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Abstract— In this paper, we propose a stochastic control
approach to the problem of pairs trading. We model the log-
relationship between a pair of stock prices as an Ornstein-
Uhlenbeck process and use this to formulate a portfolio op-
timization based stochastic control problem. We are able to
obtain the optimal solution to this control problem in closed
form via the corresponding Hamilton-Jacobi-Bellman equation.
We also provide closed form maximum-likelihood estimation
values for the parameters in the model. The approach is
illustrated with a numerical example involving simulated data
for a pair of stocks.

I. INTRODUCTION

Pairs trading is an investment strategy based on identi-

fying pairs of stocks that typically trade in a predictable

relation to one another. When deviations to this predictable

relationship occur, a pairs trading strategy will trade in

order to profit from a return to the typical relationship. The

standard example is a pair of highly correlated stocks in the

same industry, such as Coca-Cola and Pepsi or Wal-Mart

and Target. The stocks in the pair tend to trade relative to

one another. For example, the overall market value of Wal-

Mart and Target tend to move together (since they are in

the same industry), and Wal-Mart’s market value is roughly

3 to 4 times that of Target (due to the size difference

between the two companies). When deviations to this basic

relationship occur, such as Wal-Mart trading for 5 times

Target, a pairs trading strategy would bet on a return to

the standard relationship by purchasing Target and selling

and equal dollar amount of Wal-Mart. Thus, a pairs trading

strategy bets solely on the relationship between the pair of

stocks and not on the overall movement of the industry or

market that they are in.

It is well known that pairs trading is a common strategy

among many hedge funds. However, there is not a significant

amount of academic literature devoted to it due to its

proprietary nature. For a review of some of the existing

academic models, see [1], [3], [2].

In our paper, we develop a model whereby the difference

in the log-price of a pair of stocks (known as the spread) is

an Ornstein-Uhlenbeck process [9]. We then use a stochastic

control formulation of a dynamic portfolio optimization

problem where one may either trade based on the spread (by

buying and selling equal amounts of the stocks in the pair) or

place money in a risk free asset. Using an ansatz motivated

by [5] and [4] ,we are able to find a closed form solution to

the control problem under a power utility on terminal wealth.
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Furthermore, we show that parameter values for the model

may be obtained in closed form under maximum likelihood

estimation. Thus, we obtain a simple and practical solution

to the modeling and optimal trading of pairs.

The paper is organized as follows. In Section II, we

formulate the pairs trading problem as a stochastic optimal

control problem. In Section III, we solve the corresponding

Hamilton-Jacobi-Bellman equation in closed form. Since the

focus of this paper is the application of stochastic control

to pairs trading, we do not provide a rigorous verification

theorem for this HJB solution. For readers who are interested

in this topic, refer to [5]. In Section IV, we provide a

numerical study involving simulated data. Section V gives

conclusions. Finally, the maximum likelihood estimates for

parameter values in closed form are provided in the Ap-

pendix.

II. PROBLEM FORMULATION

This section presents the basic asset price models and

formulates a pairs trading stochastic control problem. We

begin by describing the asset, spread, and wealth dynamics.

A. Asset, Spread and Wealth Dynamics

We assume that a risk-free asset M(t) exists with a risk-

free rate of r compounded continuously. Thus, M(t) satisfies

the dynamics

dM(t) = rM(t)dt. (1)

Let A(t) and B(t) denote respectively the prices of the

pair of stocks A and B at time t. We assume that stock B
follows a geometric Brownian motion

dB(t) = µB(t)dt + σB(t)dZ(t), (2)

where µ is the drift, σ is the volatility, and Z(t) is a standard

Brownian motion.

Let X(t) denote the spread of the two stocks at time t,
defined as

X(t) = ln(A(t)) − ln(B(t)). (3)

We assume that the spread follows an Ornstein-Uhlenbeck

process

dX(t) = k(θ − X(t))dt + ηdW (t), (4)

where k(θ − X(t)) is the drift term that represents the

expected instantaneous change in the spread at time t, and θ
is the long-term equilibrium level to which the spread reverts.

The rate of reversion is represented by the parameter k,
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which has to be positive to ensure stability around the equi-

librium value. The standard deviation parameter, η, deter-

mines the volatility of the spread. W (t) is a standard Brow-

nian motion where ρ denotes the instantaneous correlation

coefficient between Z(t) and W (t) (i.e. E[dW (t)dZ(t)] =
ρdt).

By using (2), (3), (4) and Ito’s lemma [7], we are able to

obtain the dynamics of A(t) as

dA(t) =

(

µ + k(θ − X(t)) +
1

2
η2 + ρση

)

A(t)dt

+σA(t)dZ(t) + ηA(t)dW (t), (5)

where the ρση term comes from the covariance between the

Wiener processes W (t) and Z(t).
Let V (t) be the value of a self-financing pairs-trading

portfolio and let h(t) and h̃(t) denote respectively the

portfolio weights for stocks A and B at time t. Additionally,

we only allow ourselves to trade stocks A and B as a pair,

(i.e. we are only allowed to go short one of them and long

the other in equal dollar amount). Thus, we require that

h(t) = −h̃(t). (6)

Finally, noting that the portfolio weight on the risk-free asset

is always 1, the wealth dynamics of the portfolio value is

given by

dV (t)=V (t)

{

h(t)
dA(t)

A(t)
+ h̃(t)

dB(t)

B(t)
+

dM(t)

M(t)

}

. (7)

Using (1), (2), (5), and (6), we can rewrite (7) as

dV (t) = V (t){[h(t)(k(θ − X(t)) +
1

2
η2 + ρση)

+r]dt + ηdW (t)}. (8)

B. Formulation as a Stochastic Control Problem

We formulate the portfolio optimization pair-trading prob-

lem as a stochastic optimal control problem.We assume that

an investor’s preference can be represented by the utility

function U(x) = 1
γ
xγ , with x ≥ 0 and γ < 1. In this

formulation, our objective is to maximize expected utility at

the final time T . Thus, we seek to solve

sup
h(t)

E

[

1

γ
(V (T ))γ

]

subject to: V (0) = v0, X(0) = x0

dX(t) = k(θ − X(t))dt + ηdW (t)

dV (t) = V (t)((h(t)(k(θ − X(t)) +
1

2
η2

+ρση) + r)dt + ηdW (t)),

where the supremum is taken over strategies h(t) that are

adapted to the filtration generated by Z(t) and W (t). (For a

rigorous formulation in a related setting, see [5].)
In this optimal control problem, the first constraint just

specifies the initial wealth of our portfolio and the spread.

The second and third constraints describe the spread and

wealth dynamics respectively.
In the following section, we show that a closed form

solution to the above stochastic control problem exists.

III. ANALYTICAL SOLUTION

Let G(t, v, x) denote the value function. By standard

arguments, one may show that the Hamilton-Jacobi-Bellman

(HJB) equation coresponding to our stochastic control prob-

lem is

Gt + sup
h

{ 1
2 [h2η2v2Gvv + η2Gxx

+2hη2vGvx] + [hk(θ − x) + 1
2hη2

+hρησ + r]vGv − k(x − θ)Gx} = 0,

(9)

subject to the terminal condition

G(T, v, x) = vγ , (10)

where the subscripts on G denote partial derivative.

For notational ease we let b = −k(x − θ) + 1
2η2 + ρση

and rewrite (9) as

Gt + sup
h

{ 1
2 [h2η2v2Gvv + η2Gxx

+2hη2vGvx] + [hb + r]vGv

+[b − 1
2η2 − ρση]Gx} = 0.

(11)

The first order condition for the maximization in (11) is

h∗η2vGvv + η2Gvx + bGv = 0. (12)

Assuming Gvv < 0, the first order condition (12) is also

sufficient, yielding

h∗ = −η2Gvx + bGv

η2vGvv

. (13)

Plugging (13) back into (11) yields

η2GtGvv − 1
2η4G2

vx − 1
2b2G2

v − bη2GvGvx

+ 1
2η4GvvGxx + rη2vGvGvv

−k(x − θ)η2GxGvv = 0.
(14)

Thus, we must solve the partial differential equation (14) in

order to determine an optimal strategy.

A. Closed Form Solution

To obtain a closed form solution, we consider the fol-

lowing separation ansatz that was motivated by [5] where a

different portfolio optimization problem under Vasicek [10]

term structure dynamics was solved,

G(t, v, x) = f(t, x)vγ , (15)

with the condition that

f(T, x) = 1 ∀x. (16)

For this choice of ansatz, (14) becomes

(γ − 1)η2fft − 1
2γη4f2

x − 1
2γb2f2 − 1

2γη4ffx

−γρση3ffx + 1
2 (γ − 1)η4ffxx

+γ(γ − 1)rη2f2 + k(x − θ)η2ffx = 0.

(17)

We then use the following ansatz for f(t, x)

f(t, x) = g(t)exβ(t)+x2α(t). (18)
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Since f(t, x) satisfies the condition (16), the following

conditions must be imposed on the ansatz for f(t, x)

g(T ) = 1, β(T ) = 0, α(T ) = 0. (19)

With (18), we can rewrite (17) as

(γ−1)η2g′

g
− 1

2γb2 + [(γ − 1)η2α′4α2 + 2kη2α]x2

+[(γ − 1)η2β′4α − 2γρση3α − 2η4βα + kη2β

−2kθη2α]x + [− 1
2γη4β − γρση3β − 1

2η4β2

+(γ − 1)η4α + γ(γ − 1)rη2 − kθη2β] = 0.

(20)

Plugging back b = −k(x− θ) + 1
2η2 + ρση into (20) yields

(γ−1)η2g′

g
+ {[(γ − 1)η2]α′4]α2 + [2kη2]α

+[− 1
2γk2]}x2 + {[(γ − 1)η2]β′2 − 2η4α]β

+[−γη4α − 2γρση3α − 2kθη2α + γk2θ + 1
2γkη2

+γkρησ]}x + {− 1
2γη4β − γρση3β − 1

2η4β2

+(γ − 1)η4α + γ(γ − 1)rη2 − kθη2β − 1
2γk2θ2

− 1
2γkθη2 − γkθρση − 1

8γη4 − 1
2γρση3

− 1
2γρ2σ2η2} = 0.

Setting the coefficient of x2 in (21) to be zero yields an

ordinary differential equation for α(t)

[(γ − 1)η2]α′4]α2 + [2kη2]α + [−1

2
γk2] = 0. (21)

Similarly, setting the coefficient of x in (21) to be zero yields

an ordinary differential equation for β(t)

[(γ − 1)η2]β′2 − 2η4α]β + [−γη4α − 2γρση3α

−2kθη2α + γk2θ + 1
2γkη2 + γkρησ] = 0.

(22)

Finally, if both (21) and (22) hold, then (21) reduces to an

ordinary differential equation for g(t)

(γ − 1)η2g′ + [− 1
2γη4β − γρση3β − 1

2η4β2

+(γ − 1)η4α + γ(γ − 1)rη2 − kθη2β − 1
2γk2θ2

− 1
2γkθη2 − γkθρση − 1

8γη4 − 1
2γρση3

− 1
2γρ2σ2η2]g = 0.

(23)

Noting that (21) is a Riccati equation for α(t), and (22)

and (23) are first order linear ordinary differential equations

for β(t) and g(t), respectively, one may obtain the solution

in closed form as,

α(t) =
k(1 −√

1 − γ)

2η2
·







1 +
2
√

1 − γ

1 −√
1 − γ − (1 +

√
1 − γ) exp(2k(T−t)√

1−γ
)







,

(24)

β(t) =
1

2η2[(1 −√
1 − γ) − (1 +

√
1 − γ) exp(2k(T−t)√

1−γ
)]

·

{γ√1 − γ(η2 + 2ρση)[1 − exp(2k(T−t)√
1−γ

)]2

−γ(η2 + 2ρση + 2kθ)[1 − exp(2k(T−t)√
1−γ

)]},
(25)

and

g(t) = exp

(

−
∫ T

t
u(s)ds

(1 − γ)η2

)

, (26)

where u is given by

u(t) = − 1
2γη4β(t) − γρση3β(t) − 1

2η4β2(t)

+(γ − 1)η4α(t) + γ(γ − 1)rη2 − kθη2β(t)

− 1
2γk2θ2 − 1

2γkθη2 − γkθρση − 1
8γη4

− 1
2γρση3 − 1

2γρ2σ2η2.
(27)

With (24), (25) and (26), the ansatz f(t, x) can be com-

puted via (18). Then G(t, v, x) can in turn be computed via

(15). Consequently, the optimal weight h∗(t) can be obtained

via (13)

h∗(t, x)=
1

1 − γ

[

β(t) + 2xα(t) −k(x − θ)

η2
+

ρσ

η
+

1

2

]

.

(28)

With the above closed form solution in hand, in the next

section we turn to an illustrative numerical example. The

problem of parameter estimation will be discussed in the

Appendix.

IV. NUMERICAL RESULTS

The results of Section III give easily computed expressions

for the optimal portfolio strategy in our model of pairs

trading. In this section, we test the strategy using simulated

data for a pair of stocks. Since the objective of this paper is to

develop an optimal pair-trading strategy instead of estimating

the corresponding parameters, we hard-code the parameter

values when computing the optimal strategy (13). The details

are as follows.

As the stock price of B is lognormal (see (34)), we

simulate the price process by taking a series of 1-day time

periods and then stepping the process forward day by day as

in [6] via

ln(B(tk+1)) − ln(B(tk)) = µ∆t + σǫ(tk)
√

∆t, (29)

where tk denotes day k. ∆t = 1/251 (we have assumed

251 trading days in a year) and ǫ(tk)’s are normal random

variables of mean 0 and standard deviation 1 and ǫ(ti) are

uncorrelated with ǫ(tj) for i 6= j. Setting µ to be 0.3 and σ
to be 0.1, the simulated stock price of B is obtained through

(29) as

B(tk+1) = eµ∆t+σǫ(tk)
√

∆tB(tk). (30)

Similarly, since the spread X(t) is normally distributed

(see (35)), we can simulate the spread process by using the
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method described in [1]

X(tk+1) = θ
(

1 − e−k∆t
)

+ e−k∆tX(tk)

+
√

η2

2k
(1 − e−2kt)δ(tk),

(31)

where ∆t = 1/251. δ(tk)’s are normal random variables of

mean 0 and standard deviation 1 and δ(ti) are uncorrelated

with δ(tj) for i 6= j. We use θ = 1, κ = 5 and η = 0.5
Furthermore, since we assume that the stock price and the

spread are correlated by ρ, the covariance of ǫ(tk) and δ(tk)
are set to be ρ for k = 1, 2, ... when generating these two

standard normal random variables. We set ρ to be 0.19.
Finally, from (3), the stock price of A can be obtained as

A(tk) = B(tk)eX(tk). (32)

We ran the above simulations for one year (251 trading

days) and obtained the stock price paths for A and B in

Figure IV.

Fig. 1. Time series of the prices of stocks A and B.

With the above simulated data and the corresponding

parameter values, the optimal strategy on each day can be

computed via (13). Figure 2 shows the resulting wealth

dynamics with γ = −100. For this sample path, the value

of the portfolio increases from $1000 to $6693 in five years,

representing a yearly return of over 38% under continuous

compounding.

Fig. 2. Wealth dynamics.

Going forward, we are working on using the parameter

estimation given in the Appendix to test the strategy on

empirical data.

V. CONCLUSION

In this paper, we formulated the problem of optimal

trading of pairs as a stochastic control problem. We were

able to find a closed form solution to this control problem,

and derive closed form expressions for maximum likelihood

estimators of parameter values. Hence, we obtained an easily

implemented approach to the modeling and optimal trading

of pairs. This approach was tested on simulated data for a

pair of stocks and showed that the strategy performs well.
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VI. APPENDIX

In this section, we present analytic formulas for maximum

likelihood parameter value estimators. We consider the prob-

lem of using historical data to estimate the parameters k, θ,

η, µ, σ and ρ. First, we let S(t) = ln(B(t)) and v = µ− 1
2σ2.

Applying Ito’s lemma to (2) yields

dS(t) = vdt + σdZ(t). (33)

It can be verified that S(t) is normally distributed

S(t) ∼ N
(

S(0) + vt, σ2t
)

. (34)

It can also be verified that the spread X(t) is normally

distributed

X(t) ∼ N

(

X(0)e−kt + θ(1 − e−kt),
η2

2k
(1 − e−2kt)

)

,

(35)

and that the covariance between X(t) and S(t) is

Cov (X(t), S(t)) =
ρησ

k
(1 − ekt). (36)

Let y(t) = [X(t), S(t)]T and suppose that N + 1 periods

of historical data are available, i.e. we have observed y(t)
for t = 0, 1, ..., N where ∆t is the time period between

observations.

The likelihood function is given by [8]

f (y(0), . . . , y(N)|k, θ, η, µ, σ, ρ) , (37)
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where f(·|·) is the joint density of the observations given

the parameter values. Since y(t) is Markov, the likelihood

function can be expressed as (where we have suppressed the

parameter values for notational simplicity)

likelihood =

T−1
∏

t=0

f (y(t + 1)|y(t)) , (38)

where f(y(t + 1)|y(t)) is equal to

1

2π
√

det(Σ)
exp{− 1

2 (y(t + 1) − E[y(t + 1)|y(t)])
T

Σ−1·

(y(t + 1) − E[y(t + 1)|y(t)])},
(39)

with

E[y(t + 1)|y(t)] =

[

X(t)e−k∆t + θ(1 − e−k∆t)
S(t) + v∆t

]

, (40)

Σ =

[

η2

2k
(1 − e−2k∆t) ρησ

k
(1 − ek∆t)

ρησ
k

(1 − ek∆t) σ2∆t

]

. (41)

derived from (34) and (35).

By taking the partial derivatives of the log of (38) (known

as the log-likelihood function) with respect to each of the six

parameters and setting the derivatives to zero, six equations

with six unknowns are obtained. Solving the six simultaneous

equations yield the following estimators (the details are not

provided due to space considerations)

σ̂ =

√

Ŝ2

∆t
, (42)

µ̂ =
m̂

∆t
+

1

2
σ̂2, (43)

k̂ = − log(p̂)

∆t
, (44)

θ̂ =
q̂

1 − p̂
, (45)

η̂ =

√

2k̂V̂ 2

1 − p̂2
, (46)

ρ̂ =
k̂ĈV̂ Ŝ

η̂σ̂(1 − p̂)
, (47)

where

m̂ =
S(N) − S(0)

N
,

Ŝ2 =

N−1
∑

t=0

(S(t + 1)−S(t))2 − 2m̂(S(N)−S(0)) + Nm̂2

N ,

p̂ = 1

N

N−1
∑

t=0

X(t)2−(

N−1
∑

t=0

X(t))2
· [N

N−1
∑

t=0

(X(t + 1)X(t))

−(X(N) − X(0))

N−1
∑

t=0

X(t) − (

N−1
∑

t=0

X(t))2],

q̂ =

X(N) − x(0)+
N−1
∑

t=0

X(t) − p̂
N−1
∑

t=0

X(t)

N ,

V̂ 2 =
1

N
[X2(N) − X2(0) + (1 + p̂2)

N−1
∑

t=0

X2(t)

−2p̂

N−1
∑

t=0

X(t)X(t + 1) − Nq̂],

Ĉ =
1

NV̂ Ŝ
· [

N−1
∑

t=0

X(t + 1)(S(t + 1) − S(t))

−p̂

N−1
∑

t=0

X(t)(S(t + 1) − S(t))

−m̂(X(N) − X(0))

−m̂(1 − p̂)

N−1
∑

t=0

X(t)].

(48)

Thus, we obtain closed form expressions for the maximum

likelihood estimators of the required parameter values.
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