
1

SunSSH and OpenSSL
Enhancements in OpenSolaris
in 01/2008-06/2009

Jan Pechanec
Sun Microsystems
07/2009

1

2

Overview of SunSSH Changes
• A Short History of SunSSH and Its Versions
• SunSSH versus OpenSSH (differences)
• SunSSH with HW Crypto Support
• Security Fixes
• Support for 192/256 bit encryption
• New modes arcfour128 and arcfour256
• Command Line Editing in sftp(1)
• New ChrootDirectory Option
• MAC Context Preservation For Transfer Speed-up

3

Overview of SunSSH Changes (cont.)
• AllowTCPForwarding=yes is the Default Now
• Various Other Fixes
• STC-2 SSH Test Suite Enhancements
• Future Plans & Ideas

Overview of OpenSSL Changes
• Move OpenSSL from /usr/sfw to /

• Move OpenSSL to SFW Consolidation
• Upgrade from 0.9.8a to 0.9.8k
• Performance Improvements

4

A very short history of SunSSH

• version 1.0 based on OpenSSH 2.3p1 (11/2000)
• 1.1 based on OpenSSH 3.5p1 (10/2002)
> full 3.5p1 was taken and our patches from 1.0 reapplied
> in Solaris 10 since its FCS (now in S9 through backport)

• a fork due to a need for Solaris specific changes
• we resync only individual features and fixes after 2003
• very different code in PAM, GSS-API, privilege

separation, auditing, g11n (new code)
> plus a lot of minor changes

• current version in OpenSolaris is 1.4

5

On SunSSH Versioning

• new versions added for protocol or security fixes only
> ie. the version number is NOT about features (= RFEs)
> version string is mostly used to trigger compatibility

extensions. It's the first thing the client gets:

• fixes can be backported to S10 and S9 out of order
> if 1.2 fix not backported but one for 1.3 is, we must branch
> that's why current version in S10 is 1.1.2

– SunSSH in S9 might even get another level
> backported fix for 1.2 would change S10's version to 1.3

$ nc localhost 22

SSH-2.0-Sun_SSH_1.4

6

SunSSH versus OpenSSH

• “OpenSSH supports this, SunSSH does not. Why
don't you just start using OpenSSH?”
> there are quite a few differences between those 2 now
> we have changes our customers rely on

– that are not in OpenSSH
– while we try to give our changes back to the upstream not all of

them would be accepted due to the different opinions on
suggested solutions

– most importantly, all would have to be accepted by the
upstream otherwise we would introduce regressions

> shipping both seems unlikely as well, we would have to
modify OpenSSH to fit into SMF, for example
– effectively forking it again

7

SunSSH with HW Crypto Support

• problem: “SunSSH is slow on Niagara :-(”
• 6445288 ssh needs to be OpenSSL engine aware
• because SunSSH is single threaded
> ...as well as most of other SSH implementations

• and T1/T2 CPUs are quite slow comparing to CPUs
used in ,,typical'' 1-4 CPU machines
> we could not even saturate 100Mbit ethernet with T5120

and SunSSH using default AES mode
> the transfer speed was only ~9MB/s (~75Mbit/s)

• most time spent in crypto operations

8

Some numbers on SSH data transfer

• before: transfer 500MB of data through SunSSH
> ie. all crypto done in software

• ~9MB/sec on UltraSPARC T2 (~75Mb/sec)
$ time dd if=/dev/zero bs=1024k count=500 | ssh t5220-sfb-06 'cat >/dev/null'

real 0m53.581s
user 0m11.951s

sys 0m6.153s

• ~25MB/sec on AMD64, 2.4GHz CPU (~200Mb/sec)
$ time dd if=/dev/zero bs=1024k count=500 | ssh zup.czech 'cat >/dev/null'

real 0m20.101s
user 0m16.359s

sys 0m2.115s

9

How to speed up the encryption?

• SW parallelism
> encrypt in parallel using threads
> from cipher modes we support, only AES-CTR

can be used
> that's the default mechanism used in SunSSH

– and also in OpenSSH since version 5.2p1 (02/2009)
> this way is suitable for all Niagara machines

• HW solution through the Crypto Framework
> offload encryption to n2cp(7d) or mca(7d)
> suitable for machines with HW crypto providers

– so, not useful for Niagara-1 without SCA-6000

10

The way we decided to go for now...

• ...was through the hardware solution
• not suitable for Niagara-1
> which can only accelerate RSA/DSA/DH through the

modexp operation offered by ncp(7d)

• SCA-6000 can always help on T1
> mca(7d) is the driver name

• n2cp(7d) on T2 machines was our primary target
> SCA-6000 is significantly slower

• combining with the software solution is the long
term plan. No ETA for that though.

11

Some numbers after the fix

• now: transfer 500MB of data through SSH
• previously on T2 (~75Mb/sec)
$ time dd if=/dev/zero bs=1024k count=500 | ssh t5220-sfb-06 'cat >/dev/null'

real 0m53.581s

user 0m11.951s

sys 0m6.153s

• and with the PKCS#11 engine (~190Mb/sec)
$ time dd if=/dev/zero bs=1024k count=500 | ssh t5220-sfb-06 'cat >/dev/null'

real 0m20.839s
user 0m11.962s

sys 0m6.179s

12

Some Thoughts on the Results

• current results seem quite good for the 1st phase
> we'll try to continue to search for bottlenecks
> see “Future Plans & Ideas” slides

• with ~190Mb/s on T2 it seems using threads to make
use of more cores should easily saturate 1Gb link
> BTW, T2 has 8 cores, each with a crypto chip

• even parallelization without any HW acceleration
might get interesting results
> imagine 128 CPUs
> however, we can just speculate (we have no prototype)

13

Final Notes on HW Crypto Support

• integrated in Nevada build 99 (PSARC/2008/520)
• if in troubles (hitting a bug in the Crypto Framework

provider for example), you can always switch the
engine off via “-o UseOpenSSLEngine=no”
• performace tests run with 0.9.8a only
> Nevada build 118 integrated 0.9.8k which is faster for

some cipher modes than 0.9.8a
> speed on SPARC machines is generally the same

though

• the project was also backported to S10u7 and
already being used by our customers

14

Security Fixes

• 6684003 fix CVE-2008-1483 in SunSSH
> a bug inherited from the upstream
> fixing the possibility of hijacking the X11 connections

• 6761890 ssh protocol security vulnerability may be
used to reveal some plaintext
> CBC modes only affected, and very hard to successfully

mount an attack in the real world
> to mitigate, we do not offer CBC modes on the server

side by default on OpenSolaris any more (but we do in
S10 due to potential compatibility problems)

> this bumped up the version to 1.3 (and 1.1.1 in S10)

15

Support for 192/256 Bit Encryption

• supporting only 128 bit keys was an artifact of
having SUNWcry* packages
• 6617424 aes192/aes256 support is missing from

ssh/sshd
> integrated in Nevada build 87

• a minor code resync from OpenSSH code base
• presently, using 192/256 bit keys looks like

burning CPU cycles while aes128-ctr mode
seems to be good enough for now
> some people do not share such opinion though

– (update 08/2009) also, read latest news on attacking aes192/256

16

Support for arcfour(128|256) modes

• both modes discard the first 1536 bytes of the
generated stream
> to mitigate known attacks against the plain RC4 algorithm
> existing arcfour mode moved to the back of the

default cipher list

• 6799060 implement arcfour128 and arcfour256 in
SunSSH
• the new modes are defined in RFC 4345
• straightforward resync from OpenSSH
• integrated into Nevada build 109

17

Command Line Editing in sftp(1)

• using the tecla(5) library shipped with Solaris
• 6480741 command line editing is desired for sftp(1)
• command line editing and history only
> file name completion not implemented yet
> not that easy for remote files

• integrated to Nevada build 110
• BTW, OpenSSH participates in Google's Summer of

Code 2009, renovating its SFTP implementation

18

ChrootDirectory option

• OpenSSH team integrated chroot(2) support to
OpenSSH 5.1p1
• the user is jailed into the directory after logging in
• if “internal-sftp” is used as path in the
Subsystem option for sftp, no other configuration
is needed
> that's the default now but only for new installations

• for plain SSH connections, the chroot directory
must contain at least the dynamic loader, the shell
and its libraries. See sshd_config(4).

19

ChrootDirectory option (cont.)

• 5043377 provide chroot capability in SunSSH
> PSARC/2009/155 ChrootDirectory option for SunSSH server

• integrated into Nevada build 112
• partial resync from OpenSSH, some parts different

due to different privilege separation code we use
> BTW, bugs #1562, #1564, #1566 filed against OpenSSH

• SunSSH started to use privileges for the 1st time
> user can now even login without PRIV_EXEC and
PRIV_FORK, see “defaultpriv“ in user_attr(4)
– but those privileges would not be assigned to the shell
– ie. you could run the shell's internal commands only

20

MAC Context Preservation

• each SSH packets is guarded by HMAC for
integrity protection using the same key (until the
next key re-exchange)
• previously, HMAC was initialized with that (same)

key for every packet
> involves some memory copying and hash operations to

prepare a context

• the “idea” of the context preservation is to initialize
once and reuse the context for all the packets
• resync from OpenSSH
> 6616927 preserve MAC contexts between packets

21

MAC Context Preservation II.

• OpenSSH release notes claimed 12-16% speed up
with arcfour128+hmac-md5
• hmm, that does not seem to be true
> my expected speed-up based on some computations

was around 5%
– based on isolated tests with MD5, how much is spent in crypto

in general, and what is the ratio of RC4:MD5 wrt speed
> tests confirmed that

• to summarize, we get 4-5% for the faster
arcfour128+hmac-md5 case and 1.5% for the
default case with AES-CTR in 128 bits

22

AllowTCPForwarding=yes is the default now

• setting it to “no” does not increase security of the
server (see the man page as to why)
• was rather a bug when introducing SSH in Solaris
• the real default in the code was always “yes” but
/etc/ssh/sshd_config set it explicitly to “no”
> manual page said (quite correctly) the default was “yes”
> which added to a great confusion among our users

• the new default is not set in the config file any more
> see 6805294 below for more information

• integrated to snv_118 (6830483, PSARC/2009/353)

23

Various Other Fixes

• we fix other bug fixes along the way, for example:
• 6496644 deprecate UseLogin and remove code

supporting this feature from sshd(1m)
> this option depricated in an old PSARC case was still

accepted and made all connections to fail

• 6635417 more memory leaks in SunSSH
> finally, we can add memory leak checks support to the

STC-2 SSH test suite

• 6820920 Sun SSH daemon crashes if
/usr/bin/locale isn't present
• and many more (around 40 within the period)

24

STC-2 SSH Test Suite Enhancements

• STC = Solaris Test Collection
• the up-to-date test suite is extremely important for

the continuous development
> test suite was written based on OpenSSH regression

code from 4.3p2 release (02/2006)
> independently developed since then
> not open sourced yet (would need some work)

– it will hopefully happen “soon”

• really easy to run
> it needs some manual configuration of the system but

configure/execute phases tell you exactly what to do if
something is found missing

25

STC-2 SSH Enhancements (cont.)

• 15 putbacks within the period covered by this
presentation (01/2008-06/2009)
> some containing many CRs

• 3 new test cases solaris-auditing, privs-
and-chroot, and max-conn
• many other test cases fixed or enhanced
• important stuff still missing
> GSS-API test case must be written from scratch
> memory leak tests missing
> some command line options not tested at all

26

Future Plans & Ideas (SunSSH)
• 6655613 resync server's conditional Match block

from OpenSSH
> conditional configuration on the server side based on

various criteria (user name, group, host, address)
> can set a subset of options based on that (auth options,

chroot, x11 and forwarding options, banner, and more)

• 6805294 sshd_config should not be shipped with
explicit default values
> any uncommented default value in the configuration file

becomes part of the settings, immune to code changes
> that's a potentially big issue with critical options like
Ciphers and MACs.

27

Future Plans & Ideas II.

• 6749535 ssh could precompute AES-CTR stream in
larger chunks and XOR data with it
> the Crypto Framework has quite a big overhead
> currently, up to 8KB data chunks are processed but system

sometimes ships data in smaller ones
> however, with the counter mode we could precompute the

encrypted stream in larger chunks and XOR with data later
> perf tests on a T2 machine with the PKCS#11 engine:

type 16B 1KB 8KB 64KB

aes-128-ctr 664.74k 33282.39k 147720.87k 251374.25k per second

> not everything is crypto but I expect ~30% speed-up
with this approach. Also, think threads using more cores!

28

Future Plans & Ideas III.

• 6357779 SSHv2 x.509 support desired
> would fix the today's leap-of-faith step when accepting the

server keys during the 1st connection
– such keys should be transfered via a different channel and

put to the known_hosts file but that usually is not the
case

> only informational RFC and some drafts exist
> this might be omitted, and we could relay on PKINIT only

– ie. using the X.509 certificates through GSS-API
> alpha code for 6357779 was succesfully tested in San Jose

during Connectathon 2008, against Van Dyke's and
Attachmate's SSH implementations

29

Future Plans & Ideas IV.

• 6628064 High Performance SSH/SCP - HPN-SSH
> SSH does not perform very well on high speed links (≥

1Gb/sec) with high latency
> TCP window handling must be fixed to significantly speed

up the bulk data transfer
> there are patches that can be applied against OpenSSH

• paralellization of crypto operations
> already mentioned on one of previous slides (with 6749535)
> might help on any machine with more CPUs

– AES CTR stream would be being precomputed
independently, using a pool of threads

30

References (SunSSH)
• http://www.opensolaris.org/os/community/security/projects/SSH

> SunSSH home pagbe; includes information on history, current and past development, documentation, patches
etc.

• http://www.openssh.org
> our upstream is always a good source for information

• manual pages
> see Documentation section on SSH page at opensolaris.org

• http://docs.sun.com – more detailed documentation on SSH than manual pages

• SunSSH and the OpenSSL PKCS#11 Engine Changes in 2008
> detailed presentation on the HW crypto support in SunSSH
> see http://mediacast.sun.com/users/janp2

• “On SunSSH Versioning”, “The ChrootDirectory option resynced to SunSSH”
> look for those entries on my blog http://blogs.sun.com/janp

• Pics for the cover and back slides from Barcelona
> http://www.devnull.cz/barcelona

http://www.opensolaris.org/os/community/security/projects/SSH
http://www.openssh.org/
http://docs.sun.com/
http://mediacast.sun.com/users/janp2
http://blogs.sun.com/janp
http://www.devnull.cz/barcelona

31

OpenSSL Changes Overview

• up until recently, only the PKCS#11 engine changes
and security fixes went to 0.9.8a version within the
last few years
• then, JohnZ moved OpenSSL from /usr/sfw(lib|bin|

include) to /(lib|bin|usr/include)
• and Mark Phalan's recent changes brought in some

big enhancements in this area during the last few
Nevada builds
> OpenSSL was moved to SFW consolidation
> its version upgraded from 0.9.8a to 0.9.8k
> and we got significant performance improvements

32

OpenSSL – Move from /usr/sfw to /

• 6449514 move OpenSSL from /usr/sfw to /usr, /lib
• integrated by John Zolnowski to snv_104
• PSARC/2006/555 and PSARC/2007/674
• no need to use R/L/I options anymore
> good for the 3rd party apps that didn't know about
/usr/sfw in Solaris

> with /usr/sfw going away, there is no need to put it to
your PATH
– which was not the default, confusing many users

• this RFE was a long needed change

33

OpenSSL – Move to SFW
• integrated by Mark Phalan to Nevada build 117
• will simplify future upgrades and maintenance
> just drop in a new tarball
> and verify that patches (eg. PKCS#11 engine) still work

• compiler freedom
> gcc vs cc for best performance
> cc is used now since it provides faster code for OpenSSL

• delivering a FIPS container should be now possible
> SFW allows the original verified build system to be used
> and we could even provide more OpenSSL versions

– the question is whether we would ever want that

34

OpenSSL – Upgrade to 0.9.8k

• Nevada build 118 (by Mark)
• we got a lot of bug fixes with the upgrade as well
• ...and speed improvements
> new and better assembler code available for AMD64

• pleasing our users
> 0.9.8a version, while patched against all security bugs

found, was still confusing our users and triggered
complains about security risks

> security vulnerabilities since now will be (mostly) fixed
with a new OpenSSL release
– we still might use patches for low priority security bugs

35

OpenSSL – Speed Improvements

• objective: meet OpenSSL performance as on Linux
• enable ASM for AMD64
> Nevada 118
> hmac(md5): 150%, aes cbc: 170%, rsa: 325%, ...

• enable ASM for x86
> fix in progress (planned for snv_120)
> hmac(md5): 135%, aes cbc: 310%, rsa: 185%, ...

• enable better ASM for RSA on SPARC
> RSA 2048 200% (32bit)
> anything else on SPARC stays the same

36

OpenSSL – Post Move Plans
• WAN Boot
> alive and used in the new installer
> now uses a private copy of OpenSSL in ON

– extracting and applying security patches might be still needed
> we want to remove OpenSSL from ON completely

– but WAN Boot needs a static OpenSSL library
> will want to build static libraries for WAN Boot from SFW

– and deliver them via private package for ON build machines

• isaexec for openssl(1openssl) for x86 only
> SPARC's 64 bit code is not generaly faster than 32 bit

• isaexec for ssh(1)/sshd(1M)

37

AMD64 Perf Improvements (in %)

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

md2 135.26 134.28 132.47 132.12 131.84

mdc2 0.00 0.00 0.00 0.00 0.00

md4 149.72 138.16 124.82 110.10 101.54

md5 155.25 155.18 157.56 158.13 157.59

hmac(md5) 119.40 132.13 140.27 150.34 156.60

sha1 160.90 171.03 200.14 202.45 203.81

rmd160 124.81 118.66 110.12 103.12 100.48

rc4 100.02 100.65 100.81 100.78 100.76

des cbc 100.09 99.69 99.99 100.03 100.31

des ede3 100.29 100.17 100.20 100.19 100.19

idea cbc 0.00 0.00 0.00 0.00 0.00

rc2 cbc 100.10 100.02 100.00 100.01 100.01

rc532/12 cbc 0.00 0.00 0.00 0.00 0.00

blowfish cbc 99.54 99.99 99.99 100.00 99.98

cast cbc 100.00 100.32 100.00 99.99 99.95

38

AMD64 Perf Improvements II. (in %)
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

aes128 cbc 103.05 147.06 166.36 171.44 173.08

aes192 cbc 100.51 143.19 163.24 168.30 170.55

aes256 cbc 107.20 145.08 160.81 164.78 166.14

sha256 210.01 219.69 225.72 230.18 231.81

sha512 218.38 224.36 229.57 228.90 227.84

 sign verify sign/s verify/s

rsa 512 bits 30.75 39.47 325.19 247.34

rsa 1024 bits 28.26 37.14 353.71 270.83

rsa 2048 bits 29.15 35.20 343.10 283.06

rsa 4096 bits 30.27 36.90 330.95 271.04

 sign verify sign/s verify/s

dsa 512 bits 44.75 33.00 223.50 302.07

dsa 1024 bits 34.48 29.53 290.07 338.81

dsa 2048 bits 31.54 29.42 316.96 339.68

39

AMD64 Improvements in 32 bits (%)
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

md2 100.12 100.06 100.37 100.03 100.04

mdc2 0.00 0.00 0.00 0.00 0.00

md4 100.00 99.97 99.53 100.05 99.98

md5 100.69 104.41 111.90 124.79 137.52

hmac(md5) 115.36 119.17 125.04 133.39 139.18

sha1 104.42 107.10 109.56 112.07 113.79

rmd160 101.10 101.13 100.41 100.07 99.79

rc4 99.63 99.88 99.96 99.92 99.88

des cbc 148.35 147.67 146.88 147.33 146.92

des ede3 129.68 129.45 129.54 129.58 129.22

idea cbc 0.00 0.00 0.00 0.00 0.00

seed cbc 0.00 0.00 0.00 0.00 0.00

rc2 cbc 100.23 99.89 100.02 100.02 100.03

rc532/12 cbc 0.00 0.00 0.00 0.00 0.00

blowfish cbc 125.92 121.08 120.94 120.53 120.90

cast cbc 99.71 100.01 100.01 99.99 100.01

40

AMD64 Improvements in 32 bits II. (%)
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes

aes128 cbc 182.08 261.64 297.22 307.45 310.41

aes192 cbc 188.00 268.64 300.92 310.48 313.42

aes256 cbc 195.56 272.84 302.46 310.81 313.37

sha256 100.44 100.84 100.40 100.84 101.32

sha512 99.11 99.37 99.14 99.08 99.14

aes128 ige 227.30 245.34 256.29 259.75 259.05

aes192 ige 228.39 254.24 264.41 268.04 266.93

aes256 ige 237.31 260.65 269.74 272.43 271.22

 sign verify sign/s verify/s

rsa 512 bits 71.22 71.23 140.33 138.58

rsa 1024 bits 61.30 61.05 163.10 164.27

rsa 2048 bits 54.86 56.14 182.06 177.86

rsa 4096 bits 53.09 55.04 187.32 181.63

 sign verify sign/s verify/s

dsa 512 bits 65.37 67.06 152.86 149.00

dsa 1024 bits 55.73 56.80 179.42 176.07

dsa 2048 bits 53.34 54.98 187.44 181.82

41

References (OpenSSL)
• http://www.openssl.org

> home page for the OpenSSL project

• manual pages
> openssl(5) is Solaris specific manual page on OpenSSL
> “(1|3|7)openssl” sections are manual pages extracted from the original OpenSSL tarball

• “OpenSSL version string format changed”
> http://blogs.sun.com/janp/entry/openssl_version_string_format_changed

• Mark Phalan's blog entries on OpenSSL
> http://blogs.sun.com/mbp

http://www.openssl.org/
http://blogs.sun.com/janp/entry/openssl_version_string_format_changed
http://blogs.sun.com/mbp

42

Questions?

Jan Pechanec
https://blogs.sun.com/janp

42

https://blogs.sun.com/janp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

