and results in an insertion ofj into P and
i into Q, it follows that

jPj =
X

i;j

ja ij

jQj =
X

i;j

ia ij

max(P) = max f j : aij 6= 0g

max(Q) = max f i : aij 6= 0g

Hence from equations (8.20) and (8.21), we see that the mapA 7! � (A) is
a bijection from r � s N-matrices A to plane partitions with at most r rows
and at most s columns. Moreover,

j� (A)j = jPj + jQj � � (P)

=
X

i;j

(i + j � 1)aij :

Thus the enumeration of plane partitions is reduced to the much easier enu-
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meration of N-matrices. Speci�cally, we have
X

n� 0

pprs (n)xn =
X

�
row( � )� r
col( � )� s

x j � j

=
X

r � s N� matrices A

x
P

(i + j � 1)aij

=
rY

i =1

sY

j =1

0

@
X

aij � 0

x
P

(i + j � 1)aij

1

A

=
rY

i =1

sY

j =1

(1 � x i + j � 1)� 1:

Write Pr (n) for the number of plane partitions ofn with at most r rows.
Letting c ! 1 and then r ! 1 in Theorem 8.18 produces the elegant
generating functions of the next corollary.

8.19 Corollary. We have
X

n� 0

ppr (n)xn =
Y

i � 1

(1 � x i )� min( i;r ) (8.22)

X

n� 0

pp(n)xn =
Y

i � 1

(1 � x i )� i : (8.23)

Note. Once one has seen the generating function

1
(1 � x)(1 � x2)(1 � x3) � � �

for one-dimensional (ordinary) partitions and the generating function

1
(1 � x)(1 � x2)2(1 � x3)3 : : :

for two-dimensional (plane) partitions, it is quite natural to ask about higher-
dimensional partitions. In particular, asolid partition of n is a three-dimensional
array � = ( � ijk ) i;j;k � 1 of nonnegative integers, weakly decreasing in each of
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the three coordinate directions, and with elements summingto n. Let sol(n)
denote the number of solid partitions ofn. It is easy to see that for any
integer sequencea0 = 1, a1, a2; : : : , there are unique integersb1, b2; : : : for
which X

n� 0

anxn =
Y

i � 1

(1 � x i )� bi :

For the casean = sol(n), we have

b1 = 1; b2 = 3; b3 = 6; b4 = 10; b5 = 15;

which looks quite promising. Alas, the sequence of exponents continues

20; 26; 34; 46; 68; 97; 120; 112; 23; � 186; � 496; � 735; � 531; 779; : : : :

The problem of enumerating solid partitions remains open and is considered
most likely to be hopeless.

References for Chapter 8

Standard Young tableaux (SYT) were �rst enumerated by P. A. MacMa-
hon [70, p. 175] (see also [71,x103]). MacMahon formulated his result in
terms of \generalized ballot sequences" or \lattice permutations" rather than
SYT, but they are easily seen to be equivalent. He stated the result not in
terms of the products of hook lengths as in Theorem 8.1, but asa more com-
plicated product formula. The formulation in terms of hook lengths is due to
J. S. Frame and appears �rst in the paper [37, Thm. 1] of Frame,Robinson,
and R. M. Thrall; hence it is sometimes called the \Frame-Robinson-Thrall
hook-length formula." (The actual de�nition of standard Young tableaux is
due to A. Young [113, p. 258].)

Independently of MacMahon, F. G. Frobenius [40, eqn. (6)] obtained the
same formula for the degree of the irreducible character� � of S n as MacMa-
hon obtained for the number of lattice permutations of type� . Frobenius was
apparently unaware of the combinatorial signi�cance of deg� � , but Young
showed in [113, pp. 260{261] that deg� � was the number of SYT of shape
� , thereby giving an independent proof of MacMahon's result.(Young also
provided his own proof of MacMahon's result in [113, Thm. II].)

A number of other proofs of the hook-length formula were subsequently
found. C. Greene, A. Nijenhuis, and H. S. Wilf [46] gave an elegant proba-
bilistic proof. A proof of A. Hillman and R. Grassl [55] showsvery clearly the
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role of hook lengths, though the proof is not completely bijective. A bijec-
tive version was later given by C. F. Krattenthaler [61]. Completely bijective
proofs of the hook-length formula were �rst given by D. S. Franzblau and D.
Zeilberger [38] and by J. B. Remmel [87]. An exceptionally elegant bijective
proof was later found by J.-C. Novelli, I. M. Pak, and A. V. Stoyanovskii
[75].

The use of the operatorsU and D to count walks in the Hasse diagram
of Young's lattice was developed independently, in a more general context,
by S. Fomin [35][36] and R. Stanley [97][99]. See also [101,x3.21] for a short
exposition.

The RSK algorithm (known by a variety of other names, either \cor-
respondence" or \algorithm" in connection with some subsetof the names
Robinson, Schensted, and Knuth) was �rst described, in a rather vague form,
by G. de B. Robinson [88,x5], as a tool in an attempted proof of a result
now known as the \Littlewood-Richardson Rule." The RSK algorithm was
later rediscovered by C. E. Schensted (see below), but no oneactually ana-
lyzed Robinson's work until this was done by M. van Leeuwen [65, x7]. It
is interesting to note that Robinson says in a footnote on page 754 that \I
am indebted for this association I to Mr. D. E. Littlewood." Van Leeuwen's
analysis makes it clear that \association I" gives the recording tableau Q of
the RSK algorithm � RSK�! (P; Q). Thus it might be correct to say that if

� 2 S n and � RSK�! (P; Q), then the de�nition of P is due to Robinson, while
the de�nition of Q is due to Littlewood.

No further work related to Robinson's construction was doneuntil Schen-
sted published his seminal paper [90] in 1961. (For some information about
the unusual life of Schensted, see [6].) Schensted's purpose was the enumera-
tion of permutations in S n according to the length of their longest increasing
and decreasing subsequences. According to Knuth [62, p. 726], the connec-
tion between the work of Robinson and that of Schensted was �rst pointed
out by M.-P. Sch•utzenberger, though as mentioned above the�rst person to
describe this connection precisely was van Leeuwen.

Plane partitions were discovered by MacMahon in a series of papers which
were not appreciated until much later. (See MacMahon's book[71, Sections
IX and X] for an exposition of his results.) MacMahon's �rst paper dealing
with plane partitions was [69]. In Article 43 of this paper hegives the de�ni-
tion of a plane partition (though not yet with that name). In A rticle 51 he
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conjectures that the generating function for plane partitions is the product

(1 � x)� 1 (1 � x2)� 2 (1 � x3)� 3 (1 � x4)� 4 � � �

(our equation (8.23)). In Article 52 he conjectures our equation (8.22) and
Theorem 8.18, �nally culminating in a conjectured generating function for
plane partitions ofn with at most r rows, at mosts columns, and with largest
part at most t. (See Exercise 8.33.) MacMahon goes on in Articles 56{62
to prove his conjecture in the case of plane partitions with at most 2 rows
and s columns (the caser = 2 of our Theorem 8.18), mentioning on page
662 that an independent solution was obtained by A. R. Forsyth. (Though a
publication reference is given to Forsyth's paper, apparently it never actually
appeared.)

We will not attempt to describe MacMahon's subsequent work on plane
partitions, except to say that the culmination of his work appears in [71,
Art. 495], in which he proves his main conjecture from his �rst paper [69] on
plane partitions, viz., our Exercise 8.33. MacMahon's proof is quite lengthy
and indirect.

In 1972 E. A. Bender and D. E. Knuth [7] showed the connection between
the theory of symmetric functions and the enumeration of plane partitions.
They gave simple proofs based on the RSK algorithm of many results involv-
ing plane partitions, including the �rst bijective proof (t he same proof that
we give) of our Theorem 8.18.
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Chapter 9

The Matrix-Tree Theorem.

The Matrix-Tree Theorem is a formula for the number of spanning trees of
a graph in terms of the determinant of a certain matrix. We begin with the
necessary graph-theoretical background. LetG be a �nite graph, allowing
multiple edges but not loops. (Loops could be allowed, but they turn out to
be completely irrelevant.) We say thatG is connectedif there exists a walk
between any two vertices ofG. A cycle is a closed walk with no repeated
vertices or edges, except for the the �rst and last vertex. Atree is a connected
graph with no cycles. In particular, a tree cannot have multiple edges, since
a double edge is equivalent to a cycle of length two. The threenonisomorphic
trees with �ve vertices are given by:

r r r r r r r r

r

r

r

r

r

r

r

�
� �

@
@@ �

� �

@
@@�

� �

@
@@

A basic theorem of graph theory (whose easy proof we leave as an exercise)
is the following.

9.1 Proposition. Let G be a graph withp vertices. The following conditions
are equivalent.

(a) G is a tree.
(b) G is connected and hasp � 1 edges.
(c) G is has no cycles and hasp � 1 edges.
(d) There is a unique path (= walk with no repeated vertices) between any

two vertices.

153
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A spanning subgraphof a graphG is a graphH with the same vertex set
asG, and such that every edge ofH is an edge ofG. If G hasq edges, then the
number of spanning subgraphs ofG is equal to 2q, since we can choose any
subset of the edges ofG to be the set of edges ofH . (Note that multiple edges
between the same two vertices are regarded asdistinguishable, in accordance
with the de�nition of a graph in Section 1.) A spanning subgraph which is
a tree is called aspanning tree. Clearly G has a spanning tree if and only if
it is connected [why?]. An important invariant of a graphG is its number of
spanning trees, called thecomplexity of G and denoted� (G).

9.2 Example. Let G be the graph illustrated below, with edgesa, b, c, d,
e.

r r

r r

@
@

@
@

@
@@

d

a e c

b

Then G has eight spanning trees, namely,abc, abd, acd, bcd, abe, ace, bde, and
cde(where, e.g.,abcdenotes the spanning subgraph with edge setf a; b; cg).

9.3 Example. Let G = K 5, the complete graph on �ve vertices. A simple
counting argument shows thatK 5 has 60 spanning trees isomorphic to the
�rst tree in the above illustration of all nonisomorphic trees with �ve vertices,
60 isomorphic to the second tree, and 5 isomorphic to the third tree. Hence
� (K 5) = 125. It is even easier to verify that� (K 1) = 1, � (K 2) = 1, � (K 3) =
3, and � (K 4) = 16. Can the reader make a conjecture about the value of
� (K p) for any p � 1?

Our object is to obtain a \determinantal formula" for � (G). For this we
need an important result from matrix theory which is often omitted from a
beginning linear algebra course. (Later (Theorem 10.4) we will prove a more
general determinantal formula without the use of the Binet-Cauchy theorem.
However, the use of the Binet-Cauchy theorem does a�ord someadditional
algebraic insight.) This result, known as the Binet-Cauchytheorem (or some-
times as the Cauchy-Binet theorem), is a generalization of the familiar fact
that if A and B are n � n matrices, then det(AB ) = det( A) det(B) (where
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det denotes determinant). We want to extend this formula to the case where
A and B are rectangular matrices whose product is a square matrix (so that
det(AB ) is de�ned). In other words, A will be an m � n matrix and B an
n � m matrix, for some m; n � 1.

We will use the following notation involving submatrices. SupposeA =
(aij ) is an m � n matrix, with 1 � i � m, 1 � j � n, and m � n. Given an
m-element subsetS of f 1; 2; : : : ; ng, let A[S] denote them� m submatrix of A
obtained by taking the columns indexed by the elements ofS. In other words,
if the elements ofS are given by j 1 < j 2 < � � � < j m , then A[S] = ( ai;j k ),
where 1� i � m and 1 � k � m. For instance, if

A =

2

4
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

3

5

and S = f 2; 3; 5g, then

A[S] =

2

4
2 3 5
7 8 10

12 13 15

3

5 :

Similarly, let B = ( bij ) be an n � m matrix with 1 � i � n, 1 � j � m and
m � n. Let S be anm-element subset off 1; 2; : : : ; ng as above. ThenB[S]
denotes them � m matrix obtained by taking the rows of B indexed by S.
Note that A t [S] = A[S]t , where t denotes transpose.

9.4 Theorem (the Binet-Cauchy Theorem). Let A = ( aij ) be an m � n
matrix, with 1 � i � m and 1 � j � n. Let B = ( bij ) be ann � m matrix
with 1 � i � n and 1 � j � m. (Thus AB is an m � m matrix.) If m > n ,
then det(AB ) = 0 . If m � n, then

det(AB ) =
X

S

(det A[S])(det B [S]);

whereS ranges over allm-element subsets off 1; 2; : : : ; ng.

Before proceeding to the proof, let us give an example. We write jaij j for
the determinant of the matrix (aij ). Suppose

A =
�

a1 a2 a3

b1 b2 b3

�
; B =

2

4
c1 d1

c2 d2

c3 d3

3

5 :
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Then

det(AB ) =

�
�
�
�

a1 a2

b1 b2

�
�
�
� �

�
�
�
�

c1 d1

c2 d2

�
�
�
�+

�
�
�
�

a1 a3

b1 b3

�
�
�
� �

�
�
�
�

c1 d1

c3 d3

�
�
�
�+

�
�
�
�

a2 a3

b2 b3

�
�
�
� �

�
�
�
�

c2 d2

c3 d3

�
�
�
� :

Proof of Theorem 9.4 (sketch). First supposem > n . Since from
linear algebra we know that rank(AB ) � rank(A) and that the rank of an
m � n matrix cannot exceedn (or m), we have that rank(AB ) � n < m .
But AB is an m � m matrix, so det(AB ) = 0, as claimed.

Now assumem � n. We use notation such asM rs to denote anr � s
matrix M . It is an immediate consequence of the de�nition of matrix multi-
plication (which the reader should check) that

�
Rmm Smn

Tnm Unn

� �
Vmn Wmm

X nn Ynm

�
=

�
RV + SX RW + SY
TV + UX TW + UY

�
: (9.1)

In other words, we can multiply \block" matrices of suitabledimensions as
if their entries were numbers. Note that the entries of the right-hand side
of (9.1) all have well-de�ned dimensions (sizes), e.g.,RV + SX is an m � n
matrix since both RV and SX are m � n matrices.

Now in equation (9.1) let R = I m (the m � m identity matrix), S = A,
T = Onm (the n � m matrix of 0's), U = I n , V = A, W = Omm , X = � I n ,
and Y = B. We get

�
I m A
Onm I n

� �
A Omm

� I n B

�
=

�
Omn AB
� I n B

�
: (9.2)

Take the determinant of both sides of (9.2). The �rst matrix on the left-hand
side is an upper triangular matrix with 1's on the main diagonal. Hence its
determinant is one. Since the determinant of a product of square matrices is
the product of the determinants of the factors, we get

�
�
�
�

A Omm

� I n B

�
�
�
� =

�
�
�
�

Omn AB
� I n B

�
�
�
� : (9.3)

It is easy to see [why?] that the determinant on the right-hand side of
(9.3) is equal to� det(AB ). So consider the left-hand side. A nonzero term in
the expansion of the determinant on the left-hand side is obtained by taking
the product (with a certain sign) of m + n nonzero entries, no two in the
same row and column (so one in each row and each column). In particular,
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we must choosem entries from the lastm columns. These entries belong to
m of the bottom n rows [why?], say rowsm + s1; m + s2; : : : ; m + sm . Let
S = f s1; s2; : : : ; smg � f 1; 2; : : : ; ng. We must choosen � m further entries
from the last n rows, and we have no choice but to choose the� 1's in those
rowsm+ i for which i 62S. Thus every term in the expansion of the left-hand
side of (9.3) uses exactlyn � m of the � 1's in the bottom left block � I n .

What is the contribution to the expansion of the left-hand side of (9.3)
from those terms which use exactly the� 1's from rowsm + i where i 62S?
We obtain this contribution by deleting all rows and columnsto which these
� 1's belong (in other words, delete rowm + i and column i wheneveri 2
f 1; 2; : : : ; ng � S), taking the determinant of the 2m � 2m matrix MS that
remains, and multiplying by an appropriate sign [why?]. Butthe matrix MS

is in block-diagonal form, with the �rst block just the matri x A[S] and the
second block justB [S]. Hence detMS = (det A[S])(det B [S]) [why?]. Taking
all possible subsetsS gives

det AB =
X

S �f 1;2;:::;n g
j S j = m

� (det A[S])(det B [S]):

It is straightforward but somewhat tedious to verify that all the signs are +;
we omit the details. This completes the proof.�

In Section 1 we de�ned the adjacency matrixA (G) of a graph G with
vertex set V = f v1; : : : ; vpg and edge setE = f e1; : : : ; eqg. We now de�ne
two related matrices. Assume for simplicity thatG has no loops. (This
assumption is harmless since loops have no e�ect on� (G).)

9.5 De�nition. Let G be as above. GiveG an orientation o, i.e, for every
edgee with vertices u; v, choose one of the ordered pairs (u; v) or (v; u). (If
we choose (u; v), say, then we think of putting an arrow one pointing from
u to v; and we say thate is directed fromu to v, that u is the initial vertex
and v the �nal vertex of e, etc.)

(a) The incidence matrix M (G) of G (with respect to the orientation o)
is the p � q matrix whose (i; j )-entry M ij is given by

M ij =

8
<

:

� 1; if the edgeej has initial vertex vi

1; if the edgeej has �nal vertex vi

0; otherwise.

(b) The laplacian matrix L (G) of G is the p� p matrix whose (i; j )-entry
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L ij is given by

L ij =
�

� mij ; if i 6= j and there aremij edges betweenvi and vj

deg(vi ); if i = j ,

where deg(vi ) is the number of edges incident tovi . (Thus L (G) is symmetric
and does not depend on the orientationo.)

Note that every column of M (G) contains one 1, one� 1, and q � 2
0's; and hence the sum of the entries in each column is 0. Thus all the
rows sum to the 0 vector, a linear dependence relation which shows that
rank(M (G)) < p. Two further properties of M (G) and L (G) are given by
the following lemma.

9.6 Lemma. (a) We haveMM t = L .
(b) If G is regular of degreed, then L (G) = dI � A (G), where A (G)

denotes the adjacency matrix ofG. Hence if G (or A (G)) has eigenvalues
� 1; : : : ; � p, then L (G) has eigenvaluesd � � 1; : : : ; d � � p.

Proof. (a) This is immediate from the de�nition of matrix multiplic ation.
Speci�cally, for vi ; vj 2 V(G) we have

(MM t ) ij =
X

ek 2 E (G)

M ik M jk :

If i 6= j , then in order for M ik M jk 6= 0, we must have that the edgeek

connects the verticesvi and vj . If this is the case, then one ofM ik and M jk

will be 1 and the other � 1 [why?], so their product is always� 1. Hence
(MM t ) ij = � mij , as claimed.

There remains the casei = j . Then M ik M ik will be 1 if ek is an edge
with vi as one of its vertices and will be 0 otherwise [why?]. So now weget
(MM t ) ii = deg(vi ), as claimed. This proves (a).

(b) Clear by (a), since the diagonal elements ofMM t are all equal to
d.

Now assume thatG is connected, and letM 0(G) be M (G) with its last
row removed. ThusM 0(G) has p � 1 rows andq columns. Note that the
number of rows is equal to the number of edges in a spanning tree of G. We
call M 0(G) the reduced incidence matrixof G. The next result tells us the
determinants (up to sign) of all (p� 1) � (p� 1) submatricesN of M 0. Such
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submatrices are obtained by choosing a setS of p� 1 edges ofG, and taking
all columns ofM 0 indexed by the edges inS. Thus this submatrix is just
M 0[S].

9.7 Lemma. Let S be a set ofp � 1 edges ofG. If S does not form the set
of edges of a spanning tree, thendet M 0[S] = 0. If, on the other hand,S is
the set of edges of a spanning tree ofG, then det M 0[S] = � 1.

Proof. If S is not the set of edges of a spanning tree, then some subsetR of
S forms the edges of a cycleC in G. Suppose that the cycleC de�ned by
R has edgesf 1; : : : ; f s in that order. Multiply the column of M 0[S] indexed
by f j by 1 if in going aroundC we traversef i in the direction of its arrow;
otherwise multiply the column by � 1. Then add these modi�ed columns.
It is easy to see (check a few small examples to convince yourself) that we
get the 0 column. Hence the columns ofM 0[S] are linearly dependent, so
det M 0[S] = 0, as claimed.

Now suppose thatS is the set of edges of a spanning treeT. Let e be an
edge ofT which is connected tovp (the vertex which indexed the bottom row
of M , i.e., the row removed to getM 0). The column ofM 0[S] indexed bye
contains exactly one nonzero entry [why?], which is� 1. Remove fromM 0[S]
the row and column containing the nonzero entry of columne, obtaining a
(p� 2)� (p� 2) matrix M 0

0. Note that det(M 0[S]) = � det(M 0
0) [why?]. Let

T0 be the tree obtained fromT by contracting the edgee to a single vertex
(so that vp and the remaining vertex ofe are merged into a single vertexu).
Then M 0

0 is just the matrix obtained from the incidence matrixM (T0) by
removing the row indexed byu [why?]. Hence by induction on the number
p of vertices (the casep = 1 being trivial), we have det(M 0

0) = � 1. Thus
det(M 0[S]) = � 1, and the proof follows.

Note. An alternative way of seeing that det(M 0S) = � 1 whenS is the
set of of edges of a spanning treeT is as follows. Letu1; u2; : : : ; up� 1 be an
ordering of the verticesv1; : : : ; vp� 1 such that ui is an endpoint of the tree
obtained from T by removing verticesu1; : : : ; ui � 1. (It is easy to see that
such an ordering is possible.) Permute the rows ofM 0[S] so that the i th row
is indexed byui . Then permute the columns in the ordere1; : : : ; ep� 1 so that
ei is the unique edge adjacent toui after u1; : : : ; ui � 1 have been removed.
Then we obtain a lower triangular matrix with � 1's on the main diagonal,
so the determinant is� 1.
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We have now assembled all the ingredients for the main resultof this
section (due originally to Borchardt). Recall that � (G) denotes the number
of spanning trees ofG.

9.8 Theorem (the Matrix-Tree Theorem). Let G be a �nite connected graph
without loops, with laplacian matrixL = L (G). Let L 0 denoteL with the
last row and column removed (or with thei th row and column removed for
any i ). Then

det(L 0) = � (G):

Proof. SinceL = MM t (Lemma 9.6(a)), it follows immediately that L 0 =
M 0M t

0. Hence by the Binet-Cauchy theorem (Theorem 9.4), we have

det(L 0) =
X

S

(det M 0[S])(det M t
0[S]); (9.4)

whereS ranges over all (p� 1)-element subsets off 1; 2: : : ; qg (or equivalently,
over all (p � 1)-element subsets of the set of edges ofG). Since in general
A t [S] = A[S]t , equation (9.4) becomes

det(L 0) =
X

S

(det M 0[S])2: (9.5)

According to Lemma 9.7, det(M 0[S]) is � 1 if S forms the set of edges of a
spanning tree ofG, and is 0 otherwise. Therefore the term indexed byS in
the sum on the right-hand side of (9.5) is 1 ifS forms the set of edges of a
spanning tree ofG, and is 0 otherwise. Hence the sum is equal to� (G), as
desired.

The operation of removing a row and column fromL (G) may seem
somewhat contrived. We would prefer a description of� (G) directly in
terms of L (G). Such a description will follow from the next lemma. Re-
call that the characteristic polynomial of a p � p matrix A is de�ned to be
det(A � xI ). Note. Sometimes the characteristic polynomial is de�ned to
be det(xI � A) = ( � 1)p det(A � xI ). We will use the de�nition det(A � xI ).

9.9 Lemma. Let M be a p � p matrix (with entries in a �eld) such that
the sum of the entries in every row and column is0. Let M0 be the matrix
obtained fromM by removing the last row and last column (or more generally,
any row and any column). Then the coe�cient of x in the characteristic
polynomial det(M � xI ) of M is equal to � p � det(M0). (Moreover, the
constant term ofdet(M � xI ) is 0.)
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Proof. The constant term of det(M � xI ) is det(M ), which is 0 since the
rows ofM sum to 0.

For simplicity we prove the rest of the lemma only for removing the last
row and column, though the proof works just as well for any rowand column.
Add all the rows of M � xI except the last row to the last row. This doesn't
e�ect the determinant, and will change the entries of the last row all to � x
(since the rows ofM sum to 0). Factor out � x from the last row, yielding a
matrix N (x) satisfying det(M � xI ) = � x det(N (x)). Hence the coe�cient of
x in det(M � xI ) is given by � det(N (0)). Now add all the columns ofN (0)
except the last column to the last column. This does not e�ectdet(N (0)).
Because the columns ofM sum to 0, the last column ofN (0) becomes the
column vector [0; 0; : : : ; 0; p]t . Expanding the determinant by the last column
shows that det(N (0)) = p � det(M0), and the proof follows.

9.10 Corollary. (a) Let G be a connected (loopless) graph withp vertices.
Suppose that the eigenvalues ofL (G) are � 1; : : : ; � p� 1; � p, with � p = 0. Then

� (G) =
1
p

� 1� 2 � � � � p� 1:

(b) Suppose thatG is also regular of degreed, and that the eigenvalues of
A (G) are � 1; : : : ; � p� 1; � p, with � p = d. Then

� (G) =
1
p

(d � � 1)(d � � 2) � � � (d � � p� 1):

Proof. (a) We have

det(L � xI ) = ( � 1 � x) � � � (� p� 1 � x)( � p � x)

= � (� 1 � x)( � 2 � x) � � � (� p� 1 � x)x:

Hence the coe�cient ofx is � � 1� 2 � � � � p� 1. By Lemma 9.9, we get� � 1� 2 � � � � p� 1 =
p � det(L 0). By Theorem 9.8 we have det(L 0) = � (G), and the proof follows.

(b) Immediate from (a) and Lemma 9.6(b).

Let us look at a couple of examples of the use of the Matrix-Tree Theorem.

9.11 Example. Let G = K p, the complete graph onp vertices. NowK p is
regular of degreed = p � 1, and by Proposition 1.5 its eigenvalues are� 1
(p � 1 times) and p � 1 = d. Hence from Corollary 9.10 there follows the
elegant result

� (K p) =
1
p

((p � 1) � (� 1))p� 1 = pp� 2:
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9.12 Example. Let G = Cn , the n-cube discussed in Section 2. NowCn

is regular of degreen, and by Corollary 2.5 its eigenvalues aren � 2i with
multiplicity

� n
i

�
for 0 � i � n. Hence from Corollary 9.10 there follows the

amazing result

� (Cn ) =
1
2n

nY

i =1

(2i )(
n
i )

= 2 2n � n� 1
nY

i =1

i (
n
i ):

A direct combinatorial proof (though not an explicit bijection) was found by
O. Bernardi in 2012.
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APPENDIX: THREE ELEGANT COMBINATORIAL
PROOFS

In this appendix we give three elegant combinatorial proofsthat the num-
ber of spanning trees of the complete graphK p is pp� 2 (Example 9.11). The
proofs are given in chronological order of their discovery.

First proof (Pr•ufer). Given a spanning treeT of K p, i.e., a tree on the
vertex set [p], remove the largest endpoint (leaf)v and write down the vertex
a1 adjacent to v. Continue this procedure until only two vertices remain,
obtaining a sequence (a1; : : : ; ap� 2) 2 [p]p� 2, called thePr•ufer sequenceof T.
For the tree below, we �rst remove 11 and then record 8. Next remove 10
and record 1. Then remove 8 and record 4, etc., ending with thesequence
(8; 1; 4; 4; 1; 4; 9; 1; 9) and leaving the two vertices 1 and 9.

6

3

1

27

94
5 10

8
11

We claim that the map just de�ned from trees T on [p] to sequences
(a1; : : : ; ap� 2) 2 [p]p� 2 is a bijection, thereby completing the proof since
clearly [p]p� 2 has pp� 2 elements. The crucial observation is that the �rst
vertex to be removed fromT is the largest vertex ofT missing from the se-
quence [why? | this takes a little thought]. This vertex is adjacent to a1. For
our example, we get that 11 was the �rst vertex removed, and that 11 is ad-
jacent to 8. We can now proceed recursively. IfT1 denotesT with the largest
missing vertex removed, then the Pr•ufer sequence ofT1 is (a2; : : : ; ap� 2). The
�rst vertex to be removed from T1 is the largest vertex ofT2 missing from
(a2; : : : ; ap� 2). This missing vertex is adjacent toa2. For our example, this
missing vertex is 10 (since 11 is not a vertex ofT2), which is adjacent to 1.
Continuing in this way, we determine one new edge ofT at each step. At the
end we have foundp � 2 edges, and the remaining two unremoved vertices
form the (p � 1)st edge.

Second proof (Joyal). A doubly-rooted treeis a tree T with one vertex
u labelled S (for \start") and one vertex v (which may equalu) labelled E
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(\end"). Let t(p) be the number of treesT on the vertex set [p], and let d(p)
be the number of doubly-rooted trees on [p]. Thus

d(p) = p2t(p); (9.6)

since once we have chosenT there arep choices foru and p choices forv.
Let T be a doubly-rooted tree. There is a unique path fromS to E,

say with verticesS = b1; b2; : : : ; bk = E (in that order). The diagram below
shows such a doubly-rooted tree.

14

S E
11 10 15 7 5 2 3

6 9
1 16

813

4 12 17

Let a1 < a 2 < � � � < a k be the increasing rearrangement of the num-
bers b1; b2; : : : ; bk . Let � be the permutation of the setf a1; : : : ; akg given
by � (ai ) = bi . Let D � be the digraph of� , that is, the vertex set of D � is
f a1; : : : ; akg, with a directed edgeai ! bi for 1 � i � k. Since any permu-
tation � of a �nite set is a disjoint product of cycles, it follows that D � is
a disjoint union of directed cycles (all edges of each cycle point in the same
direction as we traverse the cycle). For the example above, we havek = 7.
(b1; : : : ; b7) = (11 ; 10; 15; 7; 5; 2; 3) and (a1; : : : ; a7) = (2 ; 3; 5; 7; 10; 11; 15).
The digraph D � is shown below.

7

2

11 15 5

3 10

Now attach to each vertexv of D � the same subgraphTv that was attached
\below" v in T, and direct the edges ofTv toward v, obtaining a digraphDT .
For our example we get
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11 15 5

6
9

14 13 8

161

2

7

4 12 17

3 10

The graph DT has the crucial property that every vertex has outdegree
one, that is, one arrow pointing out. In other words,DT is the graph of a
function f : [p] ! [p], with vertex set [p] and edgesi ! f (i ). Conversely,
given a function f : [p] ! [p], all the above steps can be reversed to ob-
tain a unique doubly-rooted treeT for which DT is the graph of f . We
have therefore found a bijection from doubly-rooted trees on [p] to functions
f : [p] ! [p]. Since the number of such functionsf is pp, it follows that
d(p) = pp. Then from equation (9.6) we gett(p) = pp� 2.

Third proof (Pitman). A forest is a graph without cycles; thus every
connected component is a tree. Aplanted forestis a forestF for which every
componentT has a distinguished vertexrT (called the root of T). Thus if a
componentT hask vertices, then there arek ways to choose the root ofT.

Let Pp be the set of all planted forests on [p]. Let uv be an edge of a
forest F 2 Pp such that u is closer thanv to the root r of its component.
De�ne F to cover the rooted forestF 0 if F 0 is obtained by removing the edge
uv from F , and rooting the new tree containingv at v. This de�nition of
cover de�nes the covering relation of a partial order onPp. Under this partial
order Pp is graded of rankp � 1. The rank of a forestF in Pp is its number
of edges. The diagram below shows the posetP3.
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2

2

1 33

1

2

3

2

3

1

3

2

3

1

1 1

3
2

2

1
2

1 2

2

3

1 3

1

3

It is an easy exercise to see that an elementF of Pp of rank i covers i
elements and is covered by (p � i � 1)p elements. We now count in two ways
the number Mp of maximal chains ofPp. On the one hand, we can start at
the top. The number of maximal elements ofPp is p � t(p), where t(p) as
above is the number of trees on the vertex set [p], since there arep ways to
choose the root of such a tree. Once a maximal elementF is chosen, then
there arep� 1 elementsF 0 that it covers, then p� 2 elements thatF 0 covers,
etc., giving

Mp = p � t(p)(p � 1)! = p! t(p): (9.7)

On the other hand, we can start at the bottom. There is a uniqueelement
F of rank one (the planted forest with no edges), then (p � 1)p elementsF 0

that cover F , then (p � 2)p elements that coverF 0, etc., giving

Mp = pp� 1(p � 1)!: (9.8)

Comparing equations (9.7) and (9.8) givest(p) = pp� 2.
Our third proof isn't an explicit bijection like the �rst two proofs. On the

other hand, it has the virtue of not depending on the names of the vertices.
Note that in the �rst two proofs it is necessary to know when one vertex is
larger than another.

References for Chapter 9
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The concept of tree as a formal mathematical object goes backto G.
Kirchho� and K. G. C. von Staudt. Trees were �rst extensively investigated
by A. Cayley, to whom the term \tree" is due. In particular, in [22] Cayley
states the formula� (K p) = pp� 2 for the number of spanning trees ofK p, and
he gives a vague idea of a combinatorial proof. Because of this paper, Cayley
is often credited with the enumeration of labelled trees. Cayley pointed
out, however, that an equivalent result had been proved earlier by C. W.
Borchardt [10]. Moreover, this result appeared even earlier in a paper of J.
J. Sylvester [104]. Undoubtedly Cayley and Sylvester couldhave furnished
a complete, rigorous proof had they the inclination to do so.The elegant
combinatorial proofs given in the appendix are due to E. P. H.Pr•ufer, [83],
A. Joyal, [58, Exam. 12, pp. 15{16] and J. W. Pitman [77].

The Matrix-Tree Theorem (Theorem 9.8) was �rst proved by C. W. Bor-
chardt [10] in 1860, though a similar result had earlier beenpublished by
J. J. Sylvester [104] in 1857. Cayley [21, p. 279] in fact in 1856 referred to
the not-yet-published work of Sylvester. For further historical information
on the Matrix-Tree theorem, see Moon [72, p. 42].

[more??]
Exercise 9.4 is based on a suggestion of P. Venkataramana.
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Chapter 10

Eulerian digraphs and oriented
trees

A famous problem which goes back to Euler asks for what graphsG is there
a closed walk which uses every edge exactly once. (There is also a version for
non-closed walks.) Such a walk is called anEulerian tour (also known as an
Eulerian cycle). A graph which has an Eulerian tour is called anEulerian
graph. Euler's famous theorem (the �rst real theorem of graph theory) states
that a graph G without isolated vertices (which clearly would be irrelevant) is
Eulerian if and only if it is connected and every vertex has even degree. Here
we will be concerned with the analogous theorem for directedgraphs. We
want to know not just whether an Eulerian tour exists, but howmany there
are. We will prove an elegant determinantal formula for thisnumber closely
related to the Matrix-Tree Theorem. For the case of undirected graphs no
analogous formula is known, explaining why we consider onlythe directed
case.

A (�nite) directed graphor digraph
D consists of avertex setV = f v1; : : : ; vpg and edge setE = f e1; : : : ; eqg,

together with a function ' : E ! V � V (the set of ordered pairs (u; v) of
elements ofV). If ' (e) = ( u; v), then we think of e as an arrow fromu to v.
We then call u the initial vertex and v the �nal vertex of e. (These concepts
arose in the de�nition of an orientation in De�nition 8.5.) A tour in D is
a sequencee1; e2; : : : ; er of distinct edges such that the �nal vertex ofei is
the initial vertex of ei +1 for all 1 � i � r � 1, and the �nal vertex of er is
the initial vertex of e1. A tour is Eulerian if every edge ofD occurs at least
once (and hence exactly once). A digraph which has no isolated vertices and

173
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contains an Eulerian tour is called anEulerian digraph. Clearly an Eulerian
digraph is connected. Theoutdegreeof a vertex v, denoted outdeg(v), is
the number of edges ofG with initial vertex v. Similarly the indegreeof v,
denoted indeg(v), is the number of edges ofD with �nal vertex v. A loop
(edge of the form (v; v)) contributes one to both the indegree and outdegree.
A digraph is balancedif indeg(v) = outdeg(v) for all vertices v.

10.1 Theorem. A digraph D is Eulerian if and only if it is connected and
balanced.

Proof. AssumeD is Eulerian, and let e1; : : : ; eq be an Eulerian tour. As we
move along the tour, whenever we enter a vertexv we must exit it, except
at the very end we enter the �nal vertexv of eq without exiting it. However,
at the beginning we exitedv without having entered it. Hence every vertex
is entered as often as it is exited and so must have the same outdegree as
indegree. ThereforeD is balanced, and as noted aboveD is clearly connected.

Now assume thatD is balanced and connected. We may assume thatD
has at least one edge. We �rst claim that for any edgee of D, D has a tour
for which e = e1. If e1 is a loop we are done. Otherwise we have entered
the vertex �n( e1) for the �rst time, so since D is balanced there is some exit
edgee2. Either �n( e2) = init( e1) and we are done, or else we have entered
the vertex �n( e2) once more than we have exited it. SinceD is balanced
there is new edgee3 with �n( e2) = init( e3). Continuing in this way, either
we complete a tour or else we have entered the current vertex once more than
we have exited it, in which case we can exit along a new edge. Since D has
�nitely many edges, eventually we must complete a tour. ThusD does have
a tour which usese1.

Now let e1; : : : ; er be a tour C of maximum length. We must show that
r = q, the number of edges ofD. Assume to the contrary thatr < q . Since in
moving alongC every vertex is entered as often as it is exited (with init(e1)
exited at the beginning and entered at the end), when we remove the edges
of C from D we obtain a digraphH which is still balanced, though it need
not be connected. However, sinceD is connected, at least one connected
componentH1 of H contains at least one edge and has a vertexv in common
with C [why?]. SinceH1 is balanced, there is an edgee of H1 with initial
vertex v. The argument of the previous paragraph shows thatH1 has a tour
C0 of positive length beginning with the edgee. But then when moving along
C, when we reachv we can take the \detour" C0 before continuing with C.
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This gives a tour of length longer thanr , a contradiction. Hencer = q, and
the theorem is proved.

Our primary goal is to count the number of Eulerian tours of a connected
balanced digraph. A key concept in doing so is that of an oriented tree.
An oriented tree with root v is a (�nite) digraph T with v as one of its
vertices, such that there is a unique directed path from any vertex u to v.
In other words, there is a unique sequence of edgese1; : : : ; er such that (a)
init( e1) = u, (b) �n( er ) = v, and (c) �n( ei ) = init( ei +1 ) for 1 � i � r � 1.
It's easy to see that this means that the underlying undirected graph (i.e.,
\erase" all the arrows from the edges ofT) is a tree, and that all arrows
in T \point toward" v. There is a surprising connection between Eulerian
tours and oriented trees, given by the next result (due to de Bruijn and van
Aardenne-Ehrenfest). This result is sometimes called the BEST Theorem,
after deBruijn, van Aardenne-Ehrenfest,Smith, and T utte. However, Smith
and Tutte were not involved in the original discovery.

10.2 Theorem. Let D be a connected balanced digraph with vertex setV.
Fix an edgee of D, and let v = init( e). Let � (D; v) denote the number
of oriented (spanning) subtrees ofD with root v, and let � (D; e) denote the
number of Eulerian tours ofD starting with the edgee. Then

� (D; e) = � (D; v)
Y

u2 V

(outdeg(u) � 1)!: (10.1)

Proof. Let e = e1; e2; : : : ; eq be an Eulerian tour E in D. For each vertex
u 6= v, let e(u) be the \last exit" from u in the tour, i.e., let e(u) = ej where
init( e(u)) = u and init( ek) 6= u for any k > j .

Claim #1. The vertices ofD, together with the edgese(u) for all vertices
u 6= v, form an oriented subtree ofD with root v.

Proof of Claim #1. This is a straightforward veri�cation. Let T be the
spanning subgraph ofD with edgese(u), u 6= v. Thus if jV j = p, then T has
p vertices andp � 1 edges [why?]. There are three items to check to insure
that T is an oriented tree with rootv:

(a) T does not have two edgesf and f 0 satisfying init( f ) = init( f 0). This
is clear since bothf and f 0 can't be last exits from the same vertex.

(b) T does not have an edgef with init( f ) = v. This is clear since by
de�nition the edges ofT consist only of last exits from vertices other
than v, so no edge ofT can exit from v.
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(c) T does not have a (directed) cycleC. For supposeC were such a cycle.
Let f be that edge ofC which occurs after all the other edges ofC in
the Eulerian tour E. Let f 0 be the edge ofC satisfying �n( f ) = init( f 0)
(= u, say). We can't haveu = v by (b). Thus when we enteru via
f , we must exit u. We can't exit u via f 0 sincef occurs afterf 0 in E.
Hencef 0 is not the last exit from u, contradicting the de�nition of T.

It's easy to see that conditions (a){(c) imply that T is an oriented tree with
root v, proving the claim.

Claim #2. We claim that the following converse to Claim #1 is true.
Given a connected balanced digraphD and a vertexv, let T be an oriented
(spanning) subtree ofD with root v. Then we can construct an Eulerian tour
E as follows. Choose an edgee1 with init( e1) = v. Then continue to choose
any edge possible to continue the tour, except we never choose an edgef
of E unless we have to, i.e., unless it's the only remaining edge exiting the
vertex at which we stand. Then we never get stuck until all edges are used,
so we have constructed an Eulerian tourE. Moreover, the set of last exits
of E from verticesu 6= v of D coincides with the set of edges of the oriented
tree T.

Proof of Claim #2. SinceD is balanced, the only way to get stuck is to
end up at v with no further exits available, but with an edge still unused.
Suppose this is the case. At least one unused edge must be a last exit edge,
i.e., an edge ofT [why?]. Let u be a vertex ofT closest tov in T such that
the unique edgef of T with init( f ) = u is not in the tour. Let y = �n( f ).
Supposey 6= v. Since we entery as often as we leave it, we don't use the
last exit from y. Thus y = v. But then we can leavev, a contradiction. This
proves Claim #2.

We have shown that every Eulerian tourE beginning with the edgee
has associated with it a \last exit" oriented subtreeT = T(E) with root
v = init( e). Conversely, given an oriented subtreeT with root v, we can
obtain all Eulerian tours E beginning with e and satisfying T = T(E) by
choosing for each vertexu 6= v the order in which the edges fromu, except
the edge ofT, appear in E; as well as choosing the order in which all the
edges fromv except for e appear in E. Thus for each vertexu we have
(outdeg(u) � 1)! choices, so for eachT we have

Q
u(outdeg(u) � 1)! choices.

Since there are� (G; v) choices forT, the proof is complete.

10.3 Corollary. Let D be a connected balanced digraph, and letv be a vertex
of D. Then the number� (D; v) of oriented subtrees with rootv is independent
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of v.

Proof. Let e be an edge with initial vertex v. By equation (10.1), we need
to show that the number� (G; e) of Eulerian tours beginning withe is indepen-
dent ofe. But e1e2 � � � eq is an Eulerian tour if and only ifei ei +1 � � � eqe1e2 � � � ei � 1

is also an Eulerian tour, and the proof follows [why?].

What we obviously need to do next is �nd a formula for� (G; v). Such a
formula is due to W. Tutte in 1948. This result is very similarto the Matrix-
Tree Theorem, and indeed we will show (Example 10.6) that theMatrix-Tree
Theorem is a simple corollary to Theorem 10.4.

10.4 Theorem. Let D be a connected digraph with vertex setV = f v1; : : : ; vpg
and with l i loops at vertexvi . Let L (D) be thep � p matrix de�ned by

L ij =

8
<

:

� mij ; if i 6= j and there aremij edges with
initial vertex vi and �nal vertex vj

outdeg(vi ) � l i ; if i = j .

(Thus L is the directed analogue of the laplacian matrix of an undirected
graph.) Let L 0 denoteL with the last row and column deleted. Then

det L 0 = � (D; vp): (10.2)

Note. If we remove thei th row and column fromL instead of the last row
and column, then equation (10.2) still holds withvp replaced withvi .

Proof (sketch). Induction on q, the number of edges ofD. The fewest
number of edges whichD can have isp � 1 (sinceD is connected). Suppose
then that D has p � 1 edges, so that as an undirected graphD is a tree. If
D is not an oriented tree with root vp, then some vertexvi 6= vp of D has
outdegree 0 [why?]. ThenL 0 has a zero row, so detL 0 = 0 = � (D; vp). If
on the other handD is an oriented tree with rootvp, then an argument like
that used to prove Lemma 9.7 (in the case whenS is the set of edges of a
spanning tree) shows that detL 0 = 1 = � (D; vp).

Now assume thatD has q > p � 1 edges, and assume the theorem for
digraphs with at most q � 1 edges. We may assume that no edgef of D
has initial vertex v, since such an edge belongs to no oriented tree with root
v and also makes no contribution toL 0. It then follows, since D has at
least p edges, that there exists a vertexu 6= v of D of outdegree at least
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two. Let e be an edge with init(e) = u. Let D1 be D with the edge e
removed. LetD2 be D with all edgese0 removed such that init(e) = init( e0)
and e0 6= e. (Note that D2 is strictly smaller than D since outdeg(u) � 2.)
By induction, we have detL 0(D1) = � (D1; vp) and detL 0(D2) = � (D2; vp).
Clearly � (D; vp) = � (D1; vp) + � (D2; vp), since in an oriented treeT with
root vp, there is exactly one edge whose initial vertex coincides with that of
e. On the other hand, it follows immediately from the multilinearity of the
determinant [why?] that

det L 0(D) = det L 0(D1) + det L 0(D2):

From this the proof follows by induction. �

10.5 Corollary. Let D be a connected balanced digraph with vertex setV =
f v1; : : : ; vpg. Let e be an edge ofD. Then the number� (D; e) of Eulerian
tours of D with �rst edge e is given by

� (D; e) = (det L 0(D))
Y

u2 V

(outdeg(u) � 1)!:

Equivalently (sinceD is balanced, so Lemma 9.9 applies), ifL (D) has eigen-
values� 1; : : : ; � p with � p = 0, then

� (D; e) =
1
p

� 1 � � � � p� 1

Y

u2 V

(outdeg(u) � 1)!:

Proof. Combine Theorems 10.2 and 10.4.

10.6 Example. (the Matrix-Tree Theorem revisited) Let G be a connected
loopless undirected graph. Let̂G be the digraph obtained fromG by replac-
ing each edgee = uv of G with a pair of directed edgesu ! v and v ! u.
Clearly Ĝ is balanced and connected. Choose a vertexv of G. There is
an obvious one-to-one correspondence between spanning trees T of G and
oriented spanning treesT̂ of Ĝ with root v, namely, direct each edge ofT
toward v. Moreover,L (G) = L (Ĝ) [why?]. Hence the Matrix-Tree Theorem
is an immediate consequence of the Theorem 10.4.

10.7 Example. (the e�cient mail carrier) A mail carrier has an itinerary of
city blocks to which he (or she) must deliver mail. He wants toaccomplish
this by walking along each block twice, once in each direction, thus passing
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along houses on each side of the street. The blocks form the edges of a
graph G, whose vertices are the intersections. The mail carrier wants simply
to walk along an Eulerian tour in the digraphĜ of the previous example.
Making the plausible assumption that the graph is connected, not only does
an Eulerian tour always exist, but we can tell the mail carrier how many
there are. Thus he will know how many di�erent routes he can take to avoid
boredom. For instance, supposeG is the 3� 3 grid illustrated below.

r

r

r

r

r

r

r

r

r

This graph has 128 spanning trees. Hence the number of mail carrier
routes beginning with a �xed edge (in a given direction) is 128 � 1!42!43! =
12288. The total number of routes is thus 12288 times twice the number of
edges [why?], viz., 12288� 24 = 294912. Assuming the mail carrier delivered
mail 250 days a year, it would be 1179 years before he would have to repeat
a route!

10.8 Example. (binary de Bruijn sequences) Abinary sequenceis just a
sequence of 0's and 1's. Abinary de Bruijn sequenceof degreen is a bi-
nary sequenceA = a1a2 � � � a2n such that every binary sequenceb1 � � � bn of
length n occurs exactly once as a \circular factor" ofA, i.e., as a sequence
ai ai +1 � � � ai + n� 1, where the subscripts are taken modulon if necessary. For
instance, some circular factors of the sequenceabcdefgare a, bcde, fgab, and
defga. Note that there are exactly 2n binary sequences of lengthn, so the
only possible length of a binary de Bruijn sequence of degreen is 2n [why?].
Clearly any cyclic shift ai ai +1 � � � a2n a1a2 � � � ai � 1 of a binary de Bruijn se-
quencea1a2 � � � a2n is also a binary de Bruijn sequence, and we call two such
sequencesequivalent. This relation of equivalence is obviously an equivalence
relation, and every equivalence class contains exactly onesequence beginning
with n 0's [why?]. Up to equivalence, there is one binary de Bruijn sequence
of degree two, namely, 0011. It's easy to check that there aretwo inequivalent
binary de Bruijn sequences of degree three, namely, 00010111 and 00011101.
However, it's not clear at this point whether binary de Bruijn sequences exist
for all n. By a clever application of Theorems 10.2 and 10.4, we will not only
show that such sequences exist for all positive integersn, but we will also
count the number of them. It turns out that there are lots of them. For
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instance, the number of inequivalent binary de Bruijn sequences of degree
eight is equal to

1329227995784915872903807060280344576:

The reader with some extra time on his or her hands is invited to write down
these sequences. De Bruijn sequences are named after Nicolaas Govert de
Bruijn, who published his work on this subject in 1946. However, it was
discovered in 1975 that de Bruijn sequences had been earliercreated and
enumerated by C. Flye Sainte-Marie in 1894. De Bruijn sequences have a
number of interesting applications to the design of switching networks and
related topics.

Our method of enumerating binary de Bruijn sequences will beto set
up a correspondence between them and Eulerian tours in a certain directed
graph Dn , the de Bruijn graph of degreen. The graph Dn has 2n� 1 vertices,
which we will take to consist of the 2n� 1 binary sequences of lengthn � 1. A
pair (a1a2 � � � an� 1; b1b2 � � � bn� 1) of vertices forms an edge ofDn if and only if
a2a3 � � � an� 1 = b1b2 � � � bn� 2, i.e., e is an edge if the lastn � 2 terms of init(e)
agree with the �rst n � 2 terms of �n(e). Thus every vertex has indegree two
and outdegree two [why?], soDn is balanced. The number of edges ofDn is
2n . Moreover, it's easy to see thatDn is connected (see Lemma 10.9). The
graphsD3 and D4 look as follows:

01

111

110

00100

10

11

100

011

101

000

010

Suppose thatE = e1e2 � � � e2n is an Eulerian tour in Dn . If �n( ei ) is the
binary sequenceai 1ai 2 � � � ai;n � 1, then replaceei in E by the last bit ai;n � 1. It
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is easy to see that the resulting sequence� (E) = a1;n� 1a2;n� 1 � � � a2n ;n � 1 is a
binary de Bruijn sequence, and conversely every binary de Bruijn sequence
arises in this way. In particular, sinceDn is balanced and connected there
exists at least one binary de Bruijn sequence. In order to count the total
number of such sequences, we need to compute detL (Dn ). One way to
do this is by a clever but messy sequence of elementary row andcolumn
operations which transforms the determinant into triangular form. We will
give instead an elegant computation of the eigenvalues ofL (Dn ) based on
the following simple lemma.

10.9 Lemma. Let u and v be any two vertices ofDn . Then there is a unique
(directed) walk from u to v of lengthn � 1.

Proof. Supposeu = a1a2 � � � an� 1 and v = b1b2 � � � bn� 1. Then the unique
path of length n � 1 from u to v has vertices

a1a2 � � � an� 1; a2a3 � � � an� 1b1; a3a4 � � � an� 1b1b2; : : : ;

an� 1b1 � � � bn� 2; b1b2 � � � bn� 1:

10.10 Theorem. The eigenvalues ofL (Dn) are 0 (with multiplicity one)
and 2 (with multiplicity 2n� 1 � 1).

Proof. Let A (Dn ) denote the directed adjacency matrix ofDn , i.e., the rows
and columns are indexed by the vertices, with

A uv =
�

1; if (u; v) is an edge
0; otherwise:

Now Lemma 10.9 is equivalent to the assertion thatA n� 1 = J , the 2n� 1� 2n� 1

matrix of all 1's [why?]. If the eigenvalues ofA are � 1; : : : � 2n � 1 , then the
eigenvalues ofJ = An� 1 are � n� 1

1 ; : : : ; � n� 1
2n � 1 . By Lemma 1.4, the eigenvalues

of J are 2n� 1 (once) and 0 (2n� 1 � 1 times). Hence the eigenvalues ofA are
2� (once, where� is an (n � 1)-st root of unity to be determined), and 0
(2n� 1 � 1 times). Since the trace ofA is 2, it follows that � = 1, and we have
found all the eigenvalues ofA.

Now L (Dn ) = 2 I � A (Dn ) [why?]. Hence the eigenvalues ofL are 2�
� 1; : : : ; 2 � � 2n � 1 , and the proof follows from the above determination of
� 1; : : : ; � 2n � 1 .
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10.11 Corollary. The numberB0(n) of binary de Bruijn sequences of degree
n beginning withn 0's is equal to22n � 1 � n . The total numberB(n) of binary
de Bruijn sequences of degreen is equal to22n � 1

.

Proof. By the above discussion,B0(n) is the number of Eulerian tours inDn

whose �rst edge the loop at vertex 00� � � 0. Moreover, the outdegree of every
vertex of Dn is two. Hence by Corollary 10.5 and Theorem 10.10 we have

B0(n) =
1

2n� 1
22n � 1 � 1 = 2 2n � 1 � n :

Finally, B (n) is obtained from B0(n) by multiplying by the number 2n of
edges, and the proof follows.

Note that the total number of binary sequences of length 2n is N = 2 2n
.

By the previous corollary, the number of these which are de Bruijn sequences
is just

p
N . This suggests the following problem, solved by H. Bidkhoriand

S. Kishore. LetA n be the set of all binary sequences of length 2n . Let Bn be
the set of binary de Bruijn sequences of degreen. Find an explicit bijection
' : Bn � B n ! A n , thereby giving a combinatorial proof of Corollary 10.11.

References for Chapter 10

The characterization of Eulerian digraphs given by Theorem10.1 is a
result of I. J. Good [43], while the fundamental connection between oriented
subtrees and Eulerian tours in a balanced digraph that was used to prove
Theorem 10.2 was shown by T. van Aardenne-Ehrenfest and N. G.de Bruijn
[2, Thm. 5a]. This result is sometimes called the BEST Theorem, after
de Bruijn, van Aardenne-Ehrenfest, Smith, and T utte. However, Smith
and Tutte were not involved in the original discovery. (In [92] Smith and
Tutte give a determinantal formula for the number of Eulerian tours in a
special class of balanced digraphs. Van Aardenne-Ehrenfest and de Bruijn
refer to the paper of Smith and Tutte in a footnote added in proof.) The
determinantal formula for the number of oriented subtrees of a directed graph
(Theorem 10.4) is due to Tutte [109, Thm. 3.6].

De Bruijn sequences are named from the paper [14] of de Bruijn, where
they are enumerated in the binary case. However, it was discovered by R.
Stanley in 1975 that this work had been done earlier by C. FlyeSainte-Marie
[34] in 1894, as reported by de Bruijn [16]. The generalization to d-ary de
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Bruijn sequences (Exercise 10.2) is to to T. van Ardenne-Ehrenfest and de
Bruijn [1]. Some recent work in this area appears in a specialissue [102] of
Discrete Mathematics. Some amusing applications to magic are given by P.
Diaconis and R. Graham [28, Chs. 2{4].



Chapter 11

Cycles, bonds, and electrical
networks.

11.1 The cycle space and bond space.

In this section we will deal with some interesting linear algebra related to
the structure of a directed graph. LetD = ( V; E) be a digraph. A function
f : E ! R is called acirculation if for every vertex v 2 V, we have

X

e2 E
init( e)= v

f (e) =
X

e2 E
�n( e)= v

f (e): (11.1)

Thus if we think of the edges as pipes andf as measuring the ow (quantity
per unit of time) of some commodity (such as oil) through the pipe in the
speci�ed direction (so that a negative value off (e) means a ow of jf (e)j
in the direction opposite the direction ofe), then equation (11.1) simply
says that the amount owing into each vertex equals the amount owing
out. In other words, the ow is conservative. The �gure below illustrates a
circulation in a digraph D.

3

5 2

3

4 7

-6

-1
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Let C = CD denote the set of all circulations onD. Clearly if f; g 2 C
and �; � 2 R then �f + �g 2 C. HenceC is a (real) vector space, called the
cycle spaceof D. Thus if q = jE j, then CD is a subspace of theq-dimensional
vector spaceRE of all functions f : E ! R.

What do circulations have do with something \circulating," and what
does the cycle space have to do with actual cycles? To see this, de�ne a
circuit or elementary cyclein D to be a set of edges of a closed walk,ignoring
the direction of the arrows, with no repeated vertices except the �rst and
last. Suppose thatC has been assigned an orientation (direction of travel)
o. (Note that this meaning of orientation is not the same as that appearing
in De�nition 9.5.)

De�ne a function f C : E ! R (which also depends on the orientationo,
though we suppress it from the notation) by

f C (e) =

8
<

:

1; if e 2 C and e agrees witho
� 1; if e 2 C and e is opposite too

0; otherwise:

It is easy to see thatf C is a circulation. Later we will see that the circu-
lations f C span the cycle spaceC, explaining the terminology \circulation"
and \cycle space." The �gure below shows a circuitC with an orientation o,
and the corresponding circulationf C .



11.1. THE CYCLE SPACE AND BOND SPACE. 189
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Figure 11.1: A function and its coboundary

1
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-1

1
Given a function p : V ! R, de�ne a new function �p : E ! R, called

the coboundary1 of p, by

�p (e) = p(v) � p(u); if u = init( e) and v = �n( e).

Figure 11.1 shows a digraphD with the value p(v) of some functionp : V ! R
indicated at each vertexv, and the corresponding values�p(e) shown at each
edgee.

One should regard� as an operator which takes an elementp of the vector
spaceRV of all functionsV ! R and produces an element of the vector space
RE of all functions E ! R. It is immediate from the de�nition of � that � is
linear, i.e.,

� (�p + �q ) = � � �p + � � �q;

1The term \coboundary" arises from algebraic topology, but we will not explain the
connection here.
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for all p; q 2 RV and �; � 2 R. Thus � is simply a linear transformation
� : RV ! RE between two �nite-dimensional vector spaces.

A function g : E ! R is called apotential di�erence on D if g = �p for
somep : V ! R. (Later we will see the connection with electrical networks
that accounts for the terminology \potential di�erence.") Let B = BD be the
set of all potential di�erences onD. Thus B is just the image of the linear
transformation � and is hence a real vector space, called thebond spaceof
D.

Let us explain the reason behind the terminology \bond space." A bondin
a digraphD is a setB of edges such that (a) removingB from D disconnects
some (undirected) component ofD (that is, removing B creates a digraph
which has more connected components, as an undirected graph, than D), and
(b) no proper subset ofB has this property. A subset of edges satisfying (a)
is called acutset, so a bond is just a minimal cutset. Suppose, for example,
that D is given as follows (with no arrows drawn since they are irrelevant to
the de�nition of bond):

r r

r r

@
@

@
@

@
@@

a

dcb

e

Then the bonds are the six subsetsab; de; acd; bce; ace; bcd.
Let B be a bond. SupposeB disconnects the component (V 0; E0) into two

pieces (a bond always disconnects some component into exactly two pieces
[why?]) with vertex set S in one piece and�S in the other. Thus S [ �S = V 0

and S \ �S = ; . De�ne

[S; �S] = f e 2 E : exactly one vertex ofe lies in S and one lies in �Sg:

Clearly B = [ S; �S]. It is often convenient to use the notation [S; �S] for a
bond.

Given a bondB = [ S; �S] of D, de�ne a function gB : E ! R by

gB (e) =

8
<

:

1; if init( e) 2 �S, �n( e) 2 S
� 1; if init( e) 2 S, �n( e) 2 �S

0; otherwise.
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Note that gB really depends not just onB, but on whether we write B as
[S; �S] or [ �S; S]. Writing B in the reverse way simply changes the sign ofgB .
Whenever we deal withgB we will assume that some choiceB = [ S; �S] has
been made.

Now note that gB = �p , where

p(v) =
�

1; if v 2 S
0; if v 2 �S:

Hence gB 2 B, the bond space ofD. We will later see that B is in fact
spanned by the functionsgB , explaining the termininology \bond space."

11.1 Example. In the digraph below, open (white) vertices indicate an
element ofS and closed (black) vertices an element of�S for a certain bond
B = [ S; �S]. The elements ofB are drawn with solid lines. The edges are
labelled by the values ofgB , and the vertices by the functionp for which
gB = �p .

0

0 -1

0 1 -1

-1

0

1 1

0

01

Recall that in De�nition 9.5 we de�ned the incidence matrix M (G) of a
loopless undirected graphG with respect to an orientation o. We may just
as well think of G together with its orientation o as a directed graph. We
also will allow loops. Thus ifD = ( V; E) is any (�nite) digraph, de�ne the
incidence matrix M = M (D) to be the p� q matrix whose rows are indexed
by V and columns byE, as follows. The entry in rowv 2 V and column
e 2 E is denotedmv(e) and is given by

mv(e) =

8
<

:

� 1; if v = init( e) and e is not a loop
1; if v = �n( e) and e is not a loop
0; otherwise:
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For instance, if D is given by

1 2

3

4

5

2

3

1

then

M (D) =

2

4
1 1 � 1 0 0

� 1 � 1 0 1 0
0 0 1 � 1 0

3

5 :

11.2 Theorem. The row space ofM (D) is the bond spaceBD . Equivalently,
the functionsmv : E ! R, wherev ranges over all vertices ofD, span B.

Proof. Let g = �p be a potential di�erence onD, so

g(e) = p(�n( e)) � p(init( e))

=
X

v2 V

p(v)mv(e):

Thus g =
P

v2 V p(v)mv, so g belongs to the row space ofM .
Conversely, ifg =

P
v2 V q(v)mv is in the row space ofM , whereq : V !

R, then g = �q 2 B.

We now de�ne a scalar product (or inner product) on the spaceRE by

hf; g i =
X

e2 E

f (e)g(e);

for any f; g 2 RE . If we think of the numbersf (e) and g(e) as the coordinates
of f and g with respect to the basisE, then hf; g i is just the usual dot product
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of f and g. Because we have a scalar product, we have a notion of what it
means forf and g to be orthogonal, viz., hf; g i = 0. If V is any subspace of
RE , then de�ne the orthogonal complementV? of V by

V? = f f 2 RE : hf; g i = 0 for all g 2 RE g:

Recall from linear algebra that

dim V + dim V? = dim RE = # E: (11.2)

Furthermore,
�
V?

� ?
= V. Let us also note that since we are working over

R, we haveV \ V ? = f 0g. Thus RE = V � V ? (direct sum).
Intuitively there is a kind of \duality" between elementary cycles and

bonds. Cycles \hold vertices together," while bonds \tear them apart." The
precise statement of this duality is given by the next result.

11.3 Theorem. The cycle and bond spaces ofD are related byC = B? .
(Equivalently, B = C? .)

Proof. Let f : E ! R. Then f is a circulation if and only if
X

e2 E

mv(e)f (e) = 0

for all v 2 V [why?]. But this is exactly the condition that f 2 B ? .

11.2 Bases for the cycle space and bond space.

We want to examine the incidence matrixM (D) in more detail. In particu-
lar, we would like to determine which rows and columns ofM (D) are linearly
independent, and which span the row and column spaces. As a corollary, we
will determine the dimension of the spacesB and C. We begin by de�ning
the support kf k of f : E ! R to be the set of edgese 2 E for which f (e) 6= 0.

11.4 Lemma. If 0 6= f 2 C, then kf k contains an undirected circuit.

Proof. If not, then kf k has a vertex of degree one [why?], which is clearly
impossible.

11.5 Lemma. If 0 6= g 2 B, then kgk contains a bond.
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Proof. Let 0 6= g 2 B, so g = �p for somep : V ! R. Choose a vertexv
which is incident to an edge ofkgk, and set

U = f u 2 V : p(u) = p(v)g:

Let �U = V � U. Note that �U 6= ; , since otherwisep is constant sog = 0.
Sinceg(e) 6= 0 for all e 2 [U; �U] [why?], we have thatkgk contains the cutset
[U; �U]. Since a bond is by de�nition a minimal cutset, it follows that kgk
contains a bond.

A matrix B is called abasis matrix of B if the rows of B form a basis
for B. Similary de�ne a basis matrix C of C.

Recall the notation of Theorem 9.4: LetA be a matrix with at least as
many columns as rows, whose columns are indexed by the elements of a set
T. If S � T, then A[S] denotes the submatrix ofA consisting of the columns
indexed by the elements ofS. In particular, A[e] (short for A[f eg]) denotes
the column ofA indexed bye. We come to our �rst signi�cant result about
bases for the vector spacesB and C.

11.6 Theorem. Let B be a basis matrix ofB, and C a basis matrix ofC.
(Thus the columns ofB and C are indexed by the edgese 2 E of D.) Let
S � E, Then:

(i) The columns of B [S] are linearly independent if and only ifS is acyclic
(i.e., contains no circuit as an undirected graph).

(ii) The columns of C [S] are linearly independent if and only ifS contains
no bond.

Proof. The columns ofB [S] are linearly dependent if and only if there exists
a function f : E ! R such that

f (e) 6= 0 for somee 2 S

f (e) = 0 for all e 62S
X

e2 E

f (e)B [e] = 0; the column vector of 0's: (11.3)

The last condition is equivalent to hf; m v i = 0 for all v 2 V, i.e., f is a
circulation. Thus the columns ofB [S] are linearly dependent if and only if
there exists a nonzero circulationf such that kf k � S. By Lemma 11.4,
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kf k (and thereforeS) contains a circuit. Conversely, ifS contains a circuit
C then 0 6= f C 2 C and kf Ck = C � S, so f C de�nes a linear dependence
relation (11.3) among the columns. Hence the columns ofB [S] are linearly
independent if and only if S is acyclic, proving (i). (Part (i) can also be
deduced from Lemma 9.7.)

The proof of (ii) is similar and is left as an exercise.

11.7 Corollary. Let D = ( V; E) be a digraph withp vertices, q edges, and
k connected components (as an undirected graph). Then

dim B = p � k

dim C = q � p + k:

Proof. For any matrix X , the rank of X is equal to the maximum number of
linearly independent columns. Now letB be a basis matrix ofB. By Theo-
rem 11.6(i), the rank ofB is then the maximum size (number of elements)
of an acyclic subset ofE. In each connected componentD i of D, the largest
acyclic subsets are the spanning trees, whose number of edges is p(D i ) � 1,
wherep(D i ) is the number of vertices ofD i . Hence

rank B =
kX

i =1

(p(D i ) � 1)

= p � k:

Since dimB + dim C = dim RE = q by equation (11.2) and Theorem 11.3, we
have

dim C = q � (p � k) = q � p + k:

(It is also possible to determine dimC by a direct argument similar to our
determination of dimB.)

The number q � p + k (which should be thought of as the number of
independent cycles inD) is called the cyclomatic number of D (or of its
undirected versionG, since the direction of the edges have no e�ect).

Our next goal is to describe explicit bases ofC and B. Recall that a forest
is an undirected graph without circuits, or equivalently, adisjoint union of
trees. We extend the de�nition of forest to directed graphs by ignoring the
arrows, i.e., a directed graph is a forest if it has no circuits as an undirected
graph. Equivalently [why?], dimC = 0.
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Pick a maximal forestT of D = ( V; E). Thus T restricted to each com-
ponent of D is a spanning tree. Ife is an edge ofD not in T, then it is easy
to see thatT [ e contains a unique circuitCe.

11.8 Theorem. Let T be as above. Then the setS of circulations f Ce , as e
ranges over all edges ofD not in T, is a basis for the cycle spaceC.

Proof. The circulations f Ce are linearly independent, since for eache 2
E(D) � E(T) only f Ce doesn't vanish one. Moreover,

# S = # E(D) � # E(T) = q � p + k = dim C;

so S is a basis.

11.9 Example. Let D be the digraph shown below, with the edgesa; b; cof
T shown by dotted lines.

e

d
c

b

fa

Orient each circuit Ct in the direction of the added edge, i.e.,f Ct (t) = 1.
Then the basis matrix C of C corresponding to the basisf Cd ; f Ce ; f Cf is
given by

C =

2

4
0 � 1 � 1 1 0 0

� 1 � 1 � 1 0 1 0
0 0 � 1 0 0 1

3

5 : (11.4)

We next want to �nd a basis for the bond spaceB analogous to that of
Theorem 11.8.

11.10 Lemma. Let T be a maximal forest ofD = ( V; E). Let T � = D � E(T)
(the digraph obtained fromD by removing the edges ofT), called a cotree if
D is connected. Lete be an edge ofT. Then E(T � ) [ e contains a unique
bond.

Proof. RemovingE(T � ) from D leaves a maximal forestT, so removing one
further edgee disconnects some component ofD. HenceE(T � ) [ e contains
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a bond B. It remains to show that B is unique. Removinge from T breaks
some component ofT into two connected graphsT1 and T2 with vertex sets
S and �S. It follows [why?] that we must haveB = [ S; �S], soB is unique.

Let T be a maximal forest of the digraphD, and let e be an edge ofT.
By the previous lemma,E(T � ) [ e contains a unique bondBe. Let gB e be the
corresponding element of the bond spaceB, chosen for de�niteness so that
gB e (e) = 1.

11.11 Theorem. The set of functionsgB e , as e ranges over all edges ofT,
is a basis for the bond spaceB.

Proof. The functions gB e are linearly independent, since onlygB e is nonzero
on e 2 E(T). Since

# E(T) = p � k = dim B;

it follows that the gB e 's are a basis forB.

11.12 Example. Let D and T be as in the previous diagram. Thus a basis
for B is given by the functionsgB a ; gB b; gB c . The corresponding basis matrix
is given by

B =

2

4
1 0 0 0 1 0
0 1 0 1 1 0
0 0 1 1 1 1

3

5 :

Note that the rows of B are orthogonal to the rows of the matrixC of
equation (11.4), in accordance with Theorem 11.3. Equivalently, BC t = 0,
the 3 � 3 zero matrix. (In general,BC t will have q � p + k rows andp � k
columns. Here it is just a coincidence that these two numbersare equal.)

The basis matricesC T and B T of C and B obtained from a maximal
forest T have an important property. A real matrix m � n matrix A with
m � n is said to beunimodular if every m � m submatrix has determinant
0, 1, or � 1. For instance, the adjacency matrixM (D) of a digraph D is
unimodular, as proved in Lemma 9.7 (by showing that the expansion of the
determinant of a full submatrix has at most one nonzero term).

11.13 Theorem. Let T be a maximal forest ofD. Then the basis matrices
C T of C and B T of B are unimodular.
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Proof. First consider the caseC T . Let P be a full submatrix of C (so
P has q � p + k rows and columns). Assume detP 6= 0. We need to
show detP = � 1. Since detP 6= 0, it follows from Theorem 11.6(ii) that
P = C T [T �

1 ] for the complementT �
1 of some maximal forestT1. Note that

the rows of the matrix C T [T �
1 ] are indexed byT � and the columns byT �

1 .
Similarly the rows of the basis matrixC T1 are indexed byT �

1 and the columns
by E (the set of all edges ofD). Hence it makes sense to de�ne the matrix
product

Z = C T [T �
1 ]C T1 ;

a matrix whose rows are indexed byT � and columns byE.
Note that the matrix Z is a basis matrix for the cycle spaceC since its

rows are linear combinations of the rows of the basis matrixC �
T1

, and it has
full rank since the matrix C T [T �

1 ] is invertible. Now C T1 [T �
1 ] = I T �

1
(the

identity matrix indexed by T �
1 ), so Z [T �

1 ] = C T [T �
1 ]. Thus Z agrees with the

basis matrix C T in columnsT �
1 . Hence the rows ofZ � C T are circulations

supported on a subset ofT1. SinceT1 is acyclic, it follows from Lemma 11.4
that the only such circulation is identically 0, soZ = C T .

We have just shown that

C T [T �
1 ]C T1 = C T :

Restricting both sides toT � , we obtain

C T [T �
1 ]C T1 [T � ] = C T [T � ] = I T � :

Taking determinants yields

det(C T [T �
1 ]) det(C T1 [T � ]) = 1 :

Since all the matrices we have been considering have integerentries, the
above determinants are integers. Hence

det C T [T �
1 ] = � 1;

as was to be proved.
A similar proof works for B T .
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11.3 Electrical networks.

We will give a brief indication of the connection between theabove discus-
sion and the theory of electrical networks. LetD be a digraph, which for
convenience we assume isconnectedand loopless. Suppose that at each edge
e there is a voltage (potential di�erence)Ve from init( e) to �n( e), and a cur-
rent I e in the direction of e (so a negative currentI e indicates a current of
jI ej in the direction opposite to e). Think of V and I as functions on the
edges, i.e., as elements of the vector spaceRE . There are three fundamental
laws relating the quantitiesVe and I e.

Kirchho� 's First Law. I 2 CD . In other words, the current owing
into a vertex equals the current owing out. In symbols,

X

e
init( e)= v

I e =
X

e
�n( e)= v

I e;

for all vertices v 2 V.

Kirchho� 's Second Law. V 2 C?
D = B. In other words, the sum of the

voltages around any circuit (calledloopsby electrical engineers), taking into
account orientations, is0.

Ohm's Law. If edgee has resistanceRe > 0, then Ve = I eRe.

The central problem of electrical network theory dealing with the above
three laws2 is the following: Which of the 3q quantities Ve; I e; Re need to
be speci�ed to uniquely determine all the others, and how canwe �nd or
stipulate the solution in a fast and elegant way? We will be concerned here
only with a special case, perhaps the most important specialcase in practical
applications. Namely, suppose we apply a voltageVq at edgeeq, with resis-
tancesR1; : : : ; Rq� 1 at the other edgese1; : : : ; eq� 1. Let Vi ; I i be the voltage
and current at edgeei . We would like to express eachVi and I i in terms
of Vq and R1; : : : ; Rq� 1. (By \physical intuition" there should be a unique
solution, since we can actually build a network meeting the speci�cations of
the problem.) Note that if we have quantitiesVi ; I i ; Ri satisfying the three
network laws above, then for any scalar� the quantities �V i ; �I i ; Ri are also
a solution. This means that we might as well assume thatVq = 1, since we

2Of course the situation becomes much more complicated when one introducesdynamic
network elements like capacitors, alternating current, etc.
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can always multiply all voltages and currents afterwards bywhatever value
we want Vq to be.

As an illustration of a simple method of computing the total resistance of
a network, the following diagram illustrates the notion of aseries connection
D1 + D2 and a parallel connectionD1 k D2 of two networks D1 and D2 with
a distinguished edgee at which a voltage is applied.

BA

A

ee

B

e eA B

D1

D  + D1

D2

2

D  || D1 2

If R(D) denotes the total resistance� Ve=Ie of the network D together
with the distinguished edgee, then it is well-known and easy to deduce from
the three network Laws that

R(D1 + D2) = R(D1) + R(D2)

1
R(D1 k D2)

=
1

R(D1)
+

1
R(D2)

:

A network that is built up from a single edge by a sequence of series and
parallel connections is called aseries-parallel network. An example is the
following, with the distinguished edgee shown by a broken line from bottom
to top.



11.3. ELECTRICAL NETWORKS. 201

e

The simplest network which is not a series-parallel networkand has no mul-
tiple edges (as an undirected graph) is called theWheatstone bridgeand is
illustrated below. (The direction of the arrows has been chosen arbitrarily.)
We will use this network as our main example in the discussionthat follows.

3
1 2

5

6

4

We now return to an arbitrary connected loopless digraphD, with cur-
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rents I i , voltagesVi , and resistancesRi at the edgesei . Recall that we are
�xing Vq = 1 and R1; : : : ; Rq� 1. Let T be a spanning tree ofD. SinceI is a
current if and only if it is orthogonal to the bond spaceB (Theorem 11.3 and
Kirchho�'s First Law), it follows that any basis for B de�nes a complete and
minimal set of linear relations satis�ed by theI i 's (namely, the relation that
I is orthogonal to the basis elements). In particular, the basis matrix C T

de�nes such a set of relations. For example, ifD is the Wheatstone bridge
shown above and ifT = f e1; e2; e5g, then we obtain the following relations
by adding the edgese1; e2; e5 of T in turn to T � .

I 1 � I 3 � I 4 = 0

I 2 + I 3 + I 4 + I 6 = 0 (11.5)

I 4 + I 5 + I 6 = 0

These three (= p � 1) equations give all the relations satis�ed by theI i 's
alone, and the equations are linearly independent.

Similary if V is a voltage then it is orthogonal to the cycle spaceC. Thus
any basis forCde�nes a complete and minimal set of linear relations satis�ed
by the Vi 's (namely, the relation that V is orthogonal to the basis elements).
In particular, the basis matrix CT de�nes such a set of relations. Continuing
our example, we obtain the following relations by adding theedgese3; e4; e6

of T � in turn to T.

V1 � V2 + V3 = 0

V1 � V2 + V4 � V5 = 0 (11.6)

V2 + V5 = 1;

These three (=q� p+ k) equations give all the relations satis�ed by theVi 's
alone, and the equations are linearly independent.

In addition, Ohm's Law gives theq� 1 equationsVi = Ri I i , 1 � i � q� 1.
We have a total of (p � k) + ( q � p + k) + ( q � 1) = 2q � 1 equations in the
2q� 1 unknownsI i (1 � i � q) and Vi (1 � i � q� 1). Moreover, it is easy to
see that these 2q � 1 equations are linearly independent, using the fact that
we already know that just the equations involving theI i 's alone are linearly
independent, and similarly theVi 's. Hence this system of 2q� 1 equations in
2q � 1 unknowns has a unique solution. We have now reduced the problem
to straightforward linear algebra. However, it is possibleto describe the
solution explicitly. We will be content here with giving a formula just for the
total resistanceR(D) = � Vq=Iq = � 1=Iq.
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Write the 2q� 1 equations in the form of a (2q� 1) � 2q matrix K . The
columns of the matrix are indexed byI 1; I 2; : : : ; I q, V1, V2 : : : ; Vq. The last
column Vq of the matrix keeps track of the constant terms of the equations.
The rows of K are given �rst by the equations among theI i 's, then the
Vi 's, and �nally Ohm's Law. For our example of the Wheatstone bridge, we
obtain the matrix

K =

I 1 I 2 I 3 I 4 I 5 I 6 V1 V2 V3 V4 V5 V6

1 0 � 1 � 1 0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 � 1 1 0 0 0
0 0 0 0 0 0 1 � 1 0 1 � 1 0
0 0 0 0 0 0 0 � 1 0 0 � 1 1

R1 0 0 0 0 0 � 1 0 0 0 0 0
0 R2 0 0 0 0 0 � 1 0 0 0 0
0 0 R3 0 0 0 0 0 � 1 0 0 0
0 0 0 R4 0 0 0 0 0 � 1 0 0
0 0 0 0 R5 0 0 0 0 0 � 1 0

We want to solve for I q by Cramer's rule. Call the submatrix consisting of
all but the last column X . Let Y be the result of replacing theI q column of
X by the last column ofK . Cramer's rule then asserts that

I q =
det Y
det X

:

We evaluate detX by taking a Laplace expansion along the �rstp � 1 rows.
In other words,

det X =
X

S

� det(X [[p � 1]; S]) � det(X [[p � 1]c; �S]); (11.7)

where (a)S indexes all (p� 1)-element subsets of the columns, (b)X [[p� 1]; S]
denotes the submatrix ofX consisting of entries in the �rst p � 1 rows and
in the columns S, (c) X [[p � 1]c; �S] denotes the submatrix ofX consisting
of entries in the last 2q � p rows and in the columns other thanS. In
order for det(X [[p � 1]; S]) 6= 0, we must chooseS = f I i 1 ; : : : ; I i p� 1 g, where
f ei 1 ; : : : ; ei p� 1g is a spanning treeT1 (by Theorem 11.6(i)). In this case,
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det(X [[p � 1]; S]) = � 1 by Theorem 11.13. IfI q 62S, then the I q column of
X [[p � 1]c; �S] will be zero. Hence to get a nonzero term in (11.7), we must
have eq 2 S. The matrix X [[p � 1]c; �S] will have one nonzero entry in each
of the �rst q � p + 1 columns, namely, the resistancesRj whereej is not an
edge ofT1. This accounts forq � p + 1 entries from the last q � 1 rows of
X [[p � 1]c; �S]. The remainingp� 2 of the last q� 1 rows have available only
one nonzero entry each, a� 1 in the columns indexed byVj where ej is an
edge ofT1 other than eq. Hence we need to chooseq� p+1 remaining entries
from rows p through q and columns indexed byVj for ej not edge ofT1. By
Theorems 11.6(ii) and 11.13, this remaining submatrix has determinant � 1.
It follows that

det(X [[p � 1]; S]) � det(X [[p � 1]c; �S]) = �
Y

ej 62E (T1 )

Rj :

Hence by (11.7), we get

det X =
X

T1

�

0

@
Y

ej 62E (T1)

Rj

1

A ; (11.8)

whereT1 ranges over all spanning trees ofD containing eq. A careful analysis
of the signs3 shows that all signs in (11.8) are plus, so we �nally arrive atthe
remarkable formula

det X =
X

spanning trees T1
containing eq

Y

ej 62E (T1 )

Rj :

For example, if D is the Wheatstone bridge as above, and if we abbreviate
R1 = a, R2 = b, R3 = c, R4 = d, R5 = e, then

det X = abc+ abd+ abe+ ace+ ade+ bcd+ bde+ cde:

Now suppose we replace columnI q in X by column Vq in the matrix K ,
obtaining the matrix Y. There is a unique nonzero entry in the new column,
so it must be chosen in any nonzero term in the expansion of detY . The
argument now goes just as it did for detX , except we have to chooseS to
correspond to a spanning treeT1 that doesn't contain eq. We therefore obtain

det Y =
X

spanning trees T1
not containing eq

Y

ej 62E ( T1)
ej 6= eq

Rj :

3To be inserted.
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For example, for the Wheatstone bridge we get

det Y = ac+ ad+ ae+ bc+ bd+ be+ cd+ ce:

Recall that I q = det( Y)=det(X ) and that the total resistance of the net-
work is 1=Iq. Putting everything together gives our main result on electrical
networks.

11.14 Theorem. In the situation described above, the total resistance of the
network is given by

R(D) =
1
I q

= �

X

spanning trees T1
containing eq

Y

ej 62E (T1)

Rj

X

spanning trees T1
not containing eq

Y

ej 62E ( T1)
ej 6= eq

Rj

:

11.15 Corollary. If the resistancesR1; : : : ; Rq� 1 are all equal to one, then
the total resistance of the network is given by

R(D) =
1
I q

=
number of spanning trees containingeq

number of spanning trees not containingeq
:

In particular, if R1 = � � � = Rq� 1 = 1, then the total resistance, when
reduced to lowest termsa=b, has the curious property that the number� (D)
of spanning trees ofD is divisible by a + b.

11.4 Planar graphs (sketch).

A graph G is planar if it can be drawn in the plane R2 without crossing
edges. A drawing ofG in this way is called aplanar embedding.
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If the vertices and edges of a planar embedding ofG are removed fromR2,
then we obtain a disjoint union of open sets, called theregions (or faces) of
G. (More precisely, these open sets are the regions of the planar embedding
of G. Often we will not bother to distinguish between a planar graph and a
planar embedding if no confusion should result.) LetR = R(G) be the set
of regions ofG, and as usualV(G) and E(G) denote the set of vertices and
edges ofG, respectively.

Note. If G is simple (no loops or multiple edges) then it can be shown
that there exists a planar embedding with edges as straight lines and with
regions (regarding as the sequence of vertices and edges obtained by walking
around the boundaries of the regions) preserved.

The dual G� of the planar embedded graphG has vertex setR(G) and
edge setE � (G) = f e� : e 2 E(G)g. If e is an edge ofG, then let r and r 0 be
the regions on its two sides. (Possiblyr = r 0; there are �ve such edges in the
example above.) Then de�nee� to connect r and r 0. We can always draw
G� to be planar, letting e and e� intersect once. IfG is connected then every
region ofG� contains exactly one nonisolated vertex ofG and G�� �= G.
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11.16 Example. Let G consist of two disjoint edges. ThenG� has one vertex
and two loops, whileG�� is a three-vertex path. The unbounded region of
G� contains two vertices ofG, and G�� 6�= G.

Orient the edges of the planar graphG in any way to get a digraphD.
Let r be an interior (i.e., bounded) region ofD. An outside edgeof r is an
edgee such that r lies on one side of the edge, and adi�erent region lies on
the other side. The outside edges of any interior regionr de�ne a circulation
(shown as solid edges in the diagram below), and these circulations (as r
ranges over all interior regions ofD) form a basis for the cycle spaceCG of
G.
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r

Given the orientation D of G, orient the edges ofG� as follows: as we
walk along e in the direction of its orientation, e� points to our right.

11.17 Theorem. Let f : E(G) ! R. De�ne f � : E(G� ) ! R by f � (e� ) =
f (e). Then

f 2 BG , f � 2 CG�

f 2 CG , f � 2 BG� :

11.18 Proposition. The setS is the set of edges of a spanning treeT of G
if and only if S� = f e� : e 2 Sg is the set of edges of a cotreeT � of G� .

11.19 Corollary. � (G) = � (G� )
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For nonplanar graphs there is still a notion of a \dual" object, but it is
no longer a graph but rather something called amatroid. Matroid theory is
a ourishing subject which may be regarded as a combinatorial abstraction
of linear algebra.

11.5 Squaring the square.

A squared rectangleis a rectangle partitioned into �nitely many (but more
than one) squares. A squared rectangle isperfect if all the squares are of
di�erent sizes. The earliest squared rectangle was found in1936; its size is
33� 32 and consists of nine squares:

4

8 9

7

10

14
18

15 1

The question then arose: does there exist a perfect squared square? An
isolated example with 55 squares was found by Sprague in 1939. Then
Brooks, Smith, Stone, and Tutte developed a network theory approach which
we now explain.

The Smith diagram D of a squared rectangle is a directed graph whose
vertices are the horizontal line segments of the squared rectangle and whose
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7

18

15
8

1
9

10

14

4

pole

pole

Figure 11.2: A Smith diagram

squares are the edges, directed from top to bottom. The top vertex (cor-
responding to the top edge of the rectangle being squared) and the bottom
vertex (corresponding to the bottom edge) are calledpoles. Label each edge
by the side length of the square to which it corresponds. Figure 11.2 shows
the Smith diagram of the (perfect) squared rectangle above.

The following result concerning Smith diagrams is straightforward to ver-
ify.

11.20 Theorem. (a) If we set I e and Ve equal to the label of edgee, then
Kirchho� 's two laws hold (so Re = 1) except at the poles.

(b) The Smith diagram is planar and can be drawn without separation of
poles. Joining the poles by an edge from the bottom to the top gives a
3-connected graph, i.e., a connected graph that remains connected when
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one or two vertices are removed.

Call the 3-connected graph of Theorem 11.20 theextendedSmith diagram
of the squared rectangle. If we label the new edgee1 between poles by the
horizontal length b of the squared rectangle and setVe1 = I e1 = b, then
Kirchho�'s two laws hold at all vertices.

7

18

15
8

1
9

10

14

4

pole

pole

32

We therefore have a recipe for searching for perfect squaredrectangles
and squares: start listing all 3-connected planar graphs. Then choose an
edgee1 to apply a voltage V1. Put a resistanceRe = 1 at the remaining
edgese. Solve forI e (= Ve) to get a squared rectangle, and hope that one of
these will be a square. One example � found by Brooks et al. wasa 112� 75
rectangle with 14 squares. It was given to Brooks' mother as ajigsaw puzzle,
and she found a di�erent solution �! We therefore have found asquared
square (though not perfect):
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112 x 112 G

75 x 75D

Building on this idea, Brooks et al. �nally found two 422� 593 per-
fect rectangles with thirteen squares, all 26 squares beingof di�erent sizes.
Putting them together as above gives a perfect squared square. This example
has two defects: (a) it contains a smaller perfect squared rectangle (and is
therefore not simple), and (b) it contains a \cross" (four squares meeting
a point). They eventually found a perfect squared square with 69 squares
without either of these defects. It is now known (thanks to computers) that
the smallest order (number of squares) of a perfect squared square is 21. It
is unique and happens to be simple and crossfree. See the �gure below. It is
known that the number (up to symmetry) of simple perfect squared squares
of order n for n � 21 is 1; 8; 12; 26; 160; 441; 1152; : : :.



11.5. SQUARING THE SQUARE. 213

62

25
16

9 7

33

29

19
8

27
35

50

37 42

18

1115

4

24

References for Chapter 11

The theory of cycle spaces and bond spaces developed here hadits origins
with the pioneering work of G. Kirchho� [60] in 1847.

The proof given here of Theorem 11.13 is due to W. T. Tutte [110] in
1965.

A nice account of the history of squaring the square due to Tutte appears
in a Scienti�c American column by Martin Gardner [42]. See also [111]
for another article by Tutte. A further survey article on this topic is by
Kazarino� and Weitzenkamp [59].
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Chapter 12

Miscellaneous gems of algebraic
combinatorics.

12.1 The 100 prisoners

An evil warden is in charge of 100 prisoners (all with di�erent names). He
puts a row of 100 boxes in a room. Inside each box is the name of adi�erent
prisoner. The prisoners enter the room one at a time. Each prisoner must
open 50 of the boxes, one at a time. If any of the prisoners doesnot see
his or her own name, then they are all killed. The prisoners may have a
discussion before the �rst prisoner enters the room with theboxes, but after
that there is no further communication. A prisoner may not leave a message
of any kind for another prisoner. In particular, all the boxes are shut once
a prisoner leaves the room. If all the prisoners choose 50 boxes at random,
then each has a success probability of 1/2, so the probability that they are
not killed is 2� 100, not such good odds. Is there a strategy that will increase
the chances of success? What is the best strategy?

It's not hard to see that the prisoners can achieve a success probability
of greater than 2� 100. For instance, suppose that the �rst prisoner opens
the �rst 50 boxes and the second prisoner opens the last 50. Ifthe �rst
prisoner succeeds (with probability 1/2), then the �rst prisoner's name is
guaranteed not to be in one of the boxes opened by the second prisoner, so
the second prisoner's probability of success is 50/99. Eachpair of prisoners
can do this strategy, increasing the overall success probability to (25 =99)50,
still an extremely low number. Can they do signi�cantly better?

217
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12.1 Theorem. There exists a strategy with a success probability of

1 �
100X

j =51

1
j

= 0:3118278207� � � :

Proof. The prisoners assign themselves the numbers 1; 2; : : : ; 100 by whatever
method they prefer. Each prisoner is assigned a di�erent number. The
prisoners memorize everyone's number. They regard the boxes, which are
lined up in a row, as being numbered 1; 2; : : : ; 100 from left-to-right. A
prisoner with number k �rst goes to box k. If the prisoner sees his name,
then he breathes a temporary sigh of relief, and the next prisoner enters.
Otherwise the �rst prisoner will see the name of some other prisoner, say with
number n1. He then opens boxn1 and repeats the procedure, so whenever
he opens a boxB that doesn't contain his own name, the next box that he
opens has the number of the prisoner whose name appears in boxB.

What is the probability of success of this strategy? Supposethat box i
contains the name of the prisoner numbered� (i ). Thus � is a permutation of
1; 2; : : : ; 100. The boxes opened by prisoneri are those containing the names
of prisoners with numbers� (i ), � 2(i ), � 3(i ), etc. If k is the length of the
cycle containing� , then the prisoner will see his name after opening thekth
box. This will happen wheneverk � 50. Thus all prisoners see their names
if and only if every cycle of� has length at most 50. If� does not have this
property, then it has exactly one cycle of lengthr > 50. There are

� 100
r

�
ways

to choose the elements of the cycle and (r � 1)! ways to arrange them in a
cycle. There are then (100� r )! ways to arrange the other elements of� .
Thus the number of permutations� 2 S 100 with a cycle of length more than
50 is �

100
r

�
(r � 1)!(100� r )! =

100!
r

:

(There are more clever ways to see this.) Thus the probability of success,
i.e., the probability that � hasno cycle of length more than 50, is

1 �
1

100!

100X

r =51

100!
r

= 1 �
100X

r =51

1
r

;

as claimed.
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If we apply the above argument to 2n prisoners rather than 100, then we
get a success probability of

1 �
2nX

r = n+1

1
r

= 1 �
2nX

r =1

1
r

+
nX

r =1

1
r

:

From calculus we know that there is a constant = 0:577215665� � � , known
as Euler's constant, for which

lim
n!1

 
nX

r =1

1
r

� logn

!

= :

It follows that as n ! 1 , the success probability of the prisoners is

lim
n!1

(1 � log 2n + log n) = 1 � log 2 = 0:3068528194� � � :

It seems quite amazing that no matter how many prisoners there are, they
can always achieve a success probability of over 30%!

Note. It can be shown that the above strategy is in factoptimal, i.e.,
no strategy achieves a higher probability of success. The proof, however, is
not easy.

12.2 Oddtown

The village of Oddtown has a population ofn people. Inhabitants of Oddtown
like to form clubs. Every club has an odd number of members, and every
pair of clubs share an even number of members.

12.2 Theorem. There are at mostn clubs.

Proof. Let k be the number of clubs. De�ne a matrixM = ( M ij ) over the
two-element �eld F2 as follows. The rows ofM are indexed by the clubsCi

and the columns by the inhabitantsx j of Oddtown. Set

M ij =
�

1; x j 2 Ci

0; otherwise:

The matrix M is called theincidence matrix corresponding to the clubs and
their members.
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In general, letS be a subset of [n], and let � S 2 Zn be thecharacteristic
vector of S, i.e., � S = ( a1; : : : ; an ) where

ai =
�

1; i 2 S
0; i 62S:

If T is another subset of [n], then the key observation is that the scalar (dot)
product of � S and � T is given by� S � � T = #( S \ T). Hence if we now work
over F2, then

� S � � T =
�

1; if #( S \ T) is odd
0; if #( S \ T) is even:

(12.1)

Let A = MM t , a k � k matrix. By equation (12.1) and the assumption
that every club has an odd number of members, we see that main diagonal
elements ofA are 1. Similarly the o�-diagonal elements ofA are 0, so
A = I k , the k � k identity matrix. Hence rank(A ) = k.

Recall that if B is a k � m matrix and C is an m � n matrix (over some
�eld), then rank( BC) � rank(B) (as well as rank(BC) � rank(C)), since for
any matrix D, rank(D) = dim image(D). Hence, sinceM hasn columns,

n � rank(M ) � rank(MM t ) = rank( A ) = k:

While Theorem 12.2 can be proved without linear algebra, theproof is
not easy.

12.3 Complete bipartite partitions of K n

Figure 12.1 show the six edges of the complete graphK 4 partitioned (ac-
cording to the edge label) into the edge sets of the three complete bipartite
graphsK 3;1, K 2;1, and K 1;1. Clearly we can extend this construction, achiev-
ing a partition of the edgesE(K n ) of K n into the edge sets ofn � 1 complete
bipartite graphs. Speci�cally, Let E1 be the set of edges incident to a �xed
vertex v. Thus E1 is the edge set of a complete bipartite graphK n� 1;1.
RemoveE1 from E(K n ) and proceed by induction, obtaining a partition of
E(K n ) into the edges ofK n� 1;1, K n� 2;1; : : : , K 1;1. The question thus arises
as to whetherE(K n ) can be partitioned into fewer than n � 1 edge sets of
complete bipartite graphs.
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1

21

1 2

3

Figure 12.1: A decomposition of the edges ofK 4 into three complete bipartite
graphs

12.3 Theorem. If E(K n ) is the disjoint union of the edge sets ofm complete
bipartite graphs, thenm � n � 1.

Proof. Let E(K n ) = E(B1) �[ E(B1) �[ � � � �[ E(Bm ) (disjoint union), where Bk

is a complete bipartite graph with vertex bipartition (X k ; Yk) (soX k \ Yk = ; ).
For 1 � i � n, de�ne an n � n matrix Ak by

(Ak) ij =
�

1; i 2 X k ; j 2 Yk

0; otherwise:

All nonzero rows ofAk are equal, so rank(Ak ) = 1. Let S =
P m

k=1 Ak . For
i 6= j , exactly one of the 2m numbers (Ak) ij and (Ak) j i , 1 � k � m, is equal
to 1, since every edgeij of K n appears in oneE(Bk) with either i 2 X k and
j 2 Yk , or elsej 2 X k and i 2 Yk . Hence

S + St = J � I;

where as usualJ is the n� n all 1's matrix, and I is the n� n identity matrix.
Claim. If T is any real matrix satisfyingT + T t = J � I , then rank(T) �

n � 1.
Suppose to the contrary that rank(T) � n � 2. Then T has (at least)

two linearly independent eigenvectorsx; y such that Tx = Ty = 0 [why?].
SinceJ has rank one, the spacehx; yi spanned byx and y contains a nonzero
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vector z satisfying Jz = 0 [why?]. Then from T + T t = J � I and Tz = 0
we get � z = T tz. Take the dot product with zt on the left. We get

�j zj2 = ztT tz

= ( ztT tz)t (since a 1� 1 matrix is symmetric)

= ztTz (since in general (AB )t = B tA t )

= 0 (since Tz = 0) ;

contradicting z 6= 0. Hence the claim is proved, so in particular rank(X ) �
n � 1. But is general rank(A + B) � rank(A) + rank( B) [why?]. Therefore
from S =

P m
k=1 Ak and rank(Ak) = 1 we get rank(S) � m. It follows that

m � n � 1, completing the proof.

12.4 The nonuniform Fisher inequality

A balanced incomplete block design(BIBD) with parameters (v; k; �; r; b ) is
a v-element setX and a collection A of k-element subsets (blocks), with
# A = b, such that any two points x; y 2 X lie in exactly � blocks, and
each point is in exactlyr blocks. We also assume thatk < v , which is the
reason for the word \incomplete." We can draw a BIBD as a bipartite graph
with vertex bipartition ( X; A ). There is an edge fromx 2 X to A 2 A if
x 2 A. Thus the degree of each vertexx 2 X is r , and the degree of each
vertex A 2 A is k. It follows that vr = kb (the total number of edges of the
graph). We can also count the number of two-element sets of edges that are
incident to the same vertex ofA . On the one hand, since each vertex inA
has degreek this number is b

� k
2

�
. On the other hand, each pair of points in

X are mutually adjacent to � points in A , so we get�
� v

2

�
= b

� k
2

�
. A little

manipulation shows that these two equalities are equivalent to

vr = kb; � (v � 1) = r (k � 1);

the usual form in which they are written.
R. A. Fisher showed in 1940 thatb � v. This inequality was generalized

by R. C. Bose in 1949. The most convenient way to state Bose's inequalities,
known as thenonuniform Fisher inequality, is to reverse the roles of points
and blocks. Thus consider the elementsx of X to be sets whose elements are
the blocks A 2 A that contain them. In other words, we have a collection
C1; : : : ; Cv of r -element sets whose union containsb points x1; : : : ; xb. Each
point is in exactly k of the sets. Finally, #(Ci \ Cj ) = � for all i 6= j .
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12.4 Theorem. Let C1; : : : ; Cv be distinct subsets of ab-element setX such
that for all i 6= j we have#( Ci \ Cj ) = � for some1 � � < b (independent
of i and j ). Then v � b.

Proof. Case 1: some #Ci = � . Then all other Cj 's contain Ci and are
disjoint otherwise, so

v � 1|{z}
from Ci

+ b� �| {z }
from all Cj 6= Ci

� b:

Case 2: all # Ci > � . Let  i = # Ci � � > 0. Let M be the incidence
matrix of the set systemC1; : : : ; Cv, i.e., the rows ofM correspond to the
Ci 's and the columns to the elementsx1; : : : ; xb of X , with

M ij =
�

1; x j 2 Ci

0; x j 62Ci :

Let A = MM t . The hypotheses imply thatA = �J + G, whereJ as usual
is the all 1's matrix (of sizev), and G is the diagonal matrix diag( 1; : : : ;  v).

Claim: rank(A ) = v (i.e., A is invertible). We would then have

v = rank( A ) � rank(M ) � b;

the last inequality becauseM hasb columns.
As in the proof of Theorem 4.7, a real symmetric matrixB is positive

semide�nite if it has nonnegative eigenvalues. Equivalently, by basic linear
algebra,uB ut � 0 for all row vectorsu of length v. Moreover B is positive
de�nite (and so has positive eigenvalues) ifuB ut > 0 for all u 6= 0.

Now we easily compute that

u(�J + G)ut = � (u1 + � � � + uv)2 +  1u2
1 + � � � +  vu2

v > 0

for all u 6= 0. Thus A = �J + G is positive de�nite and hence of full rank
v.

12.5 Odd neighborhood covers

Consider anm� n grid graph. The casem = 3, n = 4 is shown in Figure 12.2.
At each vertex is a turned on light bulb and also a switch that changes the
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Figure 12.2: The 3� 4 grid graph

state of its bulb and those of its neighbors (adjacent vertices). Can all the
lights be turned o�?

This problem was open for many years until in 1989 K. Sutner, then a
graduate student, showed using automata theory that the answer if yes for
any (�nite) graph! More explicitly, let G be a �nite graph with a turned on
light bulb at each vertex. At each vertex is a switch that changes the state
of that vertex and all its neighbors. Then it is possible to turn o� all the
lights. We will give a modi�cation of a simpler proof due to Y.Caro based
on linear algebra.

Without loss of generality we may assume thatG is simple. If v 2 V(G),
then the neighborhoodN (v) of v is the set consisting ofv and all vertices
adjacent to v. A little thought shows that we need to prove the following
result.

12.5 Theorem. There exists a subsetS � V = V(G) such that#( S\ N (v))
is odd for all v 2 V. (It follows that switching at the verticesv 2 S turns all
the lights o�.)

Proof. Let V(G) = f v1; : : : ; vpg. Let A be the adjacency matrix ofG over the
�eld F2, and let y = (1 ; 1; : : : ; 1) 2 Fp

2. Write row( B ) for the row space of a
matrix B . Given S � V, let � S = ( a1; : : : ; ap) 2 Fp

2 denote the characteristic
vector of S, i.e.,

ai =
�

1; vi 2 S
0; vi 62S:

Note that switching at S turns all the lights o� if and only if � S(A + I ) = y.
Hence we need to show thaty 2 row(A + I ) [why?].

Let us recall from linear algebra some standard facts about orthogonal
subspaces. LetK be a �eld, and for u; v 2 K n let u � v be the usual dot
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product (2.1) of u and v, sou � v 2 K . If W is a subspace ofK n , then de�ne
the orthogonal subspaceW ? by

W ? = f u 2 K n : u � v = 0 for all v 2 Wg:

Let d = dim W. SinceW ? is the set of solutions tod linearly independent
homogeneous linear equations [why?], we have

dim W + dim W ? = n: (12.2)

Note that by de�nition of ? we have W � W ? . By equation 12.2 and
the equation obtained from it by replacingW with W ? , we get dimW =
dim(W ? )? . Hence

(W ? )? = W: (12.3)

Note. Though irrelevant here, let us point out that if K has characteristic
0 then W \ W ? = f 0g, but that this fact need not hold in characteristic
p 6= 0.

Now by equation (12.3) the vectory = (1 ; 1; : : : ; 1) (or any vector in Fn
2 )

lies in the row space ofA + I if and only if it is orthogonal to every vector
in row(A + I )? = ker( A + I ). Thus we need to show that if (A + I )vt = 0,
then v � y = 0. Equivalently, if yvt 6= 0 then (A + I )vt 6= 0. Note that (a)
yvt 6= 0 means thev has an odd number of 1's, and (b) (A + I )vt is the sum
of the rows ofA + I indexed by the positions of the 1's inv. Thus we need
to show that A + I does not have an odd number of rows summing to 0.

Suppose thatv1; : : : ; vk are vertices indexing rows ofA summing to 0.
Let H be the subgraphinduced by v1; : : : ; vk , i.e., H consists of the vertices
v1; : : : ; vk and all edges ofG between two of these vertices. Letbij be the
(i; j )-entry of A + I . Since

P k
i =1 bij = 0 for 1 � j � n, and eachbii = 1, it

follows that every vertex ofH has odd degree. Since [why?]
X

v2 V (H )

deg(v) = 2 � # E(H );

we have thatk = # V(H ) is even, completing the proof.

12.6 Circulant Hadamard matrices

For our next \gem of algebraic combinatorics," we will provide some variety
by leaving the realm of linear algebra and looking at some simple algebraic
number theory.
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An n � n matrix H is a Hadamard matrix if its entries are � 1 and its
rows are orthogonal. Equivalently, its entries are� 1 and HH t = nI . In
particular [why?],

det H = � nn=2: (12.4)

It is easy to see that ifH is ann � n Hadamard matrix then n = 1, n = 2, or
n = 4m for some integerm � 1. It is conjectured that the converse is true,
i.e., for every suchn there exists ann � n Hadamard matrix.

An n � n matrix A = ( bij ) is a circulant if it has the form bij = ai � j

for somea0; a1; : : : ; an� 1, where the subscripti � j is taken modulon. For
instance,

A =

2

6
6
4

a b c d
d a b c
c d a b
b c d a

3

7
7
5

is a circulant. Let A = ( ai � j ) be an n � n circulant, and let � = e2�i=n ,
a primitive nth root of unity. It is straightforward to compute that for
0 � j < n the column vector [1; � j ; � 2j ; : : : ; � (n� 1)j ]t is an eigenvector ofA
with eigenvaluea0 + � j a1 + � 2j a2 + � � � + � (n� 1)j an� 1. Hence

det(A) =
n� 1Y

j =0

(a0 + � j a1 + � 2j a2 + � � � + � (n� 1)j an� 1): (12.5)

Note that the matrix
2

6
6
4

� 1 1 1 1
1 � 1 1 1
1 1 � 1 1
1 1 1 � 1

3

7
7
5

is both a Hadamard matrix and a circulant.
Conjecture Let H be ann � n circulant Hadamard matrix. Then n = 1

or n = 4.
The �rst signi�cnat work on this conjecture is due to R. J. Turyn. He

showed that there does not exist a circulant Hadamard matrixof order 8m,
and he also excluded certain other orders of the form 4(2m + 1). Turyn's
proofs use the machinery of algebraic number theory. Here wewill give a
proof for the special casen = 2 k , k � 3, where the algebraic number theory
can be \dumbed down" to elementary commutative algebra and �eld theory.
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(Only in Theorem 12.14 do we use a little Galois theory, whichcan be avoided
with a bit more work.) It would be interesting to �nd similar p roofs for other
values ofn.

12.6 Theorem. There does not exist a circulant Hadamard matrixH of
order 2k , k � 3.

Note. It is curious that the numbers 2k (k � 2) are the easiest multiples
of 4 to show arenot the orders of circulant Hadamard matrices, while on
the other hand the numbers 2k (k � 1) are the easiest numbers to showare
the orders of Hadamard matrices. To see that 2k is the order of a Hadamard
matrix H , �rst note that the case k = 1 is trivial. It is routine to show that
if H1 is a Hadamard matrix of ordera and H2 is a Hadamard matrix of order
b, then the tensor (or Kronecker) productA 
 B is a Hadamard matrix of
order ab. It follows that there exists a Hadamard matrix of order 2k , k � 1.

From now on we assumen = 2 k and � = e2�i= 2k
. Clearly � is a zero of

the polynomial pk(x) = x2k � 1
+ 1. We will be working in the ring Z[� ], the

smallest subring ofC containing Q and � . Write Q(� ) for the quotient �eld
of Z[� ], i.e., the �eld obtained by adjoining � to Q.

12.7 Lemma. The polynomialpk(x) is irreducible overQ.

Proof. If pk(x) is reducible then so ispk(x + 1). A standard fact about
polynomial factorization is Gauss' lemma, namely, an integral polynomial
that factors over Q also factors overZ. If p(x); q(x) 2 Z[x], write p(x) �
q(x) (mod 2) to mean that the coe�cients of p(x) � q(x) are even. Now [why?]

pk(x + 1) � (x + 1) 2k � 1
+ 1 � x2k � 1

(mod 2):

Hence any factorization ofpk(x +1) over Z into two factors of degree at least
one has the formpk(x + 1) = ( xr + 2a)(xs + 2b), where r + s = 2 k� 1 and a; b
are polynomial of degrees less thanr and s, respectively. Hence the constant
term of pk(x + 1) is divisible by 4, a contradiction.

It follows by elementary �eld theory that every elementu 2 Z[� ] can be
uniquely written in the form

u = b0 + b1� + b2� 2 + � � � + bn=2� 1� n=2� 1; bi 2 Z:
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The basis for our proof of Theorem 12.6 is the two di�erent ways to
compute detH given by equations (12.4) and (12.5), yielding the formula

n� 1Y

j =0

(a0 + � j a1 + � 2j a2 + � � � + � (n� 1)j an� 1) = � nn=2 = � 2k2k � 1
: (12.6)

Thus we have a factorization inZ[� ] of 2k2k � 1
. Algebraic number theory is

concerned with factorization of algebraic integers (and ideals) in algebraic
number �elds, so we have a vast amount of machinery availableto show that
no factorization (12.6) is possible (under the assumption that eachaj = � 1).
Compare Kummer's famous approach toward Fermat's Last Theorem (which
led to his creation of algebraic number theory), in which he considered the
equation xn + yn = zn as

Q
� n =1 (x + �y ) = zn .

We are continuing to assume thatH = ( aj � i ) is an n � n circulant
Hadamard matrix. We will denote the eigenvalues ofH by

 j = a0 + a1� j + a2� 2j + � � � + an� 1� (n� 1)j :

12.8 Lemma. For 0 � j � n � 1 we have

j j j =
p

n:

Thus all the factors appearing on the left-hand side of (12.6) have absolute
value

p
n.

First proof (naive). Let H i denote thei th row of H , and let � denote the
usual dot product. Then

 j � j = ( a0 + a1� j + � � � + an� 1� (n� 1)j )(a0 + a1� � j + � � � + an� 1� � (n� 1)j )

= H1 � H1 + ( H1 � H2)� j + ( H2 � H3)� 2j + � � � + ( H1 � Hn )� (n� 1)j :

By the Hadamard property we haveH1 � H1 = n, while H1 � Hk = 0 for
2 � k � n, and the proof follows. �

Second proof (algebraic). The matrix 1p
n H is a real orthogonal matrix.

By linear algebra, all its eigenvalues have absolute value 1. Hence all eigen-
values j of H have absolute value

p
n. �

12.9 Lemma. We have
2 = (1 � � )n=2u; (12.7)

whereu is a unit in Z[� ].
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Proof. Put x = 1 in

xn=2 + 1 =
n� 1Y

j =0
j odd

(x � � j )

to get 2 =
Q

j (1 � � j ). Since

1 � � j = (1 � � )(1 + � + � � � + � j � 1);

it su�ces to show that 1 + � + � � � + � j � 1 is a unit when j is odd. Let
j �j � 1 (modn). Then

(1 + � + � � � + � j � 1)� 1 =
1 � �
1 � � j

=
1 � (� j )�j

1 � � j
2 Z[� ];

as desired.

12.10 Lemma. We haveZ[� ]=(1 � � ) �= F2.

Proof. Let R = Z[� ]=(1� � ). The integer 2 is not a unit in Z[� ], e.g., because
1=2 is not an algebraic integer. Thus by Lemma 12.9, 1� � is also not a unit.
HenceR 6= 0.

For all j we have� j = 1 in R since� = 1 in R. Hence all elements ofR
can be written as ordinary integersm. But 0 = 2 in R by Lemma 12.9, so
the only elements ofR are 0 and 1.

12.11 Lemma. For all 0 � j � n � 1 there is an integerhj � 0 such that

a0 + a1� j + a2� 2j + � � � + an� 1� (n� 1)j = vj (1 � � )h j ;

wherevj is a unit in Z[� ].

Proof. Since 2 is a multiple of 1� � by Lemma 12.9, we have by (12.6) that

n� 1Y

j =0

(a0 + a1� j + a2� 2j + � � � + an� 1� (n� 1)j ) = 0

in Z[� ]=(1 � � ). Since Z[� ]=(1 � � ) is an integral domain by Lemma 12.10,
some factora0 + a1� j + � � � + an� 1� (n� 1)j is divisible by 1� � . Divide this
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factor and the right-hand side of (12.6) by 1� � , and iterate the procedure.
We continue to divide a factor of the left-hand side and the right-hand side
by 1 � � until the right-hand side becomes the unitu. Hence each factor of
the original product has the formv(1 � � )h, wherev is a unit.

12.12 Corollary. Either  0= 1 2 Z[� ] or  1= 0 2 Z[� ]. (In fact, both  0= 1 2
Z[� ] and  1= 0 2 Z[� ], as will soon become apparent, but we don't need this
fact here.)

Proof. By the previous lemma, each j has the formvj (1 � � )h j . If h0 � h1

then  0= 1 2 Z[� ]; otherwise 1= 0 2 Z[� ].

We now need to appeal to a result of Kronecker on elements ofZ[� ]
of absolute value one. For completeness we include a proof ofthis result,
beginning with a lemma. Recall that if � is an algebraic number (the zero
of an irreducible polynomialf (x) 2 Q[x]), then a conjugateof � is any zero
of f (x). Also recall that a complex number� is an algebraic integerif � is a
zero of amonic polynomial with integer coe�cients.

12.13 Lemma. Let � be an algebraic integer such that� and all its conjugates
have absolute value one. Then� is a root of unity.

Proof. Suppose the contrary. Let deg(� ) = d, i.e., [Q(� ) : Q] = d. Now � , � 2,
� 3; : : : are all distinct and hence in�nitely many of them have the property
that no two are conjugate. Each� j 2 Q[� ] and so is the root of a monic
integral polynomial of degree at mostd. If � 1; � 2; : : : ; � d are the conjugates
of � , then all the conjugates of� j are among� j

1, � j
2; : : : ; � j

d. Hence each� j

satis�es the hypothesis that all its conjugates have absolute value 1 (and� j

is an algebraic integer). Thus ther th elementary symmetric functioner in
� j and its conjugates has at most

� d
r

�
terms, each of absolute value 1, so

jer j �
� d

r

�
. Moreover, er 2 Z since� j is an algebraic integer. It follows that

there are only �nitely many possible polynomials that can bethe irreducible
monic polynomials with roots one of the� j 's, contradicting the fact that
there are in�nitely many � j 's for which no two are conjugate.

12.14 Theorem (Kronecker). Let � be any root of unity and� 2 Z[� ] with
j� j = 1. Then � is a root of unity.

Proof. Since� 2 Z[� ], we see that� is an algebraic integer. We use the basic
fact from Galois theory that the Galois group of the extension �eld Q(� )=Q
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is abelian. Let � be a conjugate of� , so � = w(� ) for some automorphism
w of Q(� ). Apply w to the equation � �� = 1. Since complex conjugation is
an automorphism ofQ(� ) it commutes with w, so we obtain� �� = 1. Hence
all the conjugates of� have absolute value one, so� is a root of unity by the
previous lemma.

For our next result, we need the standard algebraic fact thatif � =
e2�i=m , a primitive mth root of unity, then [ Q(� ) : Q] = � (m) (the Euler
� -function). Equivalently, the unique monic polynomial � m (x) whose zeros
are the primitive mth roots of unity is irreducible. This polynomial is by
de�nition given by

� m (x) =
X

1� j � m
gcd(j;m )=1

(x � � j )

and is called acyclotomic polynomial. Lemma 12.7 is the casem = n (= 2 k).

12.15 Lemma. If � 2 Z[� ] is a root of unity, then � = � r for somer 2 Z.

Proof. Suppose not. It is easy to see that then either� is a primitive 2m th
root of unity for some m > k , or else� s is a primitive pth root of unity for
some odd primep and somes � 1. In the former case

[Q(� ) : Q] = � (2m ) = 2 m� 1 > 2k� 1 = � (2k) = [ Q(� ) : Q];

a contradiction. In the latter case,� s� is a primitive pnth root of unity, so

[Q(� s� ) : Q] = � (pn) = ( p � 1)� (n) > � (n) = [ Q(� ) : Q];

again a contradiction.

We now have all the ingredients to complete the proof of Theorem 12.6.
Note that we have yet to use the hypothesis thatai = � 1. By Lemma 12.8
we have

j 1= 0j = j 0= 1j = 1:

Hence by Corollary 12.12, Theorem 12.14 and Lemma 12.15 we have  0 =
� � r  1 for somer . Expand  0 and � � r  1 uniquely as integer linear combina-
tions of 1; �; � 2; : : : ; �

n
2 � 1:

 0 = a0 + a1 + � � � + an� 1 = �
p

n

� � r  1 = � � r ((a0 � an=2) + ( a1 � an=2+1 )� + � � � )

= ( ar � an=2+ r ) + ( ar +1 � an=2+ r +1 )� + � � � :
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Equating coe�cients of � 0 yields �
p

n = ar � an=2+ r . Since eachai = � 1,
we must haven � 4, completing the proof. �

12.7 P-recursive functions

A function f : N ! R is called polynomially recursive, or P-recursive for
short, if there exist polynomialP0(n); : : : ; Pd(n), with Pd(n) 6= 0, such that

Pd(n)f (n + d) + Pd� 1(n)f (n + d � 1) + � � � + P0(n)f (n) = 0 (12.8)

for all n � 0.
For instance, the Fibonacci sequenceFn is P-recursive sinceFn+2 � Fn+1 �

Fn = 0 for all n � 0. Hered = 2 and P2(n) = P1(n) = 1, P0(n) = � 1. This
situation is quite special since the polynomialsPi (n) are constants. Another
P-recursive function isf (n) = n!, sincef (n + 1) � (n + 1) f (n) = 0 for all
n � 0.

Let P denote the set of allP-recursive functionsf : N ! R. Our goal in
this section is to prove thatP is an R-algebra, that is, for any f; g 2 P and
�; � 2 R, we have

�f + �g 2 P ; fg 2 P :

There is one techical problem that needs to be dealt with before proceeding
to the proof. We would like to conclude from equation (12.8) that

f (n + d) = �
1

Pd(n)
(Pd� 1(n) + � � � + P0(n)) : (12.9)

This formula, however, is problematical whenPd(n) = 0. This can happen
only for �nitely many n, so equation (12.9) is valid forn su�ciently large.
Thus we want to deal with functions f (n) only for n su�ciently large. To
this end, de�ne f � g if f (n) = g(n) for all but �nitely many n. Clearly �
is an equivalence relation; the equivalence classes are called germs at 1 of
functions f : N ! R. The germ containingf is denoted [f ]. Write G for the
set of all germs.

12.16 Lemma. (a) If f is P-recursive andf � g, then g is P-recursive.
In other words, the property ofP-recursiveness is compatible with the
equivalence relation� .
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(b) Write RN for the real vector space of all functionsf : N ! R. Let �; � 2
R and f 1; f 2; g1; g2 2 RN. If f 1 � f 2 and g1 � g2, then �f 1 + �g 1 �
�f 2 + �g 2 and f 1g1 � f 2g2. In other words, linear combinations and
multiplication are compatible with the equivalence relation� . Thus
the setG has the structure of anR-algebra, i.e., a real vector space and
a ring (with obvious compatibility properties such as(�f )g = f (�g ) =
� (fg )).

Proof. (a) Suppose that f (n) = g(n) for all n > n 0. Let (12.8) be the
recurrence satis�ed byf . Multiply both sides by

Q n0
j =0 (n � j ). We then

get a recurrence relation satis�ed byg. Henceg is P-recursive.

(b) This is clear.

Let R[n] denote the ring of real polynomials inn. Let R(n) denote the
quotient �eld of R[n], i.e., the �eld of all rational functions P(n)=Q(n), where
P; Q 2 R[n]. Suppose thatf 2 RN and R 2 R(n). Then f (n)R(n) is de�ned
for n su�ciently large (i.e., when the denominator ofR(n) is nonzero). Thus
we can de�ne the germ [f (n)R(n)] 2 G to be the germ of any function that
agrees with f (n)R(n) for n su�ciently large. It is easy to see that this
de�nition of scalar multiplication makes G into a vector space over the �eld
R(n). We now come to the key characterization ofP-recursive functions (or
their germs).

12.17 Lemma. A function f 2 RN is P-recursive if and only if the vector
spaceVf over R(n) spanned by the germs[f (n)], [f (n + 1)] , [f (n + 2)] ; : : : is
�nite-dimensional.

Proof. Suppose that f (n) satis�es equation (12.8). Let V0
f be the vector

space overR(n) spanned by [f (n)], [f (n + 1)], [ f (n + 2)] ; : : : ; [f (n + d � 1)],
so dimR(n) V0

f � d. Equation (12.9) shows that [f (n + d)] 2 V 0
f . Substitute

n + 1 for n in equation (12.9). We get that [f (n + d+ 1)] is in the span (over
R(n)) of [f (n + 1)], [ f (n + 2)] ; : : : ; [f (n + d)]. Since thesed germs are all
in V0

f , we get that [f (n + d + 1)] 2 V 0. Continuing in this way, we get by
induction on k that f (n + d + k) 2 V 0 for all k � 0, soV0

f = Vf . Thus Vf is
�nite-dimensional.

Conversely, assume that dimR(n) Vf < 1 . Then for somed, the germs
[f (n)], [f (n+1)] ; : : : ; [f (n+ d)] are linearly dependent overR(n). Write down
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this linear dependence relation and clear denominators to get a recurrence
(12.8) satis�ed by f . Hencef is P-recursive.

We now have all the ingredients necessary for the main resultof this
section.

12.18 Theorem. Let f; g 2 P and �; � 2 R.

(a) �f + �g 2 P

(b) fg 2 P

Proof. (a) By Lemma 12.17 it su�ces to show that dimV�f + �g < 1 . Now
by de�nition, the direct sum Vf � V g is the vector space consisting of
all linear combinations  [u] + � [v], where [u] 2 V f and [v] 2 Vg and
; � 2 R(n). In particular, Vf � V g contains all the germs� [f (n + k)] +
� [g(n + k] = [ �f (n + k)] + �g (n + k)], k � 0. Hence

V�f + �g � V f � V g:

Now if V and W are subspaces of some vector space, thenV � W is
spanned by the union of a basis forV and basis forW. In particular, if
V and W are �nite-dimensional, then dim(V � W) � dim V + dim W.
Hence

dim V�f + �g � dim(Vf � V g) � dim Vf + dim Vg < 1 ;

as was to be proved.

(b) The proof is analogous to (a), except that instead of the direct sum
V � K W we need thetensor product V 
 W over the �eld K . Recall
from linear algebra thatV 
 K W may be thought of (somewhat naively)
as the vector space spanned by all symbolsv 
 w, where v 2 V and
w 2 W, subject to the conditions

(v1 + v2) 
 w = v1 
 w + v2 
 w

v 
 (w1 + w2) = v 
 w1 + v 
 w2:

�v 
 w = v 
 �w = � (v 
 w);
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where � is a scalar. A standard consequence is that ifV has the basis
f v1; : : : ; vm g and W has the basisf w1; : : : ; wng, then V 
 K W has the
basisvi 
 wj , for 1 � i � m and 1� j � n. In particular,

dim V 
 K W = (dim v)(dim W):

Now by the basic \universality" property of tensor products, there is a
unique linear transformation' : Vf 
 R(n) Vg ! G satisfying

[f (n + i )] 
 g[(n + j )]
7!
' [f (n + i )g(n + j )]:

The image of' contains all germs [f (n+ i )g(n+ i )], soVfg � image(' ).
Thus

dim Vfg � dim(Vf 
 R(n) Vg) = (dim Vf )(dim Vg) < 1 ;

and the proof follows.

References for Chapter 12

The 100 prisoners problem was �rst considered by P. B. Miltersen. It
appeared in a paper with A. G�al [41]. Further information onthe history of
this problem, together with a proof of optimality of the prisoners' strategy,
is given by E. Curtin and M. Warshauer [23].

The Oddtown theorem is due to E. R. Berlekamp [8]. Theorem 12.3 on
decomposingK n into complete bipartite subgraphs is due to R. L. Graham
and H. O. Pollak [44][45].

For Fisher's original proof of the inequalityv � b for BIBD's and Bose's
nonuniform generalization, see [33] and [11].

Sutner's original proof of the odd neighborhood theorem (Theorem 12.5)
appears in [103], while the simpler proof of Y. Caro may be found in [19].

The circulant Hadamard matrix conjecture was �rst mentioned in print
by H. J. Ryser [89, p. 134], though its precise origin is obscure. The work
of Turyn mentioned in the text appears in [107][108]. Some more recent
progress is due to B. Schmidt [91].

While P-recursive functions and their cousins theD-�nite series of Exer-
cise 12.21 were known to 19th century analysts, the �rst systematic treatment
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of them did not appear until the paper of Stanley [95] in 1980,which includes
a statement and proof of Theorem 12.18. For an exposition, see Stanley [100,
x6.4].
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