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Overview. This chapter provides an introduction to principal component analysis. a
variable-reduction procedure similar to factor analysis. It provides guidelines regarding
the necessary sample size and number of items per component. 1t shows how to determine
the number of components to retain, interpret the rotated solution, create factor scores, and
summarize the results. Fictitious data from two studies are analyzed to illustrate these
procedures. The present chapter deals only with the creation of orthogonal (uncorrel ated)
components; oblique (correlated) solutions are covered in Chapter 2, “Exploratory Factor
Anaysis’.

Introduction: The Basicsof Principal Component Analysis

Principal component analysis is appropriate when you have obtained measures on a number of
observed variables and wish to develop a smaller number of artificial variables (called principal
components) that will account for most of the variance in the observed variables. The principal
components may then be used as predictor or criterion variables in subsequent analyses.

A Variable Reduction Procedure

Principal component analysisis a variable reduction procedure. It is useful when you have
obtained data on a number of variables (possibly alarge number of variables), and believe that
there is some redundancy in those variables. In this case, redundancy means that some of the
variables are correlated with one another, possibly because they are measuring the same
construct. Because of this redundancy, you believe that it should be possible to reduce the
observed variables into a smaller number of principa components (artificial variables) that will
account for most of the variance in the observed variables.
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Because it is a variable reduction procedure, principal component analysisis similar in many
respects to exploratory factor analysis. In fact, the steps followed when conducting a principal
component analysis are virtually identical to those followed when conducting an exploratory
factor analysis. However, there are significant conceptual differences between the two
procedures, and it isimportant that you do not mistakenly claim that you are performing factor
analysis when you are actually performing principal component analysis. The differences
between these two procedures are described in greater detail in alater section titled “Principal
Component Analysisis Not Factor Analysis.”

An lllustration of Variable Redundancy
A specific (but fictitious) example of research will now be presented to illustrate the concept of

variable redundancy introduced earlier. Imagine that you have developed a 7-item measure of
job satisfaction. The instrument is reproduced here:

Please respond to each of the following statements by placing a
rating in the space to the left of the statement. In making your
ratings, use any number from 1 to 7 in which 1=“strongly disagree”
and 7="strongly agree.”

1. My supervisor treats me with consideration.

2. My supervisor consults me concerning important decisions
that affect my work.

3. My supervisors give me recognition when I do a good job.

4. My supervisor gives me the support I need to do my job
well.

5. My pay is fair.

6. My pay is appropriate, given the amount of responsibility
that comes with my job.

7. My pay is comparable to the pay earned by other employees
whose jobs are similar to mine.

Perhaps you began your investigation with the intention of administering this questionnaire to
200 or so employees, and using their responses to the seven items as seven separate variables in
subsequent analyses (for example, perhaps you intended to use the seven items as seven separate
predictor variables in a multiple regression equation in which the criterion variable was
“intention to quit the organization”).
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There are anumber of problems with conducting the study in this fashion, however. One of the
more important problems involves the concept of redundancy that was mentioned earlier. Take a
close look at the content of the seven itemsin the questionnaire. Notice that items 1-4 all deal
with the sametopic: the employees’ satisfaction with their supervisors. Inthisway, items 1-4
are somewhat redundant to one another. Similarly, notice that items 5-7 also all seem to deal
with the sametopic: the employees satisfaction with their pay.

Empirical findings may further support the notion that there is redundancy in the seven items.
Assume that you administer the questionnaire to 200 employees and compute all possible

correlations between responses to the 7 items. The resulting fictitious correlations are
reproduced in Table 1.1:

Table 1.1

Correlations among Seven Job Satisfaction Items

Correlations
Variable 1 2 3 4 5 6 7
1 1.00
2 75 1.00
3 83 .82 1.00
4 68 92 88 1.00
5 03 01 .04 01 1.00
6 05 02 05 07 89 1.00
7 02 06 00 .03 91 76 1.00

Note: N = 200.

When correlations among several variables are computed, they are typically summarized in the
form of a correlation matrix, such as the one reproduced in Table 1.1. Thisis an appropriate
opportunity to review just how a correlation matrix isinterpreted. The rows and columns of
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Table 1.1 correspond to the seven variables included in the analysis: Row 1 (and column 1)
represents variable 1, row 2 (and column 2) represents variable 2, and so forth. Where agiven
row and column intersect, you will find the correlation between the two corresponding variables.
For example, where the row for variable 2 intersects with the column for variable 1, you find a
correlation of .75; this means that the correlation between variables 1 and 2 is.75.

The correlations of Table 1.1 show that the seven items seem to hang together in two distinct
groups. First, notice that items 1-4 show relatively strong correlations with one another. This
could be because items 1-4 are measuring the same construct. In the same way, items 5-7
correlate strongly with one another (a possible indication that they all measure the same
construct aswell). Even more interesting, notice that items 1-4 demonstrate very weak
correlations with items 5-7. Thisiswhat you would expect to seeif items 1-4 and items 5-7
were measuring two different constructs.

Given this apparent redundancy, it islikely that the seven items of the questionnaire are not
really measuring seven different constructs; more likely, items 1-4 are measuring asingle
construct that could reasonably be labelled “ satisfaction with supervision,” while items 5-7 are
measuring a different construct that could be labelled “ satisfaction with pay.”

If responses to the seven items actually displayed the redundancy suggested by the pattern of
correlationsin Table 1.1, it would be advantageous to somehow reduce the number of variables
in this data set, so that (in a sense) items 1-4 are collapsed into a single new variable that reflects
the employees’ satisfaction with supervision, and items 5-7 are collapsed into a single new
variable that reflects satisfaction with pay. Y ou could then use these two new artificial variables
(rather than the seven original variables) as predictor variables in multiple regression, or in any
other type of analysis.

In essence, thisiswhat is accomplished by principal component analysis. it allows you to reduce
aset of observed variablesinto a smaller set of artificial variables called principal components.
The resulting principal components may then be used in subsequent analyses.

What isa Principal Component?

How principal components are computed. Technically, a principal component can be
defined as a linear combination of optimally-weighted observed variables. In order to
understand the meaning of this definition, it is necessary to first describe how subject scores on a
principal component are computed.

In the course of performing aprincipal component analysis, it is possible to calculate a score for
each subject on agiven principal component. For example, in the preceding study, each subject
would have scores on two components. one score on the satisfaction with supervision
component, and one score on the satisfaction with pay component. The subject’s actual scores
on the seven questionnaire items would be optimally weighted and then summed to compute
their scores on a given component.
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Below isthe genera form for the formulato compute scores on the first component extracted
(created) in aprincipal component analysis:

C1 =b(X1) + bip(X2) + ... b (Xp)
where
C: =  thesubject’ s score on principal component 1 (the first component extracted)
by, =  theregression coefficient (or weight) for observed variable p, asused in
creating principal component 1
X, =  thesubject’s score on observed variable p.

For example, assume that component 1 in the present study was the “ satisfaction with
supervision” component. Y ou could determine each subject’ s score on principal component 1 by
using the following fictitious formula

c, = L44 (Xy) + .40 (Xy) + .47 (X3) + .32 (Xg)
+ .02 (X5) + .01 (Xg) + .03 (X7)

In the present case, the observed variables (the “ X” variables) were subject responses to the
seven job satisfaction questions; X 1 represents question 1, X » represents question 2, and so forth.
Notice that different regression coefficients were assigned to the different questionsin
computing subject scores on component 1. Questions 1— 4 were assigned relatively large
regression weights that range from .32 to 44, while questions 5 —7 were assigned very small
weights ranging from .01 to .03. This makes sense, because component 1 is the satisfaction with
supervision component, and satisfaction with supervision was assessed by questions 1- 4. Itis
therefore appropriate that items 1— 4 would be given agood deal of weight in computing subject
scores on this component, while items 5—7 would be given little weight.

Obvioudly, a different equation, with different regression weights, would be used to compute
subject scores on component 2 (the satisfaction with pay component). Below is afictitious
illustration of thisformula:

Cz = .01 (Xl) + .04 (Xz) + .02 (X3) + .02 (X4)
+ .48 (Xs5) + .31 (Xg) + .39 (X7)

The preceding shows that, in creating scores on the second component, much weight would be
givento items5—7, and little would be given to items 1—- 4. Asaresult, component 2 should
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account for much of the variability in the three satisfaction with pay items; that is, it should be
strongly correlated with those three items.

At this point, it is reasonable to wonder how the regression weights from the preceding equations
are determined. The SAS System’s PROC FACTOR solves for these weights by using a specia
type of equation called an eigenequation. The weights produced by these eigenequations are
optimal weights in the sense that, for a given set of data, no other set of weights could produce a
set of components that are more successful in accounting for variance in the observed variables.
The weights are created so as to satisfy a principle of least squares ssimilar (but not identical) to
the principle of least squares used in multiple regression. Later, this chapter will show how
PROC FACTOR can be used to extract (create) principal components.

It is now possible to better understand the definition that was offered at the beginning of this
section. There, aprincipa component was defined as alinear combination of optimally
weighted observed variables. The words“linear combination” refer to the fact that scores on a
component are created by adding together scores on the observed variables being analyzed.
“Optimally weighted” refersto the fact that the observed variables are weighted in such away
that the resulting components account for amaximal amount of variance in the data set.

Number of components extracted. The preceding section may have created the impression
that, if aprincipal component analysis were performed on data from the 7-item job satisfaction
guestionnaire, only two components would be created. However, such an impression would not
be entirely correct.

In reality, the number of components extracted in a principal component analysisis equal to the
number of observed variables being analyzed. This means that an analysis of your 7-item
guestionnaire would actually result in seven components, not two.

However, in most analyses, only the first few components account for meaningful amounts of
variance, so only these first few components are retained, interpreted, and used in subsequent
analyses (such asin multiple regression analyses). For example, in your analysis of the 7-item
job satisfaction questionnaire, it islikely that only the first two components would account for a
meaningful amount of variance; therefore only these would be retained for interpretation. You
would assume that the remaining five components accounted for only trivial amounts of
variance. These latter components would therefore not be retained, interpreted, or further
analyzed.

Characteristics of principal components. The first component extracted in a principal
component analysis accounts for amaximal amount of total variance in the observed variables.
Under typical conditions, this means that the first component will be correlated with at |east
some of the observed variables. It may be correlated with many.

The second component extracted will have two important characteristics. First, this component
will account for a maximal amount of variance in the data set that was not accounted for by the
first component. Again under typical conditions, this means that the second component will be
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correlated with some of the observed variables that did not display strong correlations with
component 1.

The second characteristic of the second component isthat it will be uncorrelated with the first
component. Literally, if you were to compute the correlation between components 1 and 2, that
correlation would be zero.

The remaining components that are extracted in the analysis display the same two characteristics:
each component accounts for a maximal amount of variance in the observed variables that was
not accounted for by the preceding components, and is uncorrelated with all of the preceding
components. A principal component analysis proceeds in this fashion, with each new component
accounting for progressively smaller and smaller amounts of variance (thisiswhy only the first
few components are usually retained and interpreted). When the analysisis complete, the
resulting components will display varying degrees of correlation with the observed variables, but
are completely uncorrelated with one another.

What is meant by “total variance” in the data set? To understand the meaning of “total
variance” asitisused in aprincipal component analysis, remember that the observed
variables are standardized in the course of the analysis. This means that each variableis
transformed so that it has a mean of zero and a variance of one. The “total variance” in the
data set is simply the sum of the variances of these observed variables. Because they have
been standardized to have a variance of one, each observed variable contributes one unit of
variance to the “total variance” in the data set. Because of this, the total variancein a
principal component analysiswill always be equal to the number of observed variables
being analyzed. For example, if seven variables are being analyzed, the total variance will
equal seven. The components that are extracted in the analysis will partition this variance:
perhaps the first component will account for 3.2 units of total variance; perhaps the second
component will account for 2.1 units. The analysis continuesin thisway until al of the
variance in the data set has been accounted for.

Orthogonal versus Oblique Solutions

This chapter will discuss only principal component analyses that result in orthogonal solutions.
An orthogonal solution is one in which the components remain uncorrelated (orthogona means
“uncorrelated”).

It is possible to perform a principal component analysis that results in correlated components.
Such asolutionis called an oblique solution. In some situations, obligue solutions are superior
to orthogonal solutions because they produce cleaner, more easily-interpreted results.

However, oblique solutions are also somewhat more complicated to interpret, compared to
orthogonal solutions. For this reason, the present chapter will focus only on the interpretation of
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orthogonal solutions. To learn about oblique solutions, see Chapter 2. The concepts discussed in
this chapter will provide a good foundation for the somewhat more complex concepts discussed
in that chapter.

Principal Component Analysisis Nat Factor Analysis

Principal component analysis is sometimes confused with factor analysis, and thisis
understandable, because there are many important similarities between the two procedures. both
are variable reduction methods that can be used to identify groups of observed variables that tend
to hang together empirically. Both procedures can be performed with the SAS System’s
FACTOR procedure, and they sometimes even provide very similar results.

Nonetheless, there are some important conceptual differences between principal component
analysis and factor analysis that should be understood at the outset. Perhaps the most important
deals with the assumption of an underlying causal structure: factor analysis assumes that the
covariation in the observed variables is due to the presence of one or more latent variables
(factors) that exert causal influence on these observed variables. An example of such a causal
structure is presented in Figure 1.1:

V1

Satisfaction V2
with

Supervision V3

V4

V5
Satisfaction
with V6
Pay

AN

V7

Figurel.1l: Example of the Underlying Causal Structure that is Assumed in Factor Analysis

The ovalsin Figure 1.1 represent the latent (unmeasured) factors of “ satisfaction with
supervision” and “satisfaction with pay.” These factors are latent in the sense that they are
assumed to actually exist in the employee’ s belief systems, but cannot be measured directly.
However, they do exert an influence on the employee’ s responses to the seven items that
constitute the job satisfaction questionnaire described earlier (these seven items are represented
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asthe squares labelled V1-V7 in the figure). It can be seen that the “supervision” factor exerts
influence on items V 1-V 4 (the supervision questions), while the “pay” factor exerts influence on
items V5-V7 (the pay items).

Researchers use factor analysis when they believe that certain latent factors exist that exert
causal influence on the observed variables they are studying. Exploratory factor analysis helps
the researcher identify the number and nature of these latent factors.

In contrast, principal component analysis makes no assumption about an underlying causal
model. Principal component analysisis simply avariable reduction procedure that (typically)
resultsin arelatively small number of components that account for most of the variance in a set
of observed variables.

In summary, both factor analysis and principal component analysis have important roles to play
in socia science research, but their conceptual foundations are quite distinct.

Example: Analysisof the Prosocial Orientation I nventory

Assume that you have developed an instrument called the Prosocial Orientation Inventory (POI)
that assesses the extent to which a person has engaged in helping behaviors over the preceding
six-month period. The instrument contains six items, and is reproduced here.

Instructions: Below are a number of activities that people
sometimes engage in. For each item, please indicate how
frequently you have engaged in this activity over the preceding
six months. Make your rating by circling the appropriate number
to the left of the item, and use the following response format:

= Very Frequently

= Frequently

= Somewhat Frequently
= Occasionally

= Seldom

= Almost Never

= Never

R N W 01O

1234567 1. Went out of my way to do a favor for a
coworker.

1234567 2. Went out of my way to do a favor for a
relative.
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1234567 3. Went out of my way to do a favor for a
friend.

1234567 4. Gave money to a religious charity.

1234567 5. Gave money to a charity not associated with

a religion.

1234567 6. Gave money to a panhandler.

When you devel oped the instrument, you originally intended to administer it to a sample of
subjects and use their responses to the six items as six separate predictor variablesin amultiple
regression equation. However, you have recently learned that this would be a questionable
practice (for the reasons discussed earlier), and have now decided to instead perform a principal
component analysis on responses to the six itemsto see if a smaller number of components can
successfully account for most of the variance in the data set. If thisisthe case, you will use the
resulting components as the predictor variables in your multiple regression analyses.

At thispoint, it may be instructive to review the content of the six items that constitute the POI to
make an informed guess as to what you are likely to learn from the principal component analysis.
Imagine that, when you first constructed the instrument, you assumed that the six items were
assessing six different types of prosocial behavior. However, inspection of items 1-3 shows that
these three items share something in common: they all deal with the activity of “going out of
one’' sway to do afavor for an acquaintance.” It would not be surprising to learn that these three
items will hang together empirically in the principal component analysisto be performed. Inthe
same way, areview of items 4-6 shows that all of these itemsinvolve the activity of “giving
money to the needy.” Again, it is possible that these three items will also group together in the
course of the analysis.

In summary, the nature of the items suggests that it may be possible to account for the variance
in the POI with just two components. An “acquaintance helping” component, and a “financial
giving” component. At this point, we are only speculating, of course; only aformal analysis
can tell us about the number and nature of the components measured by the POI.

(Remember that the preceding fictitious instrument is used for purposes of illustration only, and
should not be regarded as an example of a good measure of prosocial orientation; among other
problems, this questionnaire obviously deals with very few forms of helping behavior).

Preparing a Multiple-ltem Instrument

The preceding section illustrates an important point about how not to prepare a multiple-item
measure of aconstruct: Generally speaking, it ispoor practice to throw together a questionnaire,
administer it to a sample, and then perform a principal component analysis (or factor analysis) to
see what the questionnaire is measuring.
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Better results are much more likely when you make a priori decisions about what you want the
guestionnaire to measure, and then take steps to ensure that it does. For example, you would
have been more likely to obtain desirable resultsif you:

* had begun with athorough review of theory and research on prosocial behavior
* used that review to determine how many types of prosocia behavior probably exist
» wrote multiple questionnaire items to assess each type of prosocial behavior.

Using this approach, you could have made statements such as “ There are three types of prosocial
behavior: acquaintance helping, stranger helping, and financia giving.” You could have then
prepared a number of items to assess each of these three types, administered the questionnaire to
alarge sample, and performed a principal component analysis to see if the three components did,
in fact, emerge.

Number of Items per Component

When a variable (such as a questionnaire item) is given agreat deal of weight in constructing a
principal component, we say that the variable loads on that component. For example, if the item
“Went out of my way to do afavor for acoworker” isgiven alot of weight in creating the
acquaintance helping component, we say that this item loads on the acquai ntance helping
component.

It is highly desirable to have at |least three (and preferably more) variables loading on each
retained component when the principal component analysisis complete. Because some of the
items may be dropped during the course of the analysis (for reasons to be discussed later), it is
generally good practice to write at least five items for each construct that you wish to measure; in
thisway, you increase the chances that at |east three items per component will survive the
analysis. Note that we have unfortunately violated this recommendation by apparently writing
only threeitems for each of the two a priori components constituting the POI.

One additional note on scale length: the recommendation of three items per scale offered here
should be viewed as an absolute minimum, and certainly not as an optimal number of items per
scale. In practice, test and attitude scale developers normally desire that their scales contain
many more than just three items to measure a given construct. It is not unusual to seeindividual
scales that include 10, 20, or even more items to assess a single construct. Other things held
constant, the more items in the scale, the more reliable it will be. The recommendation of three
items per scale should therefore be viewed as a rock-bottom lower bound, appropriate only if
practical concerns (such astotal questionnaire length) prevent you from including more items.
For more information on scale construction, see Spector (1992).
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Minimally Adequate Sample Size

Principal component analysisis alarge-sample procedure. To obtain reliable results, the
minimal number of subjects providing usable data for the analysis should be the larger of 100
subjects or five times the number of variables being analyzed.

Toillustrate, assume that you wish to perform an analysis on responses to a 50-item
guestionnaire (remember that, when responses to a questionnaire are analyzed, the number of
variablesis equal to the number of items on the questionnaire). Five times the number of items
on the questionnaire equals 250. Therefore, your final sample should provide usable (complete)
datafrom at least 250 subjects. It should be remembered, however, that any subject who fails to
answer just one item will not provide usable data for the principal component analysis, and will
therefore be dropped from the final sample. A certain number of subjects can always be
expected to leave at least one question blank (despite the most strongly worded instructions to
the contrary!). To ensure that the final sample includes at least 250 usabl e responses, you would
be wise to administer the questionnaire to perhaps 300-350 subjects.

These rules regarding the number of subjects per variable again constitute alower bound, and
some have argued that they should apply only under two optimal conditions for principal
component analysis: when many variables are expected to load on each component, and when
variable communalities are high. Under less optimal conditions, even larger samples may be
required.

What isa communality? A communality refersto the percent of variance in an observed
variable that is accounted for by the retained components (or factors). A given variable
will display alarge communality if it loads heavily on at least one of the study’ s retained
components. Although communalities are computed in both procedures, the concept of
variable communality is more relevant in afactor analysis than in principal component
anaysis.

SAS Program and Output

Y ou may perform a principal component analysis using either the PRINCOMP or FACTOR
procedures. This chapter will show how to perform the analysis using PROC FACTOR since
thisis a somewhat more flexible SAS System procedure (it is also possible to perform an
exploratory factor analysiswith PROC FACTOR). Because the analysisisto be performed
using the FACTOR procedure, the output will at times make references to factors rather than to
principal components (i.e., component 1 will be referred to as FACTORL in the output,
component 2 as FACTOR?2, and so forth). However, it isimportant to remember that you are
nonetheless performing a principal component analysis.
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This section will provide instructions on writing the SAS program, along with an overview of the
SASoutput. A subsequent section will provide a more detailed treatment of the steps followed
in the analysis, and the decisions to be made at each step.

Writing the SAS Program

The DATA step. To perform aprincipal component analysis, data may be input in the form of
raw data, a correlation matrix, a covariance matrix, as well as other some other types of data (for
details, see Chapter 21 on “The FACTOR Procedure’ in the SASSTAT users guide, version 6,
fourth edition, volume 1 [1989]). In this chapter’sfirst example, raw datawill be analyzed.

Assume that you administered the POI to 50 subjects, and keyed their responses according to the
following keying guide:

Variable
Line Column Name Explanation
1 1-6 V1-Vé6 Subjects’ responses to survey

questions 1 through 6. Responses were
made using a 7-point “frequency”
scale.

Here are the statements that will input these responses asraw data. The first three and the last
three observations are reproduced here; for the entire data set, see Appendix B.

1 DATA D1;
2 INPUT #1 Q1 (V1-V6) (1.) ;
3 CARDS;

4 556754

5 567343

6 777222

7

8

9 .

10 767151
11 455323
12 455544
13 ;

The data set in Appendix B includes only 50 cases so that it will be relatively easy for interested
readers to key the data and replicate the analyses presented here. However, it should be
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remembered that 50 observations will normally constitute an unacceptably small sample for a
principal component analysis. Earlier it was said that a sample should provide usable data from
the larger of either 100 cases or 5 times the number of observed variables. A small sampleis
being analyzed here for illustrative purposes only.

The PROC FACTOR statement. The general form for the SAS program to perform a principal
component analysis is presented here:

PROC FACTOR DATA=data-set-name
SIMPLE
METHOD=PRIN
PRIORS=0ONE
MINEIGEN=p
SCREE
ROTATE=VARIMAX
ROUND
FLAG=desired-size-of-"significant"-factor-loadings ;
VAR variables-to-be-analyzed ;
RUN;

Options used with PROC FACTOR. The PROC FACTOR statement begins the FACTOR
procedure, and a number of options may be requested in this statement before it ends with a
semicolon. Some options that may be especially useful in socia science research are:

FLAG=desired-size-of-"significant”-factor-loadings
causes the printer to flag (with an asterisk) any factor loading whose absolute
value is greater than some specified size. For example, if you specify

FLAG=.35

an asterisk will appear next to any loading whose absolute value exceeds .35. This
option can make it much easier to interpret afactor pattern. Negative values are
not allowed in the FLAG option, and the FLAG option should be used in
conjunction with the ROUND option.

METHOD=factor-extraction-method
specifies the method to be used in extracting the factors or components. The
current program specifies METHOD=PRIN to request that the principal axis
(principal factors) method be used for the initial extraction. Thisisthe appropriate
method for aprincipal component analysis.
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MINEIGEN=p
specifiesthe critical eigenvalue a component must display if that component isto
be retained (here, p = the critical eigenvalue). For example, the current program
specifies

MINEIGEN=1

This statement will cause PROC FACTOR to retain and rotate any component
whose eigenvalue is 1.00 or larger. Negative values are not allowed.

NFACT=n
allows you to specify the number of components to be retained and rotated, where
n = the number of components.

OUT=name-of-new-data-set
creates a new data set that includes all of the variables of the existing data set,
along with factor scores for the components retained in the present analysis.
Component 1 is given the varible name FACTORL1, component 2 is given the
name FACTORZ2, and so forth. It must be used in conjunction with the NFACT
option, and the analysis must be based on raw data.

PRIORS=prior-communality-estimates
specifies prior communality estimates. Users should aways specify
PRIORS=0ONE to perform a principal component analysis.

ROTATE=rotation-method
specifies the rotation method to be used. The preceding program requests a
varimax rotation, which resultsin orthogonal (uncorrelated) components. Oblique
rotations may also be requested; oblique rotations are discussed in Chapter 2.

ROUND
causes all coefficients to be limited to two decimal places, rounded to the nearest
integer, and multiplied by 100 (thus eliminating the decimal point). This generally
makes it easier to read the coefficients because factor loadings and correlation
coefficientsin the matrices printed by PROC FACTOR are normally carried out to
several decimal places.

SCREE
creates aplot that graphically displays the size of the elgenval ue associated with
each component. This can be used to perform a scree test to determine how many
components should be retained.

SIMPLE
requests simple descriptive statistics. the number of usable cases on which the
analysis was performed, and the means and standard deviations of the observed
variables.
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The VAR statement. The variablesto be analyzed are listed in the VAR statement, with each
variable separated by at least one space. Remember that the VAR statement is a separate
statement, not an option within the FACTOR statement, so don’t forget to end the FACTOR
statement with a semicolon before beginning the VAR statement.

Example of an actual program. Thefollowing is an actual program, including the DATA step,
that could be used to analyze some fictitious data from your study. Only afew sample lines of
data appear here; the entire data set may be found in Appendix B.

1 DATA D1;

2 INPUT #1 @1 (V1-V6) (1.) ;
3 CARDS;

4 556754

5 567343

6 777222

7

8

9 .

10 767151

11 455323

12 455544

13 ;

14 PROC FACTOR DATA=D1

15 SIMPLE

16 METHOD=PRIN
17 PRIORS=0ONE
18 MINEIGEN=1
19 SCREE
20 ROTATE=VARIMAX
21 ROUND
22 FLAG=.40 ;
23 VAR V1 V2 V3 V4 V5 V6;
24 RUN;

Results from the Output
If printer options are set so that LINESIZE=80 and PAGESIZE=60, the preceding program
would produce four pages of output. Hereisalist of some of the most important information
provided by the output, and the page on which it appears:

» Page 1 includes simple statistics.

» Page 2 includes the eigenvalue table.
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* Page 3 includes the scree plot of eigenvalues.

* Page 4 includes the unrotated factor pattern and final communality estimates.

 Page 5 includes the rotated factor pattern.

The output created by the preceding program is reproduced here as Output 1.1:

The SAS System

Means and Standard Deviations from 50 observations

vl
Mean 5.18

Std Dev 1.39518121 1.10656667

V2
5.4

v3 'z
5.52 3.64

1.21621695 1.79295674

1.

V5 vé
4.22 3.1
66953495 1.55511008

Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total =

Eigenvalue
Difference
Proportion
Cumulative

Eigenvalue
Difference
Proportion
Cumulative

o o onN

o O © o

1

.2664
.2918
3777
37717

4

.4392
.1479
.0732
.9129

1.9746
1.1773
0.3291
0.7068

5
0.2913
0.0601
0.0485
0.9615

o ©O © o

Average =1

3

.7973
.3581
.1329
.8397

6

.2312

0.0385

.0000

2 factors will be retained by the MINEIGEN criterion.
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Initial Factor Method: Principal Components

Scree Plot of Eigenvalues
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Initial Factor Method: Principal Components
Factor Pattern

FACTOR1 FACTOR2

V1 58 * 70 *
V2 48 * 53 *
V3 60 * 62 *
"z 64 * -64 *
V5 68 * -45 *
vé 68 * -46 *

NOTE: Printed values are multiplied by 100 and rounded to the nearest integer.
Values greater than 0.4 have been flagged by an '*'.

Variance explained by each factor
FACTOR1 FACTOR2
2.266436 1.974615
Final Communality Estimates: Total = 4.241050

V1 V2 V3 2 V5 Vé
0.823418 0.508529 0.743990 0.822574 0.665963 0.676575

The SAS System
Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2
1 0.76914 0.63908
2 -0.63908 0.76914

Rotated Factor Pattern

FACTOR1 FACTOR2

vl 0 91 *
v2 3 71 *
V3 7 86 *
2 90 * -9
V5 81 * 9

vé 82 * 8
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NOTE: Printed values are multiplied by 100 and rounded to the nearest integer.
Values greater than 0.4 have been flagged by an '*'.

Variance explained by each factor
FACTOR1 FACTOR2
2.147248 2.093803
Final Communality Estimates: Total = 4.241050

vl V2 v3 V4 V5 vé
0.823418 0.508529 0.743990 0.822574 0.665963 0.676575

Output 1.1: Resultsof the Initial Principal Component Analysis of the Prosocial Orientation
Inventory (POI) Data

Page 1 from Output 1.1 provides simple statistics for the observed variablesincluded in the
analysis. Oncethe SAS log has been checked to verify that no errors were made in the analysis,
these simple statistics should be reviewed to determine how many usable observations were
included in the analysis and to verify that the means and standard deviations are in the expected
range. Thetop line of Output 1.1, page 1, says “Means and Standard Deviations from 50
Observations’, meaning that data from 50 subjects were included in the analysis.

Stepsin Conducting Principal Component Analysis

Principal component analysisis normally conducted in a sequence of steps, with somewhat
subjective decisions being made at many of these steps. Because thisis an introductory
treatment of the topic, it will not provide a comprehensive discussion of all of the options
availableto you at each step. Instead, specific recommendations will be made, consistent with
practices often followed in applied research. For amore detailed treatment of principal
component analysis and its close relative, factor analysis, see Kim and Mueller (1978a; 1978b),
Rummel (1970), or Stevens (1986).

Step 1: Initial Extraction of the Components

In principal component analysis, the number of components extracted is equal to the number of
variables being analyzed. Because six variables are analyzed in the present study, six
components will be extracted. The first component can be expected to account for afairly large
amount of the total variance. Each succeeding component will account for progressively smaller
amounts of variance. Although alarge number of components may be extracted in this way,
only thefirst few components will be important enough to be retained for interpretation.
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Page 2 from Output 1.1 provides the eigenvalue table from the analysis (this table appears just
below the heading “Eigenvalues of the Correlation Matrix: Total =6 Average=1"). An
eigenvalue represents the amount of variance that is accounted for by a given component. In the
row headed “Eignenvalue’ (running from left to right), the eigenvalue for each component is
presented. Each column in the matrix (running up and down) presents information about one of
the six components: The column headed “1” provides information about the first component
extracted, the column headed “2” provides information about the second component extracted,
and so forth.

Where the row headed EIGENV ALUE intersects with the columns headed “1” and “2,” it can be
seen that the eigenvalue for component 1 is 2.27, while the eigenvalue for component 2 is 1.97.
This pattern is consistent with our earlier statement that the first components extracted tend to
account for relatively large amounts of variance, while the later components account for
relatively smaller amounts.

Step 2: Determining the Number of “Meaningful” Componentsto Retain

Earlier it was stated that the number of components extracted is equal to the number of variables
being analyzed, necessitating that you decide just how many of these components are truly
meaningful and worthy of being retained for rotation and interpretation. In general, you expect
that only the first few components will account for meaningful amounts of variance, and that the
later components will tend to account for only trivial variance. The next step of the analysis,
therefore, is to determine how many meaningful components should be retained for
interpretation. This section will describe four criteriathat may be used in making this decision:
the eigenvalue-one criterion, the scree test, the proportion of variance accounted for, and the
interpretability criterion.

A. Theeigenvalue-onecriterion. Inprincipal component analysis, one of the most commonly
used criteriafor solving the number-of-components problem is the eigenval ue-one criterion, also
known as the Kaiser criterion (Kaiser, 1960). With this approach, you retain and interpret any
component with an eigenvalue greater than 1.00.

The rationale for this criterion is straightforward. Each observed variable contributes one unit of
variance to the total variance in the data set. Any component that displays an eigenvalue greater
than 1.00 is accounting for a greater amount of variance than had been contributed by one
variable. Such acomponent is therefore accounting for a meaningful amount of variance, and is
worthy of being retained.

On the other hand, a component with an eigenvalue less than 1.00 is accounting for less variance
than had been contributed by one variable. The purpose of principal component analysisisto
reduce a number of observed variables into arelatively smaller number of components; this
cannot be effectively achieved if you retain components that account for less variance than had
been contributed by individual variables. For this reason, components with eigenvalues less than
1.00 are viewed as trivial, and are not retained.
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The eigenvalue-one criterion has a number of positive features that have contributed to its
popularity. Perhaps the most important reason for its widespread useisits ssmplicity: You do
not make any subjective decisions, but merely retain components with eigenvalues greater than
one.

On the positive side, it has been shown that this criterion very often resultsin retaining the
correct number of components, particularly when a small to moderate number of variables are
being analyzed and the variable communalities are high. Stevens (1986) reviews studies that
have investigated the accuracy of the eigenvalue-one criterion, and recommends its use when
less than 30 variables are being analyzed and communalities are greater than .70, or when the
analysisis based on over 250 observations and the mean communality is greater than or equal to
.60.

There are anumber of problems associated with the elgenvalue-one criterion, however. Aswas
suggested in the preceding paragraph, it can lead to retaining the wrong number of components
under circumstances that are often encountered in research (e.g., when many variables are
analyzed, when communalities are small). Also, the mindless application of this criterion can
lead to retaining a certain number of components when the actual difference in the eigenvalues
of successive componentsisonly trivial. For example, if component 2 displays an eigenvalue of
1.001 and component 3 displays an eigenvalue of 0.999, then component 2 will be retained but
component 3 will not; this may mislead you into believing that the third component was
meaningless when, in fact, it accounted for almost exactly the same amount of variance as the
second component. In short, the eigenvalue-one criterion can be helpful when used judicioudly,
but the thoughtless application of this approach can lead to serious errors of interpretation.

With the SAS System, the eigenvalue-one criterion can be implemented by including the
MINEIGEN=1 option in the PROC FACTOR statement, and not including the NFACT option.
The use of MINEIGEN=1 will cause PROC FACTOR to retain any component with an
eigenvalue greater than 1.00.

The eigenvalue table from the current analysis appears on page 2 of Output 1.1. The eigenvalues
for components 1, 2, and 3 were 2.27, 1.97, and 0.80, respectively. Only components 1 and 2
demonstrated eigenvalues greater than 1.00, so the eigenvalue-one criterion would lead you to
retain and interpret only these two components.

Fortunately, the application of the criterion isfairly unambiguousin this case: Thelast
component retained (2) displays an eigenvalue of 1.97, which is substantially greater than 1.00,
and the next component (3) displays an eigenvalue of 0.80, which is clearly lower than 1.00. In
thisanalysis, you are not faced with the difficult decision of whether to retain a component that
demonstrates an eigenvalue that is close to 1.00, but not quite there (e.g., an eigenvalue of .98).
In situations such as this, the eigenvalue-one criterion may be used with greater confidence.

B. Thescreetest. With the scree test (Cattell, 1966), you plot the elgenval ues associated with
each component and look for a“break” between the components with relatively large
eigenvalues and those with small eigenvalues. The components that appear before the break are
assumed to be meaningful and are retained for rotation; those apppearing after the break are
assumed to be unimportant and are not retained.
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Sometimes a scree plot will display several large breaks. When thisis the case, you should look
for the last big break before the eigenvalues begin to level off. Only the components that appear
before thislast large break should be retained.

Specifying the SCREE option in the PROC FACTOR statement causes the SAS System to print
an eigenvalue plot as part of the output. This appears as page 3 of Output 1.1.

Y ou can see that the component numbers are listed on the horizontal axis, while eigenvalues are
listed on the vertical axis. With this plot, notice that thereis arelatively small break between
component 1 and 2, and arelatively large break following component 2. The breaks between
components 3, 4, 5, and 6 are all relatively small.

Because the large break in this plot appears between components 2 and 3, the scree test would
lead you to retain only components 1 and 2. The components appearing after the break (3-6)
would be regarded astrivial.

The scree test can be expected to provide reasonably accurate results, provided the sampleis
large (over 200) and most of the variable communalities are large (Stevens, 1986). However,
this criterion has its own weaknesses as well, most notably the ambiguity that is often displayed
by scree plots under typical research conditions. Very often, it is difficult to determine exactly
where in the scree plot a break exists, or even if abreak exists at all.

The break in the scree plot on page 3 of Output 1.1 was unusually obvious. In contrast, consider
the plot that appearsin Figure 1.2.

Eigenvalues

.
-----

T T T T T T T T T T T T T T T 1
1 23 456 7 8 9 1011121314151617

Component Number

Figure1.2: A Scree Plot with No Obvious Break

Figure 1.2 presents afictitious scree plot from a principal component analysis of 17 variables.
Notice that there is no obvious break in the plot that separates the meaningful components from
the trivial components. Most researchers would agree that components 1 and 2 are probably
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meaningful, and that components 13-17 are probably trivial, but it is difficult to decide exactly
where you should draw the line.

Scree plots such as the one presented in Figure 1.2 are common in social science research. When
encountered, the use of the scree test must be supplemented with additional criteria, such asthe
variance accounted for criterion and the interpretability criterion, to be described later.

Why dothey call it a“scree” test? Theword “scree” refers to the loose rubble that lies at
the base of acliff. When performing a scree test, you normally hope that the scree plot
will take the form of acliff: At the top will be the eigenvalues for the few meaningful
components, followed by a break (the edge of the cliff). At the bottom of the cliff will lie
the scree: eigenvaluesfor the trivial components.

In some cases, a computer printer may not be able to prepare an eigenvalue plot with the degree
of precision that is necessary to perform a sensitive screetest. In such cases, it may be best to
prepare the plot by hand. This may be done simply by referring to the eigenval ue table on output
page 2. Using the eigenvalues from this table, you can prepare an eigenvalue plot following the
same format used by the SAS System (component numbers on the horizontal axis, eigenvalues
on the vertical). Such ahand-drawn plot may make it easier to identify the break in the
eigenvalues, if one exists.

C. Proportion of variance accounted for. A third criterion in solving the number of factors
problem involves retaining a component if it accounts for a specified proportion (or percentage)
of variance in the data set. For example, you may decide to retain any component that accounts
for at least 5% or 10% of the total variance. This proportion can be calculated with asimple
formula:

Eigenvalue for the component of interest

Proportion = - - -
Total eigenvalues of the correlation matrix

In principal component analysis, the “total eigenvalues of the correlation matrix” is equal to the
total number of variables being analyzed (because each variable contributes one unit of variance
to the analysis).

Fortunately, it is not necessary to actually compute these percentages by hand, since they are
provided in the results of PROC FACTOR. The proportion of variance accounted for by each
component is printed in the eigenval ue table from output page 2, and appears to the right of the
“Proportion” heading.

The eigenvalue table for the current analysis appears on page 2 of Output 1.1. From the
“Proportion” line in this eigenvalue table, you can see that the first component alone accounts for
38% of the total variance, the second component alone accounts for 33%, the third component
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accounts for 13%, and the fourth component accounts for 7%. Assume that you have decided to
retain any component that accounts for at least 10% of the total variance in the data set. For the
present results, using this criterion would cause you to retain components 1, 2, and 3 (notice that
use of this criterion would result in retaining more components than would be retained with the
two preceding criteria).

An alternative criterion isto retain enough components so that the cumulative percent of variance
accounted for is equal to some minimal value. For example, remember that components 1, 2, 3,
and 4 accounted for approximately 38%, 33%, 13%, and 7% of the total variance, respectively.
Adding these percentages together results in a sum of 91%. This means that the cumulative
percent of variance accounted for by components 1, 2, 3, and 4 is 91%. When researchers use
the “cumulative percent of variance accounted for” as the criterion for solving the number-of-
components problem, they usually retain enough components so that the cumulative percent of
variance accounted for at least 70% (and sometimes 80%).

With respect to the results of PROC FACTOR, the “cumulative percent of variance accounted
for” is presented in the eigenvalue table (from page 2), to the right of the “Cumulative” heading.
For the present analysis, this information appears in the eigenvalue table on page 2 of

Output 1.1. Notice the values that appear to the right of the heading “ Cumulative’: Each value
in thisline indicates the percent of variance accounted for by the present component, as well as
all preceding components. For example, the value for component 2 is.7068 (this appears at the
intersection of the row headed “Cumulative” and the column headed “2”). Thisvalue of .7068
indicates that approximately 71% of the total variance is accounted for by components 1 and 2
combined. The corresponding entry for component 3 is.8397, meaning that approximately 84%
of the variance is accounted for by components 1, 2, and 3 combined. If you were to use 70% as
the “critical value” for determining the number of components to retain, you would retain
components 1 and 2 in the present analysis.

The proportion of variance criterion has a number of positive features. For example, in most
cases, you would not want to retain a group of components that, combined, account for only a
minority of the variance in the data set (say, 30%). Nonetheless, the critical values discussed
earlier (10% for individual components and 70%-80% for the combined components) are
obviously arbitrary. Because of these and related problems, this approach has sometimes been
criticized for its subjectivity (Kim & Mueller, 1978b).

D. Theinterpretability criteria. Perhapsthe most important criterion for solving the “number-
of-components’ problem isthe inter pretability criterion: interpreting the substantive meaning
of the retained components and verifying that this interpretation makes sense in terms of what is
known about the constructs under investigation. The following list provides four rules to follow
indoing this. A later section (titled “ Step 4: Interpreting the Rotated Solution”) shows how to
actually interpret the results of a principal component analysis; the following rules will be more
meaningful after you have completed that section.

1. Arethereat least three variables (items) with significant loadings on each retained
component? A solution isless satisfactory if a given component is measured by less than
three variables.
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2. Do thevariablesthat load on a given component shar e the same conceptual meaning?
For example, if three questions on a survey all load on component 1, do all three of these
guestions seem to be measuring the same construct?

3. Dothevariablesthat load on different components seem to be measuring different
constructs? For example, if three questions load on component 1, and three other
guestions load on component 2, do the first three questions seem to be measuring a
construct that is conceptually different from the construct measured by the last three
questions?

4. Doestherotated factor pattern demonstrate “simple structure?’” Simple structure
means that the pattern possesses two characteristics: (a) Most of the variables have
relatively high factor loadings on only one component, and near zero loadings on the other
components, and (b) most components have relatively high factor loadings for some
variables, and near-zero loadings for the remaining variables. This concept of simple
structure will be explained in more detail in alater section titled “ Step 4: Interpreting the
Rotated Solution.”

Recommendations. Given the preceding options, what procedure should you actually follow in
solving the number-of-components problem? We recommend combining all four in a structured
sequence. First, use the MINEIGEN=1 options to implement the eigenval ue-one criterion.
Review this solution for interpretability, and use caution if the break between the components
with eigenvalues above 1.00 and those below 1.00 is not clear-cut (i.e., if component 2 has an
eigenvalue of 1.001, and component 2 has an eigenvalue of 0.998).

Next, perform a scree test and look for obvious breaks in the eigenvalues. Because there will
often be more than one break in the scree plot, it may be necessary to examine two or more
possible solutions.

Next, review the amount of common variance accounted for by each individual component. Y ou
probably should not rigidly use some specific but arbitrary cutoff point such as 5% or 10%. S$till,
if you are retaining components that account for as little as 2% or 4% of the variance, it may be
wise to take a second look at the solution and verify that these latter components are of truly
substantive importance. In the same way, it is best if the combined components account for at
least 70% of the cumulative variance; if less than 70% is accounted for, it may be wise to
consider alternative solutions that include alarger number of components.

Finally, apply the interpretability criteriato each solution that is examined. 1f more than one
solution can be justified on the basis of the preceding criteria, which of these solutionsis the
most interpretable? By seeking a solution that is both interpretable and also satisfies one (or
more) of the other three criteria, you maximize chances of retaining the correct number of
components.
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Step 3: Rotation to a Final Solution

Factor patternsand factor loadings. After extracting the initial components, PROC FACTOR
will create an unrotated factor pattern matrix. The rows of this matrix represent the variables
being analyzed, and the columns represent the retained components (these components are
referred to as FACTORL, FACTOR?2 and so forth in the output).

The entriesin the matrix are factor loadings. A factor loading is agenera term for a coefficient
that appears in afactor pattern matrix or afactor structure matrix. In an analysisthat resultsin
oblique (correlated) components, the definition for afactor loading is different depending on
whether it isin afactor pattern matrix or in afactor structure matrix. However, the situation is
simpler in an analysis that results in orthogonal components (as in the present chapter): Inan
orthogonal analysis, factor loadings are equivalent to bivariate correlations between the observed
variables and the components.

For example, the factor pattern matrix from the current analysis appears on page 4 of

Output 1.1. Where the rows for observed variables intersect with the column for FACTOR1, you
can see that the correlation between V1 and the first component is .58; the correlation between
V2 and the first component is .48, and so forth.

Rotations. Idedlly, you would like to review the correlations between the variables and the
components and use thisinformation to interpret the components; that is, to determine what
construct seems to be measured by component 1, what construct seems to be measured by
component 2, and so forth.  Unfortunately, when more than one component has been retained in
an analysis, the interpretation of an unrotated factor pattern is usually quite difficult. To make
interpretation easier, you will normally perform an operation called arotation. A rotation isa
linear transformation that is performed on the factor solution for the purpose of making the
solution easier to interpret.

PROC FACTOR alows you to request several different types of rotations. The preceding
program that analyzed data from the POI study included the statement

ROTATE=VARIMAX

which requests a varimax rotation. A varimax rotation is an orthogonal rotation, meaning that
it resultsin uncorrelated components. Compared to some other types of rotations, a varimax
rotation tends to maximize the variance of a column of the factor pattern matrix (as opposed to a
row of the matrix). Thisrotation is probably the most commonly used orthogonal rotation in the
socia sciences. The results of the varimax rotation for the current analysis appear on page 5 of
Output 1.1.

Step 4: Interpreting the Rotated Solution

Interpreting a rotated solution means determining just what is measured by each of the retained
components. Briefly, thisinvolvesidentifying the variables that demonstrate high loadings for a
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given component, and determining what these variables have in common. Usually, a brief name
is assigned to each retained component that describes its content.

The first decision to be made at this stage is to decide how large afactor loading must be to be
considered “large.” Stevens (1986) discusses some of the issues relevant to this decision, and
even provides guidelines for testing the statistical significance of factor loadings. Given that this
is an introductory treatment of principal component analysis, however, smply consider aloading
to be“large” if its absolute value exceeds .40.

The rotated factor pattern for the POI study appears on page 5 of Output 1.1. The following text
provides a structured approach for interpreting this factor pattern.

A. Read acrosstherow for thefirst variable. All “meaningful loadings’ (i.e., loadings
greater than .40) have been flagged with an asterisk (“*”). Thiswas accomplished by including
the FLAG=.40 option in the preceding program. If agiven variable has a meaningful loading on
more than one component, scratch that variable out and ignore it in your interpretation. 1n many
situations, researchers want to drop variables that load on more than one component, because the
variables are not pure measures of any one construct. In the present case, this means looking at
the row headed “V1”, and reading to the right to seeif it loads on more than one component. In
this case it does not, so you may retain this variable.

B. Repeat thisprocessfor the remaining variables, scratching out any variable that loads
on mor e than one component. In thisanayss, none of the variables have high loadings on
more than one component, so none will have to be dropped.

C. Review all of the surviving variables with high loadings on component 1 to determine
the natur e of this component. From the rotated factor pattern, you can see that only items 4, 5,
and 6 load on component 1 (note the asterisks). It isnow necessary to turn to the questionnaire
itself and review the content of the questionsin order to decide what a given component should
be named. What do questions 4, 5, and 6 have in common? What common construct do they
seem to be measuring? For illustration, the questions being analyzed in the present case are
reproduced here. Remember that question 4 was represented as V4 in the SAS program,
guestion 5 was V5, and so forth. Read questions 4, 5, and 6 to see what they have in common.

1234567 1. Went out of my way to do a favor for a
coworker.

1234567 2. Went out of my way to do a favor for a
relative.

1234567 3. Went out of my way to do a favor for a

friend.
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1234567 4. Gave money to a religious charity.

1234567 5. Gave money to a charity not associated with a
religion.

1234567 6. Gave money to a panhandler.

Questions 4, 5, and 6 al seem to deal with “giving money to the needy.” It istherefore
reasonabl e to label component 1 the “financial giving” component.

D. Repeat this processto nametheremaining retained components. In the present case,
there is only one remaining component to name: component 2. This component has high
loadings for questions 1, 2, and 3. In reviewing these items, it becomes clear that each seemsto
deal with helping friends, relatives, or other acquaintances. It is therefore appropriate to name
this the “acquaintance helping” component.

E. Determinewhether thisfinal solution satisfiesthe interpretability criteria. An earlier
section indicated that the overall results of a principal component analysis are satisfactory only if
they meet a number of interpretability criteria. 1n the following list, the adequacy of the rotated
factor pattern presented on page 5 of Output 1.1 is assessed in terms of these criteria.

1. Arethereat least threevariables (items) with significant loadings on each retained
component? In the present example, three variables |oaded on component 1, and three
also loaded on component 2, so this criterion was met.

2. Dothevariablesthat load on a given component share some conceptual meaning?
All three variables loading on component 1 are clearly measuring giving to the needy,
while all three loading on component 2 are clearly measuring prosocia acts performed
for acquaintances. Therefore, this criterion is met.

3. Dothevariablesthat load on different components seem to be measuring different
constructs? The itemsloading on component 1 clearly are measuring the respondents
financial contributions, while the items loading on component 2 are clearly measuring
hel pfulness toward acquaintances. Because these seem to be conceptually very different
constructs, this criterion seemsto be met as well.

4. Doestherotated factor pattern demonstrate“simple structure?’ Earlier, it was said
that arotated factor pattern demonstrates simple structure when it has two
characteristics. First, most of the variables should have high loadings on one
component, and near-zero loadings on the other components. It can be seen that the
pattern obtained here meets that requirement: items 1-3 have high loadings on
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component 2, and near-zero loadings on component 1. Similarly, items 4-6 have high
loadings on component 1, and near-zero loadings on component 2. The second
characteristic of simple structure is that each component should have high loadings for
some variables, and near-zero loadings for the others. Again, the pattern obtained here
also meets this requirement: component 1 has high loadings for items 4-6 and near-zero
loadings for the other items, while component 2 has high loadings for items 1-3, and
near-zero loadings on the remaining items. In short, the rotated component pattern
obtained in this analysis does seem to demonstrate simple structure.

Step 5: Creating Factor Scoresor Factor-Based Scores

Oncethe analysisis complete, it is often desirable to assign scores to each subject to indicate
where that subject stands on the retained components. For example, the two components
retained in the present study were interpreted as a financia giving component and an

acquai ntance helping component. Y ou may want to now assign one score to each subject to
indicate that subject’ s standing on the financial giving component, and a different score to
indicate that subject’ s standing on the acquaintance helping component. With this done, these
component scores could be used either as predictor variables or as criterion variablesin
subsequent analyses.

Before discussing the options for assigning these scores, it isimportant to first draw a distinction
between factor scores versus factor-based scores. In principa component analysis, a factor

score (or component score) isalinear composite of the optimally-weighted observed variables.
If requested, PROC FACTOR will compute each subject’ s factor scores for the two components

by
* determining the optimal regression weights
» multiplying subject responses to the questionnaire items by these weights
* summing the products.

The resulting sum will be a given subject’ s score on the component of interest. Remember that a
separate equation, with different weights, is developed for each retained component.

A factor-based score, on the other hand, is merely alinear composite of the variables that
demonstrated meaningful loadings for the component in question. For example, in the preceding
analysis, items 4, 5, and 6 demonstrated meaningful loadings for the financial giving component.
Therefore, you could calcul ate the factor-based score on this component for a given subject by
simply adding together his or her responsesto items 4, 5, and 6. Notice that, with afactor-based
score, the observed variables are not multiplied by optimal weights before they are summed.
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Computing factor scores. Factor scores are requested by including the NFACT=and OUT=
optionsin the PROC FACTOR statement. Hereisthe general form for a SAS program that uses
the NFACT= and OUT= option to compute factor scores:

PROC FACTOR DATA=data-set-name

SIMPLE
METHOD=PRIN
PRIORS=ONE
NFACT=number-of-components-to-retain
ROTATE=VARIMAX
ROUND
FLAG=desired-size-of-"significant"-factor-loadings
OUT=name-of-new-SAS-data-set H

VAR variables-to-be-analyzed ;

RUN;

Here are the actual program statements (minus the DATA step) that could be used to perform a
principal component analysis and compute factor scores for the POI study.

1 PROC FACTOR DATA=D1
2 SIMPLE

3 METHOD=PRIN

4 PRIORS=ONE

5 NFACT=2

6 ROTATE=VARIMAX
7 ROUND

8 FLAG=.40

9 oUT=D2  ;

10 VAR V1 V2 V3 V4 V5 V6;

11 RUN;

Notice how this program differs from the original program presented earlier in the chapter (in the
section titled “ SAS Program and Output”): the MINEIGEN=1 option has been dropped, and has
been replaced with the NFACT=2 option; and the OUT=D2 option has been added.

Line 9 of the preceding programs asks that an output data set be created and given the name D2.
This name was arbitrary; any name consistent with SAS System requirements would have been
acceptable. The new data set named D2 will contain all of the variables contained in the
previous data set (D1), aswell as new variables named FACTOR1 and FACTOR2. FACTOR1
will contain factor scores for the first retained component, and FACTOR2 will contain scores
for the second component. The number of new “FACTOR” variables created will be equal to the
number of components retained by the NFACT statement.
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The OUT= option may be used to create component scores only if the analysis has been
performed on araw data set (as opposed to a correlation or covariance matrix). The use of the
NFACT= option is also required.

Having created the new variables named FACTOR1 and FACTORZ2, you may be interested in
seeing how they relate to the study’ s original observed variables. This can be done by appending
PROC CORR statementsto the SAS program, following the last of the PROC FACTOR
statements. The full program (minus the DATA step) is now reproduced:

1 PROC FACTOR DATA=D1

2 SIMPLE

3 METHOD=PRIN

4 PRIORS=ONE

5 NFACT=2

6 ROTATE=VARIMAX
7 ROUND

8 FLAG=.40

9 ouUT=D2  ;

10 VAR V1 V2 V3 V4 V5 V6;

11 RUN;

12

13 PROC CORR DATA=D2;

14 VAR FACTOR1 FACTOR2;

15 WITH V1 V2 V3 V4 V5 V6 FACTOR1 FACTOR2;
16 RUN;

Notice that the PROC CORR statement on line 13 specifies DATA=D2. Thisdata set (D2) isthe
name of the output data set created on line 9 in the PROC FACTOR statement. The PROC
CORR statements request that the factor score variables (FACTOR 1 and FACTOR?2) be
correlated with the subjects’ responses to questionnaire items 1-6 (V1-V6), aswell aswith
themselves (FACTOR1 and FACTOR?2).

With printer options of LINESIZE=80 and PAGESIZE=60, the preceding program would again
produce four pages of output. Pages 1-2 provide simple statistics, the eigenvalue table, and the
unrotated factor pattern, identical to those produced with the first program. Page 3 provides the
rotated factor pattern and final communalities (same as before), along with the standardized
scoring coefficients used in creating the factor scores. Finally, page 4 provides the correlations
requested by the CORR procedure. Pages 3 and 4 of the output created by the preceding
program are reproduced here as Output 1.2.
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The SAS System
Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2
1 0.76914 0.63908
2 -0.63908 0.76914

Rotated Factor Pattern

FACTOR1 FACTOR2

V1 0 91 *
v2 3 71 *
V3 7 86 *
V4 90 * -9
V5 81 * 9
vé 82 * 8

NOTE: Printed values are multiplied by 100 and rounded to the nearest integer.
Values greater than 0.4 have been flagged by an '*'.

Variance explained by each factor
FACTOR1 FACTOR2
2.147248 2.093803
Final Communality Estimates: Total = 4.241050
V1 \ V3 V4 V5 V6
0.823418 0.508529 0.743990 0.822574 0.665963 0.676575
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor

FACTOR1 FACTOR2
1.000000 1.000000

Standardized Scoring Coefficients

FACTOR1 FACTOR2

V1 -0.03109 0.43551
V2 -0.00726 0.34071
V3 0.00388 0.41044
"z 0.42515 -0.07087
V5 0.37618 0.01947
vé 0.38020 0.01361
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8 'WITH' Variables:

2 'VAR'

Variable

V1
V2
V3
V4
V5
V6
FACTOR1
FACTOR2

Variables:

50
50
50
50
50
50
50
50

4
Correlation Analysis
V1 V2 V3 V4 V5 V6
FACTOR1 FACTOR2
FACTOR1 FACTOR2
Simple Statistics
Mean Std Dev Sum Minimum Maximum
5.18000 1.39518 259.00000 1.00000 7.00000
5.40000 1.10657 270.00000 3.00000 7.00000
5.52000 1.21622 276.00000 2.00000 7.00000
3.64000 1.79296 182.00000 1.00000 7.00000
4.22000 1.66953 211.00000 1.00000 7.00000
3.10000 1.55511 155.00000 1.00000 7.00000
0 1.00000 0 -1.87908 2.35913
0 1.00000 0 -2.95892 1.58951

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 50

FACTOR1 FACTOR2

V1 -0.00429 0.90741

0.9764 0.0001

v2 0.03328 0.71234

0.8185 0.0001

V3 0.06720 0.85993

0.6429 0.0001

v4 0.90274 -0.08740

0.0001 0.5462

V5 0.81055 0.09474

0.0001 0.5128

Vé 0.81834 0.08303

0.0001 0.5665

FACTOR1 1.00000 0.00000

0.0 1.0000

FACTOR2 0.00000 1.00000
1.0000 0.0

Output 1.2: Output Pages 3 and 4 from the Analysis of POI Datain Which Factor Scores Were

Created
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The simple statistics for the CORR procedure appear at the top of page 4 in Output 1.2. Notice
that the ssimple statistics for the observed variables (V1-V6) are identical to those that appeared
at the beginning of the FACTOR output discussed earlier (at the top of Output 1.1, page 1). In
contrast, note the simple statistics for FACTORL1 and FACTOR?2 (the factor score variables for
components 1 and 2, respectively): both have means of 0 and standard deviations of 1.
Obvioudly, these variables were constructed in such away as to be standardized variables.

The correlations between FACTOR1 and FACTOR2 and the original observed variables appear
on the bottom half of page 4. Y ou can see that the correlations between FACTOR1 and V1-V6
on page 4 of Output 1.2 are identical to the factor loadings of V1-V6 on FACTOR1 on page 5 of
Output 1.1, under “ Rotated Factor Pattern”. This makes sense, as the elements of afactor pattern
(inan orthogonal solution) are simply correlations between the observed variables and the
components themselves. Similarly, you can see that the correlations between FACTOR2 and
V1-V6 from page 4 of Output 1.2 are also identical to the corresponding factor loadings from
page 5 of Output 1.1.

Of special interest is the correlation between FACTOR1 and FACTOR?2, as computed by PROC
CORR. This appears on page 4 of Output 1.2, where the row for FACTOR?Z intersects with the
column for FACTORL. Notice the observed correlation between these two components is zero.
Thisis as expected: the rotation method used in the principal component analysis was the
varimax method, which produces orthogonal, or uncorrelated, components.

Computing factor-based scores. A second (and less sophisticated) approach to scoring
involves the creation of new variables that contain factor-based scores rather than true factor
scores. A variable that contains factor-based scores is sometimes referred to as afactor -based
scale.

Although factor-based scores can be created in a number of ways, the following method has the
advantage of being relatively straightforward and is commonly used:

1. To calculate factor-based scores for component 1, first determine which questionnaire items
had high loadings on that component.

2. For agiven subject, add together that subject’ s responses to these items. The result is that
subject’ s score on the factor-based scale for component 1.

3. Repeat these steps to calculate each subject’ s score on the remaining retained components.

Although this may sound like a cumbersome task, it is actually made quite simple through the
use of data manipulation statements contained in a SAS program. For example, assume that you
have performed the principal component analysis on your survey responses, and have obtained
the findings reported in this chapter. Specifically, you found that survey items 4, 5, and 6 loaded
on component 1 (the financial giving component), whileitems 1, 2, and 3 loaded on component
2 (the acquaintance helping component).
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Y ou would now like to create two new SAS variables. Thefirst variable, called FINANCE, will
include each subject’ s factor-based score for financial giving. The second variable, called
ACQUAINT, will include each subject’ s factor-based score for acquaintance helping. Once
these variables are created, you can use them as criterion variables or predictor variablesin
subsequent analyses. To keep things simple in the present example, assume that you are smply
interested in determining whether there is a significant correlation between FINANCE and
ACQUAINT.

At thistime, it may be useful to review Appendix A.3, “Working with Variables and
Observationsin SAS Data Sets,” particularly the section on creating new variables from existing
variables. Such areview should make it easier to understand the data manipulation statements
used here.

Assume that earlier statementsin the SAS program have already input subject responses to the
Six questionnaire items. These variables are included in adata set called D1. Thefollowing are
the subsequent lines that would go on to create a new data set called D2. The new data set will
include al of the variablesin D1, as well asthe newly created factor-based scales called
FINANCE and ACQUAINT.

14

15 DATA D2;

16 SET D1;

17

18 FINANCE = (V4 + V5 + V6);
19 ACQUAINT = (V1 + V2 + V3);
20

21 PROC CORR  DATA=D2;

22 VAR FINANCE ACQUAINT;

23 RUN;

Lines 15 and 16 request that a new data set called D2 be created, and that it be set up as a
duplicate of existing dataset D1. Inline 18, the new variable called FINANCE is created. For
each subject, hisor her responsesto items 4, 5, and 6 are added together. The result isthe
subjects' score on the factor-based scale for the first component. These scores are stored in a
variable called FINANCE. The component-based scale for the acquai ntance hel ping component
iscreated on line 19, and these scores are stored in the variable called ACQUAINT. Line 21-23
request the correlations between FINANCE and ACQUAINT be determined. FINANCE and
ACQUAINT may now be used as predictor or criterion variables in subsequent analyses.

To save space, the results of this program will not be reproduced here. However, note that this
output would probably display a significant correlation between FINANCE and ACQUAINT.
This may come as a surprise, because earlier it was shown that the factor scores contained in
FACTORL1 and FACTOR?2 (counterparts to FINANCE and ACQUAINT) were completely
uncorrelated.
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The reason for this apparent contradiction issimple: FACTOR1 and FACTOR2 are true
principal components, and true principal components (created in an orthogonal solution) are
always created with optimally weighted equations so that they will be mutually uncorrelated.

In contrast, FINANCE and ACQUAINT are not true principal components that consist of true
factor scores; they are merely artificia varibles that were based on the results of a principal
component analysis. Optimal weights (that would ensure orthogonality) were not used in the
creation of FINANCE and ACQUAINT. Thisiswhy factor-based scales will often demonstrate
nonzero correlations with one another, while true principal components (from an orthogonal
solution) will not.

Recoding reversed items prior to analysis. It isgeneraly best to recode any reversed items
before conducting any of the analyses described here. In particular, it isessentia that reversed
items be recoded prior to the program statements that produce factor-based scales. For example,
the three questionnaire items that assess financial giving appear again here:

1234567 4. Gave money to a religious charity.

1234567 5. Gave money to a charity not associated with a
religion.

1234567 6. Gave money to a panhandler.

None of these items are reversed; with each item, aresponse of “7” indicates a high level
of financial giving. In the following, however, item 4 isareversed item: withitem 4, a
response of “7” indicates a low level of giving:

1234567 4. Refused to give money to a religious charity.

1234567 5. Gave money to a charity not associated with a
religion.

1234567 6. Gave money to a panhandler.

If you were to perform a principal component analysis on responses to these items, the
factor loading for item 4 would most likely have asign that is the opposite of the sign of
the loadings for items 5 and 6 (e.g., if items 5 and 6 had positive loadings, item 4 would
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have a negative loading). Thiswould complicate the creation of a component-based scale:
with items 5 and 6, higher scores indicate greater giving; with item 4, lower scores indicate
greater giving. Clearly, you would not want to sum these three items as they are presently
coded. First, it will be necessary to reverse item 4. Notice how thisis donein the
following program (assume that the data have already been input in a SAS data set named
D1):

15 DATA D2;

16 SET D1;

17

18 V4 = 8 - V4;

19

20 FINANCE = (V4 + V5 + V6);
21 ACQUAINT = (V1 + V2 + V3);
22

23 PROC CORR  DATA=D2;

24 VAR FINANCE ACQUAINT;

25 RUN;

Line 18 of the preceding program created a new, recoded version of variable V4.

Vaues on this new version of V4 will be equal to the quantity 8 minus the value of

the old version of V4. Therefore, for subjects whose score on the old version of V4 was 1,
their value on the new version of V4 will be 7 (because 8 — 1 = 7); for subjects whose
score on the old version of V4 was 7, their value on the new version of V4 will be 1
(because 8 — 7 = 1); and so forth.

The genera form of the formula used when recoding reversed itemsis
Variable-name = constant - variable-name ;
In thisformula, the “constant” is the following quantity:
The number of points on the response scale used with the questionnaire item plus 1

Therefore if you are using the 4-point response format, the constant is 5; if using a 9-point
scale, the constant is 10.

If you have prior knowledge about which items are going to appear as reversed items (with
reversed component loadings) in your results, it is best to place these recoding statements
early in your SAS program, before the PROC FACTOR statements. Thiswill make
interpretation of the components a bit more straightforward because it will eliminate
significant loadings with opposite signs from appearing on the same component. In any
case, it isessential that the statements that recode reversed items appear before the
statements that create any factor-based scales.
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Step 6: Summarizing the Resultsin a Table

For published articles that summarize the results of your analysis, it is generally desirable
to prepare atable that presents the rotated factor pattern. When the variables being
analyzed contain responses to questionnaire items, it can be helpful to actually reproduce
the questionnaire items themselves within thistable. Thisisdonein Table 1.2:

Table 1.2

Rotated Factor Pattern and Final Communality Estimates from
Principal Component Analysis of Prosocial Orientation Inventory

Component
1 2 h2 Items

.00 .91 .82 1. Went out of my way to do a favor for a
coworker.

.03 .71 .51 2. Went out of my way to do a favor for a
relative.

.07 .86 .74 3. Went out of my way to do a favor for a
friend.

.90 -.09 .82 4. Gave money to a religious charity.

.81 .09 .67 5. Gave money to a charity not associated
with a religion.

.82 .08 .68 6. Gave money to a panhandler.

Note: N = 50. Communality estimates appear in column headed h2.

The final communality estimates from the analysis are presented under the heading “ h2” in
the table. These estimates appear in the SAS output following the “ Rotated Factor Pattern”
and “Variance explained by each factor” (page 3 of Output 1.2).

Very often, the items that constitute the questionnaire are so lengthy, or the number of
retained componentsis so large, that it is not possible to present both the factor pattern, the
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communalities, and the items themselves in the same table. In such situations, it may be
preferable to present the factor pattern and communalities in one table, and the itemsin a
second (or in the text of the paper). Shared item numbers may then be used to associate
each item with its corresponding factor loadings and communality.

Step 7: Preparing a Formal Description of the Resultsfor a Paper

The preceding analysis could be summarized in the following way for a published paper:

Responses to the 6-item questionnaire were subjected
to a principal component analysis using ones as prior
communality estimates. The principal axis method was used
to extract the components, and this was followed by a
varimax (orthogonal) rotation.

Only the first two components displayed eigenvalues
greater than 1, and the results of a scree test also
suggested that only the first two components were
meaningful. Therefore, only the first two components were
retained for rotation. Combined, components 1 and 2
accounted for 71% of the total variance.

Questionnaire items and corresponding factor loadings
are presented in Table 1.2. 1In interpreting the rotated
factor pattern, an item was said to load on a given
component if the factor loading was .40 or greater for that
component, and was less than .40 for the other. Using
these criteria, three items were found to load on the first
component, which was subsequently labelled the financial
giving component. Three items also loaded on the second
component, which was labelled the acquaintance helping
component.

An Example with Three Retained Components

The Questionnaire

The next example involves a piece of fictitious research that investigates the investment model
(Rusbult, 1980). The investment model identifies variables that are believed to affect a person’s
commitment to aromantic relationship. In this context, commitment refersto the person’s
intention to maintain the relationship and stay with the current romantic partner.

One version of the investment model predicts that commitment will be affected by three
antecedent variables: satisfaction, investment size, and alternative value. Satisfaction refersto
the subject’ s affective response to the relationship; among other things, subjects report high
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levels of satisfaction when their current relationship comes close to their ideal relationship.

I nvestment size refers to the amount of time, energy, and personal resources that an individual
has put into the relationship. For example, subjects report high investments when they have
spent alot of time with their current partner and have developed a lot of mutual friends that may
be lost if the relationship wereto end. Finally, alter native value refers to the attractiveness of
one’ s alternatives to the current partner; asubject would score high on alternative value if, for
example, it would be attractive to date someone else or perhapsto not be dating at all.

Assume that you wish to conduct research on the investment model, and are in the process of
preparing a 12-item questionnaire that will assess levels of satisfaction, investment size, and
alternative value in agroup of subjectsinvolved in romantic associations. Part of the instrument
used to assess these constructs is reproduced here:

Indicate the extent to which you agree or disagree with each of the
following statements by writing the appropriate response number in the
space to the left of the statement. Please use the following response
format in making these ratings:

= Strongly Agree

= Agree

Slightly Agree

Neither Agree Nor Disagree
= Slightly Disagree

Disagree

= Strongly Disagree

=N WS 0o
I

1. I am satisfied with my current relationship.
2. My current relationship comes close to my ideal relationship.

3. I am more satisfied with my relationship than is the average
person.

4. I feel good about my current relationship.

5. I have invested a great deal of time in my current
relationship.

6. I have invested a great deal of energy in my current
relationship.

7. I have invested a lot of my personal resources (e.g., money)
in developing my current relationship.

8. My partner and I have developed a lot of mutual friends which
I might lose if we were to break up.

9. There are plenty of other attractive people around for me to
date if I were to break up with my current partner.
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10.

11.

12.

It would be attractive for me

to break up with my current

partner and date someone else.

It would be attractive for me
just be alone for a while.

It would be attractive for me
“play the field” for a while.

to break up with my partner and

to break up with my partner and

In the preceding questionnaire, items 1-4 were designed to assess satisfaction, items 5-8 were
designed to assess investment size, and items 9-12 were designed to assess aternative value.
Assume that you administer this questionnaire to 300 subjects, and now want to perform a
principal component analysis on their responses.

Writing the Program

Earlier, it was mentioned that it is possible to perform a principal component analysison a
correlation matrix as well as on raw data; this section shows how thisisdone. The following
program inputs the correlation matrix that provides all possible correlations between responses to
the 12 items on the questionnaire, and performs a principal component analysis on these
responses (these correlations are based on fictitious data):

1 DATA D1(TYPE=CORR) ;

2 INPUT _TYPE  $

3 _NAME  $

4 V1-v12 ;

5 CARDS;

6 N 300 300 300 300 300

7 STD 2.48 2.39 2.58 3.12 2.80 3
8 CORR V1 1.00 .

9 CORR V2 .69 1.00 .

10 CORR V3 .60 .79 1.00 .

11 CORR V4 .62 .47 .48 1.00 .

12 CORR V5 .03 .04 .16 .09 1.00 .
13 CORR V6 .05 -.04 .08 .05 .91 1.
14 CORR V7 .14 .05 .06 .12 .82

15 CORR V8 .23 .13 .16 .21 .70

16 CORR V9 -.17 -.07 -.04 -.05 -.33 -.
17 CORR V10 -.10 -.08 .07 .15 -.16 -.
18 CORR V11 -.24 -.19 -.26 -.28 -.43 -.
19 CORR V12 -.11 -.07 .07 .08 -.10 -.
20 ;
21 PROC FACTOR DATA=D1
22 METHOD=PRIN

N
w

PRIORS=ONE

300
.14

00
.89
.72
26
20
37
13

300
2.92

.82
-.38
-.27
-.53

300
2.50

1.00
-.45
-.34
-.57
-.31

300

300 300 300

2.10 2.14 1.83 2.26

1.00
.45
.60
.44

1.00
.22 1.00 .
.60 .26 1.00
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24 MINEIGEN=1

25 SCREE

26 ROTATE=VARIMAX
27 ROUND

28 FLAG=.40 ;
29 VAR V1-V12;

30 RUN;

The PROC FACTOR statement in the preceding program follows the general form
recommended for the initial analysis of a data set. Notice that the MINEIGEN=1 statement
requests that all components with eigenval ues greater than one be retained, and the SCREE
option requests a scree plot of the eigenvalues. These options are particularly helpful for the
initial analysis of the data, as they can help determine the correct number of components to
retain. If the scree test (or the other criteria) suggests retaining some number of components
other than what would be retained using the MINEIGEN=1 option, that option may be dropped
and replaced with the NFACT= option.

Results of the I nitial Analysis

The preceding program produced four pages of output, with the following information appearing
on each page:

* Page 1 includes the eigenvalue table.

* Page 2 includes the scree plot of eigenvalues.

 Page 3 includes the unrotated factor pattern and final communality estimates.
* Page 4 includes the rotated factor pattern.

The eigenvalue table from this analysis appears on page 1 of Output 1.3. The eigenvalues
themselves appear in the row to the right of the “ Eigenvalue” heading. From the values
appearing in this row, you can see that components 1, 2, and 3 demonstrated eigenval ues of 4.47,
2.73, and 1.70, respectively. Further, you can see that only these first three components
demonstrated eigenvalues greater than one. This means that three components will be retained
by the MINEIGEN criterion. Notice that the first nonretained component (component 4)
displays an eigenvalue of approximately 0.85 which, of course, iswell below 1.00. Thisis
encouraging, as you can have more confidence in the eigenvalue-one criterion when the solution
does not contain components with “near-miss’ eigenvalues of , say, .98 or .99.
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The SAS System 1
Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total 12 Average =1

1 2 3 4
Eigenvalue 4.4706 2.7306 1.7017 0.8463
Difference 1.7400 1.0289 0.8555 0.2256
Proportion 0.3725 0.2276 0.1418 0.0705
Cumulative 0.3725 0.6001 0.7419 0.8124

5 6 7 8
Eigenvalue 0.6206 0.4110 0.3450 0.3029
Difference 0.2096 0.0660 0.0421 0.0701
Proportion 0.0517 0.0343 0.0288 0.0252
Cumulative 0.8642 0.8984 0.9272 0.9524

9 10 11 12
Eigenvalue 0.2328 0.1869 0.1062 0.0453
Difference 0.0460 0.0806 0.0609
Proportion 0.0194 0.0156 0.0089 0.0038
Cumulative 0.9718 0.9874 0.9962 1.0000

3 factors will be retained by the MINEIGEN criterion.
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The SAS System 3
Initial Factor Method: Principal Components
Factor Pattern

FACTOR1 FACTOR2 FACTOR3

V1 39 76 * -14
V2 31 82 * -12
V3 34 79 * 9
v4 31 69 * 15
V5 80 * -26 41 *
vé 79 * -32 41 *
v7 87 * =27 26
V8 88 * -14 9
V9 -61 * 14 47 *
V10 -43 * 23 68 *
V1l -72 * -6 12
V12 -40 19 72 *

NOTE: Printed values are multiplied by 100 and rounded to the nearest integer.
Values greater than 0.4 have been flagged by an '*'.

Variance explained by each factor

FACTOR1 FACTOR2 FACTOR3
4.470581 2.730623 1.701734

Final Communality Estimates: Total 8.902938

V1 v2 V3 1 V5 vé
0.755221 0.782123 0.747982 0.598878 0.871668 0.899804

v7 V8 V9 V10 V1l V12
0.899918 0.796680 0.611250 0.694877 0.532084 0.712453

The SAS System 4
Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2 3
1 0.83139 0.34426 -0.43620
2 -0.29475 0.93866 0.17902

3 0.47107 -0.02026 0.88186
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Rotated Factor Pattern

FACTOR1 FACTOR2 FACTOR3

V1 3 85 * -16
V2 -4 88 * -10
V3 9 86 * 8
v 13 75 * 12
V5 93 * 2 -3
Vé 95 * -4 -4
v7 93 * 4 -19
V8 81 * 17 -33
V9 -32 -9 71 *
V10 -11 6 82 *
V1l =52 * -30 41 *
V12 -5 3 84 *

NOTE: Printed values are multiplied by 100 and rounded to the nearest integer.
Values greater than 0.4 have been flagged by an '*'.

Variance explained by each factor

FACTOR1 FACTOR2 FACTOR3
3.704983 2.936412 2.261543

Final Communality Estimates: Total 8.902938

V1 V2 V3 V4 V5 V6
0.755221 0.782123 0.747982 0.598878 0.871668 0.899804

v7 v8 V9 V10 V11 V12
0.899918 0.796680 0.611250 0.694877 0.532084 0.712453

Output 1.3: Results of the Initial Principal Component Analysis of the Investment Model Data

The eigenvalue table in Output 1.3 also shows that the first three components combined account
for approximately 74% of the total variance (this variance value can be observed at the
intersection of the row headed “Cumulative” and column headed “3”). According to the
“percentage of variance accounted for” criterion, this once again suggests that it may be
appropriate to retain three components.

The scree plot from this solution appears on page 2 of Output 1.3. This scree plot shows that
there are several large breaks in the data following components 1, 2, and 3, and then the line
begins to flatten out beginning with component 4. The last large break appears after component
3, suggesting that only components 1-3 account for meaningful variance. This indicates that
only these first three components should be retained and interpreted. Notice how it isamost
possible to draw a straight line through components 4-12? The components that lie along a
semi-straight line such as this are typically assumed to be measuring only trivial variance
(components 4-12 constitute the “scree” of your scree plot!).
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So far, the results from the eigenvalue-one criterion, the variance accounted for criterion, and the
scree plot have converged in suggesting that a three-component solution may be appropriate. It
isnow time to review the rotated factor pattern to seeif such asolution isinterpretable. This
matrix is presented on page 4 of Output 1.3.

Following the guidelines provided earlier, you begin your interpretation by looking for
factorially complex items; that is, items with meaningful loadings for more than one component.
A review shows that item 11 (variable V11) is a complex item, loading on both components 1
and 3. Item 11 istherefore scratched out. Except for thisitem, the solution is otherwise fairly
clean.

To interpret component 1, you read down the column for FACTORL and see that items 5-8
display significant loadings for this component (remember that item 11 has been scatched out).
Theseitems are:

5. I have invested a great deal of time in my current relationship.
6. I have invested a great deal of energy in my current relationship.
7. I have invested a lot of my personal resources (e.g., money) in

developing my current relationship.

8. My partner and I have developed a lot of mutual friends which I
might lose if we were to break up.

All of these items deal with the investments that subjects have made in their relationships, so it
makes sense to label this the “investment size” component.

The rotated factor pattern shows that items 14 displayed meaningful loadings for component 2.
These items are:

1. I am satisfied with my current relationship.
2. My current relationship comes close to my ideal relationship.
3. I am more satisfied with my relationship than is the average
person.
4. I feel good about my current relationship.

Given the content of the preceding items, it seems reasonable to label component 2 the
“satisfaction” component.
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Finally, component 3 displayed large loadings for items 9, 10, and 12 (again, remember that item
11 has been scratched out). These items are:

9. There are plenty of other attractive people around for me to date
if T were to break up with my current partner.

10. It would be attractive for me to break up with my current partner
and date someone else.

12. It would be attractive for me to break up with my partner and
“play the field” for a while.

These items all seem to deal with the attractiveness of one's alternatives to the current
relationship, so it makes sense to label thisthe “alternative value” component.

Y ou may now step back and determine whether this solution satisfies the interpretability criteria
presented earlier:

1. Arethere at least three variables with meaningful loadings on each retained component?
2. Do thevariablesthat load on a given component share the same conceptual meaning?

3. Do the variables that load on different components seem to be measuring different
constructs?

4. Doestherotated factor pattern demonstrate “simple structure”?

In general, the answer to each of the preceding questionsis “yes,” indicating that the current
solution isin most respects satisfactory. There was, however, a problem with item 11, which
loaded on both components 1 and 3. This problem prevented the current solution from
demonstrating a perfectly “simple structure” (criterion 4 from above). To eliminate this
problem, it may be desirable to repeat the analysis, this time analyzing al of the items except for
item 11. Thiswill be donein the second analysis of the investment model data, to be described
below.

Results of the Second Analysis
To repeat the current analysiswith item 11 deleted, it is necessary only to modify the VAR
statement of the preceding program. This may be done by changing the VAR statement so that it

appears as follows:

VAR V1-V10 V12;
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All other aspects of the program would remain as they were previously. The eigenvalue table,
scree plot, the unrotated factor pattern, the rotated factor pattern, and final communality
estimates obtained from this revised program appear in Output 1.4:

The SAS System 1
Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total = 11 Average = 1

1 2 3 4

Eigenvalue 4.0241 2.7270 1.6898 0.6838

Difference 1.2970 1.0372 1.0060 0.1274

Proportion 0.3658 0.2479 0.1536 0.0622

Cumulative 0.3658 0.6137 0.7674 0.8295
5 6 7 8

Eigenvalue 0.5564 0.3963 0.3074 0.2668

Difference 0.1601 0.0889 0.0406 0.0798

Proportion 0.0506 0.0360 0.0279 0.0243

Cumulative 0.8801 0.9161 0.9441 0.9683
9 10 11

Eigenvalue 0.1869 0.1131 0.0486

Difference 0.0739 0.0645

Proportion 0.0170 0.0103 0.0044

Cumulative 0.9853 0.9956 1.0000

3 factors will be retained by the MINEIGEN criterion.
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Initial Factor Method: Principal Components
Scree Plot of Eigenvalues

n 0 c HO S B 0Q FHE

Number
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The SAS System 3
Initial Factor Method: Principal Components
Factor Pattern

FACTOR1 FACTOR2 FACTOR3

V1 38 77 * =17
V2 30 83 * -15
V3 32 80 * 8
v4 29 70 * 15
V5 83 * -23 38
vé 83 * -30 38
v7 89 * -24 24
V8 88 * -12 7
V9 -56 * 13 47 *
V10 -44 * 22 70 *
V12 -40 18 74 *

NOTE: Printed values are multiplied by 100 and rounded to the nearest integer.
Values greater than 0.4 have been flagged by an '*'.

Variance explained by each factor

FACTOR1 FACTOR2 FACTOR3
4.024086 2.727039 1.689791

Final Communality Estimates: Total 8.440916

V1 v2 V3 \Z V5 vé
0.772386 0.798289 0.748233 0.591921 0.882544 0.921349

v7 V8 v9 V10 V12
0.904096 0.796623 0.553800 0.736193 0.735482

The SAS System 4
Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2 3
1 0.84709 0.32928 -0.41715
2 -0.27787 0.94351 0.18051

3 0.45303 -0.03699 0.89073
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Rotated Factor Pattern

FACTOR1 FACTOR2 FACTOR3

V1 3 86 * -17
V2 -4 89 * -11
V3 8 86 * 8
v 12 75 * 14
V5 94 * 4 -4
Vé 96 * =2 -6
v7 93 * 5 -20
V8 81 * 18 -33
V9 -30 -8 68 *
V10 -12 4 85 *
V12 -5 1 86 *

NOTE: Printed values are multiplied by 100 and rounded to the nearest integer.
Values greater than 0.4 have been flagged by an '*'.

Variance explained by each factor
FACTOR1 FACTOR2 FACTOR3
3.444866 2.866255 2.129795
Final Communality Estimates: Total = 8.440916

vl V2 V3 V4 V5 Vé
0.772386 0.798289 0.748233 0.591921 0.882544 0.921349

v7 v8 V9 V10 V12
0.904096 0.796623 0.553800 0.736193 0.735482

Output 1.4: Results of the Second Analysis of the Investment Model Data

The results obtained when item 11 was dropped from the analysis are very similar to those
obtained when it was included. The eigenvalue table of Output 1.4 shows that the eigenvalue-
one criterion would again result in retaining three components. The first three components
account for 77% of the total variance, which means that three components would also be
retained if you used the variance-accounted-for criterion. Finally, the scree plot from page 2

of Output 1.4 isjust abit cleaner than had been observed with theinitial analysis. The break
between components 3 and 4 is now dlightly more distinct, and the eigenvalues again level off
after thisbreak. This means that three components would also likely be retained if the scree test
were used to solve the number-of-components problem.

The biggest change can be seen in the rotated factor pattern, which appears on page 4 of
Output 1.4. The solution is now cleaner, in the sense that no item now |oads on more than
one component. In this sense, the current results demonstrate a somewhat simpler structure
than had been demonstrated by the initial analysis of the investment model data.
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Conclusion

Principal component analysisis a powerful tool for reducing a number of observed variablesinto
asmaller number of artificial variables that account for most of the variance in the data set. Itis
particularly useful when you need a data reduction procedure that makes no assumptions
concerning an underlying causal structure that is responsible for covariation in the data. When it
is possible to postulate the existence of such an underlying causal structure, it may be more
appropriate to analyze the data using exploratory factor analysis.

Both principal component analysis and factor analysis are often used to construct multiple-item
scales from the items that constitute questionnaires. Regardless of which method is used, once
these scales have been developed it is often desirable to assess their reliability by computing
coefficient alpha: an index of internal consistency reliability. Chapter 3 shows how this can be
done using the SAS System’s PROC CORR.

Appendix: Assumptions Underlying
Principal Component Analysis

Because a principal component analysisis performed on a matrix of Pearson correlation
coefficients, the data should satisfy the assumptions for this statistic. These assumptions are
described in detail in Chapter 6, “Measures of Bivariate Association,” of Hatcher & Stepanski
(1994) and are briefly reviewed here:

* Interval-level measurement. All analyzed variables should be assessed on an interval or ratio
level of measurement.

* Random sampling. Each subject will contribute one score on each observed variable. These
sets of scores should represent a random sample drawn from the population of interest.

* Linearity. Therelationship between all observed variables should be linear.

» Normal distributions. Each observed variable should be normally distributed. Variables that
demonstrate marked skewness or kurtosis may be transformed to better approximate normality
(see Rummel, 1970).

 Bivariate normal distribution. Each pair of observed variables should display abivariate
normal distribution; e.g., they should form an elliptical scattergram when plotted. However,
the Pearson correlation coefficient is robust against violations of this assumption when the
sample size is greater than 25.
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