The Atmosphere in Motion

- The atmosphere moves under the influence of forces
- ♦ Atmospheric pressure
 (N m⁻²) is therefore the key
 to understanding motion
- Because the atmosphere is a fluid, pressure at a given place is exerted in all directions

Example of the Influence of Pressure

- ♦ Atmospheric pressure is caused by the weight of air in a column 1 m² x-section Pressure
- For equal pressures on the Lower ground, a column of cold air is shorter than one of warm air [p. 211/219/193]

- ◆ At higher levels, air naturally flows from a warm column to a cold column, thus reducing the pressure of the warm column
 - this can happen on hot afternoons, causing pressure to decrease

Measuring Pressure

♦ Mercury barometer measures the height, h, of the column

• Pressure **P** is found using the density of Hg, denoted ρ_{Hg}

$$P = \rho_{Hg}gh$$

(g is gravitational constant, 9.8 N kg⁻¹)

The aneroid barometer is based on the compression of a sealed metal bellows [fig. 9.6/8.6]

Electronic sensors (chpt. 1 notes)

Sea Level Pressure Charts

Station readings are reduced to sea level by applying an average altitude correction (typically +10 mb per 100 m)

- **Isobars** are drawn
 - contours are smoothed to hide small-scale wrinkles caused by sparse data, poor height correction and local anomalies
 - > Result is the 'weather chart'
 - ➤ simplified charts → newspapers and TV

Chart Features

- **♦** Hills ⇔ anticyclones
- **♦** Hollows ⇔ **depressions**
 - > mid-latitude cyclones
- Ridges and Troughs
- ♦ Fronts show lines where different air masses meet

Upper-Level Charts

Upper level charts are drawn as **isobaric surfaces** that show heights of a surface of constant pressure, e.g. 500 mb [fig. 9.13/8.13]. Mainly

• Contour lines represent constant heights, as on an ordnance survey map (strictly speaking, geopotential heights)

produced by computer model (see above + sl press)

- - > high heights often mean warm air aloft

Motion is Governed by Newton's Laws

◆ 2nd law says, essentially, that force (F) acting on a mass (m) causes acceleration (a)

Note that if there is no force acting, then

Forces Determining Wind

- **♦** Pressure Gradient Force (PGF)
- Coriolis
- **Friction**
- Centripetal forceis the name of aresultant of twoor three forces

Pressure Gradient Force

- **♦ Pressure gradient** force is exerted at right
 - angles to isobars
 - > isobars far apart:
 - **%** weak pressure gradient
 - * weak pressure gradient force; light winds
 - isobars close together:
 - of strong pressure gradient
 - * strong pressure gradient force; strong winds
- On a large scale, air experiences the additional Coriolis Force

Coriolis Force

Gaspard Gustave de Coriolis

1792 - 1843

The Coriolis force is the **apparent** force that explains the deflection observed in a body moving across a rotating surface when seen from the surface

Consequences of the Coriolis Effect

- **♦** Coriolis force ∞
 - > mass of ball
 - > speed of ball
 - angular speed of rotation

On a merry-go-round in the night, Coriolis was shaken with fright. Despite how he walked, 'Twas like he was stalked, By some fiend always pushing him right.

Courtesy APS

- ♦ Result is a description of the geometrical effect of rotation of the observer
 - > try the exercise in Ahrens' CD/web page

Coriolis Effect on Winds

- > this is true whatever the wind direction
- the effect is zero at the equator and greatest at the pole
- the stronger the wind, the greater the deflection
- the effect is not noticeable on local winds like sea breezes, because the acceleration is small
- the Coriolis force acts at right angles to the wind and hence alters its direction, not its speed

2

Coriolis Controls the Direction of Circulation

High pressure in N hemisphere

Low pressure in N hemisphere

Nature of the Geostrophic Wind

- ♦ Winds aloft (above ~1000 m) are caused by combined effects of pressure gradient force (PGF) and Coriolis 'force' (CF) [fig. 9.23/9.23/8.23]
- A wind that begins to blow across the isobars is turned by the Coriolis 'force' until Coriolis 'force' and PGF balance

Strength of the Geostrophic Wind

$$CF = PGF$$

The wind strength (V_g) depends on the pressure gradient $(\Delta p/d)$, the reciprocal of the air density (ρ) and a Coriolis parameter (f) that depends on latitude [p. 226/235/208]

$$V_g = \frac{1}{f\rho} \frac{\Delta p}{d}$$

winds increase in strength as you go aloft

Cyclonic Flow and the Gradient Wind

- General idea that winds aloft blow parallel to isobars is true even when isobars are curved
- BUT wind blowing in a symmetric circle needs a net force directed centrally to maintain the flow [p. 229/236/210]
 - this net force is called centripetal force
 - > net force = PGF CF
 - net force per unit mass is $|V^2/r|$ where r is the radial distance of the wind from the cyclone centre

Anticyclonic Flow

- Likewise with anticyclones, the **gradient** wind results from a difference between Coriolis force and pressure gradient force
 - > centripetal force = CF PGF
 - For weak cyclones and anticyclones, the centripetal force is small compared with the other 2 forces
- Winds rotate clockwise around anticyclones in the Northern hemisphere

Buys-Ballot's Law

Sailors' version: stand facing the wind and the lower pressure is to your right

Cyclonic Flow

Anticyclonic Flow

Courtesy: http://www.paweathercentre.com

C.H.D. Buys – Ballot (1817 – 1890)

Surface Winds

- ♦ Friction with the ground slows winds, reducing the Coriolis force which is no longer opposite PGF
- The result is an *inflow* of air towards the centre of low pressure and an *outflow* of air from anticyclones

Summary

- ♦ These rules are a good guide
- Wind strength is controlled by pressure gradient

- Winds aloft flow approximately parallel to isobars
- Winds blow anticlockwise around depressions, clockwise around anticyclones in the N. hemisphere
- Surface winds blow slightly in towards the centre of depressions and slightly outwards from anticyclones

Wind Arrows

- Wind is described by the direction it comes from
- Wind arrows are drawn in the direction the wind is going to

- Arrow heads are omitted [appendix B]
- Feathers are drawn to represent wind speed
 - > a whole feather represents 10 knots
 - > a half feather, 5 knots
 - > a solid triangle, 50 knots
 - $ightharpoonup 1 \text{ knot} \equiv 1.85 \text{ km hr}^{-1} (\sim 0.5 \text{ ms}^{-1})$

Abbreviated surface station symbol

Datum: 26Apr2004 Zeit: 06 UTC Stationsmeldungen: Grossbritannien

Wetterzentrale Karlsruhe Top Karten : http://www.wetterzentrale.de/topkarten/

Beaufort Wind Scale

- Wind strength used by sailors
- All shipping weather forecasts
 - it is also used on land Photo: JSR

- ♦ The scale covers winds of 'force' 0 to 'force' 12
 - ➤ e.g. **force 4**: *moderate breeze*; 11 16 knots; small waves, becoming longer, frequent white horses; on land wind raises dust and lose paper; small branches move
 - ➤ **force 8**: *gale*; 34 40 knots; moderately high waves of greater length, edges of crests begin to break into spindrift, foam is blown in well-marked streaks; on land, wind breaks twigs off trees, walking is difficult. [App C]₂₄

Francis Beaufort (1774 – 1857)

- Beaufort was a Royal Navy officer who, after active service, promoted the Navy's involvement in a wide range of science in his capacity as Hydrographer
- Beaufort's scale concentrates on the **effect** of the wind
 - in the original description, each point was described in terms of the speed of a man-of-war and the sails it could carry
 - > similar scales existed many years before Beaufort's version was officially adopted by the RN in 1838
 - ➤ the scale has been adapted and updated for international use over the years
 - ➤ Beaufort commissioned Robinson to find the wind speeds for the scale points – hence the Robinson cup anemometer

Measuring Wind

- ♦ An anemometer measures wind speed
 - most common type is the Robinson cup anemometer
- Active Season Se
- > the cups rotate at a speed proportional to the wind
- ♦ A windvane measures wind direction
 - > the vane orients itself downwind
 - the vane actuates the centre arm of a variable resistor

Photos: JSR

What use is a barometer?

- Relates observation to weather chart detail
 - >e,g, pressure high or low
- **Change** in pressure indicative of pressure gradient
 - >change in pressure is important forecasting aid

A National Observatory

 Mt. Aigoual in the Cevennes, run by Meteo France

Photo: JSR