
10-3 The Ideal Vapor-Compression Refrigeration Cycle

> presented by: Linda Manning 02/22/01

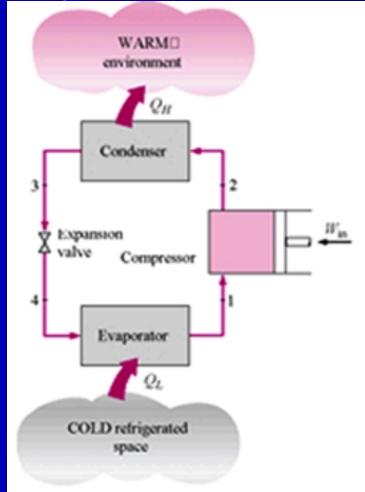
Topics of Discussion

 Household Refrigerators Processes of Ideal Vapor-**Compression Refrigeration Cycle Steady Flow Analysis** Carnot Cycle vs. Ideal Vapor-**Compression Refrigeration Cycle** Practice Problem

Household Refrigerator

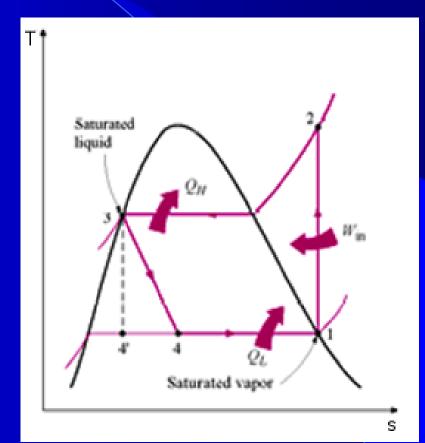
Encarta Deluxe 2001

Four Processes


 1-2 Isentropic compression in a compressor

- 2-3 Constant pressure heat rejection in a condenser
- 3-4 Throttling in an expansion device
 4-1 Constant pressure heat absorption

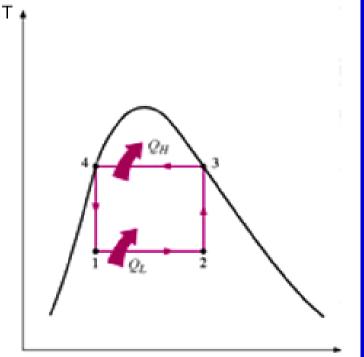
in an evaporator

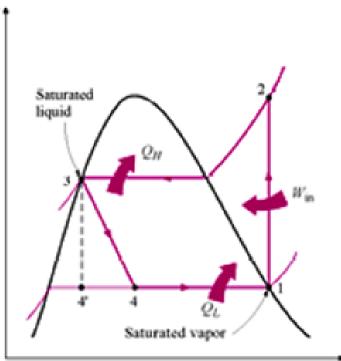

Ideal Vapor-Compression Refrigeration Cycle Schematic

♦1-Enters Compressor Sat. Vapor ♦ 2-Enters Condenser Super. Vapor ♦ 3-Throttled Sat. Liquid ♦ 4-Enters Evaporator Sat. Mixture

T-s Diagram

Area under process curve = heat transfer \diamond Area under 4-1 = heat absorbed \diamond Area under 2-3 = heat rejected


Steady Flow Process


♦ PE and KE small relative to work and heat transfer. $\diamond q_L = h_1 - h_4$ $\diamond w_{net}$, in=h₂-h₁ $\diamond q_{\rm H} = h_2 - h_3$

 $\diamond COP_R = q_L / w_{net,in}$

 $\diamond COP_{HP} = q_H / w_{net,in}$

Carnot Cycle vs. Ideal Vapor-Compression Refrigeration Cycle
Two phase after evaporation
Turbine, not throttling device
Internally reversible

S

Practice Problem

10 - 12

Given: Refrigerant-134a $P_1=120$ kPa $m_{dot} = 0.05 \text{ kg/s}$ $P_2 = 0.7 \text{ Mpa}$

Find: (a) rate of heat removal from refrigerated space & power input into compressor(b) rate of heat rejection to the environment(c) coefficient of performance