
Hodges-Lehmann Optimality for Testing

Moment Conditions∗

IVAN CANAY1 and TAISUKE OTSU2,†

1Department of Economics, Northwestern University, 2001 Sheridan Road, Evanston, Illinois
60208, USA. E-mail: iacanay@northwestern.edu. url:
http://faculty.wcas.northwestern.edu/~iac879/

2Department of Economics, Yale University, 30 Hillhouse Avenue, New Haven, Connecticut
06511, USA. E-mail: taisuke.otsu@yale.edu. url:
http://cowles.econ.yale.edu/faculty/otsu.htm

This paper studies the Hodges and Lehmann (1956) optimality of tests in a general setup. The
tests are compared by the exponential rates of growth to one of the power functions evaluated
at a fixed alternative while keeping the asymptotic sizes bounded by some constant. We present
two sets of sufficient conditions for a test to be Hodges-Lehmann optimal. These new conditions
extend the scope of the Hodges-Lehmann optimality analysis to setups that cannot be covered
by other conditions in the literature. The general result is illustrated by our applications of inter-
est: testing for moment conditions and overidentifying restrictions. In particular, we show that
(i) the empirical likelihood test does not necessarily satisfy existing conditions for optimality
but does satisfy our new conditions; and (ii) the generalized method of moments (GMM) test
and the generalized empirical likelihood (GEL) tests are Hodges-Lehmann optimal under mild
primitive conditions. These results support the belief that the Hodges-Lehmann optimality is a
weak asymptotic requirement.
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1. Introduction

There are numerous testing problems in statistics and econometrics where alternative
tests under consideration have the same asymptotic properties under the null hypothesis
and local alternatives. As asymptotic comparisons are intended to approximate finite
sample behaviors, it is important to assess whether such equivalence is preserved in dif-
ferent asymptotic frameworks. This paper studies an alternative notion of asymptotic
comparison of tests due to Hodges and Lehmann (1956) in a general setup. More specif-
ically, we focus on global properties and compare the tests in terms of the exponential
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rate of growth to one of the power functions evaluated at a fixed alternative while keep-
ing the asymptotic sizes bounded by some constant. We present two sets of sufficient
conditions for a test to be Hodges-Lehmann optimal. These new conditions extend the
scope of the Hodges-Lehmann optimality analysis to setups that cannot be covered by
other conditions in the literature (e.g. Kallenberg and Kourouklis, 1992). This point is
illustrated by our applications of interest: testing for moment conditions and overidenti-
fying restrictions (or generalized estimating equations). In particular, we show that the
empirical likelihood test (Owen, 1988; Qin and Lawless, 1994) does not necessarily satisfy
the existing conditions for optimality but does satisfy the new conditions we propose,
and that the generalized method of moments (GMM) test of Hansen (1982) and the gen-
eralized empirical likelihood (GEL) tests of Smith (1997) and Newey and Smith (2004)
(including empirical likelihood, continuous updating GMM, and exponential tilting as
special cases) are Hodges-Lehmann optimal for testing overidentifying restrictions under
mild primitive conditions.

The dominant approach to approximate finite sample power properties of tests in
statistics and econometrics is based on sequences of local (or Pitman) alternatives. There
are yet some reasons to go beyond the local analysis. First, although the local analysis
might provide a good approximation of the power function for alternatives close to the
null hypothesis, there are risks in extrapolating whatever lessons we learn locally to alter-
natives that are far from the null. This is particularly true, for example, when the finite
sample power function is non-monotone (see Nelson and Savin, 1990). Second, there are
cases where different tests, with different exact power functions, have the same asymp-
totic behavior under local alternatives. Then it is important to look for approximations
that are pertinent for the regions of high power (as it is the case for the Hodges-Lehmann
approach) and see if such equivalence is preserved in those regions.

Our Hodges-Lehmann optimality analysis contributes to the literature in several ways.
First, we show that the existing general sufficient conditions by Kallenberg and Kourouk-
lis (1992) for a test to be Hodges-Lehmann optimal are too strong for our applications of
interest. We provide an example where the empirical likelihood test does not satisfy an
even weaker version of those sufficient conditions. Second, we provide novel sets of suffi-
cient conditions for the Hodges-Lehmann optimality. One set is similar to the conditions
in Kallenberg and Kourouklis (1992), although we require lower semicontinuity in the
weak topology instead of continuity in the τ -topology. The other set involves a localized
version of semicontinuity and turns out to be very useful to analyze discontinuous cases.
In our applications of interest, this new condition allows us to establish the Hodges-
Lehmann optimality of the GEL tests. Our conditions and results are presented in a
general hypothesis testing framework. Thus, they have wide applicability as a starting
point for studying the Hodges-Lehmann optimality in other applications. Third, we apply
our sufficient conditions to the problems of testing moment conditions and overidentify-
ing restrictions. For testing moment conditions, we show that the Hotelling’s T and GEL
tests are Hodges-Lehmann optimal. For testing overidentifying restrictions (i.e., testing
the validity of estimating equations whose dimension is higher than that of parameters),
we show that the GMM and GEL tests are Hodges-Lehmann optimal. These findings to-
gether with the mildness of the new sufficient conditions provide further evidence to the
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belief that the Hodges-Lehmann optimality seems to be a weak asymptotic requirement.
Our application to overidentified moment condition models (or generalized estimating

equations) is of extreme importance particularly in econometrics. It is known that the
GMM and GEL tests have the same asymptotic properties under the null hypothesis
and local alternatives. Several papers study statistical properties of the GMM and GEL
methods beyond their first-order local asymptotic properties (e.g. Imbens, Spady and
Johnson, 1998; Newey and Smith, 2004; Schennach, 2007). In terms of global analysis
based on large deviation theory, Kitamura (2001) and Kitamura, Santos and Shaikh
(2009) provide conditions under which the empirical likelihood test is uniformly most
powerful in a generalized Neyman-Pearson sense for testing overidentifying restrictions.
Additional global optimality results include those in Canay (2010) and Otsu (2010).

There are two key features of our Hodges-Lehmann analysis relative to the other
global analyses cited above. First, the type I error probability in the Hodges-Lehmann
analysis converges to a positive constant, as opposed to converging to zero. This intends
to resemble the situation where a test statistic is compared to a fixed asymptotic critical
value. On the other hand, the above cited papers consider the situation where a test
statistic is compared to a critical value drifting to zero. Thus, our Hodges-Lehmann
analysis complements the existing global optimality analyses for tests of overidentifying
restrictions by introducing a different asymptotic framework. Second, the papers cited
above prove that the empirical likelihood test achieves some form of global optimality, but
do not address the possibility that other competing tests are optimal as well. We provide
Hodges-Lehmann optimality results for several commonly used tests of overidentifying
restrictions.

The remainder of the paper is organized as follows. Section 2 introduces basic notation
and concepts, and presents general Hodges-Lehmann optimality results. Section 3 applies
the general optimality results to moment condition tests and overidentifying restriction
tests.

We use the following notation. Let R̄ ≡ R∪ {+∞}∪ {−∞} be the extended real line,
Ac be the complement of a set A, A\B ≡ A∩Bc be the set subtraction of a set B from a
set A, 1{A} be the indicator function for an event A, Pr{A : P} be the probability of an
event A evaluated under a probability measure P , EP [·] be the mathematical expectation
under a probability measure P , and “⇒” denote the weak convergence.

2. General Results

Let X be a Polish space. Consider a random sample {xi : i = 1, . . . , n} generated from a
probability measure P0 with support X . LetM be the set of all probability measures on
X . For subsets P and Q of M with P ⊂ Q, we consider the hypothesis testing problem

H0 : P0 ∈ P, versus H1 : P0 ∈ Q \ P.

A test φn is defined as a binary function of the sample, where φn = 0 means acceptance
and φn = 1 means rejection. Performance of φn is evaluated by two kinds of error
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probabilities: αn(P ) = EP [φn] for P ∈ P (type I) and βn(P ) = EP [1−φn] for P ∈ Q\P
(type II). The Hodges-Lehmann optimality analysis focuses on the convergence rate of
the type II error probability βn(P1) (or power) of the test under a fixed alternative
P1 ∈ Q \P, while fixing the limit of the type I error probability αn(P ) over P ∈ P. Our
definition of the Hodges-Lehmann optimality is given below.

Definition 2.1 (Hodges-Lehmann optimality). A test φHL,n is called Hodges-Lehmann
optimal at P1 ∈ Q \ P if

(i) φHL,n is pointwise asymptotically level α ∈ (0, 1), i.e.,

lim sup
n→∞

EP [φHL,n] ≤ α for each P ∈ P,

(ii) for any pointwise asymptotically level α test φn, it holds

lim sup
n→∞

1

n
logEP1

[1− φHL,n] ≤ lim inf
n→∞

1

n
logEP1

[1− φn].

This is, given a restriction on the type I error probability, a test is called Hodges-
Lehmann optimal at the fixed alternative measure P1 if the rate of exponential conver-
gence of the type II error probability evaluated at P1 is faster than or equal to that of
any alternative test. Although this definition for optimality is intuitive, the set of alter-
native tests is potentially very large and therefore it might be infeasible to explore the
second inequality in Definition 2.1 for every possible alternative test. The approach we
take here divides the analysis in two parts. First, we show that there exists an optimal
convergence rate for the type II error probability (or equivalently, a lower bound for
lim infn→∞ n−1 logEP1 [1− φn]). Then we investigate sufficient conditions to achieve the
optimal rate.

We first derive the optimal convergence rate of the type II error probability. For
probability measures P and Q, let Q � P denote that Q is absolutely continuous with
respect P , and

K(Q,P ) ≡
{ ∫

X log(dQ/dP )dQ if Q� P
∞ otherwise

denote the Kullback-Leibler divergence (or relative entropy) fromQ to P . DefineK(A, P ) ≡
infQ∈AK(Q,P ) for a subset A ⊆ M. The following lemma presents the best possible
exponential rate of decay to zero of the type II error probability of a test.

Lemma 2.1. For any pointwise asymptotically level α test φn, it holds

lim inf
n→∞

1

n
logEP1

[1− φn] ≥ −K(P, P1),

for each P1 ∈ Q \ P.
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This lemma, an adaptation of Stein’s lemma to our setup, shows that the best expo-
nential growth rate of power depends on the Kullback-Leibler divergence between the
set P for the null hypothesis and the fixed alternative measure P1. If K(P, P1) = ∞,
the above inequality trivially holds true. If 0 < K(P, P1) <∞, this lemma provides the
best possible exponential decay rate of the type II error probability. If K(P, P1) = 0,
this lemma says that there is no test which attains an exponential decay rate of the type
II error probability.

It is interesting to note that in the Bahadur optimality analysis (e.g. Bahadur, 1960),
where the roles of the type I and type II error probabilities are interchanged, the best
possible decay rate of the type I error is typically obtained as−K(P1,P). SinceK(P,Q) 6=
K(Q,P ) in general, this Bahadur bound is different from the Hodges-Lehmann bound
obtained here.

To achieve the bound in Lemma 2.1, we concentrate on tests that take the form of

φn = 1{T (P̂n) > cn}, (1)

where T (P̂n) is a test statistic based on a mapping T :M→ R̄ and the empirical measure
P̂n, and {cn : n ∈ N} is a sequence of positive real numbers monotonically decreasing to
zero. Given this form, our task reduces to explore sufficient conditions for the mapping
T to attain the bound in Lemma 2.1.

There are results in the literature which indicate that several tests can be Hodges-
Lehmann optimal in standard testing problems, such as parameter hypothesis and good-
ness of fit testing problems (see, Kallenberg and Kourouklis, 1992; Tusnády, 1977). In
particular, Kallenberg and Kourouklis (1992) show that the Hodges-Lehmann optimality
emerges in general when the acceptance region of a test converges to the set of measures
for the null hypothesis in a coarse way, provided the mapping T is continuous in the
τ -topology. We show that their continuity assumption in the τ -topology can be replaced
with a lower semicontinuity assumption or its localized version in the weak topology. Our
conditions are presented as follows. Condition 2.1 is fundamental, and either Condition
2.2 or 2.3 is required for the optimality.

Condition 2.1. (a) Q is closed in the weak topology and (b) P = {Q ∈ Q : T (Q) ≤ 0}.

Condition 2.2. T is lower semicontinuous in the weak topology at all Q ∈ {Q ∈
Q : K(Q,P1) < ∞}: this is, for all Q ∈ {Q ∈ Q : K(Q,P1) < ∞} and all sequence
{Qm : m ∈ N} in Q such that Qm ⇒ Q, it holds T (Q) ≤ lim infm→∞ T (Qm).

Condition 2.3. P and Q are compact in the weak topology. Furthermore, T is such
that T (Q) ≤ 0 whenever a sequence of measures {Qm : m ∈ N} in Q and a sequence
of positive real numbers {ηm : m ∈ N} decreasing to zero satisfy Qm ⇒ Q ∈ Q and
T (Qm) ≤ ηm for all m ∈ N.

Condition 2.1(a) imposes a weak regularity on the relevant subset of measures Q.
Condition 2.1(b), imposed by Kallenberg and Kourouklis (1992) as well, says that the
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set of measures P for the null hypothesis should coincide with the level set by the mapping
T at zero (or the acceptance region in the limit). Condition 2.2 is on the continuity of
T . Relative to Kallenberg and Kourouklis (1992), this condition uses a weaker notion of
continuity and a weaker topology, meaning that it is neither stronger nor weaker than
theirs. That is, lower semicontinuity in the weak topology implies lower semicontinuity in
the τ -topology, but does not imply continuity in the τ -topology as required by Kallenberg
and Kourouklis (1992). Although Condition 2.2 seems intuitive and mild, this condition
may be too restrictive to accommodate the GEL tests for testing moment conditions
or overidentifying restrictions, which will be discussed in the next section. Example 3.1
below demonstrates that the mapping to define the empirical likelihood test is not lower
semicontinuous in the weak (or τ) topology. Motivated by this problem, we propose an
alternative requirement in Condition 2.3. Note that Condition 2.3 is neither weaker nor
stronger than Condition 2.2. Condition 2.3 requires that the sets P and Q are compact
in the weak topology, which is not imposed in Condition 2.2. On the other hand, the
continuity requirement on T of Condition 2.3, which is a localized version of the lower
semicontinuity, is weaker than that of Condition 2.2 and can accommodate the mappings
for the GEL tests discussed in the next section. In our applications, these conditions are
verified under some primitive conditions.

Based on these conditions, our general Hodges-Lehmann optimality results are pre-
sented as follows.

Theorem 2.1. Suppose that a test φn taking the form of (1) is pointwise asymptotically
level α, and Conditions 2.1 is satisfied. Then under either Condition 2.2 or 2.3, φn is
Hodges-Lehmann optimal at each P1 ∈ int(Q) \ P satisfying 0 < K(P, P1) <∞.

The first part (the statement under Condition 2.2) is a generalization of Theorem 2.1
in Kallenberg and Kourouklis (1992). This part is useful to show the Hodges-Lehmann
optimality of the Hotelling’s T , two-step GMM, and continuous updating GMM tests.
The second part (the statement under Condition 2.3) is applied to establish the Hodges-
Lehmann optimality of the GEL tests.

Note that this theorem establishes optimality for alternatives such that 0 < K(P, P1) <
∞ and that are not at the boundary of Q. For example, if K(P, P1) = 0, Lemma 2.1
implies that there is no test which attains an exponential decay rate of the type II error
probability. Thus the Hodges-Lehmann analysis in such a case, which perhaps compares
polynomial decay rates of the type II error probabilities, will be significantly different
from ours and is beyond the scope of this paper. Also, for the case of K(P, P1) = ∞,
although the conclusion of Lemma 2.1 trivially holds, the lemma does not provide an
optimal decay rate and, to the best of our knowledge, it is not clear how to conduct the
Hodges-Lehmann analysis in such a situation.

Also note that Definition 2.1 and Theorem 2.1 apply to tests that are point-
wise asymptotically level α. However, it is worth mentioning that we can alterna-
tively define and present the results for uniformly asymptotically level α tests (i.e.,
lim supn→∞ supP∈P EP [φn] ≤ α), which is stronger than the pointwise asymptotic re-
quirement. This change can be done typically by imposing more restrictions on Q relative
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to the pointwise requirement.1

3. Applications

3.1. Test for Moment Conditions

We now apply the general Hodges-Lehmann optimality results obtained in the last
section. In this subsection, we consider the testing problem for moment conditions
EP0 [m(x)] = 0, where m : X → Rq is a vector of known functions. Pick any ε > 0,
and define Σ(P ) ≡ EP [(m(x)− EP [m(x)])(m(x)− EP [m(x)])′] and

Qε ≡ {P ∈M : det(Σ(P )) ≥ ε}, Pε ≡ {P ∈ Qε : EP [m(x)] = 0}.

The testing problem of interest is H0 : P0 ∈ Pε versus H1 : P0 ∈ Qε\Pε. The requirement
in Qε for the determinant is used to control the asymptotic size of tests. Note that we
do not make parametric assumptions on the distributional form of P0. For this problem,
we consider the following setup.

Condition 3.1. X is compact and m is continuous on X .

This condition guarantees that the setsM, Pε, and Qε are compact in the weak topol-
ogy (see, Theorem D.8 of Dembo and Zeitouni (1998) and Lemma B.4), and simplifies
the technical argument below.

One way to test H0 is to employ Hotelling’s T -test statistic TH(P̂n), where

TH(Q) ≡ EQ[m(x)]′Σ(Q)−1EQ[m(x)].

Since nTH(P̂n)⇒ χ2
q under H0, the T -test is written as φH,n ≡ 1{TH(P̂n) > χ2

q,1−α/n},
where χ2

q,1−α is the (1− α)-th quantile of the χ2
q distribution. Note that φH,n takes the

form of (1).
An alternative way to test H0 is to employ the GEL approach. For example, consider

the Cressie and Read (1984) family of criterion functions

ρa(v) ≡ −(1 + av)(a+1)/a/(a+ 1),

for a ∈ R. The GEL test statistic is defined as Ta(P̂n), where

Ta(Q) ≡ sup
γ∈ΓQ

EQ[ρa(γ′m(x))− ρa(0)],

ΓQ ≡ {γ ∈ Rq : Pr{γ′m(x) ∈ V : Q} = 1}, and V is the domain of ρa(v). This GEL
test statistic covers several existing statistics, such as empirical likelihood (a = −1),

1 For example, in order to control the size uniformly in the application of Section 3.1, the set Qε
should impose bounded 2 + δ moments or a uniform integrability condition in addition to a restriction
on the determinant.
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Hellinger distance (a = −1/2), exponential tilting (a = 0), and Hotelling’s T -statistic
(a = 1) discussed above. By Newey and Smith (2004), we can see that 2nTa(P̂n) ⇒ χ2

q

under H0. Thus, the GEL test is written as φa,n ≡ 1{Ta(P̂n) > χ2
q,1−α/(2n)} taking the

form of (1).
By applying the general result in Theorem 2.1, we can show the Hodges-Lehmann

optimality of the Hotelling’s T and GEL tests.

Theorem 3.1. Assume that Condition 3.1 holds, and pick any ε > 0 and a ∈ R. Then
Condition 2.1(a) holds true and

(i) the Hotelling’s T -test φH,n is pointwise asymptotically level α and TH satisfies
Conditions 2.1(b) and 2.2, i.e., φH,n is Hodges-Lehmann optimal at each P1 ∈
int(Qε) \ Pε satisfying 0 < K(Pε, P1) <∞.

(ii) the GEL test φa,n is pointwise asymptotically level α and Ta satisfies Conditions
2.1(b) and 2.3, i.e., φa,n is Hodges-Lehmann optimal at each P1 ∈ int(Qε) \ Pε
satisfying 0 < K(Pε, P1) <∞.

Theorem 3.1 shows that several existing tests to test moment conditions are Hodges-
Lehmann optimal. This suggests, similarly to previous findings on parametric and
nonparametric tests (Kallenberg and Kourouklis, 1992; Tusnády, 1977), that Hodges-
Lehmann optimality is a weak asymptotic requirement. We are not aware of any example
of a reasonable test which is not Hodges-Lehmann optimal in this setting.2

It is interesting to note that Ta is not necessarily continuous in the τ -topology, as re-
quired by Kallenberg and Kourouklis (1992). In fact, Ta does not necessarily satisfy our
Condition 2.2, lower semicontinuity in the weak topology. Indeed, this lack of lower semi-
continuity becomes our motivation to develop the alternative requirement in Condition
2.3. To illustrate the discontinuity of Ta, let us consider the case of empirical likelihood,
where the mapping TEL is defined by ρa(v) = log(1− v) with a = −1 and V = (−∞, 1).
The following example shows that TEL is not lower semicontinuous both in the weak and
τ -topology.

Example 3.1 (TEL is not lower semicontinuous). Suppose m(x) = x and X =
[−xL, xH ] for some xL > 0 and xH > 0. Note that Condition 3.1 is satisfied. For a
probability measure Q, let XQ denote the support of Q and −xLQ

and xHQ
denote the

lower and upper bounds of XQ. If {Qm : m ∈ N} is a sequence of measures, we use −xLm

and xHm
. In this setup,

TEL(Q) ≡ sup
γ∈ΓQ

∫
X

log(1 + γx)dQ,

and ΓQ = (−1/xHQ
, 1/xLQ

) (if xHQ
≤ 0 or xLQ

≤ 0, the reciprocals are set to ∞).
Consider a measure Q∗ such that Q∗(X = 0) = 1 − p and Q∗(X = x∗) = p for some

2If we restrict our attention to the class of distributions having symmetric densities (i.e., Qε ≡ {P ∈
M : det(Σ(P )) ≥ ε, P has a symmetric pdf}), then the analysis of Hodges and Lehmann (1956) can be
applied to the case of m(x) = x (i.e., testing for location) and, for example, the sign test is typically not
Hodges-Lehmann optimal.
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x∗ ∈ (0, xH). We can always choose p ∈ (0, 1) so that Q∗ ∈ Qε. Now consider the
following sequence of probability measures,

Qm(X = −xL) =
1

m
, Qm(X = 0) = 1− p− 1

m
, Qm(X = x∗) = p.

Clearly Qm ⇒ Q∗. Note that ΓQm = (−1/x∗, 1/xL) for all m ∈ N, while xLQ
= 0 and

then ΓQ = (−1/x∗,∞). This is, xLm
does not converge to xLQ

= 0 since xLm
> 0 for all

m ∈ N, and so lim infm→∞(xLn
− xLQ

) > 0.
Now note that since

∫
X log(1 + γx)dQm = log(1− xLγ)/m+ log(1 + γx∗)p, the value

γ∗m ∈ ΓQm that maximizes this integral is

γ∗m =
px∗ − xL/m

(p+ 1/m)xLx∗
.

As γ∗m → 1/xL as m→∞, it follows that TEL(Qm)↗ log(1 + x∗/xL)p <∞. However,

TEL(Q) = sup
γ∈(−1/x∗,∞)

∫
X

log(1 + γx)dQ = sup
γ∈(−1/x∗,∞)

log(1 + γx∗)p =∞.

Note that TEL(Q) = ∞ regardless of how small x∗ or p might be, as long as both are
positive. Therefore, for a measure Q∗ ∈ Qε we constructed a sequence {Qm : m ∈ N}
such that Qm ⇒ Q∗ and TEL(Q∗) > lim infm→∞ TEL(Qm), which violates Condition
2.2. Since it is also true that Qm converges to Q in the τ -topology, it follows that the
mapping TEL is not lower semicontinuous in the τ -topology either. �

3.2. Overidentifying Restriction Test

In this subsection, we consider the testing problem for overidentifying restrictions, which
are common particularly in econometrics. Consider the (generalized) estimating functions
m : X × Θ → Rq, where Θ ⊂ Rk is the parameter space. It is assumed that q > k, i.e.,
the parameter is overidentified. Let Σ(P, θ) ≡ EP [(m(x, θ) − EP [m(x, θ)])(m(x, θ) −
EP [m(x, θ)])′] and Qε,θ ≡ {P ∈M : det(Σ(P, θ)) ≥ ε}. We redefine

Pε ≡ ∪θ∈Θ{P ∈ Qε,θ : EP [m(x, θ)] = 0}, Qε ≡ ∪θ∈ΘQε,θ.

The testing problem of interest is H0 : P0 ∈ Pε versus H1 : P0 ∈ Qε \ Pε, i.e., the
estimating equations are valid and the restriction EP0

[m(x, θ0)] = 0 is satisfied at some
θ0 ∈ Θ.

Condition 3.2. X and Θ are compact, and m is continuous in both of its arguments.

One common test for H0 is based on the GMM of Hansen (1982). The two-step GMM
test statistic is defined as TGMM (P̂n), where

TGMM (Q) ≡ inf
θ∈Θ

EQ[m(x, θ)]′Σ(Q, θ̃(Q))−1EQ[m(x, θ)],
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and θ̃(Q) ≡ arg minθ∈ΘEQ[m(x, θ)]′WEQ[m(x, θ)] with a q × q fixed weight matrix W

(i.e., θ̃(P̂n) is a preliminary estimator for θ0). Here we consider the GMM test in the
form of φGMM,n ≡ 1{TGMM (P̂n) > χ2

q,1−α/n}.3
Alternatively, we can apply the GEL approach. Let ΓQ(θ) ≡ {γ ∈ Rq : Pr{γ′m(x, θ) ∈

V : Q} = 1)}. By using the criterion function ρa defined in the last subsection, the GEL
test statistic for H0 is given by Ta(P̂n), where

Ta(Q) ≡ inf
θ∈Θ

sup
γ∈ΓQ(θ)

EQ[ρa(γ′m(x, θ))− ρa(0)].

Here we consider the GEL test in the form of φa,n ≡ 1{Ta(P̂n) > χ2
q,1−α/(2n)}. Again,

the GEL test includes several existing tests, such as the empirical likelihood, exponential
tilting, and continuous updating GMM tests.

By applying the general result in Theorem 2.1, we can show the Hodges-Lehmann
optimality of the GMM and GEL tests.

Theorem 3.2. Assume that Condition 3.2 holds, and pick any ε > 0 and a ∈ R. Then
Condition 2.1(a) holds true and

(i) the GMM test φGMM,n with a continuous mapping θ̃(·) in the weak topology is
pointwise asymptotically level α and TGMM satisfies Conditions 2.1(b) and 2.2,
i.e., φGMM,n is Hodges-Lehmann optimal at each P1 ∈ int(Qε) \ Pε satisfying 0 <
K(Pε, P1) <∞.

(ii) the GEL test φa,n is pointwise asymptotically level α and Ta satisfies Conditions
2.1(b) and 2.3, i.e., φa,n is Hodges-Lehmann optimal at each P1 ∈ int(Qε) \ Pε
satisfying 0 < K(Pε, P1) <∞.

Theorem 3.2 shows again that all tests under consideration are Hodges-Lehmann op-
timal, suggesting that Hodges-Lehmann optimality is a weak asymptotic requirement for
the problem of testing overidentifying restrictions.

As the proof of this theorem shows, the mapping TGMM to define the two-step GMM
test (and also for the mapping to define the continuous updating GMM test) is lower
semicontinuous in the weak topology. Thus, we can apply the first part of Theorem 2.1.
On the other hand, as Example 3.1 shows, the mapping Ta to define the GEL test is not
lower semicontinuous in general. Thus, we verify Condition 2.3 as an alternative route
to derive the Hodges-Lehmann optimality.

Our analysis can be also applied to parameter hypothesis tests in estimating equations,
i.e., H0 : P0 ∈ Pε ≡ ∪θ∈Θ0

{P ∈ Qε,θ : EP [m(x, θ)] = 0} versus H1 : P0 ∈ Qε \ Pε for
a subset Θ0 ⊂ Θ. It is also worth mentioning that the results in Theorem 2.1 can be
applied to a variety of alternative testing problems, including setups where the parameter

3Under additional regularity conditions (such as uniqueness of θ0 and a rank condition for

EP [∂m(x, θ0)/∂θ]), we can see that nTGMM (P̂n) ⇒ χ2
q−k (see, Hansen, 1982). Since we do not im-

pose such additional requirements in the space Qε, we employ the critical value χ2
q,1−α/n instead of

χ2
q−k,1−α/n to guarantee that φGMM,n is pointwise asymptotically level α (see, Lemma B.5). The same

comment applies to the critical value of the GEL test.
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of interest is partially identified and the statistical model involves moment inequality
conditions.

Appendix A: Proof of the main results

In what follows let Ā be the closure of a set A ⊆M with respect to the weak topology,
and denote Ωη ≡ {Q ∈ Q : T (Q) ≤ η} and κ(η) ≡ K(Ωη, P1) for η ∈ [0,∞). We also use
µ(Q, θ) ≡ EQ[m(z, θ)].

Define the Lévy-Prohorov metric for measures P,Q ∈M as

dL(P,Q) ≡ inf{ε > 0 : P (A) ≤ Q(Aε) + ε,Q(A) ≤ P (Aε) + ε for all Borel sets A},

where Aε ≡ {x ∈ X : infy∈A d(x, y) ≤ ε} for a metric d on X . The Lévy-Prohorov metric
is compatible with the weak topology (Billingsley, 1999, Theorem 6.8). Let BL(P, r) ≡
{Q ∈ M : dL(Q,P ) ≤ r} be the ball with respect to the Lévy-Prohorov metric centered
at P with radius r > 0.

To analyze the large deviation behavior of the empirical measure P̂n, we use Sanov’s
Theorem (see, Theorem 6.2.10 of Dembo and Zeitouni, 1998) i.e.,

lim sup
n→∞

1

n
logEP [1{P̂n ∈ A}] ≤ −K(A, P ),

for any closed sets A ⊆M in the weak topology, and

lim inf
n→∞

1

n
logEP [1{P̂n ∈ B}] ≥ −K(B, P ),

for any open sets B ⊆M in the weak topology.

A.1. Proof of Lemma 2.1

Pick any P1 ∈ Q \ P. If K(P, P1) = ∞, the conclusion is trivially satisfied. So, we
concentrate on the case of K(P, P1) < ∞. Pick any ε > 0. There exists P ∗0 ∈ P such

that K(P ∗0 , P1) < K(P, P1) + ε < ∞ and the Radon-Nykodym derivative r(x) ≡ dP∗0
dP1

exists. Now let t− ≡ −min{t, 0}. Since P ∗0 is absolutely continuous with respect to P1

and s(log s)− is bounded for all s ∈ [0,∞), we have∫
X

(log r(x))
−
dP ∗0 =

∫
X
r(x) (log r(x))

−
dP1 <∞.

Combining this result with EP∗0 [log r(x)] = K(P ∗0 , P1) <∞ implies EP∗0 [| log r(x)|] <∞.
As {xi : i = 1, . . . , n} is an i.i.d. sample from P ∗0 , the strong law of large numbers (see,
Theorem 22.1 of Billingsley, 1995) implies

lim
n→∞

1

n

n∑
i=1

log r(xi) = EP∗0 [log r(x)] <∞, P ∗0 − a.s. (2)
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Let Pn be the n-fold product measure of P and define the event En ≡
{
∏n
i=1 r(xi) < exp(n[K(P ∗0 , P1) + ε])}. Observe that

EP1
[1− φn] ≥

∫
En

1{φn = 0}dPn1

≥ exp(−n[K(P ∗0 , P1) + ε])

∫
En

1{φn = 0}
n∏
i=1

r(Xi)dP
n
1

= exp(−n[K(P ∗0 , P1) + ε])

∫
En

1{φn = 0}dP ∗n0

≥ exp(−n[K(P ∗0 , P1) + ε])(Pr{φn = 0 : P ∗n0 } − Pr{Ecn : P ∗n0 }),

where the first inequality follows from the set inclusion relation, the second inequality
follows from the definition of En, the equality follows from the change of measures, and
the last inequality follows from the set inclusion relation. Since lim infn→∞ Pr{φn = 0 :
P ∗n0 } = 1 − lim supn→∞ Pr{φn = 1 : P ∗n0 } ≥ 1 − α ∈ (0, 1) (because φn is pointwise
asymptotically level α) and limn→∞ Pr{Ecn : P ∗n0 } = 0 (by (2)), it follows that

lim inf
n→∞

1

n
logEP1

[1− φn] ≥ −K(P ∗0 , P1)− ε > −K(P, P1)− 2ε,

where the second inequality follows from the definition of P ∗0 . Since ε is arbitrary, the
conclusion is obtained.

A.2. Proof of Theorem 2.1

Proof under Condition 2.2. Pick any P1 ∈ int(Q) \ P. Since P1 ∈ int(Q), there
exists r > 0 such that BL(P1, r) ⊆ Q. The weak convergence P̂n ⇒ P1 implies that
P̂n ∈ BL(P1, r) ⊆ Q for all n large enough. Thus, for all n large enough, it holds

EP1 [1{T (P̂n) ≤ cn}] = EP1 [1{P̂n ∈ {Q ∈ Q : T (Q) ≤ cn}}]. (3)

Now pick any ε > 0. Note that the function κ(η) is non-increasing (by definition) and
right continuous in η ∈ [0,∞) (by Lemma B.2). Thus, there exists δ > 0 such that

− κ(δ) < −κ(0) + ε = −K(P, P1) + ε, (4)

where the equality follows from Condition 2.1(b). For this δ, it holds

lim sup
n→∞

1

n
logEP1

[1{T (P̂n) ≤ cn}] ≤ lim sup
n→∞

1

n
logEP1

[1{P̂n ∈ Ω̄δ}]

≤−K(Ω̄δ, P1)

=− κ(δ)

<−K(P, P1) + ε,
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where the first inequality follows from (3), cn ↘ 0, and Ωδ ⊆ Ω̄δ, the second inequality
follows by Sanov’s Theorem based on the fact that Ω̄δ is closed in the weak topology,
the equality follows from Lemma B.1, and the last inequality follows from (4). Since ε is
arbitrary, the conclusion is obtained.

Proof under Condition 2.3. The first step involves proving that Ω̄η ⊆ Ω̄η′ for
η ≤ η′. Note that Ω̄η = Ωη ∪ ∂∗Ωη, where the set for boundary points is defined as

∂∗Ωη ≡ {Q /∈ Ωη : ∃ a sequence {Qk : k ∈ N} ⊆ Ωη such that Qk ⇒ Q}.

If Q ∈ Ωη then Q ∈ Ωη′ by definition. Now suppose Q ∈ ∂∗Ωη. By definition there exists a
sequence {Qk : k ∈ N} ⊆ Ωη such that Qk ⇒ Q. It then follows that {Qk : k ∈ N} ⊆ Ωη′ ,
which implies Q ∈ Ω̄η′ . Thus, we obtain Ω̄η ⊆ Ω̄η′ .

The second step is to prove that κ̄(η) ≡ K(Ω̄η, P1) is right continuous at η = 0. Pick
any sequence of positive numbers {ηm : m ∈ N} with ηm ↘ 0. Note that by Condition
2.1, closedness of P, and 0 < K(P, P1) < ∞, we have κ̄(0) < ∞. Since Ω̄η ⊆ Ω̄η′

for η ≤ η′, the function κ̄(·) is non-increasing. Thus, the limit limm→∞ κ̄(ηm) exists
and it holds limm→∞ κ̄(ηm) ≤ κ̄(0) < ∞. Since Ω̄η is closed in the weak topology by
definition and K(Q,P1) is lower semicontinuous under the weak topology in Q (see,
Lemma 1.4.3 of Dupuis and Ellis, 1997), there exists Qm ∈ Ω̄ηm for all m ∈ N such that
K(Qm, P1) = κ̄(ηm) < ∞. Since the sequence {Qm : m ∈ N} is on the compact set Q,
there exists a subsequence {Qmj : j ∈ N} such that Qmj ⇒ Q∗ for some Q∗ ∈ Q. Since
K(Q,P1) is lower semicontinuous in Q,

K(Q∗, P1) ≤ lim inf
j→∞

K(Qmj
, P1) <∞.

There are two possibilities. First, if there exists a further subsequence {Qmk
: k ∈ N} of

{Qmj
: j ∈ N} such that Qmk

∈ Ωηmk
for all k ∈ N, then T (Qmk

) ≤ ηmk
for each k ∈ N

and Condition 2.3 implies T (Q∗) = 0 meaning that Q∗ ∈ Ω0. As a result,

κ̄(0) ≥ lim
k→∞

κ̄(ηmk
) = lim inf

k→∞
K(Qmk

, P1) ≥ K(Q∗, P1) ≥ κ̄(0), (5)

and it follows that limk→∞ κ̄(ηmk
) = κ̄(0). Second, if such a subsequence does not exist,

then it must be the case that Qmj
∈ ∂∗Ωηmj

for all j large enough. Since Qmj
⇒ Q∗ and

ηmj ↘ 0, it follows from Lemma B.3 that T (Q∗) = 0 and (5) follows. Therefore, κ̄(η) is
right continuous at η = 0, i.e., for any ε > 0 there exists δ > 0 such that κ̄(0)− κ̄(δ) < ε.

The third step is to derive the conclusion by using Sanov’s theorem and the results in
the previous steps. Now, pick an arbitrary ε > 0. Then

lim sup
n→∞

1

n
logEP1

[1{T (P̂n) ≤ cn}] ≤ lim sup
n→∞

1

n
logEP1

[1{P̂n ∈ Ω̄δ}]

≤ −κ̄(δ) < −κ̄(0) + ε = −K(P, P1) + ε,

for some δ > 0, where the first inequality follows from (3), cn ↘ 0, and Ωδ ⊆ Ω̄δ, the
second inequality follows by Sanov’s Theorem based on the fact that Ω̄δ is closed in the
weak topology, the third inequality follows from the right continuity of κ̄(η) at η = 0,
and the equality follows from Ω̄0 = P (by Condition 2.1(b) and closedness of P). Since
ε is arbitrary, we obtain the conclusion.
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A.3. Proof of Theorem 3.1

Pick any ε > 0 to define Pε andQε. Condition 2.1(a) follows from Lemma B.4 by replacing
m(x, θ) with m(x).

Proof of (i). The proof is a special case of that of Theorem 3.2 (i) with replacements
of m(x, θ) with m(x).

Proof of (ii). Pick any a ∈ R to define ρa. First, from Lemma B.5 (with replacements
of m(x, θ) with m(x)), φa,n is pointwise asymptotically level α.

Second, we present some properties of Ta. Let P0 ≡ {P ∈ M : EP [m(x)] = 0} and
P0(Q) ≡ {P ∈ P0 : P � Q,Q� P}. Under Condition 3.1, we can apply Theorem 3.4 of
Borwein and Lewis (1993): if P0(Q) is not empty (i.e., the primal constraint qualification
of Borwein and Lewis (1993) is satisfied), then

Ta(Q) ≡ sup
γ∈ΓQ

EQ[ρa(γ′m(x))− ρa(0)] = inf
P∈P0(Q)

Da(Q,P ), (6)

for each Q ∈M, where

Da(Q,P ) ≡


∫

1
a(a+1)

((
dP
dQ

)a+1

− 1

)
dQ if P � Q

∞ otherwise
.

If P0(Q) is empty, then we have Ta(Q) =∞ (because we can take λ so that λ′m(x) have
the same sign for almost every x under Q) and infP∈P0(Q)Da(Q,P ) =∞ (by convention).

Note that the mapping Da : M ×M → [0,∞] is a special case of the so-called
f -divergence (see Liese and Vajda, 1987). It is known that

(D1) Da(Q,P ) = 0 if and only if Q = P ;
(D2) Da(Q,P ) is lower semicontinuous under the product topology for (Q,P ) ∈M×M

induced by the weak topology forM andM (Liese and Vajda, 1987, Theorem 1.47).

Third, we check Condition 2.1(b) for Ta, i.e., Pε = {R ∈ Qε : Ta(R) = 0} in this case.
Suppose Q ∈ Pε ⊂ P0. Then the definition of P0(Q) implies Q ∈ P0(Q). Also, (6) and
the set inclusion relation imply 0 ≤ Ta(Q) = infP∈P0(Q)Da(Q,P ) ≤ Da(Q,Q) = 0.
Therefore, from Q ∈ Pε ⊂ Qε, we have Q ∈ {R ∈ Qε : Ta(R) = 0}. On the other
hand, suppose Q ∈ {R ∈ Qε : Ta(R) = 0}. From Ta(Q) = 0 and P0(Q) ⊂ P0, we have
infP∈P0 Da(Q,P ) = 0. Since P0 is compact (by applying Lemma B.4 for the case of ε = 0
with replacements of m(x, θ) with m(x)) and Da(Q,P ) is lower semicontinuous in the
weak topology for P ∈M (by (D2)), there exists P ∗ ∈ P0 such that infP∈P0

Da(Q,P ) =
Da(Q,P ∗) = 0. Now (D1) implies Q = P ∗ ∈ P0 and thus Q ∈ Qε implies Q ∈ Pε.
Combining these results, Condition 2.1(b) is verified.

Finally, we check Condition 2.3. Pick any sequence {Qm : m ∈ N} ⊆ Qε such that
Qm ⇒ Q ∈ Qε and Ta(Qm) ≤ ηm for all m ∈ N. Since the set P0 is compact in the
weak topology (by applying Lemma B.4 with replacements of m(x, θ) with m(x)) and
Da(Q,P ) is lower semicontinuous in the weak topology for P ∈ M (by (D2)), there
exists a sequence P ∗m ∈ P0 such that Da(Qm, P

∗
m) = infP∈P0

Da(Qm, P ) ≤ Ta(Qm) for
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each m ∈ N. Since {P ∗m : m ∈ N} is a sequence on the compact set P0, there exists a
subsequence {P ∗mj

: j ∈ N} such that P ∗mj
⇒ P ∗ ∈ P0. Now, from (D2), it follows that

0 = lim inf
j→∞

ηmj
≥ lim inf

j→∞
Ta(Qmj

) ≥ lim inf
j→∞

Da(Qmj
, P ∗mj

) ≥ Da(Q,P ∗).

which means Q = P ∗ (by (D1)). Therefore, it holds P ∗ ∈ P0(Q) and Ta(Q) =
infP∈P0(Q)Da(Q,P ) ≤ Da(Q,P ∗) = 0, which completes the proof.

A.4. Proof of Theorem 3.2

Pick any ε > 0 to define Pε and Qε. Condition 2.1(a) follows from Lemma B.4.
Proof of (i). From Lemma B.5, φGMM,n is pointwise asymptotically level α. Also

Condition 2.1(b) follows immediately. So we concentrate on showing that TGMM satisfies
Condition 2.2.

Pick any Q∗ ∈ {Q ∈ Qε : K(Q,P1) < ∞}. We first re-write the mapping as
TGMM (Q) ≡ infθ∈Θ TGMM (Q, θ), where

TGMM (Q, θ) ≡ µ(Q, θ)′Σ(Q, θ̃(Q))−1µ(Q, θ),

and µ(Q, θ) ≡ EQ[m(x, θ)]. When Σ(Q, θ̃(Q)) is singular, we define TGMM (Q, θ) to be
infinity if ||µ(Q, θ)|| 6= 0 and to be zero if ||µ(Q, θ)|| = 0. By Condition 3.2 and the
Portmanteau Lemma (see, Lemma 2.2 of van der Vaart, 1998), both µ(Q, θ) and Σ(Q, θ)
are uniformly continuous in (Q, θ) ∈M×Θ, as bothM and Θ are compact. Thus, since
θ̃(Q) is continuous in Q, Σ(Q, θ̃(Q)) is continuous in Q ∈M.

Pick any sequence {(Qm, θm) : m ∈ N} such that Qm ⇒ Q∗ ∈ {Q ∈ Qε : K(Q,P1) <
∞} and θm → θ∗ ∈ Θ. We split into three cases. First, suppose det(Σ(Q∗, θ̃(Q∗))) > 0.
Then since det(Σ(Qm, θ̃(Qm))) > 0 for all m large enough, we obtain TGMM (Q∗, θ∗) =
limm→∞ TGMM (Qm, θm). Second, suppose det(Σ(Q∗, θ̃(Q∗))) = 0 and ||µ(Q∗, θ∗)|| = 0.
Then TGMM (Q∗, θ∗) = 0 ≤ lim infm→∞ TGMM (Qm, θm), since TGMM (Qm, θm) ≥ 0 for
all m ∈ N by definition. Third, suppose det(Σ(Q∗, θ̃(Q∗))) = 0 and ||µ(Q∗, θ∗)|| 6= 0,
so that TGMM (Q∗, θ∗) = ∞. We can partition the sequence {Qm : m ∈ N} into two
subsequences {Qmj

} and {Qmk
} such that

(a) det(Σ(Qmj
, θ̃(Qmj

))) = 0 along the subsequence,

(b) det(Σ(Qmk
, θ̃(Qmk

))) > 0 along the subsequence.

We concentrate on the case where both {Qmj
} and {Qmk

} have infinitely many elements
(the case where {Qmj

} or {Qmk
} has a finite number of elements can be handled in

the same manner). Since ||µ(Qm, θm)|| > 0 for all m large enough, we can construct the
above subsequences such that ||µ(Qmj , θmj )|| > 0 and ||µ(Qmk

, θmk
)|| > 0 for all j and

k large enough. By the construction of the subsequences {Qmj} and {Qmk
},

lim inf
m→∞

TGMM (Qm, θm) = min{lim inf
j→∞

TGMM (Qmj
, θmj

), lim inf
k→∞

TGMM (Qmk
, θmk

)}

= lim inf
k→∞

TGMM (Qmk
, θmk

) = TGMM (Q∗, θ∗),
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where the second equality follows from TGMM (Qmj
, θmj

) = ∞ for all j large enough,
and the third equality follows by TGMM (Qmk

, θmk
) being a continuous transformation of

µ(Qmk
, θmk

) and Σ(Qmk
, θ̃(Qmk

)) and therefore continuous in (Qmk
, θmk

). Combining
all three cases,

TGMM (Q∗, θ∗) ≤ lim inf
m→∞

TGMM (Qm, θm), (7)

for any sequence {(Qm, θm) : m ∈ N} such that Qm ⇒ Q∗ ∈ {Q ∈ Qε : K(Q,P1) < ∞}
and θm → θ∗ ∈ Θ.

Now pick any sequence {Qm : m ∈ N} in Qε such that Qm ⇒ Q∗ ∈ {Q ∈ Qε :
K(Q,P1) < ∞}. By compactness of Θ and continuity of TGMM (Q, θ) in θ ∈ Θ for
each Q ∈ Qε, there exists a sequence {θm : m ∈ N} in Θ such that TGMM (Qm) =
TGMM (Qm, θm) for each m ∈ N. From the definition of the limit inferior, we can always
take a subsequence {(Qmj

, θmj
) : j ∈ N} such that

lim inf
m→∞

TGMM (Qm) = lim inf
m→∞

TGMM (Qm, θm) = lim
j→∞

TGMM (Qmj
, θmj

).

If lim infm→∞ TGMM (Qm) = ∞, then Condition 2.2 trivially holds for TGMM . Thus
consider the case of lim infm→∞ TGMM (Qm) <∞. Since {θmj : j ∈ N} is a sequence on

a compact set Θ, we can take a further subsequence {θ̃mk
: k ∈ N} which converges to

some θ̃ ∈ Θ. It then follows that

lim inf
m→∞

TGMM (Qm) = lim
k→∞

TGMM (Qmk
, θ̃mk

) ≥ TGMM (Q∗, θ̃) ≥ TGMM (Q∗),

where the first inequality follows from (7) and the second inequality follows by the defi-
nition of TGMM (Q∗). Therefore, TGMM satisfies Condition 2.2.

Proof of (ii). The proof is similar to that of Theorem 3.1 (ii) by noting that

Ta(Q) ≡ inf
θ∈Θ

sup
γ∈ΓQ(θ)

EQ[ρa(γ′m(x, θ))− ρa(0)] = inf
P∈P0(Q)

Dα(Q,P ),

where P0(Q) ≡ {P ∈ P0 : P � Q,Q� P} and P0 ≡ ∪θ∈Θ{P ∈M : EP [m(x, θ)] = 0}.

Appendix B: Additional Lemmas

Lemma B.1. Under Conditions 2.1(a) and 2.2, for each P1 ∈ Q and each η ∈ [0,∞)
with κ(η) <∞, there exists Q∗ ∈ Ωη such that K(Q∗, P1) = K(Ω̄η, P1) = κ(η).

Proof. Pick any P1 ∈ Q and η ∈ [0,∞) with κ(η) < ∞. Define Ω′η ≡ {Q ∈ M :
K(Q,P1) ≤ κ(η) + 1}. Since Ω′η is compact in the weak topology (Dupuis and Ellis,

1997, Lemma 1.4.3), Ω̄η ∩Ω′η is also compact. Since K(Q,P1) is lower semicontinuous in
Q ∈M under the weak topology (Dupuis and Ellis, 1997, Lemma 1.4.3), the compactness
of Ω̄η∩Ω′η implies that there exists a measureQ∗ ∈ Ω̄η∩Ω′η such thatK(Q∗, P1) = K(Ω̄η∩
Ω′η, P1). Since K(Ω̄η, P1) = K(Ω̄η ∩ Ω′η, P1) (otherwise there would exists Q̃ ∈ Ω̄η \ Ω′η
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such that K(Q̃, P1) < K(Q∗, P1). But using Q̃ /∈ Ω′η and Q∗ ∈ Ω′η, we would obtain a

contradiction). Therefore, we have K(Q∗, P1) = K(Ω̄η, P1) ≤ κ(η) <∞.
Finally, we show Q∗ ∈ Ωη, which implies K(Ω̄η, P1) = κ(η). From K(Q∗, P1) =

K(Ω̄η, P1), we can take a sequence {Qm : m ∈ N} in Ωη such that Qm ⇒ Q∗. Since
Q∗ ∈ Q (from Q∗ ∈ Ω̄η ∩ Ω′η) and K(Q∗, P1) < ∞, Condition 2.2 guarantees T (Q∗) ≤
lim infm→∞ T (Qm) ≤ η so Q∗ ∈ Ωη. This completes the proof.

Lemma B.2. Under Conditions 2.1(a) and 2.2, the function κ(η) is right continuous
in η ∈ [0,∞).

Proof. First, note that Ωη1 ⊆ Ωη2 if η2 > η1 meaning that K(Ωη2 , P1) ≤ K(Ωη1 , P1).
Thus, κ(·) is a non-increasing function.

Second, let {ηm : m ∈ N} be a sequence of positive real numbers monotonically
decreasing to some η ∈ [0,∞) such that κ(η) <∞. Since κ(·) is non-increasing, {κ(ηm) :
m ∈ N} is a non-decreasing sequence bounded by κ(η) from above, and limm→∞ κ(ηm)
exists. By Lemma B.1 it follows that for each m ∈ N there exists Qm ∈ Ωηm such that
K(Qm, P1) = κ(ηm) ≤ κ(η). Since K(·, P1) has compact level sets for each P1 ∈ M (see
Dupuis and Ellis, 1997, Lemma 1.4.3), {Qm : m ∈ N} has a subsequence {Qmj : j ∈ N}
such that Qmj

⇒ Q ∈ M and K(Q,P1) ≤ κ(η) < ∞. And by Condition 2.1(a) and the
fact that {Qm : M ∈ N} ⊆ Q, it follows that Q ∈ Q.

Third, since T (Qmj
) ≤ ηmj

for each j ∈ N and T is lower semicontinuous at Q such
that K(Q,P1) < ∞ by Condition 2.2, it follows that T (Q) ≤ lim infj→∞ T (Qmj ) ≤
lim infj→∞ ηmj = η. Therefore, Q ∈ Ωη and we can conclude that

κ(η) ≥ lim
j→∞

κ(ηmj ) ≥ lim inf
j→∞

K(Qmj , P1) ≥ K(Q,P1) ≥ κ(η),

which means limj→∞ κ(ηmj ) = κ(η).
Finally, note that the conclusion also holds for η ∈ [0,∞) such that κ(η) = ∞. To

see this, suppose not, i.e., κ(η) =∞ but limm→∞ κ(ηm) exists for a sequence {ηm : m ∈
N} with ηm ↘ η. By applying the previous argument, there exists Q ∈ Ωη such that
K(Q,P1) <∞, which violates κ(η) =∞.

Lemma B.3. Let

∂∗Ωη ≡ {Q /∈ Ωη : ∃ a sequence {Qk : k ∈ N} ⊆ Ωη such that Qk ⇒ Q}

be the set of boundary points of Ωη in the weak topology. Under Condition 2.3, if Qm ∈
∂∗Ωηm for all m ∈ N with a sequence ηm ↘ 0 and Qm ⇒ Q∗ ∈ M, then it holds
T (Q∗) = 0.

Proof. Pick any sequence {Qm : m ∈ N} such that Qm ∈ ∂∗Ωηm for all m ∈ N with
some sequence ηm ↘ 0 and Qm ⇒ Q∗ for some Q∗ ∈M. For this Q∗, suppose that

∃{Q′m : m ∈ N} such that Q′m ∈ Ωηm for all m ∈ N and Q′m ⇒ Q∗. (8)
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Then Condition 2.3 implies T (Q∗) = 0. So it is sufficient to show (8).
From Qm ∈ ∂∗Ωηm and the definition of ∂Ωηm , it follows that for all m ∈ N there

exists a sequence {Qk(m) : k(m) ∈ N} such that Qk(m) ∈ Ωηm for all k(m) ∈ N and
dL(Qk(m), Qm) → 0 as k(m) → ∞. Thus, there exist k∗(m) such that for all k(m) ≥
k∗(m),

dL(Qk(m), Qm) ≤ 1/m.

Now pick any ε > 0. From the above display and the fact that Qm ⇒ Q∗, it follows
that there exists M ∈ N such that dL(Qk∗(m), Qm) ≤ ε/2 and dL(Qm, Q

∗) ≤ ε/2 for all
m ≥ M . We can conclude that dL(Qk∗(m), Q

∗) ≤ dL(Qk∗(m), Qm) + dL(Qm, Q
∗) ≤ ε.

Since ε is arbitrary, we obtain Qk∗(m) ∈ Ωηm for all m ∈ N and Qk∗(m) ⇒ Q∗ as m→∞,
so that (8) holds true. Condition 2.3 implies T (Q∗) = 0 and this completes the proof.

Lemma B.4. Let Qε,θ ≡ {P ∈ M : det(Σ(P, θ)) ≥ ε}, Qε ≡ ∪θ∈ΘQε,θ, and Pε ≡
∪θ∈Θ{P ∈ Qε,θ : EP [m(x, θ)] = 0}. Under Condition 3.2, Qε and Pε are compact in the
weak topology for every ε ≥ 0.

Proof. Pick any ε ≥ 0. From Theorem D.8 of Dembo and Zeitouni (1998), the setM is
compact in the weak topology if the support X is compact (assumed in Condition 3.2).
Thus, it is sufficient to show that Qε and Pε are closed in the weak topology.

We first show that Qε is closed. Take a sequence {Qm : m ∈ N} in Qε such that Qm ⇒
Q∗ ∈ M. Note that for every m ∈ N, there exits θm ∈ Θ such that det(Σ(Qm, θm)) ≥ ε.
Also, by compactness of Θ there exists a subsequence {θmk

: k ∈ N} of {θm} such that
θmk

→ θ∗ ∈ Θ. Let g(x, θ,Q) = (m(x, θ) − µ(Q, θ))(m(x, θ) − µ(Q, θ))′. By Condition
3.2, g(x, θ,Q) is uniformly continuous on X ×Θ×M. Then

‖Σ(Qmk
, θmk

)− Σ(Q∗, θ∗)‖

≤
∥∥∥∥∫
X

(g(x, θmk
, Qmk

)− g(x, θ∗, Q∗))dQmk

∥∥∥∥+

∥∥∥∥∫
X
g(x, θ∗, Q∗)(dQ∗ − dQmk

)

∥∥∥∥
≤ sup
x∈X
‖g(x, θmk

, Qmk
)− g(x, θ∗, Q∗)‖+

∥∥∥∥∫
X
g(x, θ∗, Q∗)(dQ∗ − dQmk

)

∥∥∥∥→ 0, (9)

as k →∞, where the convergence follows from the Portmanteau Lemma (van der Vaart,
1998, Lemma 2.2) and the uniform continuity of g(x, θ,Q). Since the determinant is a
continuous function, it follows that det(Σ(Q∗, θ∗)) ≥ ε and so Qε is closed.

We next show the closedness of Pε. Take a sequence {Pm : m ∈ N} in Pε such that
Pm ⇒ P ∗ ∈M. Then there exists a sequence {θm : m ∈ N} such that

∫
X m(x, θm)dPm =

0. Since Θ is compact, there exists a subsequence {θmk
: k ∈ N} such that θmk

→ θ∗ for
some θ∗ ∈ Θ. Therefore, it is sufficient to show that EP∗ [m(x, θ∗)] = 0. To prove this,
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note that∥∥∥∥∫
X
m(x, θ∗)dP ∗

∥∥∥∥
≤ lim
k→∞

∥∥∥∥∫
X
m(x, θ∗)(dP ∗ − dPmk

)

∥∥∥∥+ lim
k→∞

∥∥∥∥∫
X

(m(x, θ∗)−m(x, θmk
))dPmk

∥∥∥∥
≤ lim
k→∞

sup
x∈X
‖m(x, θ∗)−m(x, θmk

)‖ = 0,

where the first inequality follows from the definition of θm, the second inequality follows
by the Portmanteau Lemma (van der Vaart, 1998, Lemma 2.2) as m(·, θ) is bounded and
continuous for all θ ∈ Θ, and the equality follows by the uniform continuity of m(x, θ)
on X ×Θ.

Lemma B.5. Pick any ε > 0 and a ∈ R. Under Condition 3.2, the two-step GMM test
φGMM,n and the GEL test φa,n defined in Section 3.2 are pointwise asymptotically level
α.

Proof. First, consider the continuous updating GMM test statistic (i.e., the case of a =
1). In this case, the supremum for γ has an explicit solution and the test statistic is written
as TCU (P̂n) ≡ infθ∈Θ `CU (θ), where `CU (θ) ≡ (1/2)m̄n(θ)′Σ(P̂n, θ)

−1m̄n(θ) and m̄n(θ) ≡
n−1

∑n
i=1m(xi, θ). Take any P ∗ ∈ Pε. There exists θ∗ ∈ Θ such that EP∗ [m(x, θ∗)] = 0

and Σ(P ∗, θ∗) is positive definite. Let φCU,n ≡ 1{TCU (P̂n) > χ2
q,1−α/(2n))}. By the

central limit theorem, 2n`CU (θ∗)⇒ χ2
q under P ∗, and therefore,

lim sup
n→∞

EP∗ [φCU,n] = lim sup
n→∞

Pr

{
inf
θ∈Θ

2n`CU (θ) > χ2
q,1−α : P ∗

}
≤ lim sup

n→∞
Pr
{

2n`CU (θ∗) > χ2
q,1−α : P ∗

}
= α.

Similarly, we can define the objective functions `GMM (θ) and `a(θ) for the two-step GMM
and GEL tests, respectively. Since `GMM (θ∗) and `a(θ∗) are asymptotically equivalent
to `CU (θ∗) under P ∗ ∈ Pε (see, Newey and Smith, 2004), we obtain the conclusion.
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