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SUMMARY

A mathematical model for the combined refraction-diffraction
of linear periodic gravity waves on water 1is developed, in
which the influence of inhomogeneities of depth and current
is taken into account.

The model 1is used to compute partial reflection of waves
crossing a gully or an undersea slope, with influence of a
current. The model is also applied to prismatic wave
channels with reflecting side-walls. For a gully bounded by
shallows the model predicts the decay of wave height due to
radiation of energy in lateral direction.

For practical application in regions with arbitrary bottom
and current topography a parabolic approximation of the
model is derived. This 1is used as a basis for numerical

calculation of waves in a sea region near the coast.




Stellingen

Nagegaan dient te worden voor welke eindtermen het indienen van
stellingen dienstig is, en vervolgens of stellingen het meest doelmatige
midde! vormen ter toetsing van deze eindtermen.

De vergelijking voor refractie-diffractie met stroming, afgeleid in dit
proefschrift, kan toegepast worden bij berekening van brandings-
stromen en muistromen,

De methode van de gewogen residuen biedt een goed aanknopings-
punt voor het berekenen van een overgangslaag met eindige dikte tussen
zoet en zout grondwater, als compromis tussen het rekenen met een
scherp grensvlak en het rekenen met een volledige dichtheidsverdeling
over de vertikaal.

v

Bij de numerieke berekening van een aantal beginwaardeproblemen kan
de predictor-corrector-methode een gunstig alternatief vormen voor de
methode van Lax of Lax-Wendroff. Hierbij wordt bijvoorbeeld gedacht
aan de vergelijking voor bodemverandering in rivieren.

Vv

Bij de berekening van hoogwatergolven in rivieren is een expliciet reken-
schema mogelijk, dat niet onderhevig is aan een stabiliteitsvoorwaarde.
Dit wordt verwezenlijkt door een benadering van de verhangterm, waar-
door ook de richting van de karakteristieken verandert. Deze aanpak
is ook dienstig bij netwerken waarin takken met supercritische stroming
voorkomen.



Vi

Ontwikkelaars van applicatie-software dienen niet slechts te streven naar
gebruikersvriendelijkheid van hun produkten; zij zouden hun ontwerpen
ergonomisch moeten bekijken. Deze aanpak is van belang voor het
gemak van de gebruiker, maar ook voor de voorkoming van gebruikers-
fouten, en voor een tijdige opsporing daarvan.

Vil

In sommige industrieén is men afgestapt van het lopende-band systeem,
en heeft men dit vervangen door teams van mensen die samen een com-
pleet produkt maken. Het verdient aanbeveling te onderzoeken of voor
het onderwijssysteem aan de Technische Hogeschool een analoge
wijziging voordelen zou bieden.

VI
In de basisstudie van de studierichting der Civiele Techniek dient een
cursus betreffende de ontwikkeling en het gebruik van mathematische
modellen opgenomen te worden.

X
Bij diverse terreinen van overheidsbeleid, met name dat betreffende
de volkshuisvesting, kan de beleidsvoorbereiding worden verbeterd
door toepassing van System Dynamics.

X
Het landschap in de Krimpener- en Alblasserwaard is van zo grote waarde

dat het beschermd moet worden, o0.a. door de bestaande verkeers-
toegangen bij Krimpen en Alblasserdam niet te verruimen.



ERRATA

De tekst op het midden van de titelpagina dient als volgt te

luiden:
PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN
DE TECHNISCHE WETENSCHAPPEN  AAN DE
TECHNISCHE HOGESCHOOL DELFT, OP GEZAG VAN DE
RECTOR MAGNIFICUS PROF. IR. B.P.TH. VELTMAN,
VOOR EEN COMMISSIE AANGEWEZEN DOOR HET
COLLEGE VAN DEKANEN TE VERDEDIGEN OP DINSDAG
19 MEI 1981 TE 14.00 UUR.

In eqg. (3.20) the symbol o 1is to be replaced by: a.
In eq. (4.8) the symbol x is to be replaced by: k.

On page 44, 7th line from bottom, 'the coefficient :

is to be replaced by 'the coefficient ««'.

In eq. (5.1) the symbol x is to be replaced by: x.
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NOTATIONS

The summation convention is employed, i.e. if a subscript
appears twice in the same term, summation over this sub-
script is understood.

Greek symbols o, B etc. used as subscript, indicate compo-
nents of a vectorial gquantity in the 3-~dimensional space.
Latin characters i, j, k etc. used as subscript, indicate
components of a vectorial guantity in the propagation space
(Chapter 2), or in the two horizontal dimensions {(other

chapters). x, and x, are the horizontal coordinates, z=x;

1
is the vertical coordinate.

Differentiation in the horizontal direction is denoted by
the operator V , or by adding a Latin subscript preceded by
a comma: ¢,j . Differentiation in the 3-dimensional space
is denoted by the operator D , or by adding a Greek sub-

script preceded by a comma: ¢ o

Lt denotes the partial derivative of the quantity L with
respect to t, all other variables kept constant, even if
dependent on t. 3L/5t denotes the partial derivative taking
into account such dependence on t. Therefore if L is a func-
tion of x, t and p: L(p,x%,t), then

oL _ ap

i Lp ot

p . denotes the partial derivative of p with respect to x..
> 3
The distinction between L , and V L is analogous to the dis-

. . 3
tinction between Lt and 3L/ st resé..



List of Symbols

product of phase and group velocity, a=ccg
amplitude of the wave potential

phase velocity,

group velocity,

3-dimensional differential operator

base of natural logarithm

function of 2z, giving the vertical structure of the
waves

acceleration due to gravity

[9IRte]

dispersion relation: G(w, k)
h' wvertical position of the bottom with respect to datum:
=-h'(x).

h local depth; h=h'+n

i (unless used as subscript) imaginary unit

k (unless used as subscript) wave number

1 component of the vectorial wave number

L Lagrangian function

£ Lagrangian function averaged over the phase

m (unless used as subscript) component of the vectorial
wave number
pressure

s coordinate (roughly) in the direction of wave propaga-—
tion

S outer surface of the volume V

t time

u unsteady part of the particle velocity

U steady part of the velocity, i.e. current velocity

v total particle velocity, v=U+u

v a control volume

W function relating wave number and frequency

X coordinate vector

z vertical coordinate

§ variation symbol

§.. Kronecker symbol, =1 if j=k, and =0 if j#k

(&)
=~
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Q

unsteady part of the position of the free surface

vertical position of the free surface with respect to
datum,

mean vertical position of the free surface

phase function

wave number

frequency as observed when moving with the current
wave potential

frequency observed from a fixed point




CHAPTER 1. INTRODUCTION

Knowledge of wave conditions is of great importance to coas-
tal engineering practice, mainly with regard to coastal
defense works and the building and maintenance of harbors.
In the problem of the determination of the wave conditions
two aspects can be distinguished, viz., the generation of the
waves by the wind in the largest deeper part of the sea, and
the propagation of waves over shallows near the coast.
Mathematical models which consider both aspects of the prob=-
lem, do exist (e.g. CAVALERI and MALANOTTE RIZZOLI, 1977).
Usually however, the two aspects are considered separately,
in which case the necessary data concerning the waves coming
in from the sea are obtained from either wave generation
formulas, or from measurements. Such measurements are often
performed with wave buoys located in a part of the sea that
can be considered as deep for the most relevant wave fre-

duencies.,

The propagation of the waves over shallows is frequently
calculated using the refraction or ray method., This method
works well for those parts of the coast which are reasonably
regular. In irregularly shaped regions, such as exist near
the entrance of an estuary (see for instance figure 6.2),
this method yields results which are hard to interpret. This
is due to the sensitivity of the rays to every bottom
irregularity. This sensitivity even causes appreciable dif=-
ferences between the results of different computer programs
based on the ray method. A problem related with the exis-
tence of irregular shallows is that diffraction of the waves
becomes important, This is clearly true for caustics that
arise in such regions, but alsc for ray bundles which

diverge. This shows the need for the development of a com=-




bined refraction and diffraction model. A first step in
this process was made by SVENDSEN (1967) who derived an
equation for the propagation of gravity waves on water in
one dimension. Later SCHONFELD (1972) and BERKHOFF (1972,
1976) derived a similar equation for two dimensions. Their
equation 1s known as the mild-slope equation. RADDER (1979)
developed a parabolic approximation to the mild-slope equa-
tion whereby he provided a method for carrying out practical
calculations in the nearshore region.

The mild-slope equation included only the effect of bottom
inhomogeneities. The effect of a current was neglected. In
practice however, the regions that have the most irregular
bottom topographies, are the entrances to estuaries, at the
same time regions with strong currents due to tidal motion.
A valuable contribution would be to add terms to the mild-
slope equation representing the effect of a current. This
thesis presents a derivation of such terms.  The resulting
model is applied to a number of problems concerning wave
propagation across or along channels with prismatic bottom
configuration, and with a current velocity constant in axial

direction.

For the computation of wave fields in regions of arbitrary
bathymetry and with an arbitrary current pattern, occurring
in coastal engineering practice, a parabolic approximation
to the above refraction-diffraction model is developed. A
numerical model based on this approximation is shown to be

applicable in practice.



CHAPTER 2. DISCUSSION OF EXISTING WAVE MODELS

2.1. Discussion of basic assumptions in relation with prac-

tical applications.

The common refraction model is subject to a large number of
restrictions. In essence it 1is based on a potential flow
model in connection with small-amplitude sinusoidal waves
over a bottom with very small slope, and if a current is
taken into account, a current velocity field which varies
slowly both in space and time. 1In addition to this the
influence of differences in wave amplitude on the propaga-
tion (the diffraction effect) has been neglected. Due to the
assumed linearity one can and does consider one elementary

wave at a time,

In reality one is confronted with an irregqular wave field
which can be considered as a superposition of many elemen-
tary sinusoidal wave components, each with different fre-
quency and direction. These components interact due to non-
linearities in the wave equations. The interaction becomes
pronounced with strongly nonlinear effects such as breaking.
Moreover the energy dissipation caused by breaking and by
bottom friction is inconsistent with the assumption of
potential flow. The assumption of a small bottom slope is
better justified than the others, at least for a sea with a
sandy bottom.

Several steps have been taken to overcome the rather severe
restrictions of the refraction model. Energy dissipation
due to bottom friction was introduced (SKOVGAARD, JONSSON
and BERTELSEN, 1975) as well as another nonlinear effect,
viz. the influence of the wave amplitude on the propagation

velocity (WALKER, 1976). Although in this way some non-li-




nearity is introduced, the refraction method still ignores
any interaction between wave components. With these addi-
tions the model can be classified according to PEREGRINE and

THOMAS (1976) as a near-linear wave model.

The introduction of an effect 1like breaking of waves is
theoretically inconsistent with several assumptions:
linearity, sinusoidal shape, potential flow. Due to this
the shape of the waves is far from correctly described by
the refraction model, if breaking etc. is included. At best
the model is fit to describe overall wave conditions, such
as the amount of energy per unit surface, and the direction
of propagation of the waves. Other models would have to be
used to establish the local wave shape or other quantities
of interest, as for instance the orbital velocities.

The main difference between the refraction and the refrac-
tion-diffraction models as far as basic assumptions are con-
cerned, 1is that the latter type of models do take into
account the influence of differences 1in wave amplitude on
the propagation. A related difference is that the restric-
tion on the bottom slope is less strict with the refraction-
diffraction models.

The refraction-diffraction equation developed by BERKHOFF
(1972, 1976), also known as the mild-slope equation, is
strictly linear and non-dissipative. This hampers the use
in regions containing beaches, because a linear and non-dis-
sipative model will predict an infinite wave height at a
beach. In the parabolic approximation to the mild-slope
equation by RADDER (1979) this had to be remedied, since it
was designed for such regions. In this model breaking is
included, as well as the influence of the wave height on the
propagation velocity, also a nonlinear effect. Theoreti-
cally the same effects could be built into the mild-slope
equation as well, but for computational reasons a parabolic



model can cope better with nonlinear effects, due to the
fact that it is solved in a step-wise manner. It must be
added that the parabolic method is subject to a more severe
restriction on the other hand. It ignores reflections from
the field, which is allowed only for very small slopes.

The aim of the present study is to develop an equation which
igs analogous to the existing mild-slope equation with some
terms added which model the influence of the current. It is
therefore an obvious choice to start with similar assump-
tions: linear wave theory, and use of a velocity potential.

The use of linear wave theory is neither more, nor less
justified for waves in flowing water than it is for waves
entering still water. An exception must be made for regions
where the waves meet a countercurrent which is so strong
that it prevents propagation any further into that region.
In such a case on the one hand diffraction effects come into
play, which is legitimate in a refraction-diffraction egua-
tion, on the other hand wave breaking may occur. Wave
breaking, being a nonlinear as well as a dissipative pheno-
menon, is not included in the model, at least not at the
outset. It must be remarked that the wave model to be
developed will only be valid for moderate current veloci-
ties, so that the problem mentioned above will be excluded.

The use of a velocity potential is far more questionable.
Theory shows that waves entering still water remain free of
rotation if they are not subject to shear stresses. Of
course waves which 'feel the bottom' have an appreciable
orbital velocity at the bottom and will therefore experience
shear, Still a velocity potential 1is often used, mainly
because the region in which the fluid is rotating is res-
tricted to a boundary layer near the bottom. A similar
argument can be wused for waves in a flowing water body. A

current in restricted depth «c¢an also for a large part be




considered as having little rotation. Only in the lower
region the velocity gradient and thus the rotation is large.
This means that most of the wave motion takes place in that
part of the fluid which has small rotation. The conclusion
is that the use of a velocity potential is not as firmly
based as for waves in water with zero mean velocity, but it

seems a usable starting point.

For those cases 1in which the assumption of an irrotational
current leads to unacceptable results, the approach by JONS-
SON, BRINK-KJAER and THOMAS (1978) could provide a solution,

at least for rotation in a vertical plane.

The rotation in the horizontal plane will be much smaller
than that in the vertical plane, since the length scale of
depth and current inhomogeneities is much larger than the
depth itself. Moreover the equation for wave propagation
derived in this thesis, although it is based on the use of a
velocity potential, conforms well to the refraction equation
with current, which is also valid for a current with rota-
tion in the horizontal plane.
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2.2, Use of the variational method for wave problems.

The variational method provides a framework of great gener-
ality for wave models, as for other physical phenomena. Not
only the partial differential equation governing the wave
motion can immediately be derived from the variational
statement, but also the important law of conservation of
wave action. Furthermore the method gives a deeper insight
in the connection between the refraction model and the
refraction-diffraction model. In the present study the
method is wused in the first place to derive a vertically
integrated model from the three-dimensional equations. In
this section a brief account is given of aspects of the var-
iational method, which will be important in later chapters.

The variational principle generally states that the varia-
tion of a certain quantity, often an integral, vanishes if
the function that describes the evolution of the physical
process is subject to small variations. It is often written
as the integral of the so-called Lagrangian function:

(
SJILdEdt:O . (2.1)

X''T
The region over which the integration extends is a part of
the propagation space X'*T, i.e. the Cartesian product of a
subspace of the physical space X, and time. The propagation
space is the space in which the waves propagate. If the
propagation space is of lower dimension than the physical
space, there also exists a so-called cross space X". In the
case of gravity waves on water the propagation space con-
sists of time and both horizontal dimensions. The vertical
dimension acts as cross space. If a cross space is present
one is dealing with modal waves, in the terminology of HAYES
{1970), whereas the waves are called local if the propaga-

tion space fills the entire physical space.
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The Lagrangian function L appearing in the integral (2.1)
depends on the functions describing the state of the physi-
cal process, and on their spatial and temporal derivatives.
If there is no cross space the wave equation can easily be
derived as the Eulerian relation resulting from the varia-
tional principle (see e.g. MIKHLIN, 1964). Let the Lagran-
gian be dependent on the function ¢ and its first deriva-

tives:

L=L (0, b5 d ) (2.2)

It is understood that Latin subscripts i or j refer to coor-
dinates in the propagation space, whereas Greek subscripts a
or Bindicate coordinates in the whole physical space.

2
Then Ly = 5% Ld)t - Vj L =0 (2.3)

is the partial differential equation describing the wave
motion. If L <contains second powers of ¢ or 1its deriva-
tives, the corresponding wave equation is linear. The
procedure can however just as well be used for nonlinear

waves. An important example is the variational principle

for gravity waves proposed by LUKE (1967):

n
ve [ fo, -
_h'

The Lagrangian function is integrated over the cross space,

. ®,oc) - gz} dz . (2.4)

as usual. It is noted that the state variables are n , the
vertical position of the free surface, and ¢ , the velocity
potential.

The fact that one is dealing with waves comes out more preg-
nantly by realizing the existence of periodic or nearly per-
iodic solutions. This is expressed by
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¢ =P (9), {2.5)

8 being the phase function. The frequency w and the wave

number k are derivatives of the phase function:

w:_ets

(2.6)
E:V@.
In periodic or nearly periodic waves these functions are

constant or slowly varying.

The shape of the function P 1is derived from the variational
principle.

Let L (P, -wP', k P') = L¥ (P, PV,
where P' denotes the derivative of P with respect to 6.

T N 2.7
hen LS~ 55 Lpr = 0 - ( )

There exists a first integral of this differential equation:

* - p L;f, = A' = const. (2.8)
Eg. (2.7) is the differential equation by which the function
P(p) can be established. In (2.8) a guantity A' appears
that is independent of the phase, and that is related to the

wave amplitude.

An important step in this theory was made by WHITHAM (1965,
1971), when he introduced the averaging of the Lagrangian

over the phase:

2
- L (2.9)
0




- 15 -

Thereby he obtained a Lagrangian which depends on the fre-
quency, the wave number and the amplitude A. So

L =L (w, k, A) (2.10)

with an additional consistency relation:
%k - 2.11
Bt-+Vw =0 . ( )

On the basis of the averaged Lagrangian (2.10) a set of
equations is formed by which w, k and A can be determined.
The Bulerian equation that results by considering the varia-

tion of A is:

This equation has the character of a dispersion relation, a
fact that can be seen more clearly with 1linear waves. For
linear waves L is quadratic in ¢ , and therefore £ 1is quad-
ratic in A. It can thus be written:

L= o, ) A%, (2.12)
sSo £A:Ae<w,5)=0
or simply G (w, X) =0, (2.13)

since evidently the amplitude should not vanish everywhere.
For linear waves the dispersion relation turns out to be
independent of the wave amplitude, a natural property of

this class of waves.

If the non-averaged or primitive Lagrangian is related to a
refraction~diffraction equation, the averaged Lagrangian is

L

related to the refraction model for the same type of waves.
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In the refraction method the dispersion relation is used
first to determine the wave rays, and then, if needed, the
amplitude is determined using a conservation equation. This
relation results from considering the variation with respect
to 6:

9
3?'£w - Vi £k. =0 . (2.14)

1

This equation is in the form of a conservation eguation. It
represents the law of conservation of wave action, a genera-
lisation of the adiabatic invariant. ANDREWS and McINTYRE
(1978b) showed its validity in a completely different way
for waves in a moving medium. The quantity £w is inter-
preted as the wave action density, and £ki as the transport
of wave action. The equation of conservation of wave action
can be used to determine A. This too can be seen more
clearly for the linear subcase:

2o, 8 -, g 4 =0 (2.15)

k.
i

The group velocity, being the velocity with which the wave
energy is transported, emerges from the conservation equa-
tion:

Gki
C - - (2.16)
w

&g

The group velocity can also be introduced by means of the
dispersion relation. This relation is a partial differen-
tial equation of the first order in 9§ :

G(-8,.,86 .)y=0. (2.17)

Equations of this type have characteristic curves, along

which the following relations hold:

[a¥

|

t
- = G = -G
Y 0y

[N
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dx.
1

-—d—\—{—-:G = G

8 . k.
51 i

One of the merits of the variational method is that it clar-

ifies why the propagation velocity associated with these

characteristics, equals the group velocity.

From the line of reasoning pursued so far it would seem that
the conservation of wave action can only be arrived at via
the averaged Lagrangian. HAYES (1970) however showed that
the conservation principle can also be obtained from the
primitive Lagrangian directly. A family of periodic solu-

tions is introduced:
¢ =P (8, x, t) . (2.18)
Periodicity is expressed by
P (o +2m, x, t) =P (8, x, t) .

Hayes defines the wave action density and wave action trans-

port as resp.

(2.19)
§L¢t dp ,

o _ 1
B = L¢ Py = = § L¢ dp . (2.20)

i i
The local conservation law is then readily obtained:

9A

W
*ag-i-v.Bw-O.

(2.21)
Similarly in this thesis a conservation principle will not
only be derived for refraction-like models, but also for

refraction-diffraction models, for instance in the next sec-
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tion. The method uses a multiplication with the complex
conjugate of the wave potential. Superficially it appears
to be different, but it is in fact a special case of Hayes'
method.

The present study is concerned with the following elements
of the variational theory. An averaged Lagrangian for waves
on currents does exist, and the aim is to develop a primi-
tive Lagrangian for this phenomenon. It 1is to be in a form
corresponding to a local wave equation with the horizontal
coordinates and time spanning the propagation space. To
this end a modal wave equation is developed first, with the
vertical dimension acting as cross space. This is subse-
quently reduced to the desired equation (chapter 3). By
averaging the Lagrangian thus obtained it 1is shown to be in

accordance with the refraction model (chapter 4).
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2.3. Existing refraction-diffraction equations

The model of greatest generality for gravity waves in an
irrotational fluid is provided by the variational model of
LUKE (1967). The Lagrangian appearing in this model is:

L = Jn {¢t -3 (¢’a ¢,u) - gz} dz .
Zht
This model describes nonlinear waves which need not be per-
iodic and the bottom is allowed to have arbitrarily steep
slopes. 1In this very general form it can hardly be used for
practical computations sinte it comprises three space dimen-
sions and time. It is used often as a starting-point for
more specialized models, that do 1lend themselves to the
solution of practical problems.

One model that can be considered as a special case of the
above model, is the mild-slope equation (BERKHOFF, 1972,
18976). It is only a two—-dimensional model. The time coordi-
nate has disappeared because the wave motion is assumed
sinusoidal in time and the vertical coordinate has disap-
peared because the model is vertically integrated. The equa-
tion reads

V. (cc V¥V 5) + KQ cc d=0. (2.22)
g g

As its name indicates it is valid for small bottom slopes.
Furthermore the waves are linear. The function } is the
complex potential at the mean free surface (z=0 in this
case). The three-dimensional potential is related to § .in
the following way:

coshk (2 + 1) po 710F § ()} .

¢ (%, 2, 1) = cosh xh

The coefficients K, ¢ and cg are calculated from the given
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frequency w and depth h by:

w? = gk tanh (kh)

c=uw Kk

% sinh (2xh) + I kh

g w {cosh(Kh)}2

In a region with homogeneous depth ¢ can be interpreted as
the wave number associated with a homogeneous wave field, c

as the phase velocity, and c as the group velocity associ-

g
ated with the same wave field.

BERKHOFF (1972, 1976) does not explicitly use variational
methods in his derivation of (2.22) but closer examination
reveals that he in fact used the Galerkin method. He expli-

citly takes care that the wave energy is conserved.

A refraction-diffraction model developed almost simultane-
ously with the mild~slope equation 1is proposed by ITO and
TANIMOTO (1972). Unlike the mild-slope equation it is in
the form of an initial value problem:

Suj
A I
(2.23)
oz 1
=2 = - Etanh(K h) vj uy

The notations have been modified to conform with this the-
sis. After elimination of u there results
2
3 tanh (Kh) g2 _
5t 2 3 &=

For a purely harmonic wave this is easily transformed into
an equation for the potential §:

23 +92 % =0 (2.24)




- 21 -

which deviates from the mild-slope equation. The disagree-
ment is mainly due to a different treatment of the boundary
condition at the bottom. According to Ito and Tanimoto this
condition is

whereas the slope of the bottom, although it is small, is
taken into account more accurately in the mild-slope equa-
tion. As a consequence the law of conservation of wave
energy 1is obeyed accurately by the mild-slope equation.
This is verified by multiplying the equation with the com-
plex conjugate of §J (denoted by @x) and then taking the
imaginary part of the product:

Im {éx V . c Cg V.0 + ¢ cg K2 7Y =

i

Im {V . (5X c Cg v 5) - c Cg v ot . v 5} =

v . {im (c Cg *y 5)} =0 .

It is noted that 5%x and V3.V0”" are real and therefore disap-
pear. If one substitutes J=fexp(if) . this relation trans-
forms into an expression which is more easily recognizable

as the divergence of the transport of wave action:

v.wcgyve>:v.wccgﬁé%:v.<w26%:o.

where the vector <, is defined by cgve/K.
The same procedure applied to eg. (4.3) leads to
v. @ ve =v. xd¥)=0.

which is not in agreement with the conservation of wave

action.

Although it must be concluded that eg. (2.23) is not
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entirely correct, the method of £finding the periodic motion
as a limit of an unsteady process is valuable when con-
structing a numerical solution. The solution can be found
in an iterative manner, avoiding the solution of a large
system of linear eguations. It is admitted that there are
other iterative solution methods, but the method discussed
above is relatively efficient., Therefore the eguation which
will be derived in the next chapter will also be in time-de-

pendent form instead of a harmonic form,




CHAPTER 3. A MATHEMATICAL MODEL FOR WAVE PROPAGATION

3.1, Differential equations and boundary conditions.

In this section the equations for wave propagation in the
presence of a current appear. The usual assumptions for
linear wave theory have been applied:

- the wave motion is irrotational,

- the waves are linear, so all terms in "~ which the wave
amplitude or a related quantity appears in higher than the
first order, will be disregarded, if first order terms are
present.

In addition to this it is assumed that the spatial variation

of the current velocity and the mean free surface are very

small. Although this study is concerned with the influence
of a current on the waves, the opposite effect of the waves
on the current is neglected, or assumed known. Then, if the
effect of the waves on the current is important, the current
description can be improved by means of time-averaged equa-
tions, and a next iteration towards the wave state can be
carried out. Thus in an iterative procedure both the waves

and the current can be determined.

In the following derivation it is assumed that the waves are
almost periodic with a frequency in the neighbourhood of wq .
The equations are kept in transient form instead of harmonic
form. Later on this will result in a wave model in the form
of an initial value problem, which enables one to use time-
dependent computational methods in the solution of the wave

equation.

The total particle velocity v consists of a steady part U
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and an unsteady periodic part u with zero mean. It Iis
assumed that the motion due to waves is irrotational, so
there exists a velocity potential ¢ for which

w. =D ¢ a =1, 2, 3. (3.1)

D is the three-~dimensional differential operator. The water
is assumed to be incompressible as usual. Therefore we have

in the interior of the fluid:
D u =D ¢ =20. (3.2)

For the same reason the current velocity field is diver-

gence—-free:

4 X

Figure 3.1. Definition sketch of the free surface

In addition to this the boundary conditions are needed. Now

a distinction is needed between the two horizontal coordi-
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nates x, and x,, and the vertical coordinate z. The coordi-
nate x; which is occasionally used, 1is identical with z.
The bottom, which is defined by:

z = - h'(X) (3.3)

is assumed to be rigid and impermeable so that the deriva-

tive of ¢ in the direction normal to the bottom vanishes:
n.u =n_ D ¢ =0 on z = -h' (x) . (3.4)

On the upper (free) surface two conditions hold, viz. the
kinematic and the dynamic boundary conditions. A definition
sketch of the free surface is rendered in figqure 3.1. The
surface is defined by:

z = nix, t) = Rx) + C(x, t) .

The last term of the right hand side, representing the vari-
able part of the position of the surface, 1is an unknown
function as yet. The term ?RE) is the mean vertical posi-
tion of the free surface. It is assumed to be a known func-

tion, in other words the set-down due to waves is neglected.

The kinematic boundary condition states that the velocity
component normal to the free surface is equal to the speed

with which this surface travels in the same direction. So

n. v, =n BT’]

o Vo T " 5 on 2 = iz, 1)

The unit normal vector n is related to the gradient of the

surface:
nj = -n, Vj n =1, 2.
an _ _
So Fra vj Vj n- vy = 0 on z = N(x, t)

In this equation both variables v and n are separated into
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their steady and fluctuating parts. After the steady terms
have been dropped, there remains
g

—a—f+Uj\7jC+ujan+uj\7jC— =0 on Z:ﬂ(i,t).

gl
1

In this equation the term

.,
4 Yyt

is deleted, being a term of second order. Also because of
the 1linearity of the waves, the boundary conditions are
taken on the mean free surface instead of the free surface
itself. The term

can be neglected. In deep water or water of intermediate
depth the horizontal component of u is of the same order of
magnitude as the vertical component. Because the slope of
the mean free surface is very small, for this range of
depths the following relation holds

lu. V. nl
R R ]V ﬁ] << 1.

Ju,|
Another argument, also valid for smaller depths, is that the

same term is small compared with

u. V.,
]JE

The reason is that the gradient operator appearing in this
term is applied to a quantity that varies over a wavelength,
whereas in the neglected term the gradient of the mean free
surface appears. The neglected term is much smaller since
the wavelength is assumed to be small compared with the
characteristic length of the variation of the mean guanti-

ties.
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Altogether the kinematic boundary condition becomes:

8 _ 3. =7 3.5
5t Uj Vj L - =0 on  z = n(x) ( )

The second condition for the free surface derives from the

equation of motion. This equation reads:

Bvu
e { 5 T Vs g Va} + Dy (p + pgz) =0 gf =1, 2,3

So:

3 _
p{»g—EDud)ﬁ-(UB+D6¢)DB(Uu+Du®)}+Du(p+DgZ)-0~(3'6)

It is remarked that to first order the steady part of the
sum p + pgz is equal to pgn.

Deleting the steady part of eg. (3.6) as well as the higher

order terms one is left with:
3 = _
o) i??’Du o + UB DB D, b + (DB ®) (DB Ua)} + D, {p+og (z-m}=0.

If one substitutes DaU for DBUa this leads to

B

Du{p%—iiJroDB(U8¢)+p+pg(z—ﬁ)}:0. (3.7)

The above substitution 1is correct if U is a potential flow
field. This will in general not be true., However, the mean
flow varies slowly in space, so the substitution amounts to

substituting one small term by another.

Eq. (3.7) holds everywhere in the fluid, and also on the
free surface. The vertical component of U on the free sur-
face is very small. Furthermore the boundary condition is
taken at the mean free surface, as usual 1in linear wave

theory.
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Therefore

g%-+ V, (U ¢) + gz =0 on z= nix) . (3.8)

Comparing the free surface conditions (3.5) and (3.8) with
the ones holding for the case of zero mean flow, it appears
that the time derivative is replaced by a material deriva-

tive for a quantity moving with the current velocity. Both
boundary conditions can be combined into one:

3 3 3 -
(g + U5 7) v ow ooy rgdz0 o z=AG (3.9
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3.2. A variational principle for the wave model

In this section it will appear that a variational principle
can be derived from the differential equation (3.2) together
with the boundary conditions at the bottom (3.4) and at the
mean free surface (3.9).

In the wave propagation problem considered in this chapter,
the domain is a volume V bounded by the bottom z=-h'(x) and
the mean free surface z=n(x). A region M in the x-plane is
assumed. Then the volume V is the set of points (X,z) such
that x is in M, and -h'(x)<z<H(x).

Since everywhere in the fluid Laplace's equation holds, the
following must be true for every arbitrary function §¢ :

ff oo,

v

Applying Gauss' divergence theorem one obtains

ff Spn . Vo ds - IJf (D8¢) . (D) AV = 0 . (3.10)
S v

Here S is the outer surface of V, and n is the outward nor-
mal to S. The boundary conditions are introduced into the
integral over S. The integral over the bottom vanishes,
since the normal derivative of ¢ vanishes on the bottom.
Over that portion of S whose projection on the x-plane is
the outer edge of M, the boundary value of ¢ is known. For
this reason the variation §&¢ =0, so that this part of the
integral vanishes too.

In the integral over the upper surface (Su) boundary congi-
tion (3.9) is used. As before the slope of this surface is
very small so that the normal derivative can be replaced by

the derivative with respect to z. Altogether (3.10) becomes

- é j[ S¢ Gg% + U Vj) c%% + V(U $)) ds - [({(96¢) . (pp) av = 0 .

S v
u
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Gauss' divergence theorem is applied again, this time to the
integral over S,- This results in an integral over the edge
of S, 7 which vanishes due to the boundary value of ¢, and
another integral over S,. The following variational princi-

ple follows:
1 50 5 )
$ [5§'JJ (§¥-+ Vk (Uk $))® ds - 1 jJI(D ®) dv} -0 .
Su \
The integral over S, is replaced by an integral over M, its

projection on the (xl,xz)—plane. Since the slope of §, is
small, dS is replaced by dxl*dxz. The variational principle

becomes
S JJ L dx; dx, = 0,
M
in which
-1 3¢ v 2 1ﬁ 2
Doy e r V- WenT), _--3] (@& d.  (3.11.)

_.'h(

Variational principles have been used already long ago to
find approximate solutions by applying the variational
method in a restricted class of solutions. This method is
known as the Ritz method; it forms the basis for the finite
element method. The 1idea of the Ritz method will be

explored in the next section.
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3.3. Approximation leading to a vertically integrated equa-

tion.

A well-known property of time-harmonic linear waves propa-
gating in a region with a horizontal bottom and a homogene-
ous current field is that a separation of variables of the

form

t

¢ (x, z, t) = Re {e_iwo £ (z) ) (ﬁ)} (3.12)

is possible. f£(2z) is a hyperbolic function of z:

coshix (b' + 2)) (3.13)
cosh{x (h' + M)}

£ (z) =

Furthermore it turns out that the wave number x obeys the

following relationship:

Oi = g K tanh(xh) , (3.14)
where 0 zw -K .U ; (3.15)
o] o] - -
and h=h'+7 (3.16)

It is noted here that Kk appears as a vectorial guantity
whose direction is related to the direction of propagation
of the waves. One can use eq. (3.14) and (3.15) if this
direction is known 1in advance. What is to be done if this

i8 not so, is dicussed later in this section.

The above relations have been derived under very severe res-
trictions. 1In the refraction theory most of these restric-
tions can be alleviated: the bottom may be nearly horizon-
tal, the current velocity field is allowed to vary slowly,

and the waves are assumed to be nearly periodic, 1i.e. the
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frequency changes slowly. 1In the following analysis similar
restrictions will apply, with the additional restriction
that the frequency is allowed to vary only within a narrow
band around w,. A variable frequency is useful if one tries
to determine a periodic motion as the limit of an instation-
ary process ,as was done by ITO and TANIMOTO (1972) and by
ABBOTT et al. (1978). The reduction to the equation for the

purely periodic motion is easily carried out.

Using eq. (3.14) and (3.15) « can from now on be considered
as a known quantity. It is based on the known constant w,,
so variations of the frequency do not affect this coeffi-
cient, or other coefficients based on k. k is usually vari-
able in space due to its dependence on the depth h and the
current velocity U. The function f is therefore no longer
independent of x. However, since the bottom is mildly slop-
ing, the derivatives with respect to x will be small.

In order to encompass the case in which the frequency is not
entirely constant, a function ¢ will be used in which the
total dependence on t is incorporated. In other words

o (x, z, t) = £ (z, h) & (x, t) (3.17)

It is noted that due to the choice of £, ¢=¢ on the surface
Su.'
Lagrangian (3.11) can be rewritten as

Deleting the derivatives of £ with respect to x, the

_ 1 (30 o 5 (1 .2 8F2 2 2 B}
L_E—é-{ﬁwuv.(g@)} 2J {07 (52)° + £ (v9)7} dz =
_h'
n n
_ 1 (90 2 4 .2 F 2 4 2 2
b at+\7.<9<1>)} 10 ;[ (5707 dz - 3 (VO) J £ dz .
_hl _.hl

The integrals over z appearing in this expression can be
expressed in the parameter « after some simple calculation.
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n 1 a4 1
. J f2 a2 =g © sinh(2kh) + 3 kh _ o Cg =5, (3.18)
e « { cosh(kh)} 2

n 3.2 1 sinh(2xh) - 2 Kh 2 2
g [ (32) dz = gk 5 =0 -« a. (3.19)
Y {cosh(xh) }

Here a 1is the product of the phase velocity and the group
velocity of the waves.

With the above the Lagrangian appears as:

L= v vwen’ -0 0o - @l -k Y. (3.20)

The differential equation describing the wave motion follows
immediately from the Lagrangian function by means of the
Euler-Lagrange relation

9 -V, L =0

s~ 3t e ile
t 1

L

which gives
Gg% + U.Y) 6%% + V.U @) + V.(aV®) + (Oi -k aye =0 . (3.21)

This equation is the main result of the study. It is a par-
tial differential equation of the hyperbolic type. The
equation can be classified as a linear Klein-Gordon equation
for a moving medium. In this form the equation could be

used for a wave with a frequency different from o and con-

0 ’
sequently a wave number different from «.
A version of the eguation for purely periodic waves with

frequency w, , for which

o (x, t) = Re {e %% 5 ()} , (3.22)
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reads - iwo <g.v5 + V,Q{%)) + Q}V)V.(g%)
- 7.(aV®) +<w02+w02-K2a)5 -0 . (3.23)

(3.23) is a partial differential -equation of elliptic type.
In a region of constant depth and «current velocity, (3.21)
and (3.23) allow a solution in the form of a plane wave. A
plane wave is described by:

¢ =& exp (-iwt + i k.x) (3.24)
Eg. (3.21) yields the following relation for such a wave:
w-x.0>-ax’- (@ -axh) =0 (3.25)

This relation can be considered as the dispersion relation
for waves determined by eq. (3.21). It is noted that if
w=w, , and if « obeys (3.14) and (3.15), the wave number of

the plane wave system k is equal to k.

In situations for which eq. (3.21) 1is intended, crossing
waves and reflection of waves can occur, so that in one
point waves from more than one direction may exist simulta-
neously. In such cases eq. (3.14) and (3.15) cannot be used.
Since the value of k depends on the direction of the waves,
it might be concluded that eq. (3.21) cannot be used at all
in such situations. This conclusion 1is too pessimistic: if
an approximate value for k is used to estimate the coeffi-
cients in egq.(3.21), this equation can still provide a very
good approximation of the wave field. To see this, it is
essential to distinguish between Kk, a coefficient in
(3.21); and k, the wave number associated with the wave
field that is found by solving the partial differential
equation (3.21)., If the first one 1is not exact, the second
one will in general differ from the first. Now the most
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interesting point is not how large the error in the coeffi-
cients of (3.21) is, but how much its solution is in error.

Therefore the error in k is to be studied.

Often the main direction of wave propagation is Kknown, so
that (3.15) still can be used to some extent. Equations
(5.7) and (6.11) give examples of such use of (3.15). In
the worst case, if no information of this kind is available,
one could estimate the coefficients in (3.21) by using the

expression for « that is valid for a zero mean velocity:
W = g K tanh(k ) (3.26)
o] g [e] o]

This approximation to ¥ is subject to a relative error of
the order of 1U0l/c, and consequently the coefficients used
in (3.21) have a similar error. It is noted that the value
of k, is independent of the direction of wave propagation.

k however is not, since U appears in (3.25).

If in (3.21) and (3.25) the coefficients Ky and a, are used,
it follows that the relative error in the wave number k is
of the order of (lUl/c)z. The value of k is found from
(3.25); in this case J,is assumed equal to w,, s0:

- 2 2 2
(w— kD" =a + (w - ax)

The value of k is to be compared with the exact value «,
under the assumption that a wave in one and the same direc-—

tion is considered. K obeys the relationship:

( W, S.H)z = g k tanh(kh)

In order to find an estimate of k-k the second equation is
subtracted from the first. The left hand side of the

resulting equation is:
2 2 . 2
(wo- k.U)"- (wo~ K.U)" = Zwo U.(c~k) + 0(U/e)

Since k and K have the same direction
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Zwo U.(k-k) = 2“02'5 (x-k) /«

Regarding the right hand side it is noted, that
2
wo o= 8 K, tanh(KOh)
Furthermore d
a_ = 5— & k tanh(kh) _
d(k%) k-—KO
A development into powers of Ki—Kz leads to:

o}

g ¥, tanh(KOh) - g k¢ tanh(kh) =

=}

2.2

)

2 2 2
= - + 0 ~
a, (KO <) (KO K

It is noted that Pﬁ—KZ is of order U/c¢c, so that the full
equation reads:
2w, Uk (c-k) fc + o(U/c)2 =

= a (kZ—Ki) +oa (Kg—Kz) + O(U/c)2 =

a (k2= ?) + o/l

The first term of the left hand side is smaller than the
first term of the right hand side by a factor of U/c. Con-
sequently the latter term is the main term of the equation.
It must be of the order of (U/c)?.

It is concluded that «-k is of the order of (U/cg . In
other words, the wave model (3.21) with coefficients follow-
ing from (3.26) predicts a solution which exhibits a wave
number deviating O(U/cf from the one resulting from the
coefficients, in which the wave direction is correctly taken
into account. So the solution of the differential equation
is better than the error of «, suggests. Table 3.1 gives
some figures of k and the exact value for different depths
and current velocities. The value of g, is found in the
column corresponding to zero velocity. The current direc-
tion is assumed to be collinear with the propagation direc-

tion, since this leads to the largest errors. All gquanti-
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ties in the table have been non-dimensionalized by means of

nd g.
w, a g

TABLE 3.1

depth current velocity (U%Jg) ->
-0.15 ~-0.10 ~-0.05 0,00 0,05 0.10 0.15 0.20 0.25
0. 20 "3.85 3.11 2.65 2.31 2.06 1.86 1.70 1.56 1.45
3.65 3.07 2.64 2,31 2,06 1,85 1.68 1.54 1.42
o a0 "2.48 2.13 1.88 1.69 1.55 1.43 1.32 1.24 1.16
2,37 2,10 1.88 1.69 1.54 1.42 1.31 1.21 1.13
0 60 72.03 1.76 1.58 1.44 1.32 1.23 1.15 1.08 1.02
1,93 1,73 1.57 1,44 1.32 1.22 1,13 1,05 0.99
0. 80 "1.81 1.57 1.41 1.29 1.19 1.11 1.04 0.98 0.93
1.71 1.55 1.41 1.29 1.19 1.10 1.02 0.96 0.90
106 "1.68 1.46 1.31 1.20 1.11 1.04 0.97 0.92 0.87
1.58 1,43 1,31 1,20 1,11 1.02 0.95 0.89 10.83

Table of computed wave numbers. Upper value is exact, from
(3.14) and (3.15), lower is k from (3.25), using Ky from
(3.26).

Inspection of the table shows that for small non-dimensional
current velocities the wave number of the wave field com=-
puted with approximate coefficients is only a few percents
in error. In fact, the current velocity non~dimensionalized
by means ofu% and ¢ is in practice usually below 0.1, so
that the approximation is allowable. Moreover it should be
borne in mind that the case represented, is the most pessim-
istic. Often a main direction of propagation can be identi-
fied so that a better approximation 1is possible. See chap-
ters 5 and 6 for examples of such an approximation.
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CHAPTER 4. DISCUSSION OF THE PROPOSED MODEL

4.1, Introduction.

The validity of the proposed model is hard to verify experi-
mentally. For the current-free mild-slope equation such an
investigation has been performed by BERKHOFF, RADDER and
BOOIJ (not yet published), but the setting-up of laboratory
experiments with a non-~trivial bottom topography as well as
a controlled current pattern is difficult. Even more diffi-
cult is the measurement of waves in nature, including wave

directions and current velocities.

In this thesis it is chosen to do the verification by means
of a comparison with related mathematical models for wave
propagation. A number of them are available, such as the
variational principle of Luke, the refraction model for
waves in a region with current, a model for shallow water
waves and the refraction~diffraction model without current.

Since the study aims at adding terms to the mild-slope egqua-
tion which model the influence of a current, this equation
is an obvious candidate for the comparison. If in eq.
(3.21) the terms containing U are deleted, and if a time
dependence of purely harmonic character 1is assumed, as in

(3.22), the mild-slope equation (2.22) is found indeed.

A comparison with Luke's variational principle for irrota-
tional waves is treated in the next section. A comparison
with the refraction model with current is dealt with in sec.
4,3.
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LOZANO and MEYER(1976) showed that the mild-slope equation
reduces to the shallow-water equation if it is assumed that
k h<<l. A similar procedure can be applied to eq. (3.21),
which results in a linearized form of the shallow-water

equation. Details are given in sec. 4.4..
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4.2, Comparison with Luke's variational principle for water

wave propagation.

LUKE (1967) developed a variational principle for nonlinear
irrotational waves:

S ftQJJJ {o] + 3 (@ 6% + gz} dz dx; dx, dt = 0 . (4.1)
v
The volume V' over which the integration is performed, is
the volume which is occupied by the fluid at any moment,
whereas the volume V appearing in the foregoing chapter is
steady, since it 1lies between the bottom and the mean free
surface. It 1is possible to reduce Luke's principle to a
principle for 1linear waves such as (3.20). In order that
the reduction can be performed, the total potential (¢') is
split into a potential for the current and one for the waves
() =
D¢'=U+D¢,

99" 39
ot T 9t
The fact that U has a potential, implies that the current

has to be irrotational. With the above substitution the
Lagrangian for Luke's principle reads:

n 2
L:J {¢t+%(g+9¢)+gz}d22
- (4.2)

n 2 n 2
= J {¢t + % (U+D¢) + gz} dz + J {¢t + 3 (U+ D) + gz} dz .
ht A

In this way the integral over the total unsteady volume is
split into an integral over the steady volume between the
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bottom and the mean free surface, and an integral between
the mean free surface and the free surface itself, In the
above expression the terms

i N n 5 n
f(btdz’ fgzdz, J%U dz , U. D¢ dz
~h! -h! ~h! -h'
do not contribute to the Euler equation and are therefore
deleted. The term

contributes only to the equation for the steady motion and
is thus not of interest now. The term

N+ )
J 1 (D) dz
n
is of third order in the wave amplitude and can be deleted

since a model for linear waves is sought.

The remaining terms from the second integral of the right
hand side in (4.2) are approximated by the assumption that
the variation of the potential ¢ is small in the interval
(1, n+z) . This results in
n+g
( ¢, dz =7 ¢+ 0 (67)

S

N+ n+g
J U.Dd)dz:[ D . (U¢) dz
n n

The vertical component of the mean velocity U is much smal-
ler than the horizontal components, at least near the free
surface. Thus the last term is nearly equal to

9. (Ué

Furthermore
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n+e ot 2 =2 2 -
) gzdz:%g{(nw“i)—ﬂ}:%glj +gneg.
n
The term gn¢ contributes only to the steady terms in the

Euler equation. The reduced Lagrangian reads:

n
L:J (D)2 dz +Co, + CV.(UG) +3ge
..h!

2

After substitution of the vertical structure described by
eg. (3.12) and (3.13) there results

L= 3a(ve)? + %(002 - Pa)e? 4 gLot + gTV.(UG) + 3 gt . (4.3)

By wvarying the integral with respect to ¢ one finds the
Euler equation which represents the dynamic boundary condi-

tion at the free surface:

L=+ V.(U®) + g5 =0. (4.4)

Varying with respect to & results in:

V. (4.5)

]LCD.:

5
i
t )i

= -g (%% + U.VL) - V.(aV®)+ (002 - K2a)® =0

The set of equations (4.4) and (4.5) 1is identical with
(3.21), but it has the advantage that the vertical position
of the free surface appears explicitly. In some cases this

is useful.
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4.3, Comparison with the refraction model

In order to be able to compare (3.21) with the refraction
model, at first the diffraction terms must be removed from
the latter equation. An attractive way to obtain a refrac-
tion-like model is by averaging the Lagrangian (3.20) over
the phase (WHITHAM, 1971). 1In Whitham's procedure the aver-
aging of a linear model is accomplished by substitution of:

® = A cos B (4.6)
with w= -8,
K=V

In the averaging process w, k and A are kept constant. By

Lds

definition: 20
J—
Toom J
0

Substitution of (3.20) for L gives

2m
L= 5%? f {(w - g.k)zA2 (sin 8)?- ak2A2(sin 8)? -

0

2

(GO - Kza)AQ(COSQ)z} dae =

=187 (- v’ -ax?- (@ -k, (4.7)

This is a special case of eq. (2.12).

There exists an averaged Lagrangian for the refraction model
itself as well. This too is a special case of (2.12). It

reads

L=34% (- v.0? - gk tanh (x0)} . (4.8)
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It was seen in sec. 2.2 that both the dispersion relation
(2.13) and the conservation equation (2.15) follow from the
averaged Lagrangian (2.12). If the two Lagrangians (4.7)
and (4.8) themselves and their derivatives with respect to g
and k coincide for k=« , the corresponding dispersion rela-
tions and the conservation equations coincide also for k=x .
An expansion of the expression gk.tanh(kh), based on the

definition of q)(3.14) shows that this is the case:

g Xk tanh(kh) = a K2+ (oi

- ak?) = gx tanh(kh) +a (K2 - k?) (4.9)
It is noted that k=< implies that WSy since the equations
{(3.14) and (3.15) are identical with the dispersion relation
following from (4.8).

It is concluded that eqg. (3.21) reduces to the refraction
model with current, if its c¢oefficients are calculated by
means of (3.14) and (3.15). I1f approximate coefficients
have to be used in (3.21), e.g. due to crossing waves, it
does not exactly agree with the refraction model any more.
For instance if the coefficient « was found from (3.26) the
wave number of the solution deviates by O(U/c)z; the ampli=-
tude is subject to a deviation of O(U/c¢) due to the devia-
tion in the <coefficient : appearing in the conservation
equation. This 1is of course 1less accurate than was found
for the dispersion relation, but the dispersion relation
determines among others the direction of the energy trans-
port, so that the errors are cumulative. An error in the
egquation for the conservation of wave action has less grave

consedguences.
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4,4, Comparison with the shallow-water equation

In this section the special case of (3.21) for shallow water
is compared with the usual shallow-water equation. In shal-
low water k h<<l. It follows from (3.14) and (3.18) that in
that case:

cc-ax®=0, (4.10)
a=gh (4.11)
In this comparison it is fruitful to use the version of the

equation which includes an expression for the elevation of
the free surface, i.e. eq. (4.4) and (4.5). In shallow water

these equations read

o + V.(U®) +gL =0, (4.12)
and @y uvD - VT =0 (4.13)

In shallow water the horizontal velocity u=V$ is uniform in
vertical direction. Then eg. (4.13) 1is recognizable as a
linearization of the continuity equation. In its original

form this equation reads

14

5 + V. (th+2)) =

=2 4+ V.U +uw) (htg))=0.

Deleting steady terms and terms of higher than the first

order there remains

az _
Zoyvwo ¢ Tam=o.

Because V.U was assumed small, the correspondence is corro-

|
z
!
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borated.

Eq. (4.12) 1is related to the equation of motion, but it
needs more elaboration to show the relationship. First the
gradient of this equation is taken:

Vi ®t + Vi (Vk U, ®) + g Vi z =

du.,
1

2 ¥ (e v eV L= 0.

where again a term V.U is ignored. In the derivation of
condition (3.8) a term Daug was replaced by qaua, justified
by the assumption that U has small derivatives. Now the

reverse is done, leading to:

du,
1
ST U e w ty VU teg V=0,
which is a linearization of the equation of motion in shal-
low water, which reads:

ov, _
= (h+c¢)=0.

5T T Y Vk v, t g Vi
The temporal derivatives of u and v coincide, since these
velocities differ only by a constant. The term gV n is
ignored, since only non-stationary terms are considered.
For the middle term of the left hand side some further ela-
boration is needed:

Vie e vy = (G ) Yy (U 4 ug) =

Uk Vk Ui + Uk Vk up ot ouy Vk Ui touy Vk u; -

The first term of the lower line 1is deleted because it is a
steady term, the last one because it is a higher order term.
This shows that the model (3.21) 1is in agreement with the
shallow water equation both with regard to the continuity
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equation and the equation of motion.

This completes the comparison with the shallow-water equa-
tion. It is concluded that there is correspondence under
some conditions which are consistent with assumptions made
in the derivation of eqg. (3.21).
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4.5, Discussion of the implementation of the model with

regard to engineering practice

The problem of constructing usable numerical solutions for a
wave eguation such as (3.21) in a rather general case is by
no means simple. The straightforward approach of discretiz-
ing the equation and then solving the resulting set of equa-
tions by some linear equations solver is not feasible due to
the extremely large number of unknowns encountered in a typ-
ical problem. A representative region for which one might
want to do a wave computation is 20 km by 20 km. The wavel-
ength of the waves considered could be about 100 m. In
order to get a reasonable accuracy one should choose a mesh
size of at most one tenth of the wavelength, which results
in an array of 2000%2000 nodes. Let M be the number of
meshes along one side of the computational area (M=2000 in
this case). Then a system of M2 linear egquations must be
solved, requiring of the order of M4 operations. This takes
an impossible amount of computer time on present-~day compu-
ters. Moreover the matrix is far too large to be stored in
the computer memory. BERKHOFF (1972, 1976) used the finite
element method in the way described here, but understandably

for regions only a few wavelengths in size.

A different approach was taken by ITO and TANIMOTO (1972)
and by ABBOTT et al. (1978). They f£ind the periodic motion
as the 1limiting state of a transient process initially at
rest, with periodic boundary conditions. For a region of
the size indicated above this method requires the same num-
ber of nodes as mentioned before. One would have to compute
over a time span at least roughly equal to the time it would
take a group of waves to travel through the entire region,
i.e. the length of one side divided by the group velocity.
Thus the number of time steps is of the order of M, and the

computation consists of about M3 operations, Although this
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is a considerable reduction compared with the preceding
method, it 1is still not feasible. This is 1illustrated by
the fact that for M=2000, the computational process is many

times slower than the physical process.

It was shown by RADDER (1979) that the parabolic approxima-
tion, developed mainly in the field of acoustics, is appli-
cable for waves in coastal regions. By this approximation
the partial differential equation which is originally of
elliptic nature, 1is transformed into a parabolic one. In
other words, it has become an initial value problem, with
the incoming wave acting as initial value. In this method
the number of operations is proportional to the number of
nodes, so of the order of M2. This requires a feasible
amount of computer time, and also the storage requirements
are within reasonable bounds. Thus the parabolic method is
the only feasible alternative for refraction-diffraction
computations in a coastal zone. In Chapter 6 a parabolic
approximation for eg. {3.21) will be derived, and a numeri-
cal model based on this approximation will be applied to a
region in the entrance of an estuary.

Before this is done, the full equation is applied to some

idealized, quasi two~dimensional cases in the next chapter.
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CHAPTER 5. APPLICATION TO PRISMATIC SLOPES AND CHANNELS

5.1. Wave transmission over an undersea slope.

As was remarked in sec. 4.5 the numerical computation of a
wave field for practical purposes is by no means a simple
matter. In the course of this study it is useful to select
a subclass of problems that can be treated more easily. One
such subclass has the property that the wave field repeats
itself in one direction, say the y-direction. The partial
differential equation is then reduced to an ordinary differ-
ential equation in the other coordinate, x. This requires
that the depth and current velocity are independent of y. A
possible situation is sketched in figure 5.1.

This subclass of problems is useful in two respects: it
provides solutions for a set of practical problems, viz.
those concerning waves propagating over an undersea slope,
or along a gully or channel, and it provides the possibility
of comparing the vertically integrated model with a full

three-dimensional model.

The x~ and y-components of the current velocity will be
denoted by U and V. U and V and the depth h are functions
of x. The requirement that the wave field be periodic in t
as well as y, is expressed by

® = Re {e7M" T IMW y ()} (5.1)
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Figure 5.1. Cross-section and plan view

of waves crossing an undersea slope.
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The general two-dimensional wave propagation model (3.21)
now reduces to:

2
R R T N R L B2 werru 525-<U b) +

(5.2)

2

U%(im\]l}))*%(ag—i)+(cg-a}< +am2)w:O.

The necessary boundary conditions follow from assumptions
concerning the incident waves and the waves radiated away
from the model. This model consists of an undersea slope
which forms the +transition between two regions of constant
depth and current. Thus it is assumed that for x<0 and for
x>L the depth is constant, and U=const. From the left, x<0,
periodic waves are coming in under a given angle of inci-
dence. The direction of these waves determines the wave

number component m. At the other side of the model, x=L,
there are no incident waves, only waves radiated outwards.

The condition that at x=L there are only waves in positive
x-direction, is expressed by the following radiation condi-
tion:

g% . i1t e (5.3)

The wave number component 17 is the positive root of an
equation, that is derived from eq. (5.2) by substituting:

b o(x) = eI

This equation reads

- (wo -mV -1 U)2 + a (m2 + 12 - KQ) + oi =0 . (5.4)

At x=0 there is an incident wave

and a reflected wave b, for which

ppevpmer
i
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Bu )
v il wr‘ '
The values of 17 and 17 are the local values of the positive
and the negative root of eq. (5.4). For the function
itself the boundary condition follows from:

R T T

and the radiation condition given above. It reads:

%gzifwuf-if)@i at  x =0 . (5.5)

The differential equation (5.2) is discretized by means of
the Finite Element Method (see ZIENKIEWICZ, 1977, or CONNOR
and BREBBIA, 1977). The unknown function is approximated by
linear shape functions, and the values at the nodal points
are determined by the Galerkin method. The numerical analy-
sis is described in more detail in appendix 1.

In the computer program based on this method the functions
h(x) and V(x) can be chosen by the user. U(x) is determined
by

U=20Q /h
Q. being a constant chosen by the user. The value of q can

be determined in one of the following ways
g =w (5.6)
corresponding to eq. (3.26), or
6 Tw -mV. (5.7)

representing a compromise between eg. (3.15) and (3.26). 1In
this compromise the y-component of the wave number is prop-
erly taken into account, whereas the x-component is not.
The y=-~component can be used because it is a given number in

this type of problem. In x-direction however, there will
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exist two waves propagating in opposite directions, and hav-
ing wave numbers with opposite signs. Therefore the x-com-
ponent of the wave number cannot be used for the calculation
of oy . By comparing the results obtained for the two
choices for a, it can be investigated whether the solution
is very sensitive to changes in this value, or not (see for
instance figure 5.11).

Although the program can deal with dimensional variables,
all examples in this thesis have been done with non~dimen-
sional variables. All length measures have been non-dimen-
sionalized by means of the factor wé/g, and the velocities
by means of wo/g.

Figure 5.2 shows the cross~section that is used in the first
series of examples. Figures 5.3, 5.4 and 5.5 show the wave
functions for different angles of incidence. In all three
examples there 1is no current., The quantities plotted are
the real and imaginary parts of the function y , written as
Y; and Y, respectively. The amplitude of the incoming
wave (@i) is supposed to be unity. In the case of waves
progressing in positive x~direction ¥, and ¥, have a phase
difference of m/2 and they have the same amplitude. In
standing waves on the other hand they have the same phase.
Figure 5.6 shows how the amplitude at the downwave side of
the model depends on the value of m. According to the
refraction method there would be complete reflection or
standing waves for m>1.291, and complete transmission or
progressing waves for m<1.291. As figure 5.6 shows the
refraction-diffraction equation proves the existence of a
transition range from about 1.20 to 1.40, or from 31° to 37°
in terms of angle of incidence. So, although there 1is a
range of angles for which the refraction method gives inac-
curate vresults, this range is gquite small. Figures 5.3
through 5.5 show the wave function for m=1.20, m=1.30 and
m=1.40, respectively. The example m=1.30 is typical for the
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Figure 5.2 Cross-~section of a gully (distorted scale).
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Figure 5.4. Waves crossing the gully shown in
angle of incidence 340, or m=1,30.
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Figure 5.5, Waves crossing the gully shown in

angle of incidence 37°, or m=1.40.
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Figure 5.6. Wave amplitude at x=L as function of m, or as
function of angle of incidence, for cross-section

shown in figure 5.2,

transition cases. In the deepest part of the gully the wave
function varies slightly (it is nearly a negative exponen-
tial function there) and more to the right it becomes a pro-

gressive wave of reduced amplitude.

Partial reflection can also occur for waves incident nor-
mally to an undersea slope. The reflection is appreciable
only for rather steep slopes. 1In figure 5.7 it is shown how
the reflection coefficient depends on the bottom inclination
(tangent of the slope angle) for a certain cross-section.
In this cross-section the depth is uniformly 0.6 (non-dimen-
sional) at the upwave side of the slope, and 0.2 at the




- 58 -

downwave side. The slope itself is plane. The 1length of
the slope (projected on the horizontal plane) is used as the
independent variable in figure 5.7. The bottom inclination
is also indicated 1in the graph. It may be argued that for
such steep slopes the mild-slope eguation cannot be used.
In order to establish whether this is so, some computations
with a three-dimensional model have been carried out.

A brief account is given of the 3-dimensional wave computa-
tions that were carried out in order to check the use of a
vertically integrated model. This 3-dimensional model is
reduced to a 2~dimensional partial differential equation,
involving a horizontal and a vertical coordinate. This
reduction is done 1in the same way as discussed in relation
with eg. (5.1) for the vertically integrated model:

® (X, ¥y, 2, t) = Re {e—iw(;E + dmy P (%,z)} . (5.8)

The function P is determined by means of the following equa-
tions, that are easily derived from the 3-dimensional wave
equations. In the interior of the fluid:

2 2
E.g.+_'9_,g-m2p=0, (5.9)
ox oy

The boundary condition on the bottom reads:

3% g (5.10)

The 3-dimensional computations have only been carried out
for the current-free case. On the mean free surface, which
is located in 2z=0, the following boundary condition holds:

2
oP _w 11
= e P (5.11)
On x=0 and x=L radiation conditions are wused, analogous to
{5.3) and (5.5):
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9_1_3_:]:1+P at x = L (5.12)

aP . .ot Loy cosh Kk {z + h')
— = 11 1 - il .
ox + Py i) wl cosh (kh)

at x = 0 (5.13)

The partial differential equation (5.9) together with the
boundary conditions is solved numerically by means of the
Finite Element Method. The finite elements used are of
triangular shape, with shape functions linear over each ele-
ment. Appendix 1 discusses the method in more detail, but
mainly for the vertically integrated model.

The reflection coefficients computed by the 3~-dimensional
model are plotted together with the results of the mild-
slope equation in figure 5.7. The conclusion is that the
mild-slope equation predicts a reflection coefficient of the
right order of magnitude, even for slopes with a bottom inc-
lination near to 1. In absolute sense the dicrepancy bet-
ween the reflection coefficients decreases with decreasing
bottom inclination, confirming that the refraction-diffrac-

tion equation is correct for mild slopes.

The second series (figure 5.8 to 5.11) gives examples of the
influence of a current in the direction of the gqully axis.
The cross-section is sketched in figure 5.8. It is the same
as the left half of the cross-section shown in figure 5.2.
Figure 5.9 shows the wave field in absence of a current,
figure 5.10 the wave field in the case of a current velocity
in the same direction as the y-component of the wave propa-
gation. The maximum current velocity (non-dimensional) is
0.1. Figure 5.11 shows the result for a current in the
direction opposite to the y-component of the wave propaga-
tion. As in the preceding set of examples, figure 5.9
through 5.11 present graphs of the real and imaginary parts

of the wave potential at the surface.




The example with current in positive y-direction shows a
greater reflection than the one with current in negative
y-direction. This should be expected on the ground of
refraction calculations since the curvature of the wave rays
is larger in the first of the two cases. It is seen that
the influence of the current on the amount of reflection is
large in this case. It must be remarked however, that the
angle of incidence was deliberately chosen near to the cri-

tical angle.

In figure 5.11 two results are shown. The solid line |is
based on the use of eq. (5.6), the broken line on eq. (5.7).
A small difference in amplitude and a very small phase d4if-~
ference are the consequences of the different formulas.

In the third series of examples (figure 5.12 and 5.13) the
influence of a current in the x~direction is investigated.
The depth profile is identical with the previous series (see
figure 5.8). The wave system in absence of a current is
also the same (see figure 5.9). The current velocity U is
defined by U=Qx/h. Due to the depth profile the current
velocity is largest at x=0., Here the absolute value of the

(non-dimensional) velocity is 0.2.

It is seen that the current has a strong influence on the
wavelength of the solution, as it should according to the
refraction method. Furthermore, the graphs show that the
refraction~diffraction equation predicts that the reflection
coefficient is much less influenced by a current perpendicu-
lar to the slope than by a current parallel to the slope.
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Figure 5.9. Wave system in absence of a current. angle of

incidence 31°, or m=1,20.
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Figure 5.10. Wave system Wwith current in positive y-direc-

tion. m=1.20, Vvm=0.1.
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Figure 5.11. Wave system with current in negative y-direc-
tion. m=1,20, Vvm=-0.1.
solid line: eq. (5.6) is used;

broken line: eq. (5.7) is used.
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rection. m=1.20, Qx=+0,04.
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Figure 5.13. Wave system with current velocity perpendicular
to bottom gontours, velocity in negative x-di-
rection. m=1.20, Qx=-0.04,.




5.2. Propagation along the axis of a wave channel.

This section and the following one deal with wave propaga-
tion parallel to the depth <contours. The essential differ-
ence between this case and the one treated in sec. 5.1. is
that now the incident waves run parallel to the depth cont-
ours. As a consequence the value of the wave number compo-
nent m is not known a priori, but it follows from the compu-
tation as an eigenvalue, The problem having become an
eigenvalue problem, is a result from the fact that both the
differential equation (5.2} and the boundary conditions
(5.14) have a zero right hand side. Now a non-trivial solu-
tion is only possible for a set of discrete values of m. In
the case considered first the value of m is real, which cor-
responds to waves which maintain their amplitude as they
propagate. In other cases, considered in sec. 5.3, it may
be complex, which corresponds to waves decreasing in the
direction of propagation; this occurs 1if wave energy is

radiated sideways.

The case considered in this section, 1is a prismatic wave
channel of finite width, bounded by vertical side-walls.
These are parallel to the depth contours. This wave channel
is an interesting study object mainly because there exists a
continual balance between shoaling and diffraction effects.
The shoaling tends to push the wave energy towards the shal-
lower part of the channel, the diffraction tends to smooth
the energy distribution. A laboratory experiment with which
the results could be compared, seems possible, but it has
not been carried out. Another type of verification has been
done, thanks to the fact that a fully 3~-dimensional computa-
tion is possible in this case. In this way the effect of

integrating over the vertical can be studied.

A channel of finite width is assumed, bounded by side-walls




which completely reflect the waves. Thus the boundary con-

ditions are:

#le
|

=0 at x =0 and x = L (5.14)

The way in which the eigenvalue m and the corresponding
eigenfunction 1y (x) are determined, is discussed in appendix
2. For the 3-dimensional model the eigenvalue has been det-
ermined in the same way. This 3-dimensional model was dis-
cussed in more detail in the previous section. Only the
boundary conditions at the lateral sides are different. 1In

analogy with (5.14) they read:

3P _ - = L
’JT)E_O at x = 0 and x = L

In this comparison between the mild~slope equation and the
3~dimensional model a series of channel cross—-sections with
increasing maximum slope is considered. These cross-sec-
tions consist of two flat sections with non-dimensional
depths of 0.2 and 0.6, with a transition zone in between.
The channel has a total non-dimensional width of 2., and the
slope in the transition zone ranges between 0.2 and 0.8.
The cross-sections and the resulting wave forms are pre-
sented 1in figure 5.14 through 5.17. The corresponding
eigenvalues are shown in table 5.1. ©Not only the eigenva-
lues, also the wave forms are in surprisingly good accor-
dance. It could hardly be expected that a model for small
slopes would produce such accurate results for slopes near
to 1. No explanation is found for the remarkable fact that
the correspondence 1is best for the steepest slope in the
range of values considered.
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eigenvalue m
slope vert.int.mod.} 3-dim. model
1.785 1.777
0.4 1.906 1.894
0.8 1.959 1.955

Table 5.1. (non-dimensional) eigenvalue

as function of lateral slope

A few examples with current are shown, this time only com-
puted by the vertically integrated model. A current in the
direction perpendicular to the channel axis is not possible,
so only a current parallel to this axis is considered. The
current velocity is calculated from the formula V=Cf/h, more
or less 1in analogy with the Chezy law of friction. The
coefficient Cf is variable in the computer program. The
results for three values of Cf are presented in figure 5.18:
Cf=—0.2, 0. and 0.2. The corresponding maximum non-dimen-

sional velocities are ~0.15, 0., and 0.15.

It follows from figure 5.18 that the current has a limited
influence on the shape of the wave propagating in the chan-
nel. It has a stronger influence on the eigenvalue, which
is closely related to the propagation velocity. The propa-
gation velocity is 1/m, or 0.70 and 0.425, resp. For the
case of zero current it is 0.56. This shows that the differ-
ences 1n propagation velocity are close to the differences

in current velocity averaged over the cross-section.
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Figure 5.14. Cross-sections of three wave channels, on non-

distorted scale. Measures are non-dimensional.
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Figure 5,15. Wave system in channel with maximum bottom
steepness 0.2 (see cross—section (a) in figure
5.14)
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Figure 5.16. Wave system in channel with maximum bottom

steepness 0.4 (see cross—section (b) in figure
5.14)
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Figure 5.17. Wave system in channel with maximum bottom

steepness 0.8 (see cross-section (c¢) in figure
5.14)
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Figure 5.18., Wave system in channel with current. Cross~-

section (a) in figure 5.14, v = Cy vh




- 71 -

5.3. Waves propagating along an undersea gully.

This section deals again with waves propagating in a direc-
tion parallel to the depth contours. This time however, in
contrast to the previous section, there are no reflecting
side-walls along the channel, but shallower regions extend-
ing to infinity which can absorb wave energy (see figure
5.19). This results in an eigenvalue m which is no longer
purely real. Its imaginary part shows the rate of decay of
the waves along the y-axis.

HUITENGA and VAN DRIEL (1974) carried out a series of exper-
iments in which they tried to measure the decay of the waves
propagating along a gully. Obviously the experiment had to
be done in a wave tank of finite width, so the shallow
regions were bounded by beaches that had to absorb the wave
energy penetrating onto the shallows. Their experimental
set-up is sketched in figure 5.20. They measured, among
other quantities, the shapes of the wave fronts that devel-
oped in the wave tank, and the decay of the wave amplitude
along the axis of symmetry. They carried out measurements
with 4 different wave frequencies and 2 different water lev-

els,

Since in these experiments both shoaling and diffraction
effects play a role, they are very suitable for a validation
of the mild slope equation. As before, eq. (5.2) is used to
compute the wave system, with the radiation condition (5.3)
as boundary condition at x=L. This boundary is located
somewhere in the shallow region. The boundary x=0 is chosen
on the axis of symmetry, so the other boundary condition
reads:

at x = 0 .

sl
1
<O



- 72 -

radiated
waves

f)
fransmitted
waves
f)
incoming

waves

Cross~gection of a gully and sketch of the wave

Figure 5.19,

(plan view)

system



d 19
9 1. E 015
(c} e
{b)
{a)
5.00 3.00 4.50 3.00 5.00
-3 — — 3]
i 1:20 1:20 ]
o Q
n w

wave maker
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The solution of this set of equations provides a value for m
and the function Y(x) . The projection on the horizontal
plane of the wave fronts is now determined by:

y:—ﬁ;ar\g(w).

In figure 5.21 through 5.24 each computed wave front is com-
pared with wave fronts observed by Huitenga and Van Driel.
The wave fronts are based on measurements of the phase in
three cross-sections indicated in figure 5.20 by the labels
(a), (b) and (c). It is <concluded that although the agree-
ment is not very close, there is no indication of any syste-—
matic error. The measured wave fronts show many irregulari-
ties, perhaps due to reflections from the boundaries of the
model. The large discrepancies at the sides may be due to
waves propagating over the shallows in the direction of the
axis. These waves are generated by the outer parts of the
wavemaker, They do not penetrate into the gqully itself
because they are reflected at the top of the slope.

The decay rate of the waves is related to the imaginary part
of m. The decay rate was determined by the experimenters
taking into account the energy loss due to bottom friction.
A formula derived by IWAGAKI and TSUCHIYA (1966) was used to
determine the rate of energy loss due to bottom friction per
unit area:

_OV fwyE , 22 1 2.
E. = % (]2 (wl) e (1= 0,197 € + 0 (7)) .
(2\)) (sinh(xn))?

This formula was derived for laminar flow conditions. E is
the wave amplitude, and v the viscosity, for which Huitenga
and Van Driel took 10"6m2/s. The guantity e, which repre-
sents the ratio of the orbital velocity and the propagation

velocity was small enough to be ignored.

The decay rate r was determined by comparing the energy




transports (Et) through consecutive cross—-sections. Let F be
the friction loss integrated over the width of the gully,
and integrated in axial direction:

Yi(w
Fi:j J Efbdydx

0 0

Now for one interval (y,,y,+]) the decay ratio is equal to
1 1

_ Et,i +1 7 Fi+l

i Et,i + Fi
The energy transport is found from the wave heights measured
in each of the cross-sections.

For each experiment the average of the numbers r, is used as
1

a measure of the overall decay rate.

In the mathematical model the decay rate is related with the
imaginary part of m according to: 5n=exp(—2*Im(m)*AY), Ay
being the distance between two consecutive cross—sections,

5 m in this case.

In table 5.2 the computed value of r is compared with the
value that results from the measurements. It can be con-
cluded that there is a good agreement between the measure-

ments and the mathematical model.

The computations referred to above, have also been carried
out by means of the 3-dimensional model. The results from
this model are not shown separately, because they are always
very close to the results of the vertically integrated
model, both with respect to the -eigenvalue and to the shape
of the wave front. For instance for a depth of 0.35 m and a
period of 1.62 s the three~dimensional model gave
m=2,2700-0.0390i, and the vertically integrated model

m=2.2714-0.0393i. This discrepancy is insignificant com=-
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wave period gully depth £ ro
__in sec. __} at x=0, in mj measured | computed
2.2 0.35 0.67 0.62
1.62 0.35 0.64 0.68
1.4 0.35 0.72 0.72
1.2 0.35 0.74 0.78
2,2 0.275 0.59 0.62
1.62 0.275 0.69 0.70
1.4 0.275 0.76 0.74
1.2 0.275 0.77 0.78

Table 5.2. measured and computed decay rates

pared with the discrepancy between measurement and computa-
tion. As regards the wave fronts there is no visible dis~
crepancy between the two mathematical models, 1f these
fronts are plotted on the scale used in figures 5.21 through
5.24.
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0.35m

Figure 5.21. Comparison of computed and measured wave

fronts. Wave period 2.2 s, qully depth 0.35 m.
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Figure 5.22. Comparison of computed and measured wave

fronts.

Wave period 1.2 s, gully depth 0.35 m.
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0.275m

Figure 5,23. Comparison of computed and measured wave

fronts. Wave period 2.2 s, gully depth 0.275 m.
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0.275 m

Figure 5.24. Comparison of computed and measured wave

fronts. Wave period 1.2 s, gully depth 0.275 m.
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CHAPTER 6. PARABOLISATION OF THE PROPOSED MODEL

6.1, An alternative method for the parabolisation of the

Helmholtz equation

It was argued 1in sec. 4.5 that the parabolic approximation
provides the most feasible way to obtain numerical solutions
for the wave equation. In the approach taken by RADDER
(1979) to obtain the apptoximation, the equation is first
transformed into a Helmholtz equation, usually with varying
coefficients. A rectangular coordinate system is con-
structed of which one coordinate is roughly in the direction
of the main wave propagation. This coordinate will be
called s in the sequel. The wave field 1is split into a
transmitted and a reflected field, and equations for both
fields are derived. In the most simple approximation the
reflected field is then completely neglected. The result is
a partial differential eguation of parabolic type for the
transmitted field. The order of the equation has been
reduced in the sense that second derivatives with respect to
s have disappeared and first derivatives have emerged

instead.

The approach sketched above is not entirely followed in the
case of the equation with current. An approach will be pre-
sented which avoids the somewhat arbitrary splitting of the
wave field. The wave equation is brought, as well as possi-
ble, into the form of an equation that can be split exactly.
There results an equation which involves so-called pseudo
operators which are then developed into derivatives with
respect to the coordinate n, which is perpendicular to s.

The method is first demonstrated by means of the Helmholtz
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equation in order to facilitate comparison with other

approximations.

Similar pseudo operators have been used by ENGQUIST and
MAJDA (1977) in a paper on wave absorbing boundary condi-
tions. It is hardly surprising that their work is relevant
for the present method, since their aim is to find a boun-
dary equation which produces as 1little reflection as possi-
ble, whereas in the parabolic approximation the reflection
is neglected in the whole computational region.

The present method is based on the observation that the 4if-
ferential eguation

o /1 aCI>m
B_S_(?(—__és—>+Y®m:O (6.1)

can be split exactly into an eguation for the transmitted

field and an equation for the reflected field:

+
So=ivyet, (6.2)
%%—:—iy@—. (6.3)

These relations are easily verified by means of substitu-
tion. It is the aim of the analysis to transform a given
wave equation into a form as close as possible to eq. (6.1).
In general this cannot be done in an exact manner. The wave
equation that will be studied in this section, is the Helm-—

holtz eguation with variable coefficient x :
S 2= - - 22 6.4
e 0 5 - ( )

In order to start the transformation process, we put:

® = o
m
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where o is an as yet unknown variable. o and y will be cho-
sen in such a way that the equations (6.4) and (6.1) conform
as well as possible. In (6.1) the following term appears:

9 (10 (x®)) _
Js Ly 9s -
2
_a 39 3 /1 2 do ] 89 3 /1 du
'7;;*{0‘3;'(?)““75—8}55* = (53]

Since no first derivative with respect to s appears in eq.
(6.4), the coefficient of 3d/3s must vanish:

DR (22 &

So Y = a

Now eq. (6.1l) yields:

ST @‘{‘aﬁg(fa'g%ﬂ@

In the same way as was done by Radder, it is assumed here
that the derivatives of o can be neglected. This is justi-
fied by the assumption that the bottom slope is small, which
causes the derivatives of the wave number « to be small. It
will appear shortly that o is closely related to the wave

number. One finds

4 _f 2 3
o (D—{K'*'-B-{l—zgq)

so that o is a pseudo differential operator:

2%
O&:{KQ-F—Q—Q} .
an

Now it is possible to use the method announced in the begin-
ning of this section. From (6.2) it follows that
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9 .3
e (00 @) = 1 a” & . (6.5)
2 \& 2.2
or: 2 <K2 + Ji-) » = i <K2 + Ji—) o .
ds 2 2
on on

The pseudo operators arising in the above expression have to
be approximated by differential operators. This can be
achieved by means of the power series expansion of a non-in-

teger power of (l+z), which reads
(1 + z)B =1+Bz+ B (B- 1)22 0 (20 .

Since only the first two or three terms of the series will
be used, the error is small if z is small. Consequently one
must assume that the derivatives with respect to n are much
smaller than the wave number. Under this condition the fol-

lowing approximations can be used:

2 2
2 3 >” 3 ( 1 23
K™ o+ =K 1+p ————;)
< on’ b e? an?
2.3 - 52
(Kg*iﬁ < (20 5 )
on K on

The differential equation (6.5) then is approximated by:

1 __3_ 2 3 21 2
g%‘<K2 ¢ +p, K 2~3ﬁ§> =ik7 0+ ip,k? é«% . (6.6)
an on

This is the parabolic wave model sought after. The values

of the coefficients P, and p2 are 1/4 and 3/4 respectively.
A different choice for which p,=p,; +1/2, is possible., If
Radder's approximation is followed, p; vanishes.

The approximations in eg. (6.6) can be carried one step
further. Fourth order derivatives with respect to n appear

in that case:




3 .2 T o4
9 [ .2 2 TT e 3 m e,
R AT S VR "a??}
(6.7)
3 _1 5
i S NP
-t 5 2 " Te ¢ B¢

One of the criteria by which the various approximations can

be compared, is how accurately each describes

depth.

an obliquely

incident wave in a field with homogeneous The wave
is described by the expression

= & exp (ius +ivn)

The parabolic model is in the form of an initial value prob-

lem, so the value of v is determined by the initial condi-
tion. The various approximations yield different values for
TR These values will be compared with the exact value
which is obviously
1
2
w= (2 - v2)
Since the depth is constant, the wave number ¢ 1is constant
too. The coefficients y and v are non-dimensionalised by
means of K :
u'= WKk o, vt o= v/
Radder's approximation yields
u':l—%\)' (6'8)
Eg. (6.6) yields
1- %\NQ
W= (6.9)
- g’

The approximation (6.7) with fourth order derivatives yields

3
u= - (6.10)
l__.].:\)'z_..?_\)"u-
L 16

The various approximations are assembled in figure 6.1. Hor-
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izontally the exact propagation direction is measured, ver-
tically the various approximations. Expression (6.8) is
indicated with the symbol (A&), eq. (6.9) with (B), and
(6.10) with (C). All approximations perform well for angles
under 300. Eq. (6.9) already gives a significant improvement
compared with (6.8), and (6.10) can be used even for very
large angles between the s-axis and the propagation direc-

tion.

90°

60°-

OOL f : e ——
0° 30 60° 80°

Figure 6.1. Accuracy of various parabolic approximations.
horizontal axis: arcsin(v')

vertical axis: arccos(u')




6.2. Parabolic approximation for refraction-diffraction with

current.,

The parabolic approximation is based on the equation for
time-harmonic wave motion (3.23). For the <calculation of
the coefficients in this equation two alternatives are pre-
sented in Chapter 3. One is used if the direction of propa-
gation is known beforehand, the other (which is 1less accu-
rate) if this is not so, The situations in which the para-
bolic approximation can be used, form a compromise between
these two extremes. It is known that the waves propagate
mainly in s-direction, but locally they can deviate appreci-
ably. The wave number component in s-direction is equal to
K or somewhat less, depending on the direction of the
waves. The wave number component in n-direction is com~-
pletely unknown. Consequently a compromise 1is used for the

calculation of the coefficients:

GO:wO~PfKUS (6.11)

L, is a reduction factor expressing the fact the waves do
not exactly follow the s-direction. Its value must be bet-
ween 0 and 1. In the example discussed later in this chap-
ter, a value of 0.9 is wused. This is consistent with the
assumption underlying the parabolic approximation, viz. that

the waves propagate nearly parallel to the s~direction.

Approximate coefficients can be used if the current velocity
is small compared with the propagation velocity. It 1is
therefore realistic, but by no means necessary for the fol-
lowing derivation, to neglect the term with v?  in eq.
(3.23). So there remains:

S i ULV V.U -T.@TE) (o f - w - ax®) 3 0 (6.12)
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This equation will be reduced to a parabolic form in the
same way as discussed 1in the previous section. It is
brought into a form comparable with (6.1). To this end it
is written as

3 2% ) 30 2

E(ags—)+21(nolj—ars-+ax< $ +

. (6.13)
2 2, ~ 99 . 30 _
+ (w,” - oy +1wo\7.g)®+—§5(a—é—r—l)+21wov~§g- 0

This is in accordance with (6.1) if the coefficients are
proportional. Consider at first the terms in (6.1) and
(6.13) which contain second and first order derivatives with

respect to s:

2 1 ,9%a

Yy 1.9 =192 :
S5 (@/v) = < <Bs +2iw U . (6.14)
This results in
a2
B:_a?: exp { leondS} . (6.15)

Consider now the terms in which the function is not differ-
entiated with respect to s. Again the derivatives of o and

Yy are neglected.
X—.ay = Kzi-g . (6.16)
a a

The operator M introduced here is defined by:

v= () -0t v Pl iy v 6.17
Mo= (0, o, +1wov._q)®+an (a5—5)+21wov—&—1, ( )

From (6.15) and (6.16) it follows that
ot =82 {(ax)? +amM} . (6.18)

Now the parabolic model results from eq. (6.2) after devel-
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opment of the pseudo operators, under the assumption that

ol << |

It reads

2 (8% ((ax)? 0
55 ak)?2 9 +
1 1~ 1~
=z B2 (ix(a)? @ +ip2(aK) M 9)

Using expression (6.15) this becomes

(M;U ; 598-) {(am%&i N p—‘} <a;<)”%Mc5}
(6.19)

Sl o~
% - ip2(aK) 2Mo=0

1
- ik(a®?
This is the parabolic approximation to the refraction-dif-
fraction equation with current, that will be used as the
basis for a numerical model. This model will be developed in

the next section.

It is noted that for a =zero current velocity and with the
choice p]=0, eq. (6.19) reduces to the parabolic model
developed by RADDER (1979).

The solution of a parabolic differential equation requires
the availability of initial and boundary conditions. The
initial values can be derived from the incoming wave field;
the conditions along the lateral boundaries are more diffi-
cult to establish. Obviously the boundary condition should
be such that waves approaching a boundary are not reflected
there. Furthermore there is a possibility of waves entering
the computational region through a boundary, but it is not
possible with this type of model to determine such waves.

Thus such waves are ignored.
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The expressions that ENGQUIST and MAJDA (1978) used to simu-
late wave absorbing boundary conditions, cannot be applied
in the case at hand, because they considered waves leaving
the computational region in direction approximately normal
to the boundary. In the parabolic method however, it is
assumed that the waves run parallel or nearly parallel to
the s-axis and thereby also nearly parallel to the lateral
boundaries. So the waves approaching the boundary will make
a small angle with it. A simple boundary condition that
also can easily be incorporated into the numerical method

discussed in the next section, is the following:

cos ¥ gg + sin y g% = ikd . (6.20)
This boundary condition absorbs waves under an angle ¥y
exactly, and waves 1in other directions partially. This
boundary condition with a value of 20O for X , was used in
the computations discussed later in this chapter.

As a result of the fact that the boundary conditions give a
rather poor representation of reality, there will be a zone
along each boundary in which the wave field 1is disturbed.
The shape of the disturbed zone has been determined by
visual inspection and by varying the place of the boundary.
The zone is found to have roughly the shape of a triangle,
with its vertex on the corner of the computational region,
and a top angle of approximately 10° to 20°. This will
impose a requirement on the choice of the computational
region, because the disturbed zones should be disjunct from
the region of interest.




6.3. A finite difference approximation for the parabolic

model.

The final result of the previous section is a partial dif-

ferential equation of the parabolic type, with £first order
derivatives with respect to s and second order derivatives
with respect to n. The coordinate system is assumed to be
Euclidian. The most obvious choice for the discretization
is a finite difference approximation using rectangular
meshes. The computational molecule will comprise at least
one mesh in the s~direction, and at least two meshes in the
n-direction, due to the order of the equation.

The equation is in the form of an initial value problem with
values for a certain s, say s=0, acting as initial values.
These stem from the (given) incoming wave field. A choice
exists between explicit and implicit schemes. Implicit
schemes are preferred in this application because of their
inherent stability, and because the resulting set of equa-
tions can be solved in an extremely efficient manner using

the Thomas algorithm.

Two implicit schemes are fit for the purpose, viz. the Stone
and Brian scheme, and the <Crank-Nicholson scheme. A mixture
of the two is chosen, and it is investigated which is the
most accurate for the type of egquation at hand. The selec-
tion of the numerical scheme is done in two steps. First
the discretization in s-direction is considered, later the

one in n-direction.

The equation in its original state only allows steps small
compared with the wavelength. In s-direction larger steps
can be taken if an unknown function is used which has a
smaller s-derivative. This is achieved by incorporating the

wave character into the function ¢ a priori. To this end
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an ansatz of the form

b = o tKLIX

$

o
is often used. This expression has a disadvantage in that
the variations of « often are so large that the s-deriva-
tive of 0° still are not small. A 1little more general
expression for § enables a better adaptation to the varia-

tion of the wave number.

eiS(s)

LS

Let = ¢

1

Then
P,

2 {a)? 5+ L
Y ak & + ?—(am

Nft

M3 )=

_ 18 . % P1 -% 3 32_ pl ..%
= e {is' ((ak) ®l+?(aK) M@l)ﬁ--é—s-((aK) ®l+?(aK) M@l)} .

By resubstitution of the original ? a computational scheme
is arrived at in which a different value for S' can be cho-
sen in every computational molecule. The same terms of the
equation for %  become

1 i P _1 i g
-;—s-{(aK)zél els+~El—(aK) 2 M @1 et } =

I~ P -1 : 1~ s P “1 o~ .3ig
is! ((aK)2®+%(aK) 2 3) + elS-a—ag((aK)zée 18+—%(a1<) ZMpe

)

For S' a value can be chosen related to the local wave num-

ber, such as: S'=const*<,

It was the purpose of the above manipulation to obtain an
equation in which the quantity to be differentiated with
respect to s would be slowly varying, at least in s~direc-
tion. Now the equation is ready to be discretized with res-

pect to s. The usual central differencing is employed:
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+ -
%S+E-ZEE—- > P+:P(S+%AS)3 p =p(s-1he)

+ -

+ + -
h,fi.._,é.f_l._ , q =afls + 34As), gq

1)

q q (s-3%As)

The equation discretized with respect to s then reads:

1~ -3 . . iw U+
((a k)2 Ht e iS'As {l + is' ikt o) } +

YR S S
3o 1 is' ik | lweU
2 —- Pt Pl Sl
r ((ax® e) { As TS 7 T T
+ ~iS'As¢ p -1 ip,S! -1
z 1 z P1 ]
+Md e {?EE (ak) "+ e (ak)
3
_1 - =71 *
- gz(aK)2+§1plw U(ax) 2} +
~~ ¢ Py =z ipys' 2 ipp -3 ——3—
+ M4 0 {—KAS(aK) + = (ax) - ——(ax) +51P1&30U(a‘<)

The discretization with respect to n is done such that only
3 nodes in that direction are needed. The Stone and Brian
scheme and the Crank-Nicholson scheme differ only in the
representation of the =zero order terms in n. Both schemes
will represent a term
D oa 22
3n on

)

by {(a, + ag)(by - 3)) - (a, + ay)(d, - 901 / (2 bn")

Here: 51 = (n-M) ,0=0(m) , 2 =20 (n+An)

A term with a first order derivative will be represented as
(®3 - @l)/ (2 An)
A zero order term such as ¢ will be represented by the

Crank-Nicholson scheme as: @2.




The Stone and Brian scheme represents the same term by:

1~ 2~ 1=
£ £ S
§ 1 t3% tg %

The compromise scheme contains an as yet unknown parameter

2

r: ~ g ~
r @l + (1 - 2r) @2 + ®3

The influence of the parameter r on the accuracy is investi-
gated not by means of the full equation (6.7), but a reduced
equation containing only the main terms, also taking into
account the ansatz introduced above. Naturally this reduced
equation is the Schrddinger equation:

3% i 325 . (6.21)

35 ~ 2¢ Bn?
The numerical model for this equation would be:

1 ~ + v+ >+ ~ - P
—A—g{r®1+(l-2r)®2+r©3-r®l—(l-2r)®2 r@s}

i x t O -
T AT @l -2 @2 + @B + @l

As and An are the mesh sizes in s- and n-direction respec-
tively. The accuracy will be studied by means of the func-
tion:

@N)Zexp (ipgs + ivn) =pS/AS On/An (6.22)

If py and v are real numbers, this function represents a
wave~like solution. Note that

p = exp (iudhs) , 0 = exp (ivAn)
p is known as the propagation factor. Its value is used as

the criterion for the accuracy. The values of either V or ¢
are assumed to be known, due to the initial conditions.
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Substituting eg. (6.22) into the numerical model, one

obtains an expression from which p can be calculated.

p-1;,1 B _ ;L o+ 1 1 1
s 10-+(1 2r) + ro} = 5T ZH?(G 2 + 0)

M=

1
a2

Let 8B=02-02=21isin (1VvAn)
0 -1 _ ibhs g?
Then 2T I T Trrp?
1 -1 s (2 sin (3 v An))?
or 2 tan (?uAs) S YRR Ty (3 sim (Tu An)?

From the fact that the right hand side of this equation is
real valued it is seen that a real value for 1 will be
found. This means that the numerical model is uncondition-
ally stable, and that the wave amplitude is conserved, i.e.
there is no numerical damping. Thus the «criterion £6r the
accuracy must rely on the propagation of the wave. This
question 1s investigated by developing both sides in powers
of y and v

1.8 ,.02 T
u+~l—2~u As® + 0(As ) =

_ 12 L __2__ 2 L
= -2 vi/k+ v (12 x’> An“/x + O (An7)
Since p=-1 w2/ + 0 (AsQ, n?) s

this is eqgual to

2 u 6
v v 1 2 1 v 2 Y 4
Tra g TR A gy et v 0 kel M)

Nop

u=-

This 1is close to the exact value M, resulting from the

Schrodinger equation:

\)2

rs

Wofes

Hy = -
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The value of r that makes the term with An2 disappear, is
r=1/12. A term with A52 remains., It may be assumed that
the mesh sizes are of the same order of magnitude. It is in
accordance with the parabolic approximation to assume that
v << k. Since moreover the coefficient 1/96 appearing
before this term is a small number, the term with As™ will
in fact be quite small. Thus, although with r =1/12 the
scheme is theoretically still of second order, the error

involved is relatively small.
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6.4. Some additional physical effects.

The wave propadation model developed in Chapter 3 entails
the main effects in the phenomenon, viz. the influence of
bottom and <current on the direction of propagation. Many
effects are not yet taken into account, such as: dissipa-
tion due to bottom friction, wave breaking, growth of the
waves due to wind, influence of the wave amplitude on the
propagation velocity. Most of these effects introduce mild

non-linearity.

Growth of the waves due to wind is an effect which is funda-
mentally hard to build into the model, because the wind gen-
erates waves of many frequencies and many directions, not
just the frequency and direction of the wave under consider-
ation. However the generation of waves requires long dis-
tances, and in coastal regions the generation 1is a minor
effect compared with the dissipation. It is therefore not

considered in the sequel.

Wave breaking naturally is an important phenomenon in coas-
tal regions, obviously near the beaches, but also on shal-
lows that may exist in such regions. It 1is important that
this effect is taken into account, because without it wave
heights would tend to infinity near the beach. This would
make the result unacceptable to engineers using the model.
There are two ways to introduce breaking. One is to limit
the wave amplitudes; once a wave height has been calculated
it is checked against the local breaker height. If it sur-
passes this breaker height, it is reduced to that value.
The other way 1is to recognize that wave breaking is a
mechanism, which causes energy dissipation. BATTJES (1978)
shows how this dissipation can be modeled for periodic
waves, BATTJES and JANSSEN (1978) show the same for irregu-
lar waves. The latter is important if the wave field that
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is computed, 1is thought to be representative for a whole

spectrum of waves, or perhaps part of such a spectrum.

SKOVGAARD, JONSSON and BERTELSEN (1975) present a model for
the dissipation due to bottom friction. It remains to show
how energy dissipation can be introduced 1into the wave pro-

pagation equation.

It is well known that in the shallow water equation:

2

9" -

'a'f't'j"v. (ghV@)—O N

the energy dissipation due to bottom friction is modeled by

adding a term

Due to the great similarity of eq. (3.21) and the above
equation, it 1is reasonable to suppose that the same would
work for eq. (3.21). In the case of eqg. {(6.12), which is for

purely periodic waves, one would add iwow5

This wave equation then reads

. ~ ~ ~ 2 i 2.~ . ~ -

iw (U.V0+V.(UB)) -V.(aV®) + (0.7 -w ™ -ak)d+iw wd =0
o - - o o O

A conservation law for the wave action density can immedi-
ately be found from this equation by considering the product

of the differential equation and the complex conjugate of 5,
denoted by 2* ., If the imaginary part of this product is
taken, the conservation principle immediately results.

If 3 =3 oS

then Im(-(%VED) = 7S
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So

m Lé* o, (U.78+7. (U&) - 7.@7® + (0 -un  -ax®) + iwowq;}} =

:V.{a§2VS+wOH@2}+MOW52 =

"

V.leg B/u  + UB/w } +wE/w = 0

or V.{(Egi‘g)ﬁl} = -wE

This shows that the divergence of the energy transport does
not vanish. The term wE i1s the energy dissipation per unit
surface and per unit of time, so that the added term has

indeed the effect aimed at.

In the parabolic approximation the addition of the dissipa-
tion term leads to the addition of the following terms to
eq. (6.19)

iw U iw w W W .
(B0, ), Tt g e
a 5s/ P1 K (aK)z 2 (aK)z

The coefficient w used in the model is the sum of a dissipa-
tion coefficient due to breaking and one due to bottom fric-
tion. Both contributions can be derived from the papers

referred to in the beginning of this section.

It was shown by WALKER (1976) that the influence of the wave
amplitude on the propagation velocity can have an important
effect on the concentration of waves on a shoal. The fact
that this addition to the model brings in non-linearity, is
not harmful to the numerical process, because the equations
can be locally linearized. Walker shows that the concentra-
tion of waves on a shoal is diminished since higher waves
have a greater propagation velocity. He advises a formula

for the propagation velocity that is derived from the one in
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the linear model by multiplication with a factor depending

on the local wave height:

_ H
C_<l+4h)ca’

where ca is the propagation velocity that follows from the
linear model. The above is equivalent to calculating the
wave number « from the following equation:

2 _ i 1) )
0, = gr(l+ uh) tanh{k(h + {H) ] (6.23)

HEDGES (1976) arrives at a slightly different formula by a
comparison with cnoidal waves:

002 = gk tanh {k(h + 2)} (6.24)

The paramater 2 can still be chosen. Hedges proposes Z=H.
The argument for this choice is not strong, because the wave
height of a sinusoidal wave is simply equated to the wave
height of a cnoidal wave. Walker on the other hand supports
his choice with measurements, so that it may be assumed that
the overall effect is represented correctly. His experiment
however pertained only to waves in relatively shallow water.
In shallow water his formula is nearly identical with the
one by Hedges if for 2 the half of the wave height is cho~-
sen. For deeper water Hedges' formula is presumably better;
although it overestimates the difference between the linear
and the nonlinear model (HEDGES, 1976), Walker's formula
does even more so. It is for this reason that eg. (6.24) is

used for this nonlinear effect, in combination with Z=H/2.

It can be seen that for deep water both these formulae do
not agree with the dispersion relations for the second order
Stokes wave on deep water (see e.g. YUEN and LAKE, 1975).
This is not important for the present research since it is

concerned with waves in shallow regions near the coast. It
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would be very useful if an easy-to-handle relation for res-
tricted depth could be developed based on second (or higher)
order Stokes theory.
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6.5. Alternative model based on complex phase function

The result of the foregoing section is a partial differen-
tial equation of parabolic type, which 1is to be solved num-
erically. With the parabolic approximation a numerical
solution has become feasible, but the computational effort
is still <considerable. For instance the entrance to the
Oosterschelde estuary (figure 6.2) would require a computa-
tional grid of 24 km times 24 km, leading to at least 2000
times 3000 grid points. The computational effort can be
reduced again if the complex phase is used as the unknown
qguantity, as was done by RADDER (1979). This function is
related to the wave potential by:

¢ = exp (1) = exp (I, +1iT,) (6.25)

T, is the usual phase function and Fz is related to the
amplitude. The calculation can be carried out with larger
meshes since the function r is essentially smoother than ¢
which oscillates rapidly. In the absence of crossing waves
the gradient of I varies over the same distance as the med-

ium does, whereas ¢ varies with the wavelength.

The equation for I is based on eq. (6.193 with pJ=0 and
p2=l/2, the <coefficients as used by RADDER (1979). After
some calculations which are not reproduced here, it appears

to be:
%(F + % log (ak)) -~ ;i{—% (a%—i—>+ a<—g~g>2}+

. 2 2 . (6.26)
1on on T ) Wy ~OO +wov.g
+ - ik-

e i = 0
a a on ax

N

Now the same region can be covered by a grid consisting of
1000 times 1500 grid points.
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The transition from the wave potential to the complex phase
function has not only advantages. The latter leads to a
nonlinear model in which instabilities may develop. Such
instabilities are damped by adding a numerical diffusion
term to the model, thereby reducing its accuracy. Details
are found in RADDER (1979).
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6,.6. Example of a practical application

The parabolic model wusing the complex phase was applied to
the entrance of the Oosterschelde estuary in the Southwest
of the Netherlands, where extensive coastal defense works
are undertaken. This region is chosen, because the neces-
sary data were relatively easily accessible. The region is
moreover representative for practical problems in coastal
engineering. The computations can show whether results of
practical importance can be obtained. Furthermore the
influence of a current can be computed in physically realis-
tic circumstances.

The necessary current data were provided by the WAQUA model,
a two-dimensional tidal computations program (see LANGERAK
et al,, 1978). The same bottom data that were used as input
to this program, served for the parabolic wave computation.
The bottom contours are displayed in figure 6.2 and the cur-
rent vectors in figure 6.3. A typical velocity in the
entrance region is 0.70 m/s, leading to a value for U/c of
about 0.08. Figure 6.2 also shows the contour of the compu-
tational grid as a dashed line. The size of the computa-
tional region 1is 24 km by 24 km. Further data were: wave
period 8 s, incident amplitude 0.8 m, direction of the
incoming waves under an angle of 20 with the x-axis of the
bottom grid, or between West and Northwest. The s~axis of
the computational grid was chosen parallel to the direction
of the incident waves.

Two computations were performed, one taking the current
influence into account, the other without current. Results
are shown not for the entire region, but for a subregion of
the computational grid, also indicated by a dashed line in
figure 6.2. For comparison the results of the refraction

model (without current) are shown in figure 6.4. The fol-
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Figure 6.2. Bottom map of the region in the Oosterschelde
estuary, showing also the circumference of the
computational grid (C), and the output rectangle

(R) .
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Figure 6.3. Current vectors
6.2 (ebb flow)

lowing fiqures give results

model. Figures 6.5 and 6.6

in the region shown in figure

of the refraction-diffraction
show the lines of constant wave

amplitude, 6.6 for the computation with current, and 6.5
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without. This computation
alternative model using the

6.7 and 6.8 show the lines

was carried out by means of the
complex phase function. Figures

of constant phase resulting from

indicate that the
Locally

The graphs
spectacular influence,

the same two computations.

current does not have a

the overall patterns are

deviation but
holds
noted that U/c is

representative for estuaries with

there may be some
This
It is

but probably

much alike. for amplitudes as well as wave

directions. approximately 0,08, a
small value,

a sandy bottom.

model by RADDER (1979) has been
VRIJLING and BRUINSMA (1980)
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no current is assumed in
concluded that in the case
with

wave height

The current-free parabolic
applied to the same region.
report that its results are in

Radder's model results as

produces the same

if
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model presented in this thesis,
the latter. It can therefore be

of a observations.

zero current the model agrees

show how the in a
the tidal level.
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the shallows
The
situations reported by

is found in the mathe-

Vrijling and Bruinsma also

point in the estuary depends on The direc-

tion of the tidal flow is also of
it influences the
front of the point under consideration.
wave height between ebb and flood

Vrijling and Bruinsma is larger than

amount of breaking on in

difference in

matical model. However the incoming wave height assumed in
(0.8 m) less than
the

Bruinsma,

the example is much the incident wave

height
Vrijling and

considered by
of
expected if the

rough-wheather conditions
that the

A better agreement may be

in

so amount breaking is

much smaller too.

same wave height is used in the mathematical model.
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Figure 6.4. Ray pattern in output rectangle R (see figure

6.2). No current influence.




- 109 -

Figure 6.5. Amplitude contours, computed with complex phase

function, in region R. No current influence.




- 110 -

A —]

—

o

Figure 6.6. Amplitude contours, computed with complex phase
function, in region R. Current field assumed as

shown in figqure 6.3.
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Figure 6.7. Phase contours, computed with complex phase

function, in region R. No current influence.
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0.09\

Figure 6.8. Phase contours, computed with complex phase

function, in region R. Current field assumed as
shown in figure 6.3,
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CHAPTER 7. CONCLUSIONS

An equation for combined refraction and diffraction in
regions with wvariable depth and current is developed.
Strictly speaking, the derivation is only valid for current
fields with zero rotation. From a practical point of view,
the wuse of the equation for current fields occurring in
reality is allowed. Rotation in the vertical plane is res-
tricted to a thin layer near the bottom, which has little
influence on the wave propagation. It is justified to allow
rotation in the horizontal plane by a comparison with the
refraction model, which is also frequently used for regions
with a rotational current. The agreement between both
models regards the dispersion as well as the conservation

equation.

If one is about to apply the refraction-diffraction model to
areas very large compared with the wavelength, such as occur
in coastal engineering, the only feasible method is through
the use of a parabolic approximation. Such an approximation
is developed and compared with an existing parabolic model
for the current-free case. Dissipation terms are added to
the model to bring it closer to physical reality.

An alternative version of the parabolic model uses the
logarithm of the wave potential as the unknown function.
This allows for larger meshes, at the expense of giving an
incorrect picture of what happens at the downwave side of a

wave crossing.

Both versions of the parabolic model are such that a 6-point
numerical scheme can be employed. This allows a very effi-
clent solution algorithm. The results of the computations
are in the form of plots of iso-amplitude contours and iso-
phase contours. In an example shown the current was found
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te have only a small influence on the overall pattern of
these contours., It remains useful to check this for any new
problem for which the model is to be applied.

The full equation, i.e. without resorting to a parabolic
approximation, is applied to some situations in which the
wave field is independent of one of the horizontal coordi-
nates. Such a reduced model can be used to study subjects
like reflection due to an undersea slope, wave propagation
in a wave channel, and wave propagation in a gully with
lateral energy loss.

Partial reflection of waves travelling obliquely accross an
undersea slope is one of the reasons why one might refrain
from using the refraction method. This method predicts
either full reflection or no reflection at all, whereas the
refraction~diffraction equation can also predict partial
reflection. However, it turns out that the range of angles
of incidence for which the reflection coefficient is above,
say, 0.05 and under 0.95, is 1limited to only a few degrees,
so that the refraction method is reasonably accurate in this

respect.

Waves incident in a direction normal to a slope can also be
reflected partially if the slope is steep enough. According
to the refraction-diffraction equation the reflection |is
under 0.05 if the steepness is lower than 0.10. In practice
one will seldom meet bottom slopes steeper than 0.10, so
that this again is a justification for the use of the
refraction method. It also justifies the use of the para-
bolic method, since it assumes that the reflections counter
to the computational direction are negligible,

It can be questioned however whether the mild-slope eguation
itself may be used at all for slopes steeper than 0,1, since
the bottom slope was assumed to be small in deriving the
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equation. Therefore a comparison with a three—-dimensional
computation for the same case was made, leading to the con-
clusion that the mild-slope equation is accurate for slopes
with a steepness 1lower than 0.2, Unlike the refraction
method it gives results which are in the right order of mag-

nitude for an inclination in the neighbourhood of 1.

The case of propagation parallel to the depth contours is
treated separately. This is done Dbecause the equations now
lead to an eigenvalue problem. Solutions are presented per-
taining to a prismatic wave channel bounded by reflecting
side-walls. The waves propagate in axial direction in this
set of examples. In this case the eigenvalue is real, which

means that the waves do not lose energy as they propagate.

The comparison of the vertically integrated refraction-dif-
fraction equation with the three-dimensional model is made
for waves perpendicular to the depth contours, and for waves
parallel to these contours. The first case is discussed
above. For the other case the prismatic wave channel is
used. This time the vertically integrated model proves to

be accurate for a bottom inclination up to the order of 1.

A second case of propagation parallel to depth contours is
formed by a gully bounded by shallows on each side. The
eigenvalue is now complex, which means that the waves are
damped in axial direction. This damping is due to the
transfer of wave energy from the gully to the shallows.
Laboratory measurements were available for such a configura-
tion. The decay of wave energy in the gully that is caused
by the energy transfer, is reproduced well by the refrac-
tion-diffraction model. The shape of the wave fronts in the
gully was reproduced less well, but it seems that these mea-

surements were subject to a large uncertainty.

In conclusion it can be said that the parabolic approxima-
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tion of the refraction-diffraction equation is a feasible
tool for the prediction of waves in regions up to a few hun-
dreds of wavelengths 1in size. For larger regions the
refraction method is still indispensable.

In ordinary use the refraction-diffraction model is much
more expensive than the refraction model. Then why would
one use the refraction-~diffraction model at all? The possi-
bility of partial reflection can hardly be a reason as was
explained above. The most important reason, illustrated by
figure 6.4, is that the rays tend to occur in bundles, leav-
ing large areas which are hardly covered by rays. According
to the refraction-diffraction egquation, and according to
experience there may still be an appreciable wave height in

such areas.

A drawback of both the refraction and the refraction-dif-
fraction models is that they are in principle deterministic
models. They compute one wave frequency at a time, whereas
a real wave field 1is described by means of a continuous
spectrum. Sometimes it is sufficient to know an estimate of
the peak of the spectrum at the coast line or elsewhere in
the computational region. Then a simple approach can be
used. It consists of a computation of the propagation of
the wave which has the frequency and direction of the peak
of the spectrum of the waves incident from the sea. If this
approximation is too crude, one should perform a set of com-
putations with different wave periods and angles of inci-
dence. An estimate of the spectrum 1is obtained from a
superposition of the waves computed at the point(s) of
interest. 1In view of the smoother wave field resulting from
the refraction-~diffraction model than from the refraction
model, probably fewer combinations of incident wave fre-
quency and direction need to be considered when using the
refraction-diffraction model.
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APPENDIX 1. NUMERICAL APPROXIMATION OF THE WAVE EQUATION

The wave equation that appears in Chapter 5 (eq. 5.2), is

written here somewhat more compact:

(- iog+ U»%)(-im{w B;Xq))—iaﬂw‘bw:O . (A.1)

According to the method of weighted residuals this equa-
tion is integrated with a weighting function W(x) (see
FINLAYSON, 1872). Integration by parts 1is applied to
those terms in which second order derivatives appear.

L
[ WG (=104 0 (-iop+ 22 - 20 By by} ax =
Q
- . L dUY 3y
- [Uw Cioy + S5 _aw%]o,r . 2)
8 dU oW 9
+ J H—iaw—iigx-iow+ 3;%~+a5§5%*-bww}dxzo

o
In the discretizing procedure the unknown function is

approximated by a linear combination of shape functions
(%)
qJ( )

N
LUy, q. (%)
PR B

In the Galerkin version of the finite element method a
set of weighting functions is used which coincides with
the set of shape functions. Furthermore the interval
{(0,L) of the x-axis is divided into N-1 segments, called
finite elements. The shape functions g are chosen
linear within each element (Xi—J’Xi); and qj(xi)=6ji.

The numbers wj can be calculated from a set of equations

of the form:

I AL 9y.=0 (A.3)
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where
(A.4)

Lg( ' Bllqi)( i BLqu> aqi 8qj
Aij'fg_lgqi“ = —1qu+ g +a—5—;—8;+bqiqj}dx.

o

The equation (A.3) holds for i=2,3,...,N-1 ; for i=1 and
i=N terms must be added to account for the boundary con-
ditions at x=0 and x=L, resp.. These terms follow immed-

iately from the terms in square brackets in eqg. (A.2).

For the three~dimensional model the same procedure 1is
applied. The (x,z)=-plane is divided into triangular ele-
ments, with shape functions linear over each element.
The integration by parts is replaced by an application of

Gauss' divergence theorem.
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APPENDIX 2, SOLUTION OF THE EIGENVALUE PROBLEM

The linear system of equations (A.3) derived in appendix
1, is homogeneous. Often it becomes inhomogeneous if the
additions due to the boundary conditions are taken into
account. In Chapter 5 several examples are treated in
which the boundary conditions are such that the system
remains homogeneous. In that case the problem becomes an
eigenvalue problem, with m as eigenvalue. This is the
case if one is dealing with homogeneous boundary condi-
tions. The matrix elements Aij depend in some, often
nonlinear, way on the value of m. Ready-made subroutines
for the computation of eigenvalue problems usually assume
that Aij depends linearly on m. A new method must be
found or an existing method adapted. Preferably this
method should take advantage of the bandedness of the
matrix A. The solution method chosen is based on the
Newton-Raphson iteration method for systems of nonlinear
equations. In this method the system

ha A (m) ¢. = 0 17 1, 2, vous N . (B.1)
. ij ]

j=1

is approximated by

dA
N

=1

Gr1), S m(k)wj(k)}: 0. (B.2)

dm

)
{Bg5 (0"

Now m is introduced as an ordinary unknown just as the
number y,. The consequence is that an additional egqua-
J

tion is necessary. This has to secure that the vector
is finite; so it might read

AR (B.3)

which is iteratively approximated by
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N (k) , (k+1) (k)20 o _ B. 4
'El{zwj vy by )} N=0 . (B.4)

It is seen that the set of eguations (B.2) together with
(B.4) forms a band matrix with one added row and one

added column (see the figure below).

+
+
+
ik ok ok o b T SRS

S R o

Figure B.l. distribution of non-zero coefficients

in the system of equations

This type of matrices is called profile matrix; such sets of
equations can be solved efficiently. In its present form
the set of equations is non-symmetric. Some computational
effort can be saved if the system is made symmetric; a con-
dition for this is of course that A is symmetric. The sys-
tem can then be symmetric if the added row reads

dA,.

N (k) (k+ 1) -
jzl = wj by -N=0 . (B.5)

The method described in this appendix converges rapidly if
(0) (0)
J

from the final solution. Otherwise it will often diverge.

the initial approximation y and m is not too far away
The method is only efficient if one is interested in not

more than a few principal eigenvalues.
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SAMENVATTING

Zwaartekrachtsgolven in water met niet-uniforme diepte en

stroming.

De dissertatie heeft tot doel een verbetering te bereiken
van de berekening van golven in gebieden nabij de kust. Het
gaat hierbij in het bijzonder om gebieden in de ingang van
estuaria, omdat de veelgebruikte refractie-methode door het
onregelmatige verloop van de ondiepten stralenpatronen
oplevert die =zich slecht lenen voor interpretatie (zie

bijvoorbeeld figuur 6.3).

Een model dat aan het bovengenoemde bezwaar tegemoet komt,
is het refractie~diffractie model. 1In het reeds bestaande
model wvan dit type, dat bekend staat als de mild-slope
equation, is de invloed van bodemoneffenheden op de
golfvoortplanting verwerkt; de invloed van stroming nog
niet. Echter men mag aannemen dat juist in de ingang van
estuaria de invloed van stroming belangrijk kan zijn. In
het proefschrift wordt een model afgeleid, dat gezien kan
worden als een uitbreiding van de mild-slope equation. Er
zijn termen aan toegevoegd die de invloed van de stroming

weergeven,

Het model wordt afgeleid met behulp van de variatierekening
(hoofstuk 3). Daartoe worden eerst de 3~dimensionale
differentiaalvergelijking en de randvoorwaarden voor de
golfbeweging bekeken. Deze worden delineariseerd en
vervolgens wordt hieruit een variatieprincipe afgeleid. Dit
principe is geldig voor willekeurig steile bodemhellingen.
Een gereduceerd model voor flauwe hellingen wordt afgeleid
met behulp van de methode-Ritz. Hierbij wordt een benaderde

oplossing verkregen door het minimum~principe toe te passen
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op een deelverzameling van alle toegelaten functies. 1In dit
geval is de deelverzameling gedefinieerd door aan te nemen
dat lokaal het verloop van de golfpotentiaal over de diepte
is alsof de bodem horizontaal zou zijn. Uit het
gereduceerde minimum~-principe kan de partiele

differentiaalvergelijking worden afgeleid.

Deze partiele differentiaalvergelijking bevat een aantal
coefficienten, die afhangen van de golffrequentie, de lokale
diepte en de lokale stroomsnelheid. Ook de
voortplantingsrichting speelt een rol bij de bepaling van de
coefficienten, en dit kan problemen geven in gebieden waar
golven uit verschillende richtingen elkaar kruisen. In dat
geval moet met benaderde <coefficienten gewerkt worden.
Aangetoond wordt dat de vergelijking een redelijk
nauwkeurige uitkomst levert o0k als van benaderde
coefficienten gebruik gemaakt wordt.

Hoofdstuk 4 laat zien dat de aldus afgeleide vergelijking
goed overeenkomt met andere reeds bestaande modellen.
Besproken worden in dit verband: het variatie-principe van
Luke, de mild-slope equation, de ondiep-watervergelijking,
en het refractie-model.

De golfvoortplantingsvergelijking wordt in hoofdtuk 5
toegepast op een aantal gevallen, waarvan het
gemeenschappeliijk kenmerk is dat de dieptelijnen evenwijdig
zijn, terwijl ook de stroomsnelheid niet verandert in de
richting van de dieptelijnen., Bij deze configuratie is een
golfveld mogelijk dat periodiek 1is in de richting van de
dieptelijnen. Mathematisch betekent dit dat het aantal
onafhankelijke veranderlijken afneemt van 2 tot 1; de
overgebleven coordinaat is de horizontale coordinaat
loodrecht op de dieptelijnen., Met dit model wordt de
partiele reflectie bestudeerd bij scheve of loodrechte inval

op een geul of een onderzeese helling. De uitkomst is dat
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een aanzienlijke partiele reflectie slechts in een beperkt

aantal gevallen optreedt.

Het Dbedoelde model is eveneens toepasbaar als de golven
evenwijdig lopen aan de dieptelijnen, zoals gebeurt in een
prismatische golfgoot. Hierbij wordt het stelsel
vergelijkingen mathematisch gezien een eigenwaarde—-probleem,
waarbij het golfgetal 1in axiale richting als eigenwaarde
optreedt. Iets dergelijks geldt voor golven evenwijdig aan
de as van een geul gelegen tussen twee ondiepten. Nu echter
is wuitstraling van golfenergie 1in zijdelingse richting
mogelijk. Hiermee houdt verband dat de eigenwaarde nu
complex kan worden, waarbij het imaginaire deel van de
eigenwaarde gerelateerd is aan de mate van vermindering van
golfhoogte in axiale richting. Voor dit geval zijn metingen
beschikbaar. Er is een vergelijking gemaakt tussen de
gemeten en de berekende daling van de golfhoogte. In dit
geval is een goede overeenstemming gevonden. Ook is gekeken
naar de vorm van de golffronten in de geul. Door de grote
variabiliteit van de metingen 1is geen sterke overeenkomst
gevonden; systematische afwijkingen zijn echter niet

geconstateerd.

Bij de hiervoor genoemde gevallen is een vergelijking
mogelijk van de uitkomsten van het vertikaal geintegreerde
model en het oorsponkelijke niet vertikaal geintegreerde
(z.9. 3-dimensionale) model. Dit laatste 1is ook geldig bij
grote bodemhellingen, zodat nagegaan kan worden bij welke
bodemhellingen het vertikaal geintegreerde model zijn
geldigheid verliest. De vergelijking is gemaakt voor een
geval van golfinval loodrecht op een helling, en een geval
van voortplanting evenwijdig aan een helling. De
afwijkingen zijn het grootst bij het eerstgenoemde geval;
tot een helling van 0.2 blijkt het vertikaal geintegreerde
model goed te voldoen.
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In paragraaf 4.5 wordt besproken dat de toepassing van een
refractie-diffractie model in een gebied voor de kust zonder
verdergaande benaderingen niet uitvoerbaar is. Dit is een
gevolg van de grootte van de gebieden die men in de praktijk
ontmoet; deze zijn meestal honderden golflengten groot. Bij
een numerieke berekening moet dan gewerkt worden met een
rekenrooster van duizenden bij duizenden punten. Een
stelsel van miljoenen vergelijkingen met miljoenen
onbekenden moet hierbij opgelost worden. Dit is een
onmogelijke opgave voor hedendaagse computers, zowel bij
gebruik van directe als van iteratieve oplossingsmethoden.
De uitweg uit het probleem 1is gebruik te maken van een
parabolische benadering. Daarom wordt in hoofdstuk 6 een
parabolische benadering afgeleid voor het in hoofdstuk 3
ontwikkelde golfvoortplantingsmodel. Daarna worden enkele
fysische effecten aan het model toegevoegd, opdat het de
werkelijkheid realistischer weergeeft, met name
energiedissipatie ten gvolge van breking, en de invloed van
de golfhoogte op de voortplantingssnelheid. De rekenwijze
bij het parabolische model is zodanig dat deze effecten
zonder problemen in het model opgenomen Kkunnen worden.
Naast het parabolische model waarin de potentiaal als
onbekende fungeert, wordt een alternatief model gebruikt met
de logarithme van de potentiaal als onbekende. Hiermee is

een wijdmaziger rekenrooster mogelijk.

Uitkomsten van het parabolische model met de logarithme van
de potentiaal worden getoond voor een gebied gelegen in de
mond van de Oosterschelde. Er is een berekening met en een
zonder de invlioed van stroming gedaan. In het geval met
stroming is bekeken een ebstroming met snelheden ter grootte
van ong. 0.70 m/s. De invloed van de stroming op het
golfveld blijkt in dit geval slechts klein te zijn.
Geconcludeerd kan worden dat het model bruikbaar is voor in
de praktijk van de kustwaterbouwkunde voorkomende gevallen.
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