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process may not have been so smooth as ini-

tially thought, and numerical simulations per-

formed by Tsiganis et al. (4) show that the pas-

sage of Jupiter and Saturn through a 2:1 reso-

nance may have ignited a period of strong

chaotic evolution of Uranus and Neptune. In

this scenario, the two planets had frequent

close encounters and may even have ex-

changed orbits before their eccentricities

finally settled down, allowing a more quiet

migration to the present orbits. 

The presence of a thick disk of Trojans

around Neptune is clearly relevant to under-

standing the dynamical evolution of the planet.

The co-orbital Trojan paths are unstable when

Neptune has repeated close approaches with

Uranus, and the capture of the present popula-

tion appears possible either at the time of the

last radial jump related to an encounter with

Uranus or during the final period of slow

migration. In this last case, collisional emplace-

ment—in synergy with the reduction of the

libration amplitude attributable to the outward

migration and by the mass growth of the

planet—is the only viable mechanism for trap-

ping Trojans in this phase, but it does not appear

to be so efficient as to capture a large popula-

tion. Moreover, the only frequent planetesimal

collisions are those that are close to the median

plane of the disk, and this fact is at odds with

the presence of high-inclination Trojans such as

the one found by Sheppard and Trujillo. A thick

disk of Neptune Trojans seems also to rule out

the possibility that Trojans formed in situ from

debris of collisions that occurred nearby (5). 

The chaotic capture invoked to explain the

orbital distribution of Jupiter Trojans might

have worked out in the same way for Neptune.

The planet at present is close to a 2:1 mean-

motion resonance with Uranus; however, the

resonance crossing has not been reproduced

so far in numerical simulations of the migra-

tion of the outer planets. Alternatively, some

sweeping secular resonance might have pro-

vided the right amount of instability for the

“freeze-in” trapping to occur. In the near

future, after additional Neptune Trojans are

detected, an important test would be to look for

a possible asymmetry between the trailing and

leading clouds. Theoretical studies have shown

that the L5 Lagrangian point (the trailing one)

is more stable in the presence of outward radial

migration and that this asymmetry strongly

depends on the migration rate. This finding

would have direct implications for the capture

mechanism and for the possibility that the

outward migration of Neptune was indeed

smooth, without fast jumps caused by gravita-

tional encounters with Uranus. 

Sheppard and Trujillo also sort out another

aspect of the known Neptune Trojans: their opti-

cal color distribution. It appears to be homoge-

neous and similar to that of Jupiter Trojans,

irregular satellites, and possibly comets, but is

less consistent with the color distribution of

KBOs as a group. This finding raises questions

about the compositional gradient along the

planetesimal disk in the early solar system, the

degree of radial mixing caused by planetary stir-

ring, and the origin of the Jupiter and Neptune

Trojans. Did Trojans form in a region of the

planetesimal disk thermally and composition-

ally separated from that of the KBOs? How far

did the initial solar nebula extend to allow

important differences among small-body popu-

lations? Additional data are needed to solve the

puzzles of the dynamical and physical proper-

ties of Neptune Trojans, and the finding by

Sheppard and Trujillo is only the first step. 
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R
ecent studies have found a large, sudden

increase in observed tropical cyclone

intensities, linked to warming sea sur-

face temperatures that may be associated with

global warming (1–3). Yet modeling and theoret-

ical studies suggest only small anthropogenic

changes to tropical cyclone intensity several

decades into the future [an increase on the order

of ~5% near the end of the 21st century (4, 5)].

Several comments and replies (6–10) have been

published regarding the new results, but one key

question remains: Are the global tropical

cyclone databases sufficiently reliable to ascer-

tain long-term trends in tropical cyclone inten-

sity, particularly in the frequency of extreme

tropical cyclones (categories 4 and 5 on the

Saffir-Simpson Hurricane Scale)?

Tropical cyclone intensity is defined by the

maximum sustained surface wind, which occurs

in the eyewall of a tropical cyclone over an area

of just a few dozen square kilometers. The main

method globally for estimating tropical cyclone

intensity derives from a satellite-based pattern

recognition scheme known as the Dvorak

Technique (11–13). The Atlantic basin has had

routine aircraft reconnaissance since the 1940s,

but even here, satellite images are heavily relied

upon for intensity estimates, because aircraft

can monitor only about half of the basin and are

not available continuously. However, the

Dvorak Technique does not directly measure

maximum sustained surface wind. Even today,

application of this technique is subjective, and it

is common for different forecasters and agen-

cies to estimate significantly different intensi-

ties on the basis of identical information. 

The Dvorak Technique was invented in 1972

and was soon used by U.S. forecast offices, but

the rest of the world did not use it routinely until

the early 1980s (11, 13). Until then, there was no

systematic way to estimate the maximum sus-

tained surface wind for most tropical cyclones.

The Dvorak Technique was first developed for

visible imagery (11), which precluded obtaining

tropical cyclone intensity estimates at night and

limited the sampling of maximum sustained

surface wind. In 1984, a quantitative infrared

method (12) was published, based on the obser-

vation that the temperature contrast between the

warm eye of the cyclone and the cold cloud tops

of the eyewall was a reasonable proxy for the

maximum sustained surface wind. 

In 1975, two geostationary satellites were

available for global monitoring, both with 9-

km resolution for infrared imagery. Today, eight

Subjective measurements and variable

procedures make existing tropical cyclone

databases insufficiently reliable to detect

trends in the frequency of extreme cyclones.
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satellites are available with typically 4-km resolu-

tion in the infrared spectrum. The resulting higher

resolution images and more direct overhead

views of tropical cyclones result in greater and

more accurate intensity estimates in recent years

when using the infrared Dvorak Technique. For

example (13), Atlantic Hurricane Hugo was esti-

mated to have a maximum sustained surface

wind of 59 m s–1 on 15 September 1989, based on

use of the Dvorak Technique from an oblique

observational angle. But in situ aircraft recon-

naissance data obtained at the same time revealed

that the hurricane was much stronger (72 m/s) than

estimated by satellite. This type of underestimate

was probably quite common in the 1970s and

1980s in all tropical cyclone basins because of

application of the Dvorak Technique in an era of

few satellites with low spatial resolution.

Operational changes at the various tropical

cyclone warning centers probably also con-

tributed to discontinuities in tropical cyclone

intensity estimates and to more frequent identi-

fication of extreme tropical cyclones (along

with a shift to stronger maximum sustained sur-

face wind in general) by 1990. These opera-

tional changes include (13–17) the advent of

advanced analysis and display systems for visu-

alizing satellite images, changes in the pressure-

wind relationships used for wind estimation

from observed pressures, relocation of some

tropical cyclone warning centers, termination of

aircraft reconnaissance in the Northwest Pacific

in August 1987, and the establishment of spe-

cialized tropical cyclone warning centers. 

Therefore, tropical cyclone databases in

regions primarily dependent on satellite imagery

for monitoring are inhomogeneous and likely

to have artificial upward trends in intensity.

Data from the only two basins that have had reg-

ular aircraft reconnaissance—the Atlantic and

Northwest Pacific—show that no significant

trends exist in tropical cyclone activity when

records back to at least 1960 are examined (7, 9).

However, differing results are obtained if large

bias corrections are used on the best track data-

bases (1), although such strong adjustments to

the tropical cyclone intensities may not be

warranted (7). In both basins, monitoring and op-

erational changes complicate the identificat-

ion of true climate trends. Tropical cyclone “best

track” data sets are finalized annually by op-

erational meteorologists, not by climate re-

searchers, and none of the data sets have been

quality controlled to account for changes in

physical understanding, new or modified meth-

ods for analyzing intensity, and aircraft/satellite

data changes (18–21). 

To illustrate our point, the figure presents

satellite images of five tropical cyclones listed

in the North Indian basin database for the

period 1977 to 1989 as category 3 or weaker.

Today, these storms would likely be considered

extreme tropical cyclones based on retrospec-

tive application of the infrared Dvorak Tech-

nique. Another major tropical cyclone, the

1970 Bangladesh cyclone—the world’s worst

tropical-cyclone disaster, with 300,000 to

500,000 people killed—does not even have an

official intensity estimate, despite indications

that it was extremely intense (22). Inclusion of

these storms as extreme tropical cyclones

would boost the frequency of such events in the

1970s and 1980s to numbers indistinguishable

from the past 15 years, suggesting no system-

atic increase in extreme tropical cyclones for

the North Indian basin. 

These examples are not likely to be isolated

exceptions. Ongoing Dvorak reanalyses of

satellite images in the Eastern Hemisphere

basins by the third author suggest that there are

at least 70 additional, previously unrecognized

category 4 and 5 cyclones during the period

1978–1990. The pre-1990 tropical cyclone data

for all basins are replete with large uncertain-

ties, gaps, and biases. Trend analyses for

extreme tropical cyclones are unreliable

because of operational changes that have artifi-

cially resulted in more intense tropical cyclones

being recorded, casting severe doubts on any

such trend linkages to global warming.

There may indeed be real trends in tropical

cyclone intensity. Theoretical considerations based

on sea surface temperature increases suggest an

increase of ~4% in maximum sustained surface

wind per degree Celsius (4, 5). But such trends are

very likely to be much smaller (or even negligible)

than those found in the recent studies (1–3). Indeed,

Klotzbach has shown (23) that extreme tropical

cyclones and overall tropical cyclone activity have

globally been flat from 1986 until 2005, despite a

sea surface temperature warming of 0.25°C. The

large, step-like increases in the 1970s and 1980s

reported in (1–3) occurred while operational

improvements were ongoing. An actual increase in

global extreme tropical cyclones due to warming

sea surface temperatures should have continued

during the past two decades. 

Efforts under way by climate researchers—

including reanalyses of existing tropical

cyclone databases (20, 21)—may mitigate the

problems in applying the present observational

tropical cyclone databases to trend analyses to

answer the important question of how human-

kind may (or may not) be changing the

frequency of extreme tropical cyclones.
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A
s many researchers have found, the

data they have to deal with are often

high-dimensional—that is, expressed

by many variables—but may contain a great

deal of latent structure. Discovering that struc-

ture, however, is nontrivial. To illustrate the

point, consider a case in the relatively low

dimension of three. Suppose you are handed a

large number of three-dimensional points in

random order (where each point is denoted

by its coordinates along the x, y, and z axes):

{(−7.4000, −0.8987, 0.4385), (3.6000, −0.4425,

−0.8968), (−5.0000, 0.9589, 0.2837), …}. Is

there a more compact, lower dimensional

description of these data? In this case, the

answer is yes, which one would quickly dis-

cover by plotting the points, as shown in the

left panel of the figure. Thus, although the data

exist in three dimensions, they really lie along

a one-dimensional curve that is embedded in

three-dimensional space. This curve can be

represented by three functions of x, as (x, y, z)

= [x, sin(x), cos(x)]. This immediately reveals

the inherently one-dimensional nature of these

data. An important feature of this description is

that the natural distance between two points is

not the Euclidean, straight line distance;

rather, it is the distance along this curve. As

Hinton and Salakhutdinov report on page 504

of this issue (1), the discovery of such low-

dimensional encodings of very high-dimen-

sional data (and the inverse transformation

back to high dimensions) can now be effi-

ciently carried out with standard neural net-

work techniques. The trick is to use networks

initialized to be near a solution, using unsuper-

vised methods that were recently developed by

Hinton’s group.

This low-dimensional structure is not

uncommon; in many domains, what initially

appears to be high-dimensional data actually

lies upon a much lower dimensional manifold

(or surface). The issue to be addressed is how

to find such lower dimensional descriptions

when the form of the data is unknown in

advance, and is of much higher dimension than

three. For example, digitized images of faces

taken with a 3-megapixel camera exist in a

very high dimensional space. If each pixel is

represented by a gray-scale value between 0

and 255 (leaving out color), the faces are

points in a 3-million-dimensional hypercube

that also contains all gray-scale pictures of that

resolution. Not every point in that hypercube is

a face, however, and indeed, most of the points

are not faces. We would like to discover a lower

dimensional manifold that corresponds to

“face space,” the space that contains all face

images and only face images. The dimensions

of face space will correspond to the important

ways that faces differ from one another, and

not to the ways that other images differ. 

This problem is an example of unsupervised

learning, where the goal is to find underlying

regularities in the data, rather than the standard

supervised learning task where the learner must

classify data into categories supplied by a

teacher. There are many approaches to this

problem, some of which have been reported in

this journal (2, 3). Most previous systems learn

the local structure among the points—that is,

they can essentially give a neighborhood struc-

ture around a point, such that one can measure

distances between points within the manifold.

A major limitation of these approaches, how-

ever, is that one cannot take a new point and

decide where it goes on the underlying mani-

fold (4). That is, these approaches only learn

the underlying low-dimensional structure of a

given set of data, but they do not provide a map-

ping from new data points in the high-dimen-

sional space into the structure that they have

found (an encoder), or, for that matter, a map-

ping back out again into the original space (a

decoder). This is an important feature because

without it, the method can only be applied to

the original data set, and cannot be used on

novel data. Hinton and Salakhutdinov address

the issue of finding an invertible mapping by

making a known but previously impractical

With the help of neural networks, data sets

with many dimensions can be analyzed to find

lower dimensional structures within them.New Life for Neural Networks
Garrison W. Cottrell

COMPUTER SCIENCE

The author is in the Department of Computer Science and
Engineering, University of California San Diego, La Jolla,
CA 92093–0404, USA. E-mail: gary@cs.ucsd.edu

1

1

0.5

0.5

–0.5

–0.5

–1

–1
–10

–5
0
x x

y

y

z

z

x' y' z' x' y' z'

x y z

5
10

0

0

Searching for structure. (Left) Three-dimensional data that are inherently one-dimensional. (Middle) A
simple “autoencoder” network that is designed to compress three dimensions to one, through the narrow
hidden layer of one unit. The inputs are labeled x, y, z, with outputs x’, y’, and z’. (Right) A more complex
autoencoder network that can represent highly nonlinear mappings from three dimensions to one, and from
one dimension back out to three dimensions.
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