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This paper studies the Hodges and Lehmann (1956) optimality of tests in a general setup. The
tests are compared by the exponential rates of growth to one of the power functions evaluated
at a fixed alternative while keeping the asymptotic sizes bounded by some constant. We present
two sets of sufficient conditions for a test to be Hodges-Lehmann optimal. These new conditions
extend the scope of the Hodges-Lehmann optimality analysis to setups that cannot be covered
by other conditions in the literature. The general result is illustrated by our applications of inter-
est: testing for moment conditions and overidentifying restrictions. In particular, we show that
(i) the empirical likelihood test does not necessarily satisfy existing conditions for optimality
but does satisfy our new conditions; and (ii) the generalized method of moments (GMM) test
and the generalized empirical likelihood (GEL) tests are Hodges-Lehmann optimal under mild
primitive conditions. These results support the belief that the Hodges-Lehmann optimality is a
weak asymptotic requirement.
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1. Introduction

There are numerous testing problems in statistics and econometrics where alternative
tests under consideration have the same asymptotic properties under the null hypothesis
and local alternatives. As asymptotic comparisons are intended to approximate finite
sample behaviors, it is important to assess whether such equivalence is preserved in dif-
ferent asymptotic frameworks. This paper studies an alternative notion of asymptotic
comparison of tests due to Hodges and Lehmann (1956) in a general setup. More specif-
ically, we focus on global properties and compare the tests in terms of the exponential
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rate of growth to one of the power functions evaluated at a fixed alternative while keep-
ing the asymptotic sizes bounded by some constant. We present two sets of sufficient
conditions for a test to be Hodges-Lehmann optimal. These new conditions extend the
scope of the Hodges-Lehmann optimality analysis to setups that cannot be covered by
other conditions in the literature (e.g. Kallenberg and Kourouklis, 1992). This point is
illustrated by our applications of interest: testing for moment conditions and overidenti-
fying restrictions (or generalized estimating equations). In particular, we show that the
empirical likelihood test (Owen, 1988; Qin and Lawless, 1994) does not necessarily satisfy
the existing conditions for optimality but does satisfy the new conditions we propose,
and that the generalized method of moments (GMM) test of Hansen (1982) and the gen-
eralized empirical likelihood (GEL) tests of Smith (1997) and Newey and Smith (2004)
(including empirical likelihood, continuous updating GMM, and exponential tilting as
special cases) are Hodges-Lehmann optimal for testing overidentifying restrictions under
mild primitive conditions.

The dominant approach to approximate finite sample power properties of tests in
statistics and econometrics is based on sequences of local (or Pitman) alternatives. There
are yet some reasons to go beyond the local analysis. First, although the local analysis
might provide a good approximation of the power function for alternatives close to the
null hypothesis, there are risks in extrapolating whatever lessons we learn locally to alter-
natives that are far from the null. This is particularly true, for example, when the finite
sample power function is non-monotone (see Nelson and Savin, 1990). Second, there are
cases where different tests, with different exact power functions, have the same asymp-
totic behavior under local alternatives. Then it is important to look for approximations
that are pertinent for the regions of high power (as it is the case for the Hodges-Lehmann
approach) and see if such equivalence is preserved in those regions.

Our Hodges-Lehmann optimality analysis contributes to the literature in several ways.
First, we show that the existing general sufficient conditions by Kallenberg and Kourouk-
lis (1992) for a test to be Hodges-Lehmann optimal are too strong for our applications of
interest. We provide an example where the empirical likelihood test does not satisfy an
even weaker version of those sufficient conditions. Second, we provide novel sets of suffi-
cient conditions for the Hodges-Lehmann optimality. One set is similar to the conditions
in Kallenberg and Kourouklis (1992), although we require lower semicontinuity in the
weak topology instead of continuity in the 7-topology. The other set involves a localized
version of semicontinuity and turns out to be very useful to analyze discontinuous cases.
In our applications of interest, this new condition allows us to establish the Hodges-
Lehmann optimality of the GEL tests. Our conditions and results are presented in a
general hypothesis testing framework. Thus, they have wide applicability as a starting
point for studying the Hodges-Lehmann optimality in other applications. Third, we apply
our sufficient conditions to the problems of testing moment conditions and overidentify-
ing restrictions. For testing moment conditions, we show that the Hotelling’s T" and GEL
tests are Hodges-Lehmann optimal. For testing overidentifying restrictions (i.e., testing
the validity of estimating equations whose dimension is higher than that of parameters),
we show that the GMM and GEL tests are Hodges-Lehmann optimal. These findings to-
gether with the mildness of the new sufficient conditions provide further evidence to the
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belief that the Hodges-Lehmann optimality seems to be a weak asymptotic requirement.

Our application to overidentified moment condition models (or generalized estimating
equations) is of extreme importance particularly in econometrics. It is known that the
GMM and GEL tests have the same asymptotic properties under the null hypothesis
and local alternatives. Several papers study statistical properties of the GMM and GEL
methods beyond their first-order local asymptotic properties (e.g. Imbens, Spady and
Johnson, 1998; Newey and Smith, 2004; Schennach, 2007). In terms of global analysis
based on large deviation theory, Kitamura (2001) and Kitamura, Santos and Shaikh
(2009) provide conditions under which the empirical likelihood test is uniformly most
powerful in a generalized Neyman-Pearson sense for testing overidentifying restrictions.
Additional global optimality results include those in Canay (2010) and Otsu (2010).

There are two key features of our Hodges-Lehmann analysis relative to the other
global analyses cited above. First, the type I error probability in the Hodges-Lehmann
analysis converges to a positive constant, as opposed to converging to zero. This intends
to resemble the situation where a test statistic is compared to a fixed asymptotic critical
value. On the other hand, the above cited papers consider the situation where a test
statistic is compared to a critical value drifting to zero. Thus, our Hodges-Lehmann
analysis complements the existing global optimality analyses for tests of overidentifying
restrictions by introducing a different asymptotic framework. Second, the papers cited
above prove that the empirical likelihood test achieves some form of global optimality, but
do not address the possibility that other competing tests are optimal as well. We provide
Hodges-Lehmann optimality results for several commonly used tests of overidentifying
restrictions.

The remainder of the paper is organized as follows. Section 2 introduces basic notation
and concepts, and presents general Hodges-Lehmann optimality results. Section 3 applies
the general optimality results to moment condition tests and overidentifying restriction
tests.

We use the following notation. Let R = R U {400} U {—o00} be the extended real line,
A° be the complement of a set A, A\ B = AN B be the set subtraction of a set B from a
set A, 1{A} be the indicator function for an event A, Pr{A : P} be the probability of an
event A evaluated under a probability measure P, Ep[-] be the mathematical expectation
under a probability measure P, and “=" denote the weak convergence.

2. General Results

Let X be a Polish space. Consider a random sample {z; : i = 1,...,n} generated from a
probability measure Py with support X'. Let M be the set of all probability measures on
X. For subsets P and Q of M with P C Q, we consider the hypothesis testing problem

Hy:Pye P, versus Hy : Py € Q\ P.

A test ¢, is defined as a binary function of the sample, where ¢,, = 0 means acceptance
and ¢, = 1 means rejection. Performance of ¢, is evaluated by two kinds of error
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probabilities: o, (P) = Ep[¢y] for P € P (type I) and 3,,(P) = Ep[l — ¢,] for P € Q\ P
(type II). The Hodges-Lehmann optimality analysis focuses on the convergence rate of
the type II error probability §,(P;) (or power) of the test under a fixed alternative
P, € Q\ P, while fixing the limit of the type I error probability a,,(P) over P € P. Our
definition of the Hodges-Lehmann optimality is given below.

Definition 2.1 (Hodges-Lehmann optimality). A test ¢ur n is called Hodges-Lehmann
optimal at P, € Q\ P if

(i) ¢urn is pointwise asymptotically level o € (0,1), i.e.,

limsup Ep|¢pprn] <« for each P € P,

n— oo

(i) for any pointwise asymptotically level v test ¢, it holds

1 1
limsup —log Ep,[1 — ¢ur.n] < liminf —log Ep, [1 — ¢,).
n n—oo M

n—oo

This is, given a restriction on the type I error probability, a test is called Hodges-
Lehmann optimal at the fixed alternative measure P; if the rate of exponential conver-
gence of the type II error probability evaluated at P, is faster than or equal to that of
any alternative test. Although this definition for optimality is intuitive, the set of alter-
native tests is potentially very large and therefore it might be infeasible to explore the
second inequality in Definition 2.1 for every possible alternative test. The approach we
take here divides the analysis in two parts. First, we show that there exists an optimal
convergence rate for the type II error probability (or equivalently, a lower bound for
lim inf,, 0o 7! log Ep, [1 — ¢y]). Then we investigate sufficient conditions to achieve the
optimal rate.

We first derive the optimal convergence rate of the type Il error probability. For
probability measures P and @, let Q < P denote that @ is absolutely continuous with
respect P, and
Sy log(dQ/dP)dQ if @ < P

00 otherwise

x@.r={

denote the Kullback-Leibler divergence (or relative entropy) from @ to P. Define K (A, P) =
infgea K(Q, P) for a subset A C M. The following lemma presents the best possible
exponential rate of decay to zero of the type II error probability of a test.

Lemma 2.1. For any pointwise asymptotically level o test ¢n,, it holds

lim inf 1 log Ep,[1 — ¢p] > —K(P, P1),
n

n—oo

for each P, € Q\ P.
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This lemma, an adaptation of Stein’s lemma to our setup, shows that the best expo-
nential growth rate of power depends on the Kullback-Leibler divergence between the
set P for the null hypothesis and the fixed alternative measure P;. If K(P,P;) = oo,
the above inequality trivially holds true. If 0 < K (P, P;) < oo, this lemma provides the
best possible exponential decay rate of the type II error probability. If K (P, P;) = 0,
this lemma says that there is no test which attains an exponential decay rate of the type
IT error probability.

It is interesting to note that in the Bahadur optimality analysis (e.g. Bahadur, 1960),
where the roles of the type I and type II error probabilities are interchanged, the best
possible decay rate of the type I error is typically obtained as — K (P, P). Since K (P, Q) #
K(Q, P) in general, this Bahadur bound is different from the Hodges-Lehmann bound
obtained here.

To achieve the bound in Lemma 2.1, we concentrate on tests that take the form of

¢n = H{T(Pn) > cn}, (1)

where T(If’n) is a test statistic based on a mapping T : M — R and the empirical measure
]f’n, and {c, : n € N} is a sequence of positive real numbers monotonically decreasing to
zero. Given this form, our task reduces to explore sufficient conditions for the mapping
T to attain the bound in Lemma 2.1.

There are results in the literature which indicate that several tests can be Hodges-
Lehmann optimal in standard testing problems, such as parameter hypothesis and good-
ness of fit testing problems (see, Kallenberg and Kourouklis, 1992; Tusnady, 1977). In
particular, Kallenberg and Kourouklis (1992) show that the Hodges-Lehmann optimality
emerges in general when the acceptance region of a test converges to the set of measures
for the null hypothesis in a coarse way, provided the mapping T is continuous in the
T-topology. We show that their continuity assumption in the 7-topology can be replaced
with a lower semicontinuity assumption or its localized version in the weak topology. Our
conditions are presented as follows. Condition 2.1 is fundamental, and either Condition
2.2 or 2.3 is required for the optimality.

Condition 2.1. (a) Q is closed in the weak topology and (b) P ={Q € Q: T(Q) < 0}.

Condition 2.2. T is lower semicontinuous in the weak topology at all Q € {Q €
Q: K(Q,P1) < oo}: this is, for all Q € {Q € Q : K(Q,P1) < oo} and all sequence
{Qm :m € N} in Q such that Q,, = Q, it holds T(Q) < liminf,, oo T(Qm,)-

Condition 2.3. P and Q are compact in the weak topology. Furthermore, T is such
that T(Q) < 0 whenever a sequence of measures {Q., : m € N} in Q and a sequence
of positive real numbers {n,, : m € N} decreasing to zero satisfy Q,, = Q € Q and
T(Qm) < M for allm € N.

Condition 2.1(a) imposes a weak regularity on the relevant subset of measures Q.
Condition 2.1(b), imposed by Kallenberg and Kourouklis (1992) as well, says that the
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set of measures P for the null hypothesis should coincide with the level set by the mapping
T at zero (or the acceptance region in the limit). Condition 2.2 is on the continuity of
T. Relative to Kallenberg and Kourouklis (1992), this condition uses a weaker notion of
continuity and a weaker topology, meaning that it is neither stronger nor weaker than
theirs. That is, lower semicontinuity in the weak topology implies lower semicontinuity in
the 7-topology, but does not imply continuity in the 7-topology as required by Kallenberg
and Kourouklis (1992). Although Condition 2.2 seems intuitive and mild, this condition
may be too restrictive to accommodate the GEL tests for testing moment conditions
or overidentifying restrictions, which will be discussed in the next section. Example 3.1
below demonstrates that the mapping to define the empirical likelihood test is not lower
semicontinuous in the weak (or 7) topology. Motivated by this problem, we propose an
alternative requirement in Condition 2.3. Note that Condition 2.3 is neither weaker nor
stronger than Condition 2.2. Condition 2.3 requires that the sets P and Q are compact
in the weak topology, which is not imposed in Condition 2.2. On the other hand, the
continuity requirement on 7" of Condition 2.3, which is a localized version of the lower
semicontinuity, is weaker than that of Condition 2.2 and can accommodate the mappings
for the GEL tests discussed in the next section. In our applications, these conditions are
verified under some primitive conditions.

Based on these conditions, our general Hodges-Lehmann optimality results are pre-
sented as follows.

Theorem 2.1. Suppose that a test ¢, taking the form of (1) is pointwise asymptotically
level a, and Conditions 2.1 is satisfied. Then under either Condition 2.2 or 2.3, ¢y is
Hodges-Lehmann optimal at each Py € int(Q) \ P satisfying 0 < K(P, P;) < o0.

The first part (the statement under Condition 2.2) is a generalization of Theorem 2.1
in Kallenberg and Kourouklis (1992). This part is useful to show the Hodges-Lehmann
optimality of the Hotelling’s T, two-step GMM, and continuous updating GMM tests.
The second part (the statement under Condition 2.3) is applied to establish the Hodges-
Lehmann optimality of the GEL tests.

Note that this theorem establishes optimality for alternatives such that 0 < K(P, P;) <
oo and that are not at the boundary of Q. For example, if K(P,P;) = 0, Lemma 2.1
implies that there is no test which attains an exponential decay rate of the type II error
probability. Thus the Hodges-Lehmann analysis in such a case, which perhaps compares
polynomial decay rates of the type II error probabilities, will be significantly different
from ours and is beyond the scope of this paper. Also, for the case of K(P,P;) = oo,
although the conclusion of Lemma 2.1 trivially holds, the lemma does not provide an
optimal decay rate and, to the best of our knowledge, it is not clear how to conduct the
Hodges-Lehmann analysis in such a situation.

Also note that Definition 2.1 and Theorem 2.1 apply to tests that are point-
wise asymptotically level «. However, it is worth mentioning that we can alterna-
tively define and present the results for wuniformly asymptotically level « tests (i.e.,
limsup,, .. suppep Er[¢n] < ), which is stronger than the pointwise asymptotic re-
quirement. This change can be done typically by imposing more restrictions on Q relative
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to the pointwise requirement.’

3. Applications

3.1. Test for Moment Conditions

We now apply the general Hodges-Lehmann optimality results obtained in the last
section. In this subsection, we consider the testing problem for moment conditions
Ep,[m(x)] = 0, where m : X — R? is a vector of known functions. Pick any € > 0,
and define X(P) = Ep[(m(z) — Ep[m(z)])(m(z) — Ep[m(z)])’] and

Q. ={PeM:det(2(P)) > €}, P.={Pe€Q.:Epm(z)] =0}

The testing problem of interest is Hy : Py € P, versus Hy : Py € Q.\ P.. The requirement
in Q. for the determinant is used to control the asymptotic size of tests. Note that we
do not make parametric assumptions on the distributional form of Py. For this problem,
we consider the following setup.

Condition 3.1. X is compact and m is continuous on X.

This condition guarantees that the sets M, P,, and Q. are compact in the weak topol-
ogy (see, Theorem D.8 of Dembo and Zeitouni (1998) and Lemma B.4), and simplifies
the technical argument below.

One way to test Hy is to employ Hotelling’s T-test statistic TH(]:“n)7 where

Tr(Q) = Eq[m(2)'S(Q) ™" Eqlm(x)].

Since nTy (P,) = X2 under Hy, the T-test is written as ¢, = HTy(P,) > Xo1_a/n},
where Xi,lfa is the (1 — «)-th quantile of the Xﬁ distribution. Note that ¢g , takes the
form of (1).

An alternative way to test Hy is to employ the GEL approach. For example, consider
the Cressie and Read (1984) family of criterion functions

pa(v) = —(1+av) TV /(a + 1),

for a € R. The GEL test statistic is defined as T, (P, ), where

To(Q) = sup EqQlpa(y'm(z)) — pa(0)],

I'g ={y €R?: Pr{y'm(z) € V: Q} = 1}, and V is the domain of p,(v). This GEL
test statistic covers several existing statistics, such as empirical likelihood (a = —1),

1 For example, in order to control the size uniformly in the application of Section 3.1, the set Q.
should impose bounded 2 + § moments or a uniform integrability condition in addition to a restriction
on the determinant.
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Hellinger distance (a = —1/2), exponential tilting (a = 0), and Hotelling’s T-statistic
(a = 1) discussed above. By Newey and Smith (2004), we can see that 2nT,(P,) = X2
under Hy. Thus, the GEL test is written as ¢q ., = 1{T,(P,) > Xo1_o/(2n)} taking the
form of (1).

By applying the general result in Theorem 2.1, we can show the Hodges-Lehmann
optimality of the Hotelling’s T' and GEL tests.

Theorem 3.1. Assume that Condition 3.1 holds, and pick any € > 0 and a € R. Then
Condition 2.1(a) holds true and

(i) the Hotelling’s T-test ¢u,n is pointwise asymptotically level a and Ty satisfies
Conditions 2.1(b) and 2.2, i.e., ¢ is Hodges-Lehmann optimal at each P €
int(Qe) \ Pe satisfying 0 < K(P., Py) < co.

(ii) the GEL test ¢qn is pointwise asymptotically level o and T, satisfies Conditions
2.1(b) and 2.3, i.e., ¢pqn is Hodges-Lehmann optimal at each Py € int(Q.) \ Pe
satisfying 0 < K(Pe, P) < 0.

Theorem 3.1 shows that several existing tests to test moment conditions are Hodges-
Lehmann optimal. This suggests, similarly to previous findings on parametric and
nonparametric tests (Kallenberg and Kourouklis, 1992; Tusnddy, 1977), that Hodges-
Lehmann optimality is a weak asymptotic requirement. We are not aware of any example
of a reasonable test which is not Hodges-Lehmann optimal in this setting.?

It is interesting to note that T, is not necessarily continuous in the 7-topology, as re-
quired by Kallenberg and Kourouklis (1992). In fact, T, does not necessarily satisfy our
Condition 2.2, lower semicontinuity in the weak topology. Indeed, this lack of lower semi-
continuity becomes our motivation to develop the alternative requirement in Condition
2.3. To illustrate the discontinuity of T, let us consider the case of empirical likelihood,
where the mapping Tgy, is defined by p,(v) = log(1 —v) with a = —1 and V = (—o0, 1).
The following example shows that Ty, is not lower semicontinuous both in the weak and
T-topology.

Example 3.1 (Tgp is not lower semicontinuous). Suppose m(zx) = = and X =
[—zL,zpg| for some xp, > 0 and xg > 0. Note that Condition 3.1 is satisfied. For a
probability measure Q, let X denote the support of Q and —xr, and vy, denote the
lower and upper bounds of Xg. If {Q., : m € N} is a sequence of measures, we use —zy,,
and xg, . In this setup,

Ten(Q) = sup / log(1 + 72)dQ,
yellg Jx

and I'q = (=1/xu,,1/21,) (if tHy < 0 or xn, < 0, the reciprocals are set to oc).
Consider a measure Q* such that Q*(X =0) = 1—p and Q*(X = z*) = p for some

21f we restrict our attention to the class of distributions having symmetric densities (i.e., Qe = {P €
M : det(3(P)) > €, P has a symmetric pdf}), then the analysis of Hodges and Lehmann (1956) can be
applied to the case of m(xz) = z (i.e., testing for location) and, for example, the sign test is typically not
Hodges-Lehmann optimal.
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z* € (0,zg). We can always choose p € (0,1) so that Q* € Q.. Now consider the
following sequence of probability measures,

Qu(X =—21) =, Qu(X=0)=1-p— =, Qu(X=a")=p

Clearly Q., = Q*. Note that I'q,, = (=1/z*,1/xr) for all m € N, while x1, = 0 and
then T'q = (—1/x*,00). This is, xr,, does not converge to xr,, = 0 since xr,, > 0 for all
m € N, and so liminf,, . (zr, —zL,) > 0.

Now note that since [, log(1 +~x)dQm, = log(1 — zrv)/m +log(1 + vz*)p, the value
Yoo € T'q,, that mazimizes this integral is

* pl‘* - JfL/m
T =+ 1 myzpa

As vl — 1/xp as m — oo, it follows that Ter(Qm) log(l 4+ x*/x)p < co. However,

TprL(Q) = sup / log(1+~v2)dQ = sup  log(1+~vya™)p = occ.
yE(~1/z* 00) J X YE(~1/z* 00)

Note that Tgr(Q) = oo regardless of how small x* or p might be, as long as both are
positive. Therefore, for a measure Q* € Q. we constructed a sequence {Qn, : m € N}
such that Q.,, = Q* and Trr(Q*) > liminf,,— oo TrL(Qm), which violates Condition
2.2. Since it is also true that Q,, converges to Q) in the T-topology, it follows that the
mapping Trr, s not lower semicontinuous in the T-topology either. |

3.2. Overidentifying Restriction Test

In this subsection, we consider the testing problem for overidentifying restrictions, which
are common particularly in econometrics. Consider the (generalized) estimating functions
m: X x O — RY, where © C R is the parameter space. It is assumed that ¢ > k, i.e.,
the parameter is overidentified. Let 3X(P,0) = Ep[(m(x,0) — Ep[m(z,0)])(m(z,0) —
Ep[m(z,0)])] and Qg = {P € M : det(2(P,0)) > €}. We redefine

Pe = UOG(—){P S Qe,@ : EP[m(m70)] = 0}7 Qe = UOG@QC,0~

The testing problem of interest is Hy : Py € P versus Hy : Py € Q. \ Pe, i.e., the
estimating equations are valid and the restriction Ep,[m(z,0y)] = 0 is satisfied at some

90 € 0.
Condition 3.2. X and © are compact, and m is continuous in both of its arguments.

One common test for Hy is based on the GMM of Hansen (1982). The two-step GMM

test statistic is defined as Tgaar(Py), where

Teum(Q) = jnf Eq[m(z, 0)'S(Q.0(Q)) " Eglm(,0)],
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and 0(Q) = arg mingeo Eg[m(z, 0)]'W Eg[m(z, )] with a ¢ x ¢ fixed weight matrix W
(i.e., 8(P,) is a preliminary estimator for ). Here we consider the GMM test in the
form of ¢aarnrn = HTanmm (Pr) > X21_o/n}>

Alternatively, we can apply the GEL approach. Let I'g(0) = {y € R? : Pr{y'm(z, ) €
V: Q} =1)}. By using the criterion function p, defined in the last subsection, the GEL

test statistic for Hy is given by T,(P,), where

To(@) = jnf  sup Eqlpa(y'm(z,0)) = pa(0)].
YETQ(0)

Here we consider the GEL test in the form of ¢, = 1{T,(P,) > Xo1_o/(2n)}. Again,
the GEL test includes several existing tests, such as the empirical likelihood, exponential
tilting, and continuous updating GMM tests.

By applying the general result in Theorem 2.1, we can show the Hodges-Lehmann
optimality of the GMM and GEL tests.

Theorem 3.2. Assume that Condition 3.2 holds, and pick any € > 0 and a € R. Then
Condition 2.1(a) holds true and

(i) the GMM test ¢crrm,n with a continuous mapping é() in the weak topology is
pointwise asymptotically level o and Tann satisfies Conditions 2.1(b) and 2.2,
i.e., ¢Grmm,n is Hodges-Lehmann optimal at each Py € int(Q.) \ Pe satisfying 0 <
K(PE, Pl) < 0.

(11) the GEL test ¢qp is pointwise asymptotically level o and T, satisfies Conditions
2.1(b) and 2.3, i.e., ¢qrn is Hodges-Lehmann optimal at each Py € int(Q.) \ P
satisfying 0 < K(P., P1) < oc.

Theorem 3.2 shows again that all tests under consideration are Hodges-Lehmann op-
timal, suggesting that Hodges-Lehmann optimality is a weak asymptotic requirement for
the problem of testing overidentifying restrictions.

As the proof of this theorem shows, the mapping T asas to define the two-step GMM
test (and also for the mapping to define the continuous updating GMM test) is lower
semicontinuous in the weak topology. Thus, we can apply the first part of Theorem 2.1.
On the other hand, as Example 3.1 shows, the mapping 7T, to define the GEL test is not
lower semicontinuous in general. Thus, we verify Condition 2.3 as an alternative route
to derive the Hodges-Lehmann optimality.

Our analysis can be also applied to parameter hypothesis tests in estimating equations,
ie., Hy: Py € Pe = Ugeo, {P € Qcp : Ep[m(z,0)] = 0} versus Hy : Py € Q. \ P. for
a subset ©p C O. It is also worth mentioning that the results in Theorem 2.1 can be
applied to a variety of alternative testing problems, including setups where the parameter

3Under additional regularity conditions (such as uniqueness of 6y and a rank condition for
Epldm(z,00)/86]), we can see that nTaara (Pn) = Xg—k (see, Hansen, 1982). Since we do not im-
pose such additional requirements in the space Q¢, we employ the critical value Xg,l—a/" instead of
X?—k,l—a/n to guarantee that ¢Garar,n is pointwise asymptotically level « (see, Lemma B.5). The same
comment applies to the critical value of the GEL test.
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of interest is partially identified and the statistical model involves moment inequality
conditions.

Appendix A: Proof of the main results

In what follows let A be the closure of a set A C M with respect to the weak topology,
and denote Q, ={Q € Q: T(Q) < n} and k(n) = K(Q,, P1) for n € [0,00). We also use
N(Qv 9) = Eq [m(za 9)]

Define the Lévy-Prohorov metric for measures P,Q € M as

dr(P,Q) =inf{e > 0: P(A) < Q(A®) +¢,Q(A) < P(A®) + ¢ for all Borel sets A},

where A = {x € X :infyca d(z,y) < €} for a metric d on X. The Lévy-Prohorov metric
is compatible with the weak topology (Billingsley, 1999, Theorem 6.8). Let By (P,r) =
{Q € M :dr(Q, P) < r} be the ball with respect to the Lévy-Prohorov metric centered
at P with radius r > 0.

To analyze the large deviation behavior of the empirical measure P,, we use Sanov’s
Theorem (see, Theorem 6.2.10 of Dembo and Zeitouni, 1998) i.e.,

lim sup % log Ep[1{P, € A}] < —K(A, P),

n— oo

for any closed sets A C M in the weak topology, and

lim inf = log Ep[1{P, € B}] > —K (B, P),
n

n—oo

for any open sets B C M in the weak topology.

A.1l. Proof of Lemma 2.1

Pick any P, € Q\ P. If K(P,P1) = oo, the conclusion is trivially satisfied. So, we
concentrate on the case of K(P,P;) < oo. Pick any € > 0. There exists Py € P such

that K(Py, P1) < K(P,P;) + € < oo and the Radon-Nykodym derivative r(z) = fll;‘i*
exists. Now let ¢~ = —min{¢t,0}. Since Pj is absolutely continuous with respect to Py

and s(log s)~ is bounded for all s € [0, 00), we have

/X (logr(z))” dPy = /Xr(x) (logr(z))” dPy < oco.

Combining this result with Eps[logr(z)] = K(Fy, P1) < oo implies Ep:[|logr(x)[] < oc.
As {z; :i=1,...,n} is an ii.d. sample from Py, the strong law of large numbers (see,
Theorem 22.1 of Billingsley, 1995) implies

1 n
nh_)n;o - ;log r(z;) = Eps[logr(z)] < oo, Py —a.s. (2)
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Let P™ be the n-fold product measure of P and define the event FE, =
{IT—, 7(z;) < exp(n[K(P§, P1) +¢€])}. Observe that

Ep, [l = ¢u] > / 1{é, = 0}dP}

En

> exp(—n[K (P, P) + €) [E 1o = 0} [ r(XaPy

—exp(—n[K (P}, Py) + €] /E 1{p, = 0}dP;"
> exp(—nlK(P§, Py) + ) (Pr{é, = 0: By"} — Pr{E : 5"},

where the first inequality follows from the set inclusion relation, the second inequality
follows from the definition of FE,, the equality follows from the change of measures, and
the last inequality follows from the set inclusion relation. Since liminf,, o Pr{¢, = 0:
Py} =1 —limsup,_,o, Pr{¢p, = 1: P"} > 1—«a € (0,1) (because ¢, is pointwise
asymptotically level «) and lim, o, Pr{E¢ : P{"} = 0 (by (2)), it follows that

1
liminf = log Ep,[1 — ¢y) > —K(P},P1) —e > —K(P, P;) — 2¢,
n—,oo N

where the second inequality follows from the definition of Fj. Since € is arbitrary, the
conclusion is obtained.

A.2. Proof of Theorem 2.1

Proof under Condition 2.2. Pick any Pi € int(Q) \ P. Since P € int(Q), there
e;cists r > 0 such that B (P1,r) C Q. The weak convergence P, = P; implies that
P, € Br(Py,r) C Q for all n large enough. Thus, for all n large enough, it holds

Ep [{T(P,) < ¢} = Ep[I{P, € {Q € Q: T(Q) < ca}}]- 3)

Now pick any ¢ > 0. Note that the function k() is non-increasing (by definition) and
right continuous in 1 € [0,00) (by Lemma B.2). Thus, there exists § > 0 such that

—K(0) < —k(0) +e=—K(P,P1) +¢, (4)

where the equality follows from Condition 2.1(b). For this 4, it holds

1 A 1 . _
limsup — log Ep, [1{T(P,) < ¢,}] <limsup — log Ep, [1{P, € Qs}]
n—oo N

n—oo T
< — K(Qs,P1)

— K(6)
<—K(P,P) +e,
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where the first inequality follows from (3), ¢, \ 0, and Qs C s, the second inequality
follows by Sanov’s Theorem based on the fact that € is closed in the weak topology,
the equality follows from Lemma B.1, and the last inequality follows from (4). Since € is
arbitrary, the conclusion is obtained.

Proof under Condition 2.3. The first step involves proving that Qn C Qn' for
n < n'. Note that 2, = Q, U 3*Q,, where the set for boundary points is defined as

0"y, ={Q ¢ Q, : 3 asequence {Qy, : k € N} C Q,, such that Qi = Q}.

If @ € Q,, then Q € ,/ by definition. Now suppose @) € 0*Q,,. By definition there exists a
sequence {Qy : k € N} C @, such that Qr = Q. It then follows that {Qy : kK € N} C Q,,
which implies @ € Qn" Thus, we obtain Qn - Qnr.

The second step is to prove that #(n) = K(Q,, P1) is right continuous at 7 = 0. Pick
any sequence of positive numbers {n,, : m € N} with #,, N\, 0. Note that by Condition
2.1, closedness of P, and 0 < K(P,P;) < oo, we have k(0) < oo. Since 2, C Q,
for n < 7/, the function K(-) is non-increasing. Thus, the limit lim,, oo B(7y) exists
and it holds limy, . (1) < K(0) < oco. Since 2, is closed in the weak topology by
definition and K(Q, P;) is lower semicontinuous under the weak topology in Q (see,
Lemma 1.4.3 of Dupuis and Ellis, 1997), there exists Q,, € €, for all m € N such that
K(Qm, P1) = R(nm) < oo. Since the sequence {Q,, : m € N} is on the compact set Q,
there exists a subsequence {Q,; : j € N} such that Q,,, = Q* for some Q* € Q. Since
K(Q, Py) is lower semicontinuous in @,

K(Q*, Pr) <liminf K(Qy,,, P1) < occ.
j—00

There are two possibilities. First, if there exists a further subsequence {Q.,, : k € N} of
{Qm,; : j € N} such that Qp,,, € Q,, for all k € N, then T(Qpn,) < 7, for each k € N
and Condition 2.3 implies T(Q*) = 0 meaning that Q* € Qg. As a result,

5(0) > lim A(,) = liminf K(Qm,., P1) > K(Q", P1) > #(0), (5)

and it follows that limg_,o0 (7m, ) = K(0). Second, if such a subsequence does not exist,
then it must be the case that Q,; € B*Qnmj for all j large enough. Since @, = Q* and
Nm; 0, it follows from Lemma B.3 that 7'(Q*) = 0 and (5) follows. Therefore, £(n) is
right continuous at n = 0, i.e., for any € > 0 there exists 6 > 0 such that £(0) — &(0) < e.

The third step is to derive the conclusion by using Sanov’s theorem and the results in
the previous steps. Now, pick an arbitrary ¢ > 0. Then

1 ~ 1 . _
lim sup - log Ep, [1{T(P,) < ¢, }] <limsup — log Ep, [1{P,, € Qs}]

n—00 n—oo N

< —K(0) < —k(0) +e=—K(P,P1) +e,

for some § > 0, where the first inequality follows from (3), ¢, N\, 0, and Qs C Qs, the
second inequality follows by Sanov’s Theorem based on the fact that Qs is closed in the
weak topology, the third inequality follows from the right continuity of &(n) at n = 0,
and the equality follows from g = P (by Condition 2.1(b) and closedness of P). Since
€ is arbitrary, we obtain the conclusion.



14 Canay and Otsu

A.3. Proof of Theorem 3.1

Pick any € > 0 to define P, and Q.. Condition 2.1(a) follows from Lemma B.4 by replacing
m(x,0) with m(z).

Proof of (i). The proof is a special case of that of Theorem 3.2 (i) with replacements
of m(z,0) with m(z).

Proof of (ii). Pick any a € R to define p,. First, from Lemma B.5 (with replacements
of m(z,0) with m(x)), g is pointwise asymptotically level a.

Second, we present some properties of T,. Let Py = {P € M : Ep[m(x)] = 0} and
Po(Q)={P € Py: P<Q,Q < P}. Under Condition 3.1, we can apply Theorem 3.4 of
Borwein and Lewis (1993): if Py(Q) is not empty (i.e., the primal constraint qualification
of Borwein and Lewis (1993) is satisfied), then

T.(Q) = sup Eqlpa(y'm(z)) — pa(0)] = pei%f( o Da(Q, P), (6)

for each Q € M, where

a+1 )
D.(Q.P) = fﬂm((zg) —1)d@ P <O

00 otherwise

If Py(Q) is empty, then we have T,(Q) = oo (because we can take A so that X'm(z) have
the same sign for almost every x under Q) and inf pep, () Do(Q, P) = oo (by convention).

Note that the mapping D, : M x M — [0,00] is a special case of the so-called
f-divergence (see Liese and Vajda, 1987). It is known that

(D1) D.(Q,P)=0if and only if Q = P;
(D2) D.(Q,P) is lower semicontinuous under the product topology for (Q, P) € M x M
induced by the weak topology for M and M (Liese and Vajda, 1987, Theorem 1.47).

Third, we check Condition 2.1(b) for Ty, i.e., P = {R € Q. : To(R) = 0} in this case.
Suppose @ € P. C Py. Then the definition of Py(Q) implies @ € Py(Q). Also, (6) and
the set inclusion relation imply 0 < T4(Q) = infpep, () Da(Q, P) < Dyo(Q,Q) = 0.
Therefore, from Q € P. C Q,, we have Q € {R € Q. : T,(R) = 0}. On the other
hand, suppose @ € {R € Q. : T,(R) = 0}. From T,(Q) = 0 and Py(Q) C Py, we have
inf pep, Do(Q, P) = 0. Since Py is compact (by applying Lemma B.4 for the case of e = 0
with replacements of m(x,0) with m(z)) and D,(Q, P) is lower semicontinuous in the
weak topology for P € M (by (D2)), there exists P* € Py such that inf pep, Do (Q, P) =
D,(Q,P*) = 0. Now (D1) implies Q = P* € Py and thus Q € Q. implies Q € P..
Combining these results, Condition 2.1(b) is verified.

Finally, we check Condition 2.3. Pick any sequence {Q,, : m € N} C Q. such that
Qm = Q € Q. and Ty(Qy) < n for all m € N. Since the set Py is compact in the
weak topology (by applying Lemma B.4 with replacements of m(z,8) with m(z)) and
D,(Q, P) is lower semicontinuous in the weak topology for P € M (by (D2)), there
exists a sequence P € Py such that Dy (Qm, Pr,) = infpep, Do(Qm, P) < T,(Q,) for
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each m € N. Since {P} : m € N} is a sequence on the compact set Py, there exists a
subsequence { Py, : j € N} such that P, = P* € P. Now, from (D2), it follows that

0 = liminfn,,, > liminf T4(Qy,,) > iminf Do (Qm,, Py, ) > Da(Q, P*).
j—oo j—o0 j—o0 7

which means Q = P* (by (D1)). Therefore, it holds P* € Py(Q) and To(Q) =
inf pepy (@) Da(Q, P) < Do(Q, P*) = 0, which completes the proof.

A.4. Proof of Theorem 3.2

Pick any € > 0 to define P, and Q.. Condition 2.1(a) follows from Lemma B.4.

Proof of (i). From Lemma B.5, ¢gara,n is pointwise asymptotically level . Also
Condition 2.1(b) follows immediately. So we concentrate on showing that Ty as satisfies
Condition 2.2.

Pick any Q* € {Q € Q. : K(Q,P1) < oo}. We first re-write the mapping as
Tomm(Q) = infoco Tanmm (Q,0), where

Temm(Q,0) = u(Q,0)S(Q,0(Q)) ' 1(Q, 0),

and u(Q,0) = Eg[m(x,0)]. When %(Q,0(Q)) is singular, we define Taarar(Q,8) to be
infinity if ||u(Q,0)|| # 0 and to be zero if ||u(Q,0)|] = 0. By Condition 3.2 and the
Portmanteau Lemma (see, Lemma 2.2 of van der Vaart, 1998), both u(Q,0) and X(Q, 6)
are uniformly continuous in (Q,0) € M x O, as both M and O are compact. Thus, since
0~(Q) is continuous in @, %(Q, é(Q)) is continuous in @ € M.

Pick any sequence {(Qm,0) : m € N} such that Q,, = Q* € {Q € Q. : K(Q, P1) <
oo} and 6, — 0 € ©. We split into three cases. First, suppose det(X(Q", é(Q*))) > 0.
Then since det(X(Qu,0(Qm))) > 0 for all m large enough, we obtain Tanm (Q*,0%) =
1t o0 Tar 11 (Qum B Second, suppose det((Q", 6(Q"))) = 0 and [|j(Q*, 6%)]] = 0.
Then TGMM(Q*ao*) =0 § liminfm_mo TGMM(Qm,Gm), since TGMM(Qmaem) Z 0 for
all m € N by definition. Third, suppose det(2(Q*,0(Q*))) = 0 and [|u(Q*,0%)|| # 0,
so that Ty (Q*,0%) = oo. We can partition the sequence {Q,, : m € N} into two

subsequences {Q,; } and {Q,, } such that

(a) det(E(QmJ,é(Qmj))) = 0 along the subsequence,

(b) det(Z(Qm,.,0(Qm,.))) > 0 along the subsequence.
We concentrate on the case where both {Q,,, } and {Q,,, } have infinitely many elements
(the case where {Q,,,} or {Qm,} has a finite number of elements can be handled in
the same manner). Since ||p(Qm, 0m)|| > 0 for all m large enough, we can construct the
above subsequences such that ||u(Qu,, 0m;)|| > 0 and [|u(Qum,,, Om,,)|| > 0 for all j and
k large enough. By the construction of the subsequences {Q,,} and {Qp, },

liznjgof Tamm (Qm,Om) = min{lijn_l)g}f Tamm (Qmy s Om;), likH_lj(gf Tamm (Qmy,Omy )}

= 1ikrgiorolf Tervivi (Qmy, Omy) = Tanmm(QF,07),
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where the second equality follows from Tgarar(@um,,0m;) = oo for all j large enough,
and the third equality follows by Tgara (Qm, , Um, ) being a continuous transformation of
Qs Omy,) and X(Qm,., 0(Qm,,)) and therefore continuous in (Qm, , O, ). Combining
all three cases,

Tevm(Q,0%) < liglgélof Tamm(Qm,Om), (7

for any sequence {(Qm, 0:n) : m € N} such that Q,, = Q* € {Q € Q. : K(Q, P1) < oo}
and 0,, — 0* € O.

Now pick any sequence {Q,, : m € N} in Q. such that Q,, = Q* € {Q € Q. :
K(Q,P;) < oo}. By compactness of © and continuity of Tgaa(Q,60) in 8 € O for
each Q € Q. there exists a sequence {0,, : m € N} in O such that Tgynm(Qm) =
Terim (Qm, 0m) for each m € N. From the definition of the limit inferior, we can always
take a subsequence {(Qm;,0m,) : j € N} such that

liminf TG’MM(Qm) = liminfTGMM(Qm,Gm) = ‘lim TGMM(Qmjaemj)~
m—oo m— o0 j—o0

If liminf,, o Tarma (@m) = oo, then Condition 2.2 trivially holds for Tgarar. Thus
consider the case of liminf,, ;o Tarar(@m) < 0o. Since {0, : j € N} is a sequence on
a compact set ©, we can take a further subsequence {0,, : k € N} which converges to
some 0 € O. It then follows that

liminf Ten o (Qum) = Hm Toarar (Qumy, Omy) > Tonrn (Q%,0) > Tonm (QF),
m—»o0 k—o0

where the first inequality follows from (7) and the second inequality follows by the defi-
nition of Tgara (Q*). Therefore, Tgaras satisfies Condition 2.2.
Proof of (ii). The proof is similar to that of Theorem 3.1 (ii) by noting that

T, = inf sup FEolps(vYm(z,0)) —p,(0)] = inf D.(Q,P),
@=juf s Folpuls/mle.) < (0) =, iaf | D.(@.P)

where Py(Q) = {P € Py: P < Q,Q < P} and Py = Upeo{P € M : Ep[m(z,0)] = 0}.

Appendix B: Additional Lemmas

Lemma B.1. Under Conditions 2.1(a) and 2.2, for each Pi € Q and each 1 € [0, 00)
with k(1) < oo, there exists Q* € Ay, such that K(Q*, P1) = K(Qy, P1) = k(7).

Proof. Pick any P, € Q and n € [0,00) with x(n) < oo. Define Q; = {Q € M :
K(Q, P1) < x(n) + 1}. Since €2, is compact in the weak topology (Dupuis and Ellis,
1997, Lemma 1.4.3), Q,, N €, is also compact. Since K(Q, P) is lower semicontinuous in
@ € M under the weak topology (Dupuis and Ellis, 1997, Lemma 1.4.3), the compactness

of Q,,ﬂQ;, implies that there exists a measure Q* € QnﬂQ% such that K(Q*, P1) = K(Qnﬁ
Q;, P1). Since K (2, P) = K(, N €, P1) (otherwise there would exists Qecy,\ Q
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such that K(Q,P1) < K(Q*, P,). But using Q ¢ Q;, and Q* € Q;, we would obtain a
contradiction). Therefore, we have K(Q*, P) = K(Q,, P1) < x(n) < cc.

Finally, we show Q* € €, which implies K(Q,, 1) = x(n). From K(Q*,P) =
K(Q,, Py), we can take a sequence {Q,, : m € N} in , such that @Q,, = Q*. Since
Q* € Q (from Q* € Q, N Q) and K(Q*, P1) < oo, Condition 2.2 guarantees T'(Q*) <
liminf,, o T(@Qm) < 1 so @* € Q,. This completes the proof. O

Lemma B.2. Under Conditions 2.1(a) and 2.2, the function k(n) is right continuous
inn € [0,00).

Proof. First, note that €, C Q,, if 7o > 11 meaning that K(Q,,, P1) < K(Qy,, P1).
Thus, k(-) is a non-increasing function.

Second, let {n,, : m € N} be a sequence of positive real numbers monotonically
decreasing to some 7 € [0, 00) such that x(n) < oo. Since x(-) is non-increasing, {x (1) :
m € N} is a non-decreasing sequence bounded by x(n) from above, and lim,, e &(7m )
exists. By Lemma B.1 it follows that for each m € N there exists Q,, € ),,, such that
K(Qm,P1) = k(nm) < k(n). Since K (-, P1) has compact level sets for each P, € M (see
Dupuis and Ellis, 1997, Lemma 1.4.3), {Q., : m € N} has a subsequence {Qn,, : j € N}
such that Q,,;, = Q € M and K(Q, P1) < x(n) < co. And by Condition 2.1(a) and the
fact that {Q,, : M € N} C Q, it follows that Q € Q.

Third, since T(Qm,) < M, for each j € N and T' is lower semicontinuous at @ such
that K(Q,P1) < oo by Condition 2.2, it follows that T'(Q) < liminf; o T(Qm;) <
liminf; N, =1 Therefore, Q € €),, and we can conclude that

k(n) > lim K(Nm,;) > liminf K(Qn,;, P1) > K(Q, P1) > x(n),
J—00 J—00
which means lim; oo £(1m;) = (1)

Finally, note that the conclusion also holds for n € [0,00) such that k(1) = oco. To
see this, suppose not, i.e., k(n) = co but lim,, . k(Nm) exists for a sequence {7, : m €
N} with 7, ~\, 7. By applying the previous argument, there exists @ € €, such that
K(Q, P1) < oo, which violates k(n) = oo. O

Lemma B.3. Let
0"y ={Q ¢ Qy : 3 a sequence {Qy, : k € N} C Q, such that Qi = Q}

be the set of boundary points of €, in the weak topology. Under Condition 2.3, if Q. €
0*Qy,,., for all m € N with a sequence 1, \, 0 and Q,, = Q* € M, then it holds

T(Q) =0.

Proof. Pick any sequence {Q,, : m € N} such that Q,, € 9*Q,, for all m € N with
some sequence 1, \, 0 and Q,, = Q* for some Q* € M. For this Q*, suppose that

3{Q,, : m € N} such that Q),, € Q,,, for all m € N and @, = Q*. (8)
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Then Condition 2.3 implies T'(Q*) = 0. So it is sufficient to show (8).

From @, € 0*Q,,, and the definition of 012, , it follows that for all m € N there
exists a sequence {Qy(m) : k(m) € N} such that Q) € Q,,, for all k(m) € N and
dr.(Qk(m), @m) — 0 as k(m) — oo. Thus, there exist £*(m) such that for all k(m) >
kE*(m

dr(Qr(m) @m) < 1/m.

Now pick any € > 0. From the above display and the fact that Q,, = Q*, it follows
that there exists M € N such that dr(Qp=(m), @m) < €/2 and dr(Qmn, Q") < €/2 for all
m > M. We can conclude that dr(Qp+(m), Q") < dr(Qp+(m), @m) + dr(Qm, Q") < €.
Since e is arbitrary, we obtain Q- () € 2y,, for all m € N and Q- (,n) = Q" as m — oo,
so that (8) holds true. Condition 2.3 implies T'(Q*) = 0 and this completes the proof. O

Lemma B.4. Let Q.9 = {P € M : det(X(P,0)) > €}, Qc = UpcoQeg, and Pe =
Ugco{P € Qe : Eplm(z,0)] = 0}. Under Condition 3.2, Q. and Pe are compact in the
weak topology for every € > 0.

Proof. Pick any € > 0. From Theorem D.8 of Dembo and Zeitouni (1998), the set M is
compact in the weak topology if the support X is compact (assumed in Condition 3.2).
Thus, it is sufficient to show that Q. and P, are closed in the weak topology.

We first show that Q. is closed. Take a sequence {@,,, : m € N} in Q. such that Q,,, =
Q* € M. Note that for every m € N, there exits 6,, € © such that det(XZ(Qm,0m)) > €.
Also, by compactness of © there exists a subsequence {0,,, : k € N} of {6,,} such that
Om, — 0* € O. Let g(x,0,Q) = (m(z,0) — u(Q,0))(m(z,0) — n(Q,0)). By Condition
3.2, g(z,0,Q) is uniformly continuous on X x © x M. Then

HZ(kavomk) - E(Q*’e*)”
‘ -0, (9)

S ‘

/X(g(x79mk7ka) _g($79* dek

H/ z,0%,Q")(dQ" — dQm,)

< Sug)( llg(x, Om, s Q) — gz, 0%, Q)| + H/ 2, 0", Q") (dQ* — dQum,)
S

as k — oo, where the convergence follows from the Portmanteau Lemma (van der Vaart,
1998, Lemma 2.2) and the uniform continuity of g(x, 6, Q). Since the determinant is a
continuous function, it follows that det(X(Q*,6*)) > € and so Q. is closed.

We next show the closedness of P.. Take a sequence {P,, : m € N} in 73 such that
P,, = P* € M. Then there exists a sequence {0,, : m € N} such that [, m(xz,0,,)dP, =
0. Since O is compact, there exists a subsequence {0,,, : k € N} such that 6,,, — 6* for
some 6* € ©. Therefore, it is sufficient to show that Ep«[m(z,0*)] = 0. To prove this,
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note that

< lim

T k—oo

/ m(x,0")dP*
x

k—o0

/ m(z,0%)(dP* — dPy.)

< lim sup ||m(z,0") — m(z,0,,,)|| =0,
k—o0 pcx

’-l—lim’

/X (m(z,0%) — m(x, O, ))d P,

where the first inequality follows from the definition of 6,,, the second inequality follows
by the Portmanteau Lemma (van der Vaart, 1998, Lemma 2.2) as m(+,6) is bounded and
continuous for all # € ©, and the equality follows by the uniform continuity of m(z, §)
on X x O. O

Lemma B.5. Pick any e > 0 and a € R. Under Condition 3.2, the two-step GMM test
dcrm,, and the GEL test ¢, p, defined in Section 3.2 are pointwise asymptotically level
a.

Proof. First, consider the continuous updating GMM test statistic (i.e., the case of a =
1). In this case, the supremum for 7 has an explicit solution and the test statistic is written
as Tou(Pn) = infoco Lou (0), where Loy (0) = (1/2)mn (0) S(P,, 0) L, (0) and m, (0) =
n~t 3" m(x;,0). Take any P* € P.. There exists * € © such that Ep-[m(z,60*)] =0
and X(P*,0%) is positive definite. Let ¢oy, = H{Tov(P,) > Xo1_o/(2n))}. By the
central limit theorem, 2nlcy (0*) = xg under P*, and therefore,

lim sup Ep-[¢cv,n] = limsup Pr {ein(g 2nloy (0) > x§ l—a ! P*}
g :

n—oo n—oo
< limsup Pr {2nlcy (0%) > X2, _o : P*} = a.
n—oo
Similarly, we can define the objective functions £gasar(0) and £, (0) for the two-step GMM
and GEL tests, respectively. Since £gpra(0*) and £,(0*) are asymptotically equivalent
to Loy (0*) under P* € P, (see, Newey and Smith, 2004), we obtain the conclusion. O
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