Lattice distortions measured in actinide ferromagnets PuP, NpFe₂ and NpNi₂ (*)

M. H. Mueller, G. H. Lander, H. A. Hoff, H. W. Knott and J. F. Reddy

Materials Science Div., Argonne Nat. Lab., Argonne, IL 60439, U.S.A.

Résumé. — Les mesures de rayons X à basses températures indiquent que : (1) la phase cubique de PuP se transforme en une phase tétragonale en dessous de $T_c = 125$ K qui se manifeste par un élargissement des pics, (2) NpFe₂ montre une variation de l'angle du rhomboèdre de 60 à 60,53° en dessous de $T_c \sim 500$ K, et (3) pour NpNi₂ l'angle du rhomboèdre varie de 0,19° (±0,02°) en dessous de $T_c = 32$ K.

Abstract. — X-ray low-temperature measurements indicate that : (1) cubic PuP distorts to tetragonal below $T_c = 125$ K with accompanying line broadening, (2) NpFe₂ exhibits a rhombohedral angle distortion from 60 to 60.53° below $T_c \sim 500$ K, and (3) in NpNi₂ the rhombohedral angle changes $0.19^\circ (\pm 0.02^\circ)$ below $T_c = 32$ K.

Actinide U and Np ferromagnets have been shown [1] to exhibit a large distortion from cubic symmetry below T_c , with all previous examples exhibiting a rhombohedral symmetry compatible with the $\langle 111 \rangle$ easy axes of magnetization found in these compounds. We report here the results of X-ray experiments at low temperature to examine the symmetry of PuP ($T_c = 125$ K), NpFe₂ ($T_c \sim 500$ K), and NpNi₂ ($T_c = 32$ K).

In PuP a $\langle 100 \rangle$ easy axis was found with neutron measurements [2] and, as expected, we find a tetragonal distortion such that

$$(c-a)/a = -(31 \pm 1) 10^{-4}$$

at 5 K. The variation of the lattice parameters and the strain are shown as functions of temperature in figures 1 and 2, respectively. Below T_c the diffraction peaks also broaden, presumably a consequence of strain induced by the magnetoelastic interactions (see Fig. 3).

Fig. 1. — Variation of the lattice parameters as a function of temperature for PuP.

(*) Work supported by the U.S. Department of Energy.

Fig. 2. — Tetragonal distortion for PuP as a function of temperature.

In NpFe₂ neutron experiments [3] determined a $\langle 111 \rangle$ easy axis and we find a rhombohedral distortion such that the rhombohedral angle changes from 60° to 60.53°. An alternative description of the rhombohedral distortion is to define a length c as a distance along the unique trigonal axis and a as a distance in the plane perpendicular to c such that c/a = 1.00 in the cubic phase. This definition is especially useful when comparing the magnitude of trigonal and tetragonal distortions. In this case the strain in NpFe₂ is $-(120 \pm 5) \ 10^{-4}$, which is the largest found in any actinide compound.

In NpNi₂ the quality of the powder patterns is rather poor, but we estimate the change in the

rhombohedral angle to be $0.19^{\circ} \pm 0.02^{\circ}$ from the broadening of the lines below $T_{\rm c}$. The absolute value of the strain is then $(43 \pm 5) \ 10^{-4}$. Our results are compatible with the theory that all actinide ferromagnets exhibiting localized 5f moments reduce their symmetry below $T_{\rm c}$ as a consequence of strong magnetoelastic interactions. PuP is the first system to be found with a tetragonal distortion, and NpFe₂ has the largest rhombohedral distortion found so far.

The behaviour of the ferromagnetic compounds is in contrast to the actinide antiferromagnets, in which the distortions are either small or negligible [1, 4]. This difference between the ferro- and antiferromagnets is not understood.

Fig. 3. — Diffraction peak broadening observed in selected reflections from PuP as a function of temperature.

References

- [1] LANDER, G. H. and MUELLER, M. H., Phys. Rev. B 10 (1974) 1994.
- [2] LANDER, G. H. and LAM, D. J., Phys. Rev. B 14 (1976) 4064.
- [3] ALDRED, A. T., DUNLAP, B. D., LAM, D. J., LANDER, G. H., MUELLER, M. H. and NOWIK, I., Phys. Rev. B 11 (1975) 530.
- [4] MARPLES, J. A. C., SAMPSON, C. F., WEDGWOOD, F. A. and KUZNIETZ, M., J. Phys. C 8 (1975) 708.