المشتري

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح, البحث
Disambig RTL.svgهذه المقالة عن كوكب المشتري في علم الفلك؛ إن كنت تبحث عن: «وظيفة المشتري في مجال الموضة»، فانظر مشتري (موضة).
المشتريAstronomical symbol of Jupiter
صورة معبرة عن الموضوع المشتري
صورة ملتقطة للمشتري عبر المسبار كاسيني-هويجنز
أما البقعة المظلمة فهي للقمر أوروبا
التسميات
اللفظ تلفظ إنجليزي: ‏‎//‎‏
خصائص المدار[4][5]
الدهر J2000
الأوج 816,520,800كم

أو 5.458104 وحدة فلكية

الحضيض 740,573,600 كم
أو 4.950429 وحدة فلكية
نصف المحور الرئيسي 778,547,200 كم
أو 5.204267 وحدة فلكية
الشذوذ المداري 0.048775
فترة الدوران 4,331.57 يوم
11.85920 سنة للمشتري
10,475.8 يوم شمسي[1]
الفترة الإقترانية 398.88 يوم[2]
متوسط السرعة المدارية 13.07 كم/ثا[2]
زاوية وسط الشذوذ 18.818°
الميل المداري 1.305° بالنسبة لمسار الشمس
6.09° بالنسبة لخط الاستواء
0.32° بالنسبة إلى مستو ثابت[3]
زاوية نقطة الاعتدال 100.492°
زاوية الحضيض 275.066°
الأقمار 63 قمر
الخصائص الفيزيائية
متوسط نصف القطر 69,911 ± 6كم[6][7]
نصف القطر الإستوائي 71,492 ± 4 كم [6][7]
11.209 مرة منالأرض
نصف القطر القطبي 66,854 ± 10 كم [6][7]
10.517 من الأرض
التفلطح 0.06487 ± 0.00015
مساحة السطح 6.1419×1010 كم2 [7][8]
الحجم 1.4313×1015 كم3 [2][7]
الكتلة 1.8986×1027 كغ [2][9]
متوسط الكثافة 1.326 غ/سم3 [2][7]
جاذبية السطح 24.79 م/ثا2 [2][7]
سرعة الإفلات 59.5 كم/ثا[2][7]
مدة اليوم الفلكي 9.925ساعة [10]
سرعة الدوران 12.6 كم/ثا
المطلع المستقيم القطبي الشمالي 268.057°
الميلان القطبي 64.496°[6]
بياض 0.343
الحرارة yes
حرارة السطح
- عند مستوى 1 بار
- مستوى 0.1 bar
الدنيا

المتوسطة
165 كلفن
112 كلفن [2]
القصوى

الغلاف الجوي
الضغط السطحي 20–200 كيلوباسكال [11]
مقياس الارتفاع 27 كم
العناصر
89.8±2.0% هيدروجين (H2)
10.2±2.0% هيليوم
~0.3% ميثان
~0.026% أمونيا
~0.003% هيدروجين ثقيل (HD)
0.0006% إيثان
0.0004% ماء
جليد:
أمونيا
ماء
بيكبريتيد الأمونيوم(NH4SH)

المشتري هو أضخم كواكب المجموعة الشمسية. سمي بالمشتري لأنه يستشري في سيره أي يَلِجُ ويمضي ويجدُ فيه بلا فتور ولا انكسار.[12] وكان المشتري معروف للفلكيين القدماء وارتبط بميثولوجيا وأديان العديد من الشعوب. وقد أطلق الرومان عليه اسم جوبيتر وهو إله السماء والبرق.[13] ويظهر المشتري من الأرض بسطوع كبير فيبلغ قدره الظاهري −2.94 مما يجعله ثالث الأجرام تألقاً في سماء الليل بعد القمر والزهرة

المشتري خامس الكواكب بعداً عن الشمس وأكبر كواكب المجموعة الشمسية.[14] وهو عملاق غازي وكتلته أقل بقليل من 1/1000 من كتلة الشمس، لكنها تساوي ثلثي كتلة مجموع باقي كواكب المجموعة. ويضم تصنيف العمالقة الغازية كل من زحل وأورانوس ونبتون إضافةً إلى المشتري. ويطلق على هذه الكواكب الأربعة اسم الكواكب الجوفيانية.

يتكون المشتري بشكل رئيسي من الهيدروجين، ويشكل الهيليوم أقل بقليل من ربع كتلته. وفي الغالب يحتوي على نواة صخرية تتكون من عناصر أثقل. شكل المشتري كروي مفلطح بسبب سرعة دورانه الكبيرة. يظهر الغلاف الجوي الخارجي تمايز واضح لعدة نطاقات في خطوط طول مختلفة. مما يؤدي إلى الاضطراب والعواصف على طول هذه الحدود. كما تتشكل نتيجة هذه إحدى المعالم المميزة للمشتري وهي البقعة الحمراء العظيمة وهي عاصفة عملاقة معروفة على الأقل منذ القرن السابع عشر عندما تم رصدها لأول مرة بالمرقاب. يحيط بهذا الكوكب نظام حلقات خافت، وحقل مغناطيسي قوي. كما يوجد 63 قمر يدورون حوله، منهم أربع أقمار كبيرة تدعى بأقمار غاليليو وكانوا قد اكتشفو من قبل غاليلو غاليلي سنة 1610. يملك أكبر هذه الأقمار غانيميد قطر أكبر من قطر كوكب عطارد.

أرسلت عدة بعثات فلكية لاستكشاف المشتري معظمها خلال بداية برنامجي بيونير وفوياجر وفيما بعد بواسطة مركبة غاليليو المدارية. وآخر مركبة حلقت فوق المشتري كانت نيوهورايزونز سنة 2007. وقد استخدم هذا المسبار جاذبية المشتري لتسريعه لمتابعة رحلته نحو بلوتو. تستهدف الرحلات المستقبلية للمشتري والكواكب الجوفيانية استكشاف احتمال وجود محيط سائل تحت الغطاء الجليدي للقمر أوروبا.

محتويات

[عدل] البنية

يتكون المشتري بشكل أساسي من مواد في الحالة الغازية والسائلة وهو أكبر الكواكب العملاقة في المجموعة الشمسية. يبلغ قطره عند خط الاستواء 142,984 كم وكثافته 1.326 غ/سم3 مما يجعله ثاني الكواكب الغازية من حيث الكثافة بعد كوكب نبتون، مع العلم أن كثافته أقل من كثافة أي من الكواكب الصخرية الأربعة في المجموعة الشمسية.

[عدل] التركيب

يتكون الغلاف الجوي العلوي للمشتري من حوالي 88–92% من الهيدروجين و 8–12% من الهيليوم. وهذه النسبة هي نسبة حجمية أو نسبة عدد مولات الجزيء. لكن بما أن كتلة ذرة الهيليوم حوالي 3 أضعاف كتلة ذرة الهيدروجين، فإن النسبة تتغير عند التعبير عنها كنسبة مئوية كتلية، ليصبح تركيب المشتري حوالي 75% هيدروجين و24% هيليوم والباقي عبارة عن مواد مختلفة. تحتوي الطبقة الداخلية من الغلاف الجوي على مواد بكثافة أعلى وتكون النسبة الكتلية لهذه المواد حوالي 71% هيدروجين و 24%هيليوم و5% مواد مختلفة. يحتوي الغلاف الجوي على كميات ضئيلة من الميثان وبخار الماء والأمونيا ومركبات السيليكون. وهناك أيضاً أثار للكربون والإيثان وكبريتيد الهيدروجين والنيون والأكسجين والكبريت والفوسفين. أما الطبقة الأبعد من الغلاف الجوي فتحتوي على بلورات متجمدة من الأمونيا..[15][16] كما تبين من خلال الفحص بالأشعة تحت الحمراء والأشعة فوق البنفسجية من وجود أثار للبنزين ومركبات هيدروكربونية أخرى.[17]

تتطابق نسبة الهيدروجين والهيليوم في الغلاف الجوي بشكل كبير مع تركيب السديم الشمسي الابتدائي وفق النموذج النظري. وتبلغ كمية النيون في الغلاف الجوي العلوي حوالي 20 جزء في المليون وتساوي هذه الكمية عشر ماهو موجود في الشمس.[18] كما أن الهليوم مستنفذ على الرغم من أن نسبته تساوي 80% مما تحويه الشمس، ويعتقد أن سبب استنفاذ الهيليوم هو هطوله إلى داخل الكوكب.[19] أما تركيز الغازات الخاملة في المشتري فهي ما بين ضعفين إلى ثلاثة أضعاف مماهي عليه في الشمس.

يعتقد بالاستناد إلى التحليل الطيفي أن تركيب زحل يشابه إلى حد كبير تركيب المشتري، في حين أن تركيب الكوكبين الغازيين الآخريين مختلفين من حيث نسبة الهيدروجين-هيليوم.[20] ومن الجدير بملاحظته أن وفرة العناصر الأثقل في الكواكب الأبعد من المشتري غير واضحة تماماً بسبب النقص في المسابير الداخلة للغلاف الجوي لهذه الكواكب.

[عدل] الكتلة

مقارنة تقريبة بين الأرض والمشتري تظهر فيها البقعة الحمراء.

تبلغ كتلة المشتري ضغفي ونصف كتلة باقي كواكب المجموعة الشمسية. ويقع مركز الثقل الثنائي مع الشمس على بعد 1.068 نصف قطر شمسي من مركز الشمس. وعلى الرغم من أن قطر المشتري أكبر بـ 11 مرة من قطر الأرض، إلا أن كثافته أقل. ويبلغ حجم المشتري حوالي 1,321 ضعف من حجم الأرض ومع ذلك فإن كتلته أكبر بـ 318 مرة فقط من كتلة الأرض.[2][21] يبلغ نصف قطر المشتري حوالي عشر نصف قطر الشمس[22] وكتلته حوالي 0.001 من كتلة الشمس وبذلك تكون الكثافة لكلا الجرمين متشابهة.[23] غالباً ما تستخدم كتلة المشتري كمقياس لوصف كتل باقي الأجرام، وخصوصاً الكواكب الوقعة خارج المجموعة الشمسية والأقزام البنية. فعلى سبيل المثال تبلغ كتلة الكوكب HD 209458 b حوالي 0.69 كتلة مشتري بينما تبلغ كتلة كوروت-7ب 0.015 كتلة مشتري.[24]

يظهر النموذج النظري للمشتري، أنه في حالة كان المشتري يملك كتلة أكبر مماهي عليه فإن ذلك سيؤدي إلى انكماشه.[25] فمن أجل تغير قليل في كتلة المشتري فإن تغير نصف القطر لن يكون ملحوظ حتى يصل إلى قيمة أكبر من 500 ضعف كتلة الأرض أو 1.6 من كتلة المشتري،[25] فإن داخل الكوكب سينضغط بشكل أكبر مماهو عليه بسبب زيادة تأثير قوة الجاذبية مما سيؤدي إلى تناقص حجم الكوكب على الرغم من زيادة في كثافة المادة. لذلك يعتقد أن القطر الكبير للمشتري ناتج عن تركيبه والتاريخ التطوري للكوكب. ومن شأن عملية الانكماش أن تستمر الزيادة في الكتل حتى يتم الوصول إلى نقطة الاشتعال النجمي كما هو الحال في ارتفاع كتلة الأقزام البنية والتي تبلغ كتلتها حوالي 50 ضعف من كتلة المشتري.[26] ومن غير المعروف فيما إذا كانت العمليات التي تؤدي إلى نشوء كواكب مثل المشتري مشابه لتلك العمليات التي تؤدي إلى نشوء أنظمة نجمية متعددة.

وعلى الرغم من أن المشتري يحتاج إلى 75 ضعف من كمية الهيدروجين المتواجدة فيها ليبدأ في عملية حرقه واشتعاله، إلا أنه نصف قطر أصغر قزم أحمر أكبر بـ 30% فقط من كتلة المشتري.[27][28] ويبقى المشتري مع ذلك يصدر حرارة إلى الخارج أكثر مما يستقبل من الشمس، وكمية الحرارة التي يصدرها داخل الكوكب تعادل كمية الحرارة الكلية التي يستقبلها من الشمس. وقد يرجع ذلك إلى آلية كلفن هلمهولتز.[29].[30] كان المشتري عند تشكله أكثر حرارة وقطره يعادل ضعفي قطره الحالي.[31]

[عدل] البنية الداخلية

مقطع ربعي لكوكب المشتري يوضح البنية الداخلية له بنواة صخرية محاطة بطبقة من الهيدروجين المعدني.

يعتقد أن المشتري يحتوي على نواة كثيفة تحوي على مزيج من العناصر. تحاط هذه النواة بطبقة من الهيدروجين المعدني مع بعض الهيليوم، وتتكون الطبقة الخارجية في الغالب من جزيئات الهيدروجين.[30] لكن ماتزال خلف هذه الخطوط العريضة معلومات غير مؤكدة. فتوصف النواة غالباً على أنها نواة صخرية لكن لا تتوافر معلومات حول تركيبها وكذلك خواص المواد ودرجات الحرارة والضغوط في ذلك العمق. وقد أُقترح وجود للنواة في سنة 1997 بسبب قياسات الجاذبية،[30] وأشرت هذه القياسات على وجود كتلة تتراوح ما بين 12 إلى 45 مرة من كتلة الأرض، أو حوالي 3% إلى 15% من كتلة المشتري.[29][32] ويعتقد أن النواة كانت متواجدة على الأقل في فترة من تاريخ المشتري، وقد أقترح نموذج التشكل أن البنية الداخلية تتألف من الصخور أو الجليد، وكانت كبيرة بمافيه الكفاية من أجل جذب الهيدروجين والهيليوم من السديم النجمي الأولي. ومن ثم تقلصت النواة بسبب تيارات الحمل للهيدروجين المعدني السائل والممتزج مع النواة المنصهرة، لترفع مكونات النواة إلى طبقات أعلى من داخل الكوكب. على أي حال فإن قياسات الجاذبية المأخوذة حتى الآن ليست دقيقة بما فيه الكفاية، لذلك من الممكن أن تكون نواة المشتري متلاشية الآن.[30][33]

يرتبط عدم اليقين من النموذج بسبب هامش الخطأ في قياسات البارامترات، ومن هذه البارامترات معاملات الدوران (J6) والتي تستخدم لقياس عزم الجاذبية الكوكبي، ونصف القطر الاستوائي للمشتري، ودرجة الحرارة عند الضغط 1 بار. من المخطط إطلاق مهمة جونو سنة 2011، ومن المتوقع لهذه المهمة أن تقترب من قيم هذه البارامترات. وبذلك سيتم إحراز تقدم حول مسألة نواة المشتري.[34]

تحاط النواة بطبقة من الهيدروجين المعدني والتي تمتد إلى حوالي مسافة 78% من نصف قطر الكوكب.[29] وتتساقط قطرات من المطر المؤلف من الهيليوم والنيون في هذه الطبقة. وتوجد وفرة من هذين العنصرين في الغلاف الجوي العلوي.[19][35]

وتتوضع طبقة من غاز الهيدروجين فوق الهيدروجين المعدني، وتكون درجة الحرارة عند هذا العمق أعلى من الدرجة الحرجة وتساوي للهيدروجين 33 كلفن فقط.[36] وفي هذه الحالة لايمكن التمييز بين الحالة السائلة والغازية ويسمى السائل في هذه المرحلة بالسائل فوق الحرج. على أي حال من الأسهل معاملة الهيدروجين كغاز يمتد من الطبقات العليا للغلاف الجوي إلى طبقات الغيوم على ارتفاع 1000 كم، وكسائل في الطبقات الادنى على الرغم من عدم وجود حدود فيزيائية تفصل بينهما.[37][38]

تزداد درجة الحرارة والضغط باضطراد عند التوجه باتجاه النواة. ويعتقد أن الحرارة تصل لـ 1000 كلفن والضغط 200 غيغا باسكال في مناطق تحول طوري حيث تكون حرارة الهيدروجين خلف النقطة الحرجة ويصبح هيدروجين معدني. في حين تصل الحرارة في النواة إلى 36000 كلفن والضغط بين 3000 إلى 4500 كلفن.[29]

[عدل] الغلاف الجوي

Crystal Clear app kdict.png مقال تفصيلي :جو المشتري

يملك المشتري أكبر غلاف جوي بين كواكب المجموعة الشمسية، فغلافه الجوي يمتد حتى ارتفاع 5000 كم.[39][40] وبما أن المشتري كوكب غازي فجرت العادة على اعتبار قاعدة الغلاف الجوي في النقطة التي يكون فيها الضغط الجوي يعادل 10 بار أو عشر أضعاف الضغط الجوي الأرضي.[39]

[عدل] طبقات الغيوم

PIA02863 - Jupiter surface motion animation thumbnail 300px 10fps.ogv
يبين الشكل الحركة التناوبية بين حزم طبقات الغيوم.

دائماً يكون المشتري مغطى بالغيوم المركبة من بللورات الأمونيا إضافة إلى احتمال وجود بيكبريتيد الأمونيوم. وتتموضع هذه السحب في التربوبوز، وتكون مرتبة على شكل نطاقات مختلفة وفق خطوط العرض، وتعرف باسم المناطق المدارية. وهذه المناطق مقسمة إلى مناطق ذات ألوان براقة، وأخرى أحزمة معتمة، ويسبب تداخل هذه الدورات المتضاربة إلى نشوء عواصف واضطرابات وتبلغ سرعة الرياح 100 متر/ثانية.[41] كما لوحظ اختلاف المناطق في العرض واللون والكثافة من سنة إلى أخرى، لكنها بقيت ملحوظة بشكل جيد بالنسبة للفلكيين ليميزوها فيما بينها.[21] يبلغ عمق طبقات الغيوم حوالي 50 كم، وتحتوي على الأقل على طبقتين من الغيوم. الطبقة السفلى طبقة سميكة والطبقة العلوية رقيقة وأكثر شفافية. ومن الممكن وجود طبقة رقيقة من غيوم الماء متوضعة تحت طبقة الأمونيا، كدليل ناتج عن ومضات البرق المكتشف في الغلاف الجوي للمشتري.وعادةً ما ينتج البرق بسبب قطبية الماء، مما يجعلها قادرةً على إجراء عمليات التفريغ الكهربائي اللازم لتوليد البرق.[29] وتصل قيمة التفريغ الكهربائي لأكثر من ألف ضعف مما هي عليه على الأرض.[42] وتشكل سحب الماء عواصف رعدية مدفوعة بالحرارة المرتفعة من داخله.[43]

تنتج الألوان البنية والبرتقالية لغيوم المشتري من تقلبات العناصر المكونة لها والتي تتغير ألوانها عندما تتعرض للأشعة الفوق بنفسجية القادمة من الشمس. ولكن لايزال التركيب الأكيد لمكونات هذه الغيوم غير مؤكد، ولكن يعتقد أن هذه المركبات عبارة عن مركبات الفوسفور أو الكبريت أو الهيدروكربونات.[29][44] وتعرف المركبات الملونه بحوامل الألوان والتي تمتزج بالطبقة السفلية الكثيفة والأكثر سخونة، وتحدث هذه المناطق عندما يزداد الحمل الخليوي مؤدياً إلى تشكل بللورات الأمونيا والتي بدورها تخفي الطبقات السفلية عن النظر.[45]

يملك المشتري انحراف محوري قليل، مما يعني أن منطقة القطبين تتلقى دائماً أشعة شمسية أقل مما تتلقاه المنطقة الاستوائية. فيكون انتقالالحمل الحراري ضمن المناطق الداخلية أكثر فعالية مما هو عليه في منطقة القطبين، ويعتقد أن هذا يؤدي إلى توازن في حرارة طبقات الغيوم.[21]

[عدل] البقعة الحمراء العظيمة ودومات أخرى

صورة تم الحصول لها للمشتري والبقعة الحمراء العظيمة في 25 فبراير 1979 بواسطة المسبار فوياجر 1 عندما كان المسبار على ارتفاع 9.2 مليون كم من المشتري. ويوجد نمط سحابة مائل إلى اليسار من البقعة الحمراء العظيمة وهي منطقة ذات خصائص حركية معقدة. كما توجد بقعة بيضاء تحت البقعة الحمراء مباشرةً وتساوي تقريباً نصف قطر الأرض.

تعتبر البقعة الحمراء العظيمة من أكثر ملامح المشتري شهرة، وهي عبارة عن إعصار مضاد مستمر يقع على 22 درجة جنوب خط الاستواء. ومن المعلوم أنه قد تم تمييز هذه البقعة منذ سنة 1831[46] وربما قبل ذلك في سنة 1665.[47][48] وتشير بعض النماذج الرياضية بأن هذه العاصفة هي عاصفة مستمرة وسمة دائمة لهذا الكوكب.[49] وبسبب كبر هذ العاصفة فيمكن مراقبتها من الأرض باستخدام مقراب بفوهة 12 سم أو أكبر.[50]

شكل هذه البقعة على شكل قطع ناقص وتدور بعكس عقارب الساعة وتتم دورة كاملة كل ست أيام.[51] وتبلغ أبعاد البقعة الحمراء العظيمة 24–40,000 كمX 12–14,000 كم، وبالتالي هي كبيرة بمافيه الكفاية لتستطيع أن تسع كوكبين أو ثلاث كواكب بقطر الأرض.[52] ويبلغ أقصى ارتفاع للعاصفة 8كم فوق السحب المحيطة بها.[53]

مثل هذه العواصف أمر شائع في الكواكب الغازية بسبب اضطرابات الغلاف الجوي، فيملك المشتري أيضاً بقع بيضاء وبقع أخرى بنية بيضوية الشكل أيضاً. وتميل البيضاء إلى أن تتواجد في السحب الباردة نسبياً في طبقات الغلاف الجوي العليا. بينما البنية فهي أكثر حرارة وتتواجد ضمن طبقات الغيوم العادية. ويمكن أن تمتد هذه العواصف لعدة ساعات وحتى عدة قرون.

كانت هناك أدلة قوية على أن البقعة الحمراء هي عبارة عن عاصفة وليست من الملامح التضريسية للكوكب وحتى قبل أن يثبت فوياجر أنها عاصفة. فهذه البقعة تدور بشكل تفاضلي بشكل يناسب دوران الغلاف الجوي الكلي، وأحياناً تكون أسرع وأخرى أبطأ. وقد تم رصد دورانها حول الكوكب خلال سجلات تأريخها العديد من المرات بالنسبة لأي ثابت تحتها.

رصد في سنة 2000 تغيرات في ملامح الغلاف الجوي في النصف الجنوبي من الكوكب، وكانت تشبه في المظهر البقعة الحمراء العظيمة لكنها أصغر منها. وقد نشأت هذه العاصفة من عدة عواصف بيضاء صغيرة، وقد لوحظت هذه العواصف سنة 1938. وقد دمجت هذه العواصف البيضاء بعاصفة واحدة وازدادت كثافتها وتغير لونها من الأبيض إلى الأحمر ويطلق عليها اسم البقعة الحمراء الصغيرة..[54][55][56]

[عدل] حلقات المشتري

Crystal Clear app kdict.png مقال تفصيلي :حلقات المشتري
حلقات المشتري

يملك المشتري نظام حلقات خافت يتكون من ثلاث قطاعات رئيسية: الحلقة الداخلية على شكل طارة تعرف باسم هالو، وهي حلقة مضيئة نسبياً، بينما تعرف الحلقة الخارجية باسم حلقة الخيط الرقيق أو حلقة غوسمر.[57] ويعتقد أن هذه الحلقة مكونة بشكل رئيسي من الغبار بالإضافة إلى الجليد مثل باقي حلقات المشتري.[29] بينما تعرف الحلقة المتوسطة باسم الحلقة الرئيسية وتتكون غالباً من مقذوفات قادمة من القمرين أدراستيا وميتس. تسحب المواد الراجعة إلى القمر إلى المشتري بسبب تأثير جاذبيته الكبير. وهكذا ينحرف مدار المواد باتجاه المشتري في حين تضاف مواد جديدة بسبب تأثيرات إضافية.[58] وبشكل مشابه، ينتج القمرين ثيبي وأمالثيا الغبار إلى حلقة الخيط الرقيق.[58] كما توجد دلائل على وجود حلقة صخرية على طول مدار أمالثيا والتي قد تكون ناتجة عن حطام صخري اصطدامي مع القمر أمالثيا.[59]

[عدل] الغلاف المغناطيسي

ظاهرة الشفق القطبي على المشتري وتظهر ثلاث نقاط ساطعة بسبب التدفقات المغناطيسية المتولدة بفعل أقمار المشتري الثلاث أيو وغانيميد وأوروبا بالإضافة إلى منطقة ساطعة جداً دائرية الشكل تدعى الإهليلج الرئيسي.

يحد المشتري حقل مغناطيسي أكبر باربعة عشر مرة من الحقل المغناطيسي الأرضي. ويتراوح ما بين 4.2 جاوس عند خط استواء المشتري إلى ما بين 10–14 جاوس عند القطبين. مما يجعله أكبر حقل مغناطيسي في المجموعة الشمسية باستثناء البقع الشمسية.[45] ويعتقد أن هذا الحقل نشأ بفعل التيارات الدوامية للمواد الموصلة ضمن نواة الهيدروجين المعدني. يتأين غاز ثنائي أكسيد الكبريت الصادر عن براكين القمر إيو والمشكل حلقة غازية حول هذا القمر. وينتج عن هذا التأين أيونات الأكسجين والكبريت. وهذا الإيونات بالإضافة إلى إيونات الهيدروجين المتواجدة في الغلاف الجوي للمشتري تشكل غلاف بلازما عند خط استواء المشتري. يتشارك غلاف البلازما بالدوران مع الكوكب مما يؤدي إلى تشوه في المغناطيسية ثنائية القطب للكوكب وتحولها إلى مغناطيسية قرصية. تولد الإلكترونات ضمن غلاف البلازما إشارات راديوية قوية يحث تولد نبضات تتراوح ما بين 0.6–30 ميجا هرتز.[60]

يتسبب التفاعل ما بين الغلاف المغناطيسي للمشتري والرياح الشمسية حصول انحناء صدمي، مما يؤدي إلى إحاطة الغلاف المغناطيسي للمشتري بفاصل مغناطيسي متوضع على الحافة الداخلية للغمد المغناطيسي. تتفاعل الرياح الشمسية مع الغلاف المغناطيسي في هذه المنطقة مسببة تمدد الغلاف المغناطيس في الجزء المواجه للرياح والذي يمتد للخارج ليصل إلى حدود مدار زحل. يتوضع أربع أكبر أقمار للمشتري ضمن الغلاف المغناطيسي، مما يجعلهم محميين من الرياح الشمسية.[29]

يعتبر الغلاف المغناطيسي للمشتري مسؤول عن الانبعاثات الراديوية الصادرة من المنطقة القطبية للكوكب. ويسبب تفاعل هذا الغلاف مع حلقات الانبعاثات البركانية الصادرة عن القمر إيو والتي يتحرك هذا القمر ضمنها، تسبب إلى أصدار أمواج ألففين التي تحمل أيونات المواد إلى المنطقة القطبية. ونتيجة لهذا تتشكل أمواج راديوية بسبب التسريع الدوراني لآلية المازر (تضخيم الموجات القصار بالإصدار الإشعاعي المنبه). وتصدر هذه الطاقة على طول سطوح مخروطية الشكل. وعندما تتقاطع الأرض مع هذه المخاريط، فإن الأمواج الراديوية الصادرة عن المشتري تزيد عن تلك الصادرة عن الشمس.[61]

[عدل] المدار والدوران

دوران كوكب المشتري حول الشمس على نصف قطر تقريبي 778 مليون كيلومتر ويتم دورته كل 11.86 سنة.

المشتري هو الكوكب الوحيد في المجموعة الشمسية والذي يملك مركز كتلة ثنائي يقع خارج حجم الشمس، وعلى بعد حوالي 7% من نصف قطر الشمس..[62] تبلغ متوسط المسافة ما بين الشمس والمشتري حوالي 778 مليون كم أي حوالي 5.2 ضعف من متوسط المسافة ما بين الأرض والشمس. ويكمل مداره حول الشمس في 11.86 سنة، وهذه الفترة تساوي 2/5 من الفترة المدارية لزحل، مما يشكل رنين مداري 5:2 بين أكبر كوكبين في المجموعة.[63] يميل المدار الإهليلجي للمشتري بمقدار 1.31° مقارنة مع الأرض. وبسبب الشذوذ المداري البالغ 0.048 فإن المسافة بين الشمس والمشتري تتفاوت كل 75 مليون سنة ما بين الحضيض والأوج، أو بين أقرب وأبعد نقطة على الكوكب على طول مسار المدار.

يعتبر الميل المحوري للمشتري صغير نسبياً ويبلغ 3.13° فقط. وكنتيجة لذلك لا يشهد هذا الكوكب تغيرات فصلية كبيرة، على العكس من الأرض وعطارد على سبيل المثال.[64]

دوران المشتري هو الدوران الأسرع بين كواكب المجموعة الشمسية، فيتم دورة كاملة حول محوره في أقل من 10 ساعات. وينتج عن هذا انتفاخ استوائي من السهل رؤويته من خلال المقرابات الأرضية. يتطلب تحقيق هذا الدوران تسارع جاذبية عند خط الاستواء 1.67 م/ثا−2، في حين أن تسارع الجاذبية يصل عند خط الاستواء 24.79 م/ثا−2. وبالتالي فإن صافي فائض التسارع عند خط الاستواء هو 23.12 م/ثا−2. شكل المشتري كروي مفلطح ممايعني أن قطر المشتري عند خط الاستواء أكبر من القطر الواصل بين القطبين. ويزيد القطر الاستوائي عن القطر بين القطبين بما يقارب 9275 كم.[38]

بما أن المشتري كوكب غير صلب، فإن الغلاف الجوي العلوي يخضع لدوران تفاضلي. فتكون فترة دوران الغلاف الجوي في المنطقة القطبية أطول بخمس دقائق منها في المنطقة الاستوائية. تستخدم ثلاث أنظمة من الأطر المرجعية وخصوصاً عند الحاجة للتمثيل البياني لحركة الغلاف الجوي. يطبق النظام الأول من خط العرض 10 شمالاً إلى الخط 10 جنوباً وينتج عنه الفترة اليومية الأقصر للكوكب وتبلغ وفق هذا النظام 9 ساعة و50 دقيقة و30 ثانية. أما النظام الثاني فيشمل جميع خطوط العرض من الشمال إلى الجنوب وينتج فترة 9 ساعة و55 دقيقة و40.6 ثانية. أما النظام الثالث فعرف بواسطة علم الفلك الكاشوفي ويتوافق مع دوران الغلاف المغناطيسي، وفترة دورانه هي الفترة الرسمية لدوران المشتري.[65]

[عدل] الأقمار

Crystal Clear app kdict.png مقال تفصيلي :أقمار المشتري
المشتري مع الأقمار الغالولية

يملك المشتري 64 قمر ومن بينهم 47 قمر قطرهم أقل من 10 كم واكتشفو منذ عام 1975. تعرف الأقمار الأربع الأكبر باسم أقمار غاليليو

[عدل] أقمار غاليليو

Crystal Clear app kdict.png مقال تفصيلي :أقمار غاليليو
الأقمار الغالولية من اليسار إلى اليمن مع اعتبار المسافة أيو وأوروبا وغانيميد وكاستيلو.

هي أربعة أقمار تابعة لكوكب المشتري اكتشفها جاليليو جاليلي في يناير عام 1610 للميلاد. هذه الاقمار هي أكبر أقمار كوكب المشتري وتم اشتقاق أسمائهم من عشاق زيوس : آيو وأوروبا وغانيميد وكاليستو. يشكل مدار آيو وأوروبا وغانيميد نموذج يدعى برنين لابلاس. فكل أربع دورات لآيو حول المشتري، يدور أوروبا دورتين تماماً وغانيميد يدور دورة واحدة تماماً. يسبب هذا الرنين تأثيرات جاذبية على هذه الأقمار الثالثة تؤدي إلى تشوه مداراتهم على شكل قطع ناقص، كما أن كل قمر يتلقى سحب إضافي من جاره عند نفس النقطة في كل دورة يقوم فيها. في حين تقوم قوة المد والجزر الناشئة من كتلة المشتري في محاولة تدوير مدارتهم.[66]

يتسبب الشذوذ المداري لمدارات هذه الأقمار في انحناء منتظم لشكل الأقمار الثلاثة. فتقوم جاذبية المشتري بتمديدهم للخارج عندما يقتربوا منه، وبالتقلص للداخل ويصبحوا أكثر كروية عندما يبتعدوا عنه. يتسبب هذا التمدد والتقلص بارتفاع الحرارة الداخلية للأقمار نتيجة الاحتكاكات التي تحدث بفعل هذه الآلية. ويعتقد أن قوة المد والجزر هذه تسبب النشاط البركاني الكبير للقمر الأقرب آيو والذي يخضع لقوة مد وجزر أكثر من الباقي. وبدرجات أقل يظهر ذلك النشاط في الأدلة الجيولوجية على سطح أوروبا خلال مراحله الأولى.

مقارنة بين أقمار غاليلو وقمر الأرض
الاسم القطر الكتلة نصف القطر المداري الفترة المدارية
كم  % كغ  % كم  % يوم  %
إيو 3643 105 8.9×1022 120 421,700 110 1.77 7
أوروبا 3122 90 4.8×1022 65 671,034 175 3.55 13
غانيميد 5262 150 14.8×1022 200 1,070,412 280 7.15 26
كاليستو 4821 140 10.8×1022 150 1,882,709 490 16.69 61

[عدل] تصنيف الأقمار

صورة لملامح أقمار المشتري.

صنفت أقمار المشتري قبل اكتشافات مهمة فوياجر إلى أرباع مجموعات، وصنفت كل مجموعة على أساس العوامل المدارية المشتركة. لكن تعقدت الصورة منذ نجاح مهمة فوياجر واكتشاف عدد كبير من الأقمار الصغير الخارجية. وتصنف أقمار المشتري حالياً ضمن ثماني مجموعات رئيسية، على الرغم من أن بعض هذه المجموعات أكثر تمايزاً من غيرها.

تقسم أقمار المشتري إلى قسمين رئيسيين، القسم الأول ويحوي على ثماني أقمار داخلية ذات مدارت دائرية تقريباً وتدور في مستوي خط استواء المشتري وهم أقمار نظامية ويعتقد أنها تشكلت من المشتري. أما باقي الأقمار فهي أقمار غير نظامية وهي غير معروفة العدد وصغيرة وذات مدارات إهليلجية، ويعتقد أنه كويكبات أو شظايا كويكبات تم أسرها بسبب جاذبية المشتري. تتشارك الأقمار الغير النظامية بعناصر المدارية متشابهة مما يرجح فرضية الأصل المشترك لكل مجموعة، ومن الممكن أن قمر كبير أو جسم أسر وتحطم مشكلاً هذه الأقمار.[67][68]

الأقمار النظامية
الأقمار الداخلية تتألف المجموعة الداخلية من أربع أقمار صغير كل منهم قطره أقل من 200 كم ونصف قطر مداري أقل من 200000 كم ولديهم انحراف مداري أقل من نصف درجة
أقمار غاليلو [69] تتألف من أربع أقمار اكتشفها غاليلو وسيمون موريس ويتراوح مدارهم بين 40000 و 2000000 كم وتتضمن بعض من أكبر أقمار المجموعة الشمسية
الأقمار غير النظامية
ثيميستو وهذه المجموعة عبارة عن قمر وحيد ويقع مداره في منتصف بين أقمار غاليلو ومجموعة هيمالايا
مجموعة هيمالايا وهي مجموعة عنقودية من الأقمار يتوضع مداراتها ما بين 11,000,000–12,000,000 كم من المشتري.
كاربو وهي حالة تحوي قمر وحيد أخرى ويقع على الحافة الداخلية لمجموعة أنانك ويدور حول المشتري بحركة تراجعية
مجموعة أنانك مجموعة من الأقمار بحركة تراجعية وحدود مداراتها غير معروفة تماماً وتتراوح ما بين 21,276,000 من المشتري إلى مع متوسط في الانحراف المداري يصل إلى 149 درجة.
مجموعة كارم وهي أيضاً مجموعة من الأقمار تدور بحركة تراجعية وبمتوسط مدار 23,404,000 كم مع متوسط انحراف مداري 165 درجة.
مجموعة باسيفي هي مجموعة مكونة من أقمار تتحرك بحركة تراجعية دائرة حول المشتري على مسافة تتراوح بين 22.8 و 24.1 جيجامتر وزاوية ميلان تتراوح تقريباً بين 144.5° و 158.3°

[عدل] الرصد

الحركة التراجعية لكواكب المجموعة الشمسية الخارجية نتيجة تموضعها النسبي مع الأرض.

عادة مايكون المشتري رابع جرم من حيث الإضاء في سماء الأرض (بعد الشمس والقمر والزهرة).[45] على الرغم من أن المريخ أحياناً يكون أكثر إضاءة من المشتري. ويعتمد ذلك على تموضع المشتري بالنسبة للأرض، والذي سيؤدي إلى تغير القدر الظاهري له من -2.9 في الوضع الأكثر إضاءة إلى -1.6 في الوضع المقابل أثناء الاقتران مع الشمس. وبالمثل يتنوع القطر الزاو له من 50.1 إلى 29.8 ثانية قوسية.[2] ويحدث الوضع المقابل عندما يمر المشتري خلال الحضيض، ويحدث هذا مرة خلال الفترة المدارية. واقترب المشتري من الحضيص في شهر مارس سنة 2011.[70]

تجتاز الأرض المشتري كل 398.9 يوم خلال دورانها مع الأرض وتدعى هذه المدة فترة اقترانية وعندما يحدث هذا يبدو أن المشتري أنه يخضع لحركة تراجعية بالنسبة للنجوم. لذلك يبدو لفترة أن المشتري يتحرك إلى الخلف في سماء الليل منجزاً حركة حلقية.

تتكون الفترة المدارية للمشتري من 12 عام تقريباً وهي تتوافق مع الأبراج الفلكية لدائرة البروج، ومن الممكن أن هذه الدورة هي أساس الأبراج الفلكية.[21]

لا تزيد زاوية الطور عند رؤويتها من الأرض عن 11.5 درجة لأن مدار المشتري يقع خارج مدار الأرض. كما ان المشتري يظهر مضيئأ بشكل كامل عند رؤويته بواسطة المقرابات. وقد تمت رؤويته بشكل هلال من خلال البعثات الفضائية.[71]

[عدل] الاستكشافات

[عدل] ما قبل المقراب

نموذج من المجسطي يبين حركة المشتري (☉) بالنسبة إلى الأرض (⊕)

يرجع رصد المشتري إلى القرن السابع أو الثامن قبل الميلاد لعلماء الفلك البابليين.[72] كما علق الباحث في تاريخ علم الفلك الصيني كسي زيزونغ بأن غان دي قد اكتشف أحد أقمار المشتري بالعين المجردة في سنة 365 قبل الميلاد. وإذا صح هذا فإنه سيكون قد اكتشف قمر للمشتري قبل غاليلو بألفي سنة.[73][74] ووفقاً لكتاب المجسطي فإن كلاوديوس بطليموس قام بتشيد نموذج فلكي يظهر أن الأرض هي مركز الكون وقام بالاعتماد على فلك التدوير بحساب حركة المشتري بالنسبة للأرض ويقدر الفترة المدارية للمشتري حول الأرض بـ 4332.38يوم أي 11.86 سنة.[75] قام أريابهاتا الرياضي والفلكي الهندي في سنة 499 باستخدام نموذج مركزية الأرض ليحسب مدار المشتري حول الأرض وقدره بـ 4332.2722 يوم وهو مايعادل 11.86 سنة[76]

[عدل] الرصد باستخدام المقرابات الأرضية

صورة بألوان غير حقيقة ملتقطة بواسطة فوياجر تبين تفاصيل الغلاف الجوي للمشتري والبقعة الحمراء إضافة إلى إعصار أبيض.

اكتشف غاليلو في سنة 1610 أكبر أربع أقمار من أقمار المشتري وهم أيو وأوروبا وغانيميدا وكاستيلو باستخدام مقراب. ويعتقد أنه أول اكتشاف لأقمار كواكب باستخدام المقربات باستثناء قمر الأرض. كما أن غاليلو كان أول من اكتشف بأن الحركة السماوية لم تكن متمركزة حول الأرض. وكانت هذه النقطة الرئيسية التي تدعم نظرية مركزية الشمس لكوبرنيكوس، وبذلك دعم غاليلو نظرية حركة الكواكب لكوبرنيكوس مما جعله تحت تهديد محاكم التفتيش.[77] كما رصد جيوفاني كاسيني باستخدام مقرابه خلال سنة 1660 شرائط وبقع ملونة على سطح المشتري، كما لاحظ تفلطح الكوكب عند القطبين. كما قدر فترة دوران الكوكب.[16] ولاحظ في سنة 1690 بأن الغلاف الجوي يتحرك بدوران تفاضلي.[29]

ويعتقد أن البقعة الحمراء العظيمة رصدت لأول مرة سنة 1664 بواسطة روبرت هوك وفي سنة 1665 من قبل كاسيني. كما نشر الصيدلاني هنريش شوب أول رسمة تظهر تفاصيل البقعة الحمراء العظيمة في سنة 1831.[78]

لكن رصد البقعة الحمراء العظيمة غاب خلال الفترة ما بين 1665 و 1708، قبل أن تصبح واضحة جداً في سنة 1878. كما سجل أنها تلاشت عن الرؤيا في سنة 1883 وبداية القرن العشرين.[79]

قام كل من جيوفاني بورلي وكاسيني بعمل جداول دقيقة لحركة أقمار المشتري، مما سمح بالتنبؤ بالأوقات التي تكون فيها الأقمار أمام أو خلف المشتري. كما تم رصد المشتري في سنة 1670 في الموقع الذي يكون فيه في الاتجاه المعاكس للأرض بالنسبة للشمس، وقد تأخر هذا الحدث 17 دقيقة عما كان متوقع. وقد أول أوول رومر هذا بأنه غير لحظي، وقد فسر هذا التناقض بين الرؤيا والحسابات بأنه الزمن اللازم لسرعة الضوء.[80]

اكتشف إدوارد إيمرسون برنارد في سنة 1892 القمر الخامس من أقمار المشتري، باستخدام عاكس بقطر 36 إنش في مرصد ليك في كاليفورنيا. وسرعان ماجعله اكتشاف هذا الجرم الصغير نسبياً شهيراً، وقد سمي هذا القمر لاحقاً باسم أمالثيا.[81] وكان هذا القمر آخر قمر لكوكب يتم اكتشافه ياستخدام الأجهزة البصري.[82] تم اكتشاف ثماني أقمار إضافية بواسط المسبار فوياجر 1 في سنة 1979

حدد روبرت ويلدت حزم تمتص الأمونيا والميثان من خلال تحليل طيف المشتري في سنة 1932..[83]

صورة بالأشعة تحت الحمراء للمشتري ملتقطة بواسطة المرصد الأوروبي الجنوبي

كما تم رصد ثلاث أعاصير مضادة طويلة العمر في سنة 1938. وقد استمرت هذه الأعاصير لفترة طويلة منفصلين عن بعضهم البعض، على الرغم من اقترابهم من بعضهم البعض أحياناً، لكنهم لم يندمجوا حتي سنة 1998 عندما اندمج اثنان منهم، وبعد ذلك جذب الإعصار الثالث سنة 2000.[84]

[عدل] الرصد باستخدام المقراب الكاشوفي

حدد بيرنارد بوركي وكينيث فرانكين في سنة 1955 نبضات راديوية بتردد 22.2 MHz قادمة من المشتري..[29] وقد تطابقت فترة النبضات مع دوران الكوكب، مما جعلهم قادين على إعادة تحديد سرعة الدوران. وقد وجد أن النبضات القادمة من المشتري تنقسم إلى نوعين: النبضات الطويلة والتي تصل مدتها لعدة ثواني، والنبضات القصيرة والتي تستمر لأجزاء بالمئة من الثاني.[85]

اكتشف العلماء لاحقاً وجود ثلاث أنواع من الموجات الراديوية منبعثة من المشتري:

  • نبضات ديسمترية (طول الموجة بعشرات الأمتار) تتغير مع دوران المشتري، وتتأثر بتداخل آيو مع غلاف المشتري المغناطيسي..[86]
  • أمواج بنبضات ديسمترية (ويكون طول الموجة بالسنتيمترات وقد اكتشفت عن طريق فرانك دراكي وهين هفاتوم في سنة 1959.[29] وأساس هذه الإشارة ناتج عن الحزام نتوئي الشكل المتواجد حول خط استواء المشتري. وتنتج هذه الإشارة عن إشعاع سيكلوتروني من الإلكترونات والتي تتسارع في حقل المشتري المغناطيسي.[87]
  • إشعاعات حرارية تنتج عن حرارة الغلاف الجوي للمشتري..[29]

[عدل] الاستكشاف بواسطة المركبات الفضائية

زار المشتري منذ سنة 1973 العديد من المركبات الفضائية، وكان من أهم هذه الرحلات المسبار بيونير 10، وهو أول مسبار أقترب إلى مسافة كافية من أكبر كواكب المجموعة الشمسية وأرسل إلى الأرض اكتشافات حول خصائص والظواهر المتعلقة بالكوكب.[88][89]

[عدل] رحلات التحليق

مهمات التحليق
المسبار أكثر
اقتراب
المسافة
بيونير 10 3 ديسمبر، 1973 130,000 كم
بيونير 11 4 ديسمبر, 1974 34,000 كم
فوياجر 1 5 مارس, 1979 349,000 كم
فوياجر 2 9 يوليو, 1979 570,000 كم
يوليوس 8فبراير, 1992[90] 408,894 كم
4 فبراير, 2004[90] 120,000,000 km
كاسيني 30 ديسمبر, 2000 10,000,000 كم
نيوهورايزونز 28 فبراير, 2007 2,304,535 كم

مع بداية سنة 1973 قامت العديد من المركبات الفضائية بمناورات كوكبية جعلتهم قادرين على استكشاف مجالات من المشتري. وقد نجحت مهمتي بيونير في الحصول على صور قريبة للغلاف الجوي للمشتري والعديد من أقماره. وقد اكتشفت حقل إشعاعي أكبر مما هو متوقع بالقرب من الكوكب، وقد تمكنت كلا المركبتين من النجاة في هذه البيئة. وقد استخدمت مدارات المركبتين لإعادة تقدير كتلة نظام المشتري. وأعطت قياسات الإشارة الراديوية نتائج جيدة وأفضل النتائج كانت حول قطر الكوكب ومقدار التفلطح في القطبين.[21][91]

نجحت مهمة فوياجر بعد ست سنوات إلى تطوير الفهم حول أقمار غاليلو واكتشف حلقات المشتري. كما أكدت أن البقعة الحمراء العظيمة عبارة عن إعصار. ولوحظ بمقارنة الصور الملتقطة بواسطة فوياجر وبيونير حدوث تغيرات في البقعة، فقد تغير لونها من البرتقالي إلى بني غامق. كما اكتشف حيز من الذرات المتأينة على طول مسار مدار آيو، كما لوحظ ومضات من البرق في الجانب المظلم من الكوكب.[15][21]

كانت المهمة التالية لاستكشاف المشتري المسبار العامل على الطاقة الشمسية يوليوس. وتم إجراء مناورة تحليق لتحقيق مدار قطبي حول الشمس. وخلال مرور المركبة تم دراسة الغلاف المغناطيسي للمشتري، لكن لم يتم التقاط صور لأن المسبار لم يكن مجهز بكميرات. كما تم إجراء تحليق آخر بعد 6 سنوات لكنها كانت على مسافة كبيرة جداً.[90]

صورة للمشتري ملتقطة في 24 يناير 1979 عندما كان على مسافة 40 مليون كم.

حلق المسبار كاسيني في سنة 2000 فوق زحل والمشتري وزود العلماء بصور عالية الدقة لم تحقق من قبل لهذا الكوكب. وفي 19 ديسمبر 200 التقط المسبار صور للقمر هيمالايا، لكن دقة الصورة كانت منخفضة بحيث لم تسمح برؤوية تفاصيل سطحه.[92]

حلق المسبار نيوهورايزونز وهو في طريقه إلى بلوتو فوق المشتري بمساعدة الجاذبية وحقق أكثر اقتراب من المشتري في 28 فبراير 2007.[93] وقد حددت كاميرات المسبار بلازما خارجة من براكين آيو ودرس كل الأقمار الغاليلية الأربعة بتفصيل، كما رصد عن مسافة بعيد القمرين هيمالايا وإلارا.[94] كما بدأ بتصوير نظام المشتري في 4 سبتمبر من سنة 2006.[95][96]

[عدل] مهمة غاليلو

المشتري كما ظهر بواسطة المسبار كاسيني

لم يتم توجيه مركبة إلى مخصصة إلى مدار المشتري حتى الآن سوى غاليليو. والذي دخل في مدار حول المشتري في 7 ديسمبر من سنة 1995. وقد دار في مدار حول المشتري أكثر من سبع سنوات. وأجرى عدة عمليات تحليق فوق أقمار غاليلو وأمالثيا. كم شهد المسبار أقتراب النيزك شومخر ليفي 9 من المشتري في سنة 1994، معطياً وجهة نظر فريدة من نوعها لهذا الحدث. لقد كانت المعلومات المكتسبة من نظام المشتري كبيرة، لكن تصميم المسبار غاليليو كان محدود وفشل الهوائي في إرسال تلك المعلومات.[97]

حرر مسبار صغير من المركبة الفضائية في يوليو من سنة 1995 لكشف الغلاف الجوي. ودخل الغلاف الجوي للمشتري في 7 ديسمبر. وهبط بمساعدة المظلة مسافى 150 كم في الغلاف الجوي، وجمع بيانات لمدة 57.6 دقيقة، ومن ثم حطم نتيجة الضغط (حوالي 22 ضعف الضغط الجوي وعند حرارة تصل إلى 153 درجة مئوية).[98] ويحتمل أنه صهر بعد ذلك، وربما تبخر. وقد خاض المسبار غاليليو نفس التجربة عندما وجه عمداً إلى الكوكب فب 21 سبتمبر من سنة 2003 بسرعة أكبر من 50 كم/سا لتجنب إمكانية التحطم واحتمال التلوث من القمر أوروبا الذي كان يؤمل أن يوجد عليه احتمال للحياة.[97]

[عدل] المهمات المستقبلية

تخطط ناسا لإجراء مهمة لدراسة تفاصيل المشتري من خلال مدار قطبي وتدعى بمهمة جونو وقد إطلق هذا المسبار في سنة 2011.[99]

كما أقترحت كل من ناسا ووكالة الفضاء الأوروبية على مهمة مشتركة تدعى مهمة أوروبا نظام المشتري -لابلاس لاستكشاف المشتري. وقد أعلن في سنة 2009 أن هذه المهمة لها الأولوية على المهمة المشتركة الأخرى مهمة تيتان نظام المشتري.[100][101] وما زالت تمويل مساهمة وكالة الفضاء الأوروبية لهذا المشروع تواجه منافسة من مشاريع الوكالة الأخرى.[102] ويعتقد أن وقت إطلاق المهمة سيكون في حدود سنة 2020. تتكون هذه المهمة من مسبار لاستكشاف أوروبا من تصميم ناسا ومسبار آخر لاستكشاف غانيميد من تصميم وكالة الفضاء الأوروبية.[103] وبسبب احتمال وجود محيط من السوائل على سطح الأقمار أوروبا وغانيميد وكاليستو، فهناك اهتمام كبير في دراسة الأقمار الجليدية بكل تفصيل. وقد أخرت مشاكل التمويل تقدم هذه العملية إلى أن ألغيت في سنة 2005 مهمة استكشاف الأقمار الجليدية.[104] كما درست مهمة مدار أوروبا المشتري من قبل وكالة الفضاء الأوروبية، لكن ألغيت هذه المهمة ليحل محلها مهمة أوروبا لنظام المشتري -لابلاس.[105]

[عدل] العلاقة مع النظام الشمسي

يبين المخطط كويكبات طروادة إضافة إلى حزام الكويكبات الرئيسي.

تأثر جاذبية المشتري مع الشمس على شكل المجموعة الشمسية. فأغلب مدارات كواكب المجموعة الشمسية تتموضع بشكل أقرب لمدار المشتري منها لمستوي استواء الشمس باستثناء عطارد، فهو الكوكب الوحيد الأقرب لخط استواء الشمس. كما أن فجوة كيركوود ضمن حزام الكويكبات ناتجة بسبب تأثير المشتري. كما يحتمل أن المشتري مسؤول عن القصف الشديد المتأخر الذي حصل في تاريخ النظام الشمسي الداخلي.[106]

تتحكم جاذبية المشتري مع أقماره بعدد هائل من الكويكبات التي تغزو مناطق نقاط لاغرانج التي تسبق وتلي المشتري في مداره حول الشمس. وتعرف هذه الكويكبات بكويكبات طروادة، وتقسم هذه الكويكبات إلى كويكبات إغريقية وأخرى طروادية حسب الإلياذة. وأول هذه الكويكبات المكتشفة كان أخيل 588 وقد اكتشفه ماكس ولف في سنة 1906. ومنذ ذلك الوقت اكتشف أكثر من ألفي كويكب.[107] وأكبر هذه الكويكبات هو هيكتور 624.

تنتمي معظم المذنبات الدورية قصيرة المدار إلى عائلة المشتري، وتعرف كمذنبات بنصف المحور الرئيسي أقل من مماهو عليه للمشتري. ويعتقد أن منشأ هذه المذنبات هو حزام كايبر خارج مدار نبتون. وتضرب مدار هذه المذنبات خلال اقترابه من المشتري ليصل لأقل فترة ومن ثم يتدور مداره بسبب التأثير المنتظم لجاذبية كل من المشتري والشمس.[108]

[عدل] الاصطدامات

صورة ملتقطة بواسطة مرصد هابل تظهر بقعة بطول يصل لحوالي 5000 ميل نتيجة اصطدام المشتري عام 2009.[109]

عُرف المشتري بشفاط المجموعة الشمسية،[110] بسبب تأثير الجاذبية الكبير، وتموضع المشتري بالقرب من نظام الداخلي للمجموعة الشمسية. فهو يتلقى بشكل متكرر أكثر المذنبات في المجموعة الشمسية.[111] وكان يعتقد أن المشتري يخدم كدرع واقي يحمي النظام الشمسي الداخلي من قصف المذنبات. على أي حال، تبين دراسات المحاكاة الحاسوبية بالكمبيوترات الحديثة أن المشتري لا يقوم بإنقاص عدد المذنبات التي تمر في النظام الشمسي الداخلي، فجاذبية المشتري تقوم بحرف مدارات عدد من المذنبات للداخل بشكل مساوي تقريباً لعدد المذنبات التي تقذفه.[112] ما زال هذا الموضوع محل جدل بين الفلكيين. فيعتقد البعض أنها تسحب مذنبات نحو الأرض، في حين يعتقد الآخرين أنها تحمي الأرض من مذنبات سحابة أورط.[113]

عمل مسح على الرسومات الفلكية التاريخية في سنة 1997، وأُقترح أنه من الممكن أن الفلكي "كاسيني" قد سجل أثر لاصطدام في سنة 1690. كما أن المسح حدد ثماني حالات رصدية مرشحة لاصطدامات صغيرة.[114]

[عدل] اصطدام يوليو 1994

Crystal Clear app kdict.png مقال تفصيلي :شوميكار-ليفي 9
صورة تلسكوب هابل الفضائي.حطام الكويكب شوميكار-ليفي (في 21 قطعة)، أثناء سقوطه على المشتري، 17 مايو 1994
بقع غامقة نشأت في مواقع اصطدامات أجزاء كويكب "شوميكار-ليفي 9" على الجزء الجنوبي للمشتري. يوليو 1994 ،(NASA).

اكتشف الكويكب شوميكار-ليفي 9 عام 1993 وكان قريبا من المشتري. وعد اجراء القياسات الفلكية عليه في عام 1994، تبين من الدراسة الحاسوبية له أنه سوف يسقط علي المريخ خلال شهرين نظرا لشدة انجذابه إلى المشتري. واستعد الفلكيون لتسجيل هذا الحدث الفريد في المجموعة الشمسية. ورأوا كيف تجزأ الكويكب الذي كانت مقاييسه تبلغ نحو 2 كيلومتر إلى 21 قطعة وأصبحت مرتبة في هيئة سلسلة متوالية ومتجه نحو المشتري. وكبقا للحسابات اصطدمت ال 21 شظية متتالية بالمشتري في الفترة ما بين 16-22 يوليو من سنة 1994 في النصف الجنوبي للكوكب، وهو أول رصد مباشر لاصطدامات بين جرمين من النظام الشمسي. وقدرت الطاقة الناتجة عن تلك الاصطدامات بطاقة نحو 50 قنبلة هيروشيما. زودت هذه الاصطدامات بيانات مفيدة عن تركيب الغلاف الجوي للمشتري.[115][116]

[عدل] اصطدام عام 2009

اكتشف في 19 يوليو من سنة 2009 موقع اصطدام على خط طول 216 درجة تقريباً وفق النظام الثاني.[117][118] ويقع هذا الاصطدام خلف البقعة السوداء المتواجدة في الغلاف الجوي للمشتري، وقريبة في الحجم لحجم البقعة الاندماجية الناتجة من اندماج ثلاث أعاصير. أظهر الرصد بقعة مضيئة في المكان الذي حدث فيه الاصطدام، مما يعني أن الاصطدام أدى إلى تسخين الطبقات السفلى من الغلاف الجوي في المنطقة القريبة من القطب الجنوبي.[119]

بمقارنة اصطدامي شوميكار-ليفي 9 وحدث المشتري 2009 يقدر العلماء أن حدث المشتري نتج عن سقوط كويكب يبلغ قطره أقل من 1 كيلومتر على المشتري.

[عدل] احتمالية الحياة

أظهرت تجربة ميلر-يوري المجراة سنة 1953 بأن يمكن لتفاعل البرق والمركبات الكيميائية الموجودة في الغلاف الجوي البدائي للأرض أن تنشأ مركبات عضوية (من ضمنها الحموض الأمينية) وهي البنية الأساسية لبناء الوحدة الحية. وتضمن الغلاف الجوي في عملية المحاكاة وجود الماء والميثان والأمونيا وجزيئات الهيدروجين، وقد وجدت جميع هذه الجزيئات في الغلاف الجوي للمشتري. لكن يوجد في الغلاف الجوي للمشتري تيارات هوائية عمودية قوية، والتي ستحمل هذه المركبات إلى الطبقات السفلى، وستؤدي الحرارة العالية في الطبقات السفلى إلى إيقاف هذه العملية الكيميائية، مما سيمنع أي تشكل للمركبات العضوية كما هو على الأرض.[120]

ويعتبر أنه من غير المحتمل وجود حياة مشابه للأرض على المشتري، فلا يوجد سوى كميات قليلة من الماء في الغلاف الجوي. كما أن احتمال وجود أي سطح صلب على المشتري سيقع في طبقات عميقة مما يعني أنه سيخضع لضغط هائل. قبل مهمة فوياجر كانت هناك فرضية بوجود نوع من الحياة في الطبقات العليا من الغلاف الجوي للمشتري على أساس الأمونيا أو الماء. وتعتمد هذه الفرضية على نمط البيئة البحرية في البحار التي تعتمد على وجود عوالق بحرية في الطبقات العليا تقوم بعملية التمثيل الضوئي.[121][122] قد يقود احتمال وجود محيطات تحت القشرة لبعض أقمار المشتري إلى احتمال وجود الحياة هناك.

[عدل] الميثولوجيا القديمة

عرف المشتري منذ العصور القديمة. فهو مرئي بالعين المجردة في ظلمة الليل، كما يمكن أن يرى في النهار فيما إذا كانت الشمس منخفضة.[123] وقد مثل المشتري عند البابليون الإله مردوخ وقد استخدموا مداره القريب من 12 عام لتحديد دائرة البروج على طول مسار الشمس.[21][124]

في حين أطلق الرومان عليه اسم جيوبتر على اسم الاله الرئيسي وفق الميثولوجيا الرومانية.[125][126] أما الرمز الفلكي ♃ لهذا الكوكب فمستمد من صاعقة زيوس وفق الميثولوجيا الإغريقية والذي اعتمد أيضاً من قبل الرومان لاحقاً.[127]

ويشير الصينيون واليابنيون والكوريون إلى المشتري بالنجمة الخشبية (بالصينية 木星) وفق العناصر الخمسة الصينية[128]

[عدل] مصادر

[عدل] المراجع

  1. ^ Seligman، Courtney. Rotation Period and Day Length. Retrieved 2009-08-13.
  2. أ ب ت ث ج ح خ د ذ ر Williams، Dr. David R. (November 16, 2004). Jupiter Fact Sheet. NASA. Retrieved 2007-08-08.
  3. ^ The MeanPlane (Invariable plane) of the Solar System passing through the barycenter. (2009-04-03). Retrieved 2009-04-10. (produced with Solex 10 written by Aldo Vitagliano; see also Invariable plane)
  4. ^ Yeomans، Donald K. (2006-07-13). HORIZONS System. NASA JPL. Retrieved 2007-08-08. — At the site, go to the "web interface" then select "Ephemeris Type: Elements", "Target Body: Jupiter Barycenter" and "Center: Sun".
  5. ^ Orbital elements refer to the barycenter of the Jupiter system, and are the instantaneous osculating values at the precise J2000 epoch. Barycenter quantities are given because, in contrast to the planetary centre, they do not experience appreciable changes on a day-to-day basis from to the motion of the moons.
  6. أ ب ت ث Seidelmann, P. Kenneth; Archinal, B. A.; A’Hearn, M. F.; et al. (2007). "Report of the IAU/IAGWorking Group on cartographic coordinates and rotational elements: 2006". Celestial Mechanics and Dynamical Astronomy 90 (3): 155–180. Bibcode 2007CeMDA..98..155S. doi:10.1007/s10569-007-9072-y. [1]. Retrieved 2007-08-28. 
  7. أ ب ت ث ج ح خ د Refers to the level of 1 bar atmospheric pressure
  8. ^ Solar System Exploration: Jupiter: Facts & Figures. NASA. (7 May 2008).
  9. ^ Astrodynamic Constants. JPL Solar System Dynamics
    (2009-02-27). Retrieved 2007-08-08.
  10. ^ Seidelmann, P. K.; Abalakin, V. K.; Bursa, M.; Davies, M. E.; de Burgh, C.; Lieske, J. H.; Oberst, J.; Simon, J. L.; Standish, E. M.; Stooke, P.; Thomas, P. C. (2001). Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000. HNSKY Planetarium Program. Retrieved 2007-02-02.
  11. ^ Anonymous (March 1983). "Probe Nephelometer". Galileo Messenger (NASA/JPL) (6). [2]. Retrieved 2007-02-12. 
  12. ^ الباحث العربي/لسان العرب http://www.baheth.info/all.jsp?term=المشتري
  13. ^ Stuart Ross Taylor (2001). Solar system evolution: a new perspective : an inquiry into the chemical composition, origin, and evolution of the solar system (2nd, illus., revised ed.). Cambridge University Press. p. 208. ISBN 0-521-64130-6. 
  14. ^ As of 2008, the largest known planet outside the Solar System is TrES-4.
  15. أ ب Gautier, D.; Conrath, B.; Flasar, M.; Hanel, R.; Kunde, V.; Chedin, A.; Scott N. (1981). "The helium abundance of Jupiter from Voyager". Journal of Geophysical Research 86 (A10): 8713–8720. Bibcode 1981JGR....86.8713G. doi:10.1029/JA086iA10p08713. 
  16. أ ب Kunde, V. G. et al. (September 10, 2004). "Jupiter's Atmospheric Composition from the Cassini Thermal Infrared Spectroscopy Experiment". Science 305 (5690): 1582–86. Bibcode 2004Sci...305.1582K. doi:10.1126/science.1100240. PMID 15319491. [3]. Retrieved 2007-04-04. 
  17. ^ Kim, S. J.; Caldwell, J.; Rivolo, A. R.; Wagner, R. (1985). "Infrared Polar Brightening on Jupiter III. Spectrometry from the Voyager 1 IRIS Experiment". Icarus 64 (2): 233–48. Bibcode 1985Icar...64..233K. doi:10.1016/0019-1035(85)90201-5. 
  18. ^ Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; Harpold, D. N.; Hartle, R. E.; Hunten, D. M.; Kasprzak, W. T.; Mahaffy, P. R.; Owen, T. C.; Spencer, N. W.; Way, S. H. (1996). "The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere". Science 272 (5263): 846–849. Bibcode 1996Sci...272..846N. doi:10.1126/science.272.5263.846. PMID 8629016. 
  19. أ ب Mahaffy، Paul. Highlights of the Galileo Probe Mass Spectrometer Investigation. NASA Goddard Space Flight Center, Atmospheric Experiments Laboratory. Retrieved 2007-06-06.
  20. ^ Ingersoll, A. P.; Hammel, H. B.; Spilker, T. R.; Young, R. E. (June 1, 2005). Outer Planets: The Ice Giants. (PDF) Lunar & Planetary Institute. Retrieved 2007-02-01.
  21. أ ب ت ث ج ح خ Burgess,Eric (1982). By Jupiter: Odysseys to a Giant. New York: Columbia University Press. ISBN 0-231-05176-X. 
  22. ^ Shu,Frank H. (1982). The physical universe: an introduction to astronomy. Series of books in astronomy (12th ed.). University Science Books. p. 426. ISBN 0-935702-05-9. 
  23. ^ Davis, Andrew M.; Turekian, Karl K. (2005). Meteorites, comets, and planets. Treatise on geochemistry,. 1. Elsevier. p. 624. ISBN 0-08-044720-1. 
  24. ^ خطأ في استخدام قالب template:cite web: Parameters url and title must be specifiedJean Schneider (2009). Paris Observatory. Retrieved 2009-10-01.
  25. أ ب Seager, S.; Kuchner, M.; Hier-Majumder, C. A.; Militzer, B. (2007). "Mass-Radius Relationships for Solid Exoplanets". The Astrophysical Journal 669 (2): 1279–1297. arXiv:0707.2895. Bibcode 2007ApJ...669.1279S. doi:10.1086/521346. 
  26. ^ Guillot, Tristan (1999). "Interiors of Giant Planets Inside and Outside the Solar System". Science 286 (5437): 72–77. Bibcode 1999Sci...286...72G. doi:10.1126/science.286.5437.72. PMID 10506563. [4]. Retrieved 2007-08-28. 
  27. ^ Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I. (1993). "An expanded set of brown dwarf and very low mass star models". Astrophysical Journal 406 (1): 158–71. Bibcode 1993ApJ...406..158B. doi:10.1086/172427. 
  28. ^ Queloz، Didier، “VLT Interferometer Measures the Size of Proxima Centauri and Other Nearby Stars”، European Southern Observatory، November 19, 2002وصل لهذا المسار 2007-01-12.
  29. أ ب ت ث ج ح خ د ذ ر ز س Elkins-Tanton,Linda T. (2006). Jupiter and Saturn. New York: Chelsea House. ISBN 0-8160-5196-8. 
  30. أ ب ت ث Guillot, T.; Stevenson, D. J.; Hubbard, W. B.; Saumon, D. (2004). "Chapter 3: The Interior of Jupiter". In Bagenal, F.; Dowling, T. E.; McKinnon, W. B. Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press. ISBN 0-521-81808-7. http://web.gps.caltech.edu/faculty/stevenson/pdfs/guillot_etal'04.pdf. 
  31. ^ Bodenheimer, P. (1974). "Calculations of the early evolution of Jupiter". Icarus. 23 (3): 319–25. Bibcode 1974Icar...23..319B. doi:10.1016/0019-1035(74)90050-5. 
  32. ^ Guillot, T.; Gautier, D.; Hubbard, W. B. (1997). "New Constraints on the Composition of Jupiter from Galileo Measurements and Interior Models". Icarus 130 (2): 534–539. arXiv:astro-ph/9707210. Bibcode 1997astro.ph..7210G. doi:10.1006/icar.1997.5812. 
  33. ^ Various (2006). McFadden, Lucy-Ann; Weissman, Paul; Johnson, Torrence. ed. Encyclopedia of the Solar System (2nd ed.). Academic Press. p. 412. ISBN 0-12-088589-1. 
  34. ^ Horia, Yasunori; Sanoa, Takayoshi; Ikomaa, Masahiro; Idaa, Shigeru (2007). "On uncertainty of Jupiter's core mass due to observational errors". Proceedings of the International Astronomical Union (Cambridge University Press) 3 (S249): 163–166. doi:10.1017/S1743921308016554. 
  35. ^ Lodders, Katharina (2004). "Jupiter Formed with More Tar than Ice". The Astrophysical Journal 611 (1): 587–597. Bibcode 2004ApJ...611..587L. doi:10.1086/421970. [5]. Retrieved 2007-07-03. 
  36. ^ Züttel, Andreas (September 2003). "Materials for hydrogen storage". Materials Today 6 (9): 24–33. doi:10.1016/S1369-7021(03)00922-2. 
  37. ^ Guillot, T. (1999). "A comparison of the interiors of Jupiter and Saturn". Planetary and Space Science 47 (10–11): 1183–200. arXiv:astro-ph/9907402. Bibcode 1999P&SS...47.1183G. doi:10.1016/S0032-0633(99)00043-4. 
  38. أ ب Lang، Kenneth R. (2003). Jupiter: a giant primitive planet. NASA. Retrieved 2007-01-10.
  39. أ ب Seiff, A.; Kirk, D.B.; Knight, T.C.D. et al. (1998). "Thermal structure of Jupiter's atmosphere near the edge of a 5-μm hot spot in the north equatorial belt". Journal of Geophysical Research 103 (E10): 22857–22889. Bibcode 1998JGR...10322857S. doi:10.1029/98JE01766. 
  40. ^ *Miller, S.; Aylword, A.; Milliword, G. (2005). "Giant Planet Ionospheres and Thermospheres: the Importance of Ion-Neutral Coupling". Space Science Reviews 116 (1–2): 319–343. Bibcode 2005SSRv..116..319M. doi:10.1007/s11214-005-1960-4. 
  41. ^ Ingersoll, A. P.; Dowling, T. E.; Gierasch, P. J.; Orton, G. S.; Read, P. L.; Sanchez-Lavega, A.; Showman, A. P.; Simon-Miller, A. A.; Vasavada, A. R. Dynamics of Jupiter’s Atmosphere. (PDF) Lunar & Planetary Institute. Retrieved 2007-02-01.
  42. ^ Surprising Jupiter: Busy Galileo spacecraft showed jovian system is full of surprises. NASA
    (February 25, 2006). Retrieved 2007-02-20.
  43. ^ Kerr, Richard A. (2000). "Deep, Moist Heat Drives Jovian Weather". Science 287 (5455): 946–947. doi:10.1126/science.287.5455.946b. [6]. Retrieved 2007-02-24. 
  44. ^ Strycker, P. D.; Chanover, N.; Sussman, M.; Simon-Miller, A.(2006). "A Spectroscopic Search for Jupiter's Chromophores".DPS meeting #38, #11.15, American Astronomical Society. 
  45. أ ب ت Gierasch, Peter J.; Nicholson, Philip D. (2004). Jupiter. World Book @ NASA. Retrieved 2006-08-10.
  46. ^ Denning, W. F. (1899). "Jupiter, early history of the great red spot on". Monthly Notices of the Royal Astronomical Society 59: 574–584. Bibcode 1899MNRAS..59..574D. 
  47. ^ Kyrala, A. (1982). "An explanation of the persistence of the Great Red Spot of Jupiter". Moon and the Planets 26 (1): 105–7. Bibcode 1982M&P....26..105K. doi:10.1007/BF00941374. 
  48. ^ [7]
  49. ^ Sommeria, Jöel; Steven D. Meyers & Harry L. Swinney (February 25, 1988). "Laboratory simulation of Jupiter's Great Red Spot". Nature 331 (6158): 689–693. Bibcode 1988Natur.331..689S. doi:10.1038/331689a0. 
  50. ^ Covington,Michael A. (2002). Celestial Objects for Modern Telescopes. Cambridge University Press. p. 53. ISBN 0-521-52419-9. 
  51. ^ Cardall, C. Y.; Daunt, S. J. The Great Red Spot. University of Tennessee. Retrieved 2007-02-02.
  52. ^ Jupiter Data Sheet. Space.com. Retrieved 2007-02-02.
  53. ^ Phillips، Tony (March 3, 2006). Jupiter's New Red Spot. NASA. Retrieved 2007-02-02.
  54. ^ Jupiter's New Red Spot. (2006). Retrieved 2006-03-09.
  55. ^ Steigerwald، Bill (October 14, 2006). Jupiter's Little Red Spot Growing Stronger. NASA. Retrieved 2007-02-02.
  56. ^ Goudarzi، Sara (May 4, 2006). New storm on Jupiter hints at climate changes. USA Today. Retrieved 2007-02-02.
  57. ^ Showalter, M.A.; Burns, J.A.; Cuzzi, J. N.; Pollack, J. B. (1987). "Jupiter's ring system: New results on structure and particle properties". Icarus 69 (3): 458–98. Bibcode 1987Icar...69..458S. doi:10.1016/0019-1035(87)90018-2. 
  58. أ ب Burns, J. A.; Showalter, M.R.; Hamilton, D.P.; et al. (1999). "The Formation of Jupiter's Faint Rings". Science 284 (5417): 1146–50. Bibcode 1999Sci...284.1146B. doi:10.1126/science.284.5417.1146. PMID 10325220. 
  59. ^ Fieseler, P.D. (2004). "The Galileo Star Scanner Observations at Amalthea". Icarus 169 (2): 390–401. Bibcode 2004Icar..169..390F. doi:10.1016/j.icarus.2004.01.012. 
  60. ^ Brainerd، Jim، “Jupiter's Magnetosphere”، The Astrophysics Spectator، 2004-11-22وصل لهذا المسار 2008-08-10.
  61. ^ Radio Storms on Jupiter. NASA
    (February 20, 2004). Retrieved 2007-02-01.
  62. ^ Herbst, T. M.; Rix, H.-W. (1999). Guenther, Eike; Stecklum, Bringfried; Klose, Sylvio. ed. Star Formation and Extrasolar Planet Studies with Near-Infrared Interferometry on the LBT. San Francisco, Calif.: Astronomical Society of the Pacific. pp. 341–350. Bibcode 1999ASPC..188..341H. ISBN 1-58381-014-5. ‎ – See section 3.4.
  63. ^ Michtchenko, T. A.; Ferraz-Mello, S. (February 2001). "Modeling the 5 : 2 Mean-Motion Resonance in the Jupiter–Saturn Planetary System". Icarus 149 (2): 77–115. Bibcode 2001Icar..149..357M. doi:10.1006/icar.2000.6539. 
  64. ^ Interplanetary Seasons. Science@NASA. Retrieved 2007-02-20.
  65. ^ Ridpath,Ian (1998). Norton's Star Atlas (19th ed.). Prentice Hall. ISBN 0-582-35655-5. 
  66. ^ Musotto, S.; Varadi, F.; Moore, W. B.; Schubert, G. (2002). "Numerical simulations of the orbits of the Galilean satellites". Icarus 159 (2): 500–504. Bibcode 2002Icar..159..500M. doi:10.1006/icar.2002.6939. [8]. 
  67. ^ Jewitt, D. C.; Sheppard, S.; Porco, C. (2004). Bagenal, F.; Dowling, T.; McKinnon, W. ed (PDF). Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press. ISBN 0-521-81808-7. [9]. 
  68. ^ Nesvorný, D.; Alvarellos, J. L. A.; Dones, L.; Levison, H. F. (2003). "Orbital and Collisional Evolution of the Irregular Satellites". The Astronomical Journal 126 (1): 398–429. Bibcode 2003AJ....126..398N. doi:10.1086/375461. 
  69. ^ Showman, A. P.; Malhotra, R. (1999). "The Galilean Satellites". Science 286 (5437): 77–84. doi:10.1126/science.286.5437.77. PMID 10506564. 
  70. ^ Horizons output. Favorable Appearances by Jupiter. Retrieved 2008-01-02. (Horizons)
  71. ^ Encounter with the Giant. NASA
    (1974). Retrieved 2007-02-17.
  72. ^ A. Sachs (May 2, 1974). "Babylonian Observational Astronomy". Philosophical Transactions of the Royal Society of London (Royal Society of London) 276 (1257): 43–50 (see p. 44). doi:10.1098/rsta.1974.0008. JSTOR 74273 
  73. ^ Xi, Z. Z. (1981). "The Discovery of Jupiter's Satellite Made by Gan-De 2000 Years Before Galileo". Acta Astrophysica Sinica 1 (2): 87. Bibcode 1981AcApS...1...87X. 
  74. ^ Dong,Paul (2002). China's Major Mysteries: Paranormal Phenomena and the Unexplained in the People's Republic. China Books. ISBN 0-8351-2676-5. 
  75. ^ Olaf Pedersen (1974). A Survey of the Almagest. Odense University Press. pp. 423, 428. 
  76. ^ tr. with notes by Walter Eugene Clark (1930). The Aryabhatiya of Aryabhata. University of Chicago Press. p. 9, Stanza 1. [10]. 
  77. ^ Westfall، Richard S. Galilei, Galileo. The Galileo Project. Retrieved 2007-01-10.
  78. ^ Murdin,Paul (2000). Encyclopedia of Astronomy and Astrophysics. Bristol: Institute of Physics Publishing. ISBN 0-12-226690-0. 
  79. ^ SP-349/396 Pioneer Odyssey—Jupiter, Giant of the Solar System. NASA
    (August 1974). Retrieved 2006-08-10.
  80. ^ Roemer's Hypothesis. MathPages. Retrieved 2007-01-12.
  81. ^ Tenn، Joe (March 10, 2006). Edward Emerson Barnard. Sonoma State University. Retrieved 2007-01-10.
  82. ^ Amalthea Fact Sheet. NASA JPL
    (October 1, 2001). Retrieved 2007-02-21.
  83. ^ Dunham Jr., Theodore (1933). "Note on the Spectra of Jupiter and Saturn". Publications of the Astronomical Society of the Pacific 45: 42–44. Bibcode 1933PASP...45...42D. doi:10.1086/124297. 
  84. ^ Youssef, A.; Marcus, P. S. (2003). "The dynamics of jovian white ovals from formation to merger". Icarus 162 (1): 74–93. Bibcode 2003Icar..162...74Y. doi:10.1016/S0019-1035(02)00060-X. 
  85. ^ Weintraub، Rachel A. (September 26, 2005). How One Night in a Field Changed Astronomy. NASA. Retrieved 2007-02-18.
  86. ^ Garcia، Leonard N. The Jovian Decametric Radio Emission. NASA. Retrieved 2007-02-18.
  87. ^ Klein, M. J.; Gulkis, S.; Bolton, S. J. (1996). Jupiter's Synchrotron Radiation: Observed Variations Before, During and After the Impacts of Comet SL9. NASA. Retrieved 2007-02-18.
  88. ^ NASA – Pioneer 10 Mission Profile
  89. ^ NASA – Glenn Research Center
  90. أ ب ت Chan, K.; Paredes, E. S.; Ryne, M. S. (2004). Ulysses Attitude and Orbit Operations: 13+ Years of International Cooperation. (PDF) American Institute of Aeronautics and Astronautics. Retrieved 2006-11-28.
  91. ^ Lasher، Lawrence (August 1, 2006). Pioneer Project Home Page. NASA Space Projects Division. Retrieved 2006-11-28.
  92. ^ Hansen, C. J.; Bolton, S. J.; Matson, D. L.; Spilker, L. J.; Lebreton, J.-P. (2004). "The Cassini-Huygens flyby of Jupiter". Icarus 172 (1): 1–8. Bibcode 2004Icar..172....1H. doi:10.1016/j.icarus.2004.06.018. 
  93. ^ Mission Update: At Closest Approach, a Fresh View of Jupiter. Retrieved 2007-07-27.
  94. ^ Pluto-Bound New Horizons Provides New Look at Jupiter System. Retrieved 2007-07-27.
  95. ^ New Horizons targets Jupiter kick. BBC News Online
    (January 19, 2007). Retrieved 2007-01-20.
  96. ^ Alexander، Amir (September 27, 2006). New Horizons Snaps First Picture of Jupiter. The Planetary Society. Retrieved 2006-12-19.
  97. أ ب McConnell، Shannon (April 14, 2003). Galileo: Journey to Jupiter. NASA Jet Propulsion Laboratory. Retrieved 2006-11-28.
  98. ^ Magalhães، Julio (December 10, 1996). Galileo Probe Mission Events. NASA Space Projects Division. Retrieved 2007-02-02.
  99. ^ Goodeill، Anthony (2008-03-31). New Frontiers – Missions - Juno. NASA. Retrieved 2007-01-02.
  100. ^ Talevi, Monica; Brown, Dwayne (2009-02-18). NASA and ESA Prioritize Outer Planet Missions. Retrieved 2009-02-18.
  101. ^ Rincon، Paul، “Jupiter in space agencies' sights”، BBC News، 2009-02-18وصل لهذا المسار 2009-02-28.
  102. ^ Volonte، Sergio، “Cosmic Vision 2015-2025 Proposals”، ESA، 2007-07-10وصل لهذا المسار 2009-02-18.
  103. ^ Laplace: A mission to Europa & Jupiter system. ESA. Retrieved 2009-01-23.
  104. ^ Berger، Brian، “White House scales back space plans”، MSNBC، 2005-02-07وصل لهذا المسار 2007-01-02.
  105. ^ Atzei، Alessandro (2007-04-27). Jovian Minisat Explorer. ESA. Retrieved 2008-05-08.
  106. ^ Kerr, Richard A. (2004). "Did Jupiter and Saturn Team Up to Pummel the Inner Solar System?". Science 306 (5702): 1676. doi:10.1126/science.306.5702.1676a. PMID 15576586. [11]. Retrieved 2007-08-28. 
  107. ^ List Of Jupiter Trojans. IAU Minor Planet Center. Retrieved 2010-10-24.
  108. ^ Quinn, T.; Tremaine, S.; Duncan, M. (1990). "Planetary perturbations and the origins of short-period comets". Astrophysical Journal, Part 1 355: 667–679. Bibcode 1990ApJ...355..667Q. doi:10.1086/168800. 
  109. ^ Dennis Overbye. “Hubble Takes Snapshot of Jupiter’s ‘Black Eye’”، New York Times، 2009-07-24وصل لهذا المسار 2009-07-25.
  110. ^ Lovett، Richard A.، “Stardust's Comet Clues Reveal Early Solar System”، National Geographic News، December 15, 2006وصل لهذا المسار 2007-01-08.
  111. ^ Nakamura, T.; Kurahashi, H. (1998). "Collisional Probability of Periodic Comets with the Terrestrial Planets: An Invalid Case of Analytic Formulation". Astronomical Journal 115 (2): 848–854. Bibcode 1998AJ....115..848N. doi:10.1086/300206. [12]. Retrieved 2007-08-28. 
  112. ^ Horner, J.; Jones, B. W. (2008). "Jupiter - friend or foe? I: the asteroids". International Journal of Astrobiology 7 (3–4): 251–261. arXiv:0806.2795. Bibcode 2008IJAsB...7..251H. doi:10.1017/S1473550408004187. 
  113. ^ Overbyte، Dennis، “Jupiter: Our Comic Protector?”، Thew New York Times، 2009-07-25وصل لهذا المسار 2009-07-27.
  114. ^ Tabe, Isshi; Watanabe, Jun-ichi; Jimbo, Michiwo (February 1997). "Discovery of a Possible Impact SPOT on Jupiter Recorded in 1690". Publications of the Astronomical Society of Japan 49: L1–L5. Bibcode 1997PASJ...49L...1T. 
  115. ^ Baalke، Ron. Comet Shoemaker-Levy Collision with Jupiter. NASA. Retrieved 2007-01-02.
  116. ^ Britt، Robert R.، “Remnants of 1994 Comet Impact Leave Puzzle at Jupiter”، space.com، August 23, 2004وصل لهذا المسار 2007-02-20.
  117. ^ Staff. “Amateur astronomer discovers Jupiter collision”، ABC News online، 2009-07-21وصل لهذا المسار 2009-07-21.
  118. ^ Salway، Mike (July 19, 2009). Breaking News: Possible Impact on Jupiter, Captured by Anthony Wesley. IceInSpace. Retrieved 2009-07-19.
  119. ^ Grossman، Lisa، “Jupiter sports new 'bruise' from impact”، July 20, 2009من New Scientist.
  120. ^ Heppenheimer، T. A. (2007). Colonies in Space, Chapter 1: Other Life in Space. National Space Society. Retrieved 2007-02-26.
  121. ^ Life on Jupiter. Encyclopedia of Astrobiology, Astronomy & Spaceflight. Retrieved 2006-03-09.
  122. ^ Sagan, C.; Salpeter, E. E. (1976). "Particles, environments, and possible ecologies in the Jovian atmosphere". The Astrophysical Journal Supplement Series 32: 633–637. Bibcode 1976ApJS...32..737S. doi:10.1086/190414. 
  123. ^ Staff. “Stargazers prepare for daylight view of Jupiter”، ABC News Online، June 16, 2005وصل لهذا المسار 2008-02-28.
  124. ^ Rogers, J. H. (1998). "Origins of the ancient constellations: I. The Mesopotamian traditions". Journal of the British Astronomical Association, 108: 9–28. Bibcode 1998JBAA..108....9R. 
  125. ^ Harper، Douglas (November 2001). Jupiter. Online Etymology Dictionary. Retrieved 2007-02-23.
  126. ^ Indo-European and the Indo-Europeans. American Heritage Dictionary of the English Language. (2000). Retrieved 2008-09-27.
  127. ^ See for example: “IAUC 2844: Jupiter; 1975h”، International Astronomical Union، October 1, 1975وصل لهذا المسار 2010-10-24. That particular word has been in use since at least 1966. See: Query Results from the Astronomy Database. Smithsonian/NASA. Retrieved 2007-07-29.
  128. ^ China: De Groot,Jan Jakob Maria (1912). Religion in China: universism. a key to the study of Taoism and Confucianism. 10. G. P. Putnam's Sons. p. 300. [13]. Retrieved 2010-01-08. 
    Japan: Crump,Thomas (1992). The Japanese numbers game: the use and understanding of numbers in modern Japan. Routledge. pp. 39–40. ISBN 0415056098. 
    Korea: Hulbert,Homer Bezaleel (1909). The passing of Korea. Doubleday, Page & company. p. 426. [14]. Retrieved 2010-01-08. 

[عدل] اقرأ أيضا


أدوات شخصية

المتغيرات
النطاقات
أفعال
الموسوعة
إبحار
المشاركة والمساعدة
طباعة وتصدير
صندوق الأدوات
بلغات أخرى