Learning Games from Videos Guided by Descriptive Complexity

Lukasz Kaiser
LIAFA, CNRS & Université Paris Diderot
Paris, France

Abstract

In recent years, several systems have been proposed that learn
the rules of a simple card or board game solely from vi-
sual demonstration. These systems were constructed for spe-
cific games and rely on substantial background knowledge.
We introduce a general system for learning board game rules
from videos and demonstrate it on several well-known games.
The presented algorithm requires only a few demonstrations
and minimal background knowledge, and, having learned the
rules, automatically derives position evaluation functions and
can play the learned games competitively. Our main tech-
nique is based on descriptive complexity, i.e. the logical
means necessary to define a set of interest. We compute for-
mulas defining allowed moves and final positions in a game
in different logics and select the most adequate ones. We
show that this method is well-suited for board games and
there is strong theoretical evidence that it will generalize to
other problems.

Introduction

Systems able to learn from visual observations are of cen-
tral importance in many fields, especially in autonomous
robotics and interactive computer vision. While there is a
great amount of work dealing with object recognition and vi-
sual scene interpretation, only a few systems with the capac-
ity for learning higher-level concepts have been presented
thus far (Needham et al. 2005; Santos, Colton, and Magee
2006; Antanas et al. 2009; Barbu, Narayanaswamy, and
Siskind 2010; Hazarika and Bhowmick 2011). In all these
cases, experiments are performed on simple games, either
card or board games. This domain is chosen because the
number of visual objects is manageably small while there is
still a lot of complexity in the interactions. Moreover, games
are a natural model of many real-world interaction scenarios,
making the results significant in a broader context.

To learn higher-level concepts from videos, it is usual to
first derive a sequence of higher-level symbolic data from
the video stream and then to learn from this data. Many tech-
niques from computer vision are applicable in the first step,
and different board game-playing robots have been shown
and their construction has been widely discussed (see e.g.
(Bailey, Mercer, and Plaw 2004) for a presentation of the
issues involved and (Barbu, Narayanaswamy, and Siskind
2010) for a robot that integrates learning). But the second

step — learning from the derived symbolic data — has not
been investigated widely. As the problem is an instance of
inductive logic programming (ILP), in most cases the sys-
tems relied on the ILP program Progol (Muggleton 1995).
This choice was made because a relational and logical repre-
sentation is well-suited for visual scenes and Progol is a very
successful ILP system, benefiting from decades of develop-
ment and able to learn game rules even for Chess (Goodacre
1996) when the data is manually prepared.

While Progol is an outstanding program, learning from
data derived from vision systems is different than from man-
ually prepared sets, and the above-mentioned visual learning
systems succeed in learning only simple games. Moreover,
each of them needs to include a non-trivial set of background
knowledge rules and to optimize several parameters to make
the ILP step work. For example, as discussed in Section
VI in (Barbu, Narayanaswamy, and Siskind 2010), the sys-
tem learning Tic-Tac-Toe must be given background arith-
metic knowledge, board representation, the concept of a line,
frame axioms, player and opponent predicates, piece owner-
ship, board access predicates, and spatial predicates (over
a dozen hand-crafted rules in total) and the authors needed
to change the built-in predicate at /4 to get reasonable ef-
ficiency. This is not satisfactory, and the complexity only
increases when moving to more interesting games.

To be able to learn games such as Connect4 or Gomoku
from short demonstration videos and with minimal back-
ground knowledge, we go back and investigate the basic as-
sumptions of inductive logic programming. It is standard
in logic programming to use Horn clauses and possibly-
recursive predicates to represent the state of the system (e.g.
the board and the pieces), interesting patterns of the state
(e.g. a line of the same color), and temporal change (the
moves). While there are many advantages of this approach,
we argue that a more nuanced one is better suited for learn-
ing from visual data. First of all, we use relational structures
and not formulas to represent the state of the system. This
turns out to be a good fit for the vision system and reduces
the amount of background knowledge we need: it suffices to
recognize row, column and diagonal relations and different
piece types on the board. Secondly, instead of relying on
just one logic (Horn clauses and recursive predicates), we
study several logics: pure first-order logic (FO), existential
and guarded FO, and the transitive closure logic. Learning in

Figure 1: Relational representation of a 3 x 3 grid.

all of these logics and then selecting formulas yields better
results and is more efficient than using any single one. These
two fundamental changes allow us to demonstrate a system
that — knowing only about rows, columns, diagonals and dif-
ferentiating pieces — learns games like Connect4, Gomoku,
Pawns, or Breakthrough, each one from a few intuitive video
demonstrations, together around 2 minutes in length. We
also integrate our algorithm with a general game playing
(GGP) program (Kaiser and Stafiniak 2011) and thus the
system can also play the learned games competitively. While
our new learning techniques do not have the maturity of es-
tablished ILP approaches, e.g. we do not implement hier-
archically structured or probabilistic learning yet, they are
arguably more adequate for learning from visual input.

State Representation and Visual Processing

We represent the state of the game in a fixed moment of
time by a finite relational structure, which is the same as a
labeled directed hypergraph. Formally, a relational structure
A= (A, Ry,...,R;)is composed of a universe A (denoted
by the same letter in straight font) and a number of relations.
We write r; for the arity of the relation R;, so R; C A":. The
signature of 2 is the set of symbols { Ry, ..., R;}.

Game boards usually have a natural grid-like structure,
and to represent them we use relational structures with four
binary relations: R for the next-in-a-row relation, C' for the
next-in-a-column relation, and Da and Db for the two di-
agonals. The complete structure for the empty 3 x 3 grid,
with 9 elements, is depicted in Figure 1. We use this struc-
ture to represent the starting position in Tic-Tac-Toe, and
larger boards are represented in an analogous way. To mark
pieces on the board, we use unary relations (predicates), e.g.
a predicate () for cross and P for circle. In all our experi-
ments we represent game boards in exactly this way, but our
learning algorithms work for arbitrary finite relational struc-
tures, thus also for more complex scenes and settings.

In the first step, our system reconstructs a sequence of re-
lational structures, representing successive positions in the
game, from each input video. We use off-the-shelf image
processing methods in this step, and, as it is not the focus
of this work, we describe them only briefly. At the start,
we apply the Canny edge detector (Canny 1986) to the input
video stream and use the Hough transform to detect lines in
the standard way (Duda and Hart 1972). We try a few pa-
rameters for these operations and use the results to identify

the size and position of the board in the frame and to de-
tect the edges of pieces. We mark squares with no edges of
pieces as empty, and for the rest we calculate the aggregate
color within the edges of the potential piece, adjusted for the
aggregate color of all pieces. Finally, based on this adjusted
color, we assign the piece to one of the clusters (we used red,
blue, yellow and black in the experiments) and mark the grid
element with the appropriate predicate in the resulting struc-
ture. To determine when a move is made, we use a simple
heuristic for hand detection based on the edges detected in
the corners of the board.

The above methods for hand and board detection are not
perfect and generate false board positions, especially during
hand movement. To improve accuracy, we use the fact that
only few predicates change in each move. We mark each
board with more than two changed predicates as possibly-
wrong. A sequence of frames with either a detected hand
or a possibly-wrong board represents changes made on the
board and is ignored, as we are interested only in the legal
positions between such sequences. Among the frames be-
tween such sequences, we use majority voting to determine
the one configuration of the board all these frames represent.
The whole procedure was implemented using the OpenCV
library for Canny edge detection and Hough transform and
turned out to be sufficient to correctly reconstruct the plays
of all games in our experiments.

Logic and Descriptive Complexity

Before we show how to derive interesting patterns from the
sequences of structures reconstructed by the above proce-
dure, we need to introduce some notions from descriptive
complexity theory. This section presents the background
necessary for this paper, refer to Chapter 3 of (Gridel et al.
2007) for a more complete introduction.

Recall that formulas of first-order logic over a relational
signature {R1, ..., R;} and with variables z1, =2, . .. rang-
ing over elements of the structure have the form ¢ :=

Ri(w1,... 2r,) [mi = x5 [e Ve | pAe | Tz o | Vo ¢,

and their semantics, given an assignment of the variables
x; to elements e; of the structure, is defined in the natural
way, e.g. 31 R(x1, x2) holds for an assignment zo — es in
a structure 2 if, and only if, there exists an element e; such
that (e, e2) is in the relation R in 2. Notice that, for the grid
structure presented in Figure 1, the formula —3y C(y, z)
holds exactly for elements from the bottom row. This for-
mula, or the equivalent one Vy—C/(y,) in negation normal
form, is a part of the winning condition in games where the
goal of one of the players is to reach the bottom row.
First-order logic has several drawbacks from the compu-
tational point of view. First of all, it is not expressive enough
to describe many relations that can easily be computed. This
limitation stems from locality of first-order formulas. In-
tuitively, assume that a neighborhood of an element e in a
structure consists of all elements connected to e by any of
the relations, and a radius r neighborhood allows r-step con-
nections. Then, a first-order formula can only detect whether
certain patterns are present in the structure or not in neigh-
borhoods of a fixed radius. This property, made precise in

the theorems of Gaifman (Gaifman 1982) and Hanf (Hanf
1965), implies that many patterns cannot be defined in FO.

Example 1. In our representation of the board (Figure 1) we
allowed only the next-in-a-row relation R. Can we check
that two elements are in the same row, but not necessarily
next to each other? Indeed, for the 3 x 3 grid the formula
R(x,y) V 3z(R(x, z) A R(z,y)) checks that x is left of y
on the same row. But already a more complex formula is
needed for a 4 x 4 grid, and the locality theorems imply that
there is no FO formula expressing this property on all grids.

To remove this limitation of first-order logic, one extends
FO by the transitive closure operator that allows to write
formulas of the form TC z,y ¢(z,y), which stands for the
transitive and reflexive closure of the relation ¢(x,y). For
example, TC z,y R(z,y) in our game board representation
defines the relation “z is left of 4 in the same row” we con-
sidered above. In this work, we use a more precise operator
that specifies exactly the number of steps to take in the tran-
sitive closure. Thus, we will write formulas of the form

TC™ z,y ¢(x,y),
for any first-order formula , and the semantics of such a
formula is the set of all pairs (x, y) such that one can go from
2 to y in exactly m steps of the relation defined by ¢(x, y).
For example, the formula TC? z,y R(z, %) is equivalent to
the first-order formula 3z(R(z, 2) A R(z,)).

Adding the transitive closure operator removes some limi-
tations of FO, but how can we know what other problems re-
main? To answer this question, one can compare the expres-
sive power of the resulting logic with computational com-
plexity classes. For example, is every polynomial-time com-
putable relation definable in the transitive closure logic, or
some other extension of FO? Such questions are studied in
descriptive complexity theory, and here we recall the most
prominent known correspondences. The oldest result (Fa-
gin 1974) shows that the class NP is captured by existential
second-order logic. More practically, polynomial-time com-
putations are captured by the least fixed-point logic (LFP)
when a linear order relation is present (Immerman 1982;
Vardi 1982). The requirement of a linear order can be weak-
ened when a counting mechanism is added to the logic, and
LFP with counting captures P on many classes of structures,
such as grids, planar graphs (Grohe 1998) and all classes
that exclude a fixed minor (Grohe 2010). Finally, while
LFP is more expressive than the transitive closure logic (TC)
we mentioned, TC captures all problems solvable in non-
deterministic logarithmic space on ordered structures (Im-
merman 1987) and also on only locally (two-way) ordered
graphs (Etessami and Immerman 2000).

The above results show what is the complexity of the
patterns one can define in a logic, but they give little in-
formation about the complexity of learning formulas. Two
most natural metrics for a formula are its size and its quan-
tifier rank, i.e. the number of nested quantifiers inside a
formula. For any logic £, one can thus state the follow-
ing problem: Given two finite relational structures, find an
L-formula of minimal quantifier rank (or size) distinguish-
ing these structures. Unluckily, already for first-order logic
the above problem is hard, namely PSPACE-complete (Pez-

zoli 1998). But there is a natural restriction of first-order
logic, the k-variable fragment FO, for which this problem
becomes solvable in polynomial time (Grohe 1999).

The k-variable fragment of FO consists of all formulas
that use only the variables x1,...,x, both as free ones
and under quantifiers. Note that variables under quanti-
fiers can be renamed, e.g. the formula Jxo(R(x1,x2) A
Jdx1C(x2, 1)) belongs to the 2-variable fragment. When
restricted to the k-variable fragment, one must ask whether
a formula distinguishing two given structures exists at all in
this fragment. Maybe the pattern of interest requires more
than k variables? Luckily, for many classes of structures,
a constant number of variables is sufficient. These include
planar graphs, classes of graphs excluding a minor, and sev-
eral other classes, see (Pikhurko and Verbitsky 2010) for
a survey. The structures we use to represent game boards
are planar, and therefore also fall into this category. Let us
stress that the restriction to a low number of variables is one
key reason why our learning algorithms are efficient, and the
above results imply that this will still be the case for more
complex structures. Thus, we conjecture that the methods
we present below will generalize from board games to vari-
ous other situations.

Distinguishing Relational Structures

In this section we present our main learning procedure that,
given two sets of structures, the positive and the negative
ones, returns a formula ¢ that holds on all positive struc-
tures and on none of the negative ones. As motivated above,
the returned formula belongs to the k-variable fragment of
first-order logic with the TC™ operator. The formula uses
the minimal number of variables &, has minimal quantifier
rank among k-variable formulas distinguishing the two sets
of structures, belongs to the guarded fragment if possible,
and is existential if possible (we will explain these notions
and illustrate why they help in learning games later). The
procedure runs in polynomial time if each input structure
belongs to one of the classes mentioned above, in particular
always when the input structures are planar. An important
part of the procedure is the computation of L-types of tuples
of elements from the structures.

Definition 2. The L-type of a tuple @ in a structure 2{ is the
subset of formulas of £, with as many free variables as |a|,
that are satisfied by @ in 2, i.e.

L-type(A,a) = {(@) € L | [7] = [a] and A |= p(a) }.

The set described above is most often infinite for triv-
ial reasons, e.g. it might contain formulas P(z), P(x) A
P(z),P(x) A P(x) A P(z), and so on — something that
could be described just by P(x). Since in many cases there
exists one formula describing this set, we will often abuse
the terminology and say that the £-type of @ in 2 is a single
formula 7 € £, denoted 7 = tp~© (A, @), such that:

A = 7(a) and for all p € L-type(2A, a) holds 7(T) = »(T).

Note that, in principle, such a formula 7 might not exist in
the logic £. But it does exist for fragments of FO that we
consider here, e.g. for bounded quantifier rank, bounded
number of variables, and for the guarded fragment.

Computing first-order types

For a fixed number of variables k and a bound n on the quan-
tifier rank, let us denote by £™* the set of all first-order for-
mulas using only the variables z1, ..., xg, i.e. from the k-
variable fragment, and with quantifier rank at most n. Given
a structure 2 and a tuple @ of length &, we will compute the
L™Ftype of @ inductively and denote the result tp™* (2, @).

For n = 0, the formula tp™" (2, @) is simply a conjunc-
tion of all literals satisfied by @ in 2(, which we compute
exhaustively. These are often long formulas with few posi-
tive atoms, e.g. in the structure in Figure 1 the 0, 2-type of
the pair of the bottom-left element and the central element is

Da(x1,x2) A —Da(xy,21) A ~Da(xs, 1) A "Da(xs, x2)
A /\ =Db(v,w) A =C(v,w) A ~R(v,w).

vawe{z1,z2}

For n > 0, the type tp™*(2l,@) can be computed induc-
tively, as it is given by the following formula:

p L a) A A (in <\/ "~ (2, ala; <—b])>

i<|al beA

A /\ dz; (tp"‘l’k(ﬂ,ﬁ[ai — b])) >,

beA

where @fa; < b] denotes the tuple @ with the i-th element
replaced by b. We omit the proof of correctness of this for-
mula here, as it is very similar to the standard proof for FO.

Guarded types for sparse structures

In our procedure, we need to compute the types of all tu-
ples in the structure. Even for 2-variable tuples on an 8 x 8
grid, this means computing the types for 64> = 4096 tu-
ples, which is slow, and for triples on a 19 x 19 grid it is
not practical any more (though one could do it in parallel
on multiple machines). But most of these tuples will be
of no use for distinguishing structures because, aside from
unary relations, they all have the same type: not connected
by any relation. The structures we use to represent boards
are sparse and thus, in almost all practical cases, at least one
distinguishing tuple will be connected by some binary rela-
tions in the structure. This property has also been studied
and exploited in logic — the fragment of first-order logic that
requires tuples to be connected is called the guarded frag-
ment and it is the main reason why modal and description
logics enjoy good algorithmic properties (Gradel 1999).

Definition 3. The guarded fragment of FO is defined induc-
tively as a syntactic subset given by the following grammar.
¢ i=Ri(ey,.oa) [e=a] ~o | oAhe | Ve |

I (Ri(@,9) A e(@,79)) | VI(-Ri(Z,9) V ¢(7,7)),
where ¢(T,7) means that all free variables of ¢ must be
included in the set {Z} U {7}.

Example 4. Formulas of modal logic translate to guarded
first-order logic formulas with two variables. For example,

a formula with one free variable x; expressing “every C-
successor of x7 has an R-successor in which P holds” can
be written in the guarded fragment with two variables as:

V(EQ(C((El,IEQ) — E'(El(R(ﬁQ,IIil) AN P(l’l)))

Again, for a fixed number of variables k£ and a bound n
on quantifier rank, we denote by G™* the set of all guarded
first-order formulas using only the variables x1, . .., x, i.e.
from the k-variable fragment, and with quantifier rank at
most n. Given a structure 2(and the tuple @ of length £,
we will compute the G™*-type of @ inductively and denote
the result tpg’l€ (2, a).

For n = 0 we have tp%k(ﬂ,a) = tp¥F(A, @) as there is
no difference between full and guarded logic.

For n > 0, the construction is different: Instead of quan-
tifying over one variable, we find sets x of variables which
can be used in a guard, and quantify over those variables. To
this end, we first need to compute all guarded substitutions
of the tuple @. We say that b is a guarded substitution of
@ if |b] = [a| and the following holds: There exists a sub-
set {b1,...,bs} of bsuch that (by,...,b;) € R; for some
R;, at least one b; € @, and on all positions j < |b| either
b[j] = a[j] or b[j] = b; for some i.

Let now S be the set of all guarded substitutions of @ and
V' the set of all proper subsets of variables 1, . . ., x|,. For
each non-empty set x € V let G denote proper guards for x,
i.e. formulas R(Z,) such that {Z} = x and ¥ is not empty.
For each such g € G, let us denote by S, the subset of S
for which the guard g holds, S, = {be S|AE=gb)} We
define the next guarded type for x and g € G as

Tg = Y |[g— \/ tpgfl’k(Ql,B)
beS,

A /\ Ix (g/\tpg_l’k(%,g)).
beS,

Finally, the guarded type tpgik(Ql, a) is given by

e Pa) A NN T

x€V geGy

Again, we omit the proof that tpg’k is indeed the G™*-type,
as it follows the above construction in a standard way.

An even more restricted logic than the n, k guarded frag-
ment is the n, k existential guarded fragment, denoted £G™*
and defined as all formulas from G™* in negation normal
form in which no universal quantifier occurs. The above for-
mulas allow to compute existential guarded types as well,
only the whole universally quantified part must be removed.

Distinguishing positive and negative structures

Let P be a set of positive structures to be distinguished from
the set NV of negative ones. For a fixed logic £, variable
number & and quantifier rank n, the £™*-distinguishing pro-
cedure proceeds as follows. First, it computes the set N of
L™*-types of all tuples in all structures in N. Then, for ev-
ery structure 2 € P, it finds an £™*-type 7 of some tuple @

Figure 2: A position winning for white and one not winning.

in A such that 7o ¢ N. The formula ¢ = \/y < p Ta holds in
each structure in P, because of the corresponding disjunct,
and in no structure from N, because then some 75 would
belong to A/. Therefore distinguishes P from N.

The L™Fk-distinguishing procedure described above is
used iteratively, starting from the smallest k, for each £ from
the smallest n, and with fixed n and k starting from the
weakest logic: first the existential guarded fragment, then
the full guarded fragment, and only finally the full k-variable
fragment with quantifier rank n. Additionally, for each £,
after the atomic 0, k-types 7 have been computed we check
whether, for some m, the formula TC™ z1, x5 7(z1, z2) dis-
tinguishes P from N. This allows to detect basic transitive
relations efficiently. The complete Distinguish proce-
dure is summarized below.

Procedure Distinguish (P, N)

k+1
while FO°* does not distinguish P from N do
Try to distinguish P from N with TC formulas
forn=0,...,k+ 1do
Try to £G™*-distinguish P from N
Try to G™*-distinguish P from N
Try to FO™*-distinguish P from N
end

k+k+1
end

The above procedure finds formulas distinguishing P
from N with minimal number of variables and minimal
quantifier rank, but since the £"-*-distinguishing procedure
relies on types, the returned formulas are normally very
long and hard to read. We correct this by changing the
L™F*_distinguishing procedure in the following way. In-

stead of returning ¢ = Vaep 2, we will return ™" =

Vaep T, where 740 is computed as follows. From all

types Tos - - - » Tg[which hold for some tuple @ in 2(but are
notin A/ (computed previously as well), we greedily remove
all literals that are not necessary to distinguish 2 from N.
The formula 75" is then the shortest of the remaining for-
mulas. In our experiments, it usually turned out to be an
easily readable one as well.

Figure 3: 4 positions winning for yellow and 4 not winning.

Learning Winning Conditions in Games

The procedure Distinguish described above is already
sufficient to learn the winning conditions for both players
in the games we experimented with. Consider for example
the game of Breakthrough in which the goal of the white
player is to get to the last row. An example of a winning
position is depicted on the left in Figure 2, while the same
position without the winning piece is on the right. Let A"
be the 8 x 8-grid structure analogous to the one in Fig-
ure 1 but representing the board on the left in Figure 2,
and let A~ represent the board on the right, with white
pieces marked by W and the black ones by B. Running
Distinguish({2AT}, {2~ }) results in the formula:

Hxl(W(xl) A V(L‘Oﬁcv(xla LL’O)),

which expresses that there is a white piece in the last row.

In Figure 3, we give another example of 4 positive struc-
tures P and 4 negative structures /N, this time representing
configurations of a 7 X 6 grid corresponding to winning and
not winning positions in Connect4, with @) for yellow. This
time, the procedure Distinguish(P, N) returns

/\Da(xo,scl))
A Db(l‘o,l‘l))
1'1 A R(xo,xl)))

as it finds the transitive closures of Boolean combinations of
literals distinguishing P from N for & = 2 variables.

)
)
)
)

Learning Legal Moves

Having learned the winning conditions, we still face the
problem of determining which moves are legal and which
are not. Since from each video we derive a sequence of
structures, and since the underlying grid does not change, we
can simply take the symmetric difference of the labels of two
successive structures and get a prototype of a move: the two
sub-structures containing only the elements that changed la-
bels. For example, for Connect4 there would be only 2 pro-
totypes of moves: changing a blank field to a red one, and
changing it to a yellow one.

We derive the prototypes of moves from all available se-
quences, and thus the derived prototypes always cover all

Figure 4: An illegal pawn move.

presented moves. In some cases, e.g. in Gomoku, the pro-
totypes are already exactly the desired moves. But in most
cases the prototypes are too general, as not every imaginable
move is legal. For example, in Connect4 it is not possible to
change a blank field to a yellow one or to a red one if there is
still a blank field below it. To demonstrate such situations,
we also record videos of illegal moves, such as the move
of a pawn presented in Figure 4. Note that a move always
consists of two structures.

For every generated move prototype, we gather all pairs
of structures in which this move was applied legally, and
also all pairs in which it was demonstrated as illegal. From
each of these pairs, we take the first structure (the one before
the move was applied) and add to it new predicates, mark-
ing the elements of the prototype, i.e. the fields on which
the predicates change. After such marking, we again have
a set of positive structures (the marked first ones from the
legal moves) and a set of negative ones. This allows us to
again use the Distinguish procedure to derive the pre-
condition of a legal move. For example, consider Figure 5 in
which we present an example of an outcome of a legal and
of an illegal move. The field on which the upper red token is
placed is the one that changes, so it gets marked by e;. Let
us denote the structures representing these two marked po-
sitions — the legal one, depicted on the left in Figure 5, and
the illegal one, depicted on the right — by 2 and 2, re-
spectively. Running Distinguish({2AT}, {A~}) results
in the following formula:

31 (Q(w1) A Jzo(C(w1,m0) Amo = €1)),

where e; is a constant marking the single element of the
move prototype. This formula expresses that there must be
a yellow element below the changed one.

Summary of Experimental Results

To learn a complete game, we use four kinds of videos. For
the winning conditions, we use videos that present plays
ending in positions won by the first player and some with
plays ending in positions won by the second player. Ad-
ditionally, it is convenient to allow videos that depict un-
finished or tied plays, and, to distinguish legal and illegal
moves, we may need illegal move videos. There are there-
fore 4 possible kinds of videos. The number of videos of
each kind that we used to learn the correct rules of each of
the example games is given in Table 1.

Figure 5: A legal and an illegal move in Connect4.

We ran the tests on a laptop with 4GB RAM and a
2.13GHz Intel L9600 processor. Our program used only a
single processor core and the times needed for video pro-
cessing and game learning are given in Table 2. The compu-
tation of move constraints in Pawn Whopping used around
6GB of memory and needed to swap it to disk, thus the
long running time. All the videos, text transcripts of the se-
quences of structures, generated games, as well as the source
code are available at toss.sf.net and will be included
in the next release 0.8 of (Toss).

As far as the logics are concerned, the TC™ operator
turned out to be useful in several games: in Connect4, in
Gomoku and in Tic-Tac-Toe. All other derived formulas be-
long to the guarded fragment. In some games, e.g. in Con-
nect4, formulas for the winning condition were quantifier-
free and used the TC™ operator, while preconditions of
some moves were expressed in the guarded fragment. This
confirms that it is useful to consider different logics and to
choose the suitable one algorithmically. Let us also empha-
size that exploiting various logics is essential for efficiency:
trying to simply find formulas in the k-variable fragment not
only takes orders of magnitude more time (we stopped the
tests after several hours), but also, even for simple games
like Tic-Tac-Toe, it results in irregular formulas which are
hard to read and to understand.

The video recognition procedure was implemented in
C++ and the game learning algorithm in OCaml, and both
were integrated with (Toss), an open-source general game
playing program which also includes various logic func-
tions. Due to this integration, the learning procedure out-
puts games in a format compatible with Toss. Therefore
one can directly play all the learned games from Table 1,
and the playing strength turned out to be exactly the same
as for manually written definitions, which were tested and
discussed in (Kaiser and Stafiniak 2011).

| 1 Wins | 2 Wins | Not Won | Tllegal
Breakthrough 1 1 3 0
Connect4 4 4 13 4
Gomoku 4 4 9 0
Pawn Whopping 1 1 4 6
Tic-Tac-Toe 4 4 17 0

Table 1: Number of videos needed for each game.

| Video Processing | Game Learning

Breakthrough 48 s 120 s
Connect4 68 s 98 s
Gomoku 41s 16 s
Pawn Whopping 74s 906 s
Tic-Tac-Toe 28 s 8s

Table 2: Running times of the procedures (in seconds).

Outlook

We presented a system that learns games such as Connect4,
Gomoku, Pawns, or Breakthrough from short demonstration
videos and with minimal background knowledge. Repre-
senting states as relational structures turned out to be very
adequate and reduced the amount of background knowledge
needed in the system. But our main contribution was to re-
view the basic assumptions of inductive logic programming,
especially the question which logic is best suited for rep-
resenting and learning patterns efficiently. Guided by re-
sults from descriptive complexity theory, we decided for the
k-variable fragment of first-order logic, reducing it to the
guarded fragment whenever possible to improve efficiency
and sometimes adding the transitive closure operator to in-
crease expressive power. This combination allowed to gen-
erate very short and intuitive formulas in the experiments
we performed, and there is strong theoretical evidence that
it will generalize to other problems. Some of those problems
might require hierarchical, structured learning or a form of
probabilistic formulas, and in the future we intend to con-
sider such extensions. But already the presented technique
significantly improves the state of the art in learning from
visual input.

Acknowledgment. We would like to thank Sasha Rubin
and Simon LeBenich for discussions about efficient ways to
compute types, Lukasz Stafiniak for his help with Toss and
Hugo Gimbert for advice on using the Hough transform.

References

Antanas, L.-A.; Thon, I.; van Otterlo, M.; Landwehr, N.; and
Raedt, L. D. 2009. Probabilistic logical sequence learning
for video. In Preliminary Proc. of ILP’09.

Bailey, D. G.; Mercer, K. A.; and Plaw, C. 2004. Au-
tonomous game playing robot. In Proc. of ICARA’04.

Barbu, A.; Narayanaswamy, S.; and Siskind, J. M. 2010.
Learning physically-instantiated game play through visual
observation. In Proc. of ICRA’10, 1879-1886.

Canny, J. 1986. A computational approach to edge detec-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 8(6):679—-698.

Duda, R. O., and Hart, P. E. 1972. Use of the Hough trans-
formation to detect lines and curves in pictures. Communi-
cations of the ACM 15(1):11-15.

Etessami, K., and Immerman, N. 2000. Tree canonization
and transitive closure. Inf. Comput. 157(1-2):2-24.

Fagin, R. 1974. Generalized first-order spectra and
polynomial-time recognizable sets. In SIAM-AMS Proceed-
ings, volume 7, 27-41.

Gaifman, H. 1982. On local and non-local properties. In
Proc. of the Herbrand Symposium, Logic Colloquium’81,
105-135. North Holland.

Goodacre, J. 1996. Inductive learning of chess rules using
Progol. MSc thesis, Programming Research Group, Oxford.
Gradel, E.; Kolaitis, P. G.; Libkin, L.; Marx, M.; Spencer,
J.; Vardi, M. Y.; Venema, Y.; and S.Weinstein. 2007. Fi-
nite Model Theory and Its Applications. Texts in Theoretical
Computer Science. Springer.

Griédel, E. 1999. Why are modal logics so robustly decid-
able? Bulletin of the European Association for Theoretical
Computer Science 68:90-103.

Grohe, M. 1998. Fixed-point logics on planar graphs. In
Proc. of LICS’98, 6-15.

Grohe, M. 1999. Equivalence in finite-variable logics is
complete for polynomial time. Combinatorica 19(4):507—
532.

Grohe, M. 2010. Fixed-point definability and polynomial
time on graphs with excluded minors. In Proc. of LICS’10,
179-188.

Hanf, W. 1965. Model-theoretic methods in the study of
elementary logic. In Addison, J.; Henkin, L.; and Tarski, A.,
eds., The Theory of Models. North Holland. 132-145.
Hazarika, S. M., and Bhowmick, A. 2011. Learning rules of
a card game from video. Artificial Intelligence Review 1-11.
Immerman, N. 1982. Relational queries computable in poly-
nomial time. In Proc. of STOC’82, 147-152.

Immerman, N. 1987. Languages that capture complexity
classes. SIAM J. Comput. 16(4):760-778.

Kaiser, L., and Stafiniak, £.. 2011. First-order logic with
counting for general game playing. In Proc. of AAAI-11,
791-796. AAAI Press.

Muggleton, S. 1995. Inverse entailment and Progol. New
Generation Comput. 13(3&4):245-286.

Needham, C. J.; Santos, P. E.; Magee, D. R.; Devin, V. E.;
Hogg, D. C.; and Cohn, A. G. 2005. Protocols from percep-
tual observations. Artif. Intell. 167(1-2):103-136.

Pezzoli, E. 1998. Computational complexity of
Ehrenfeucht-Fraissé games on finite structures. In Proc. of
CSL’98, 159-170.

Pikhurko, O., and Verbitsky, O. 2010. Logical complexity
of graphs: a survey. CoRR abs/1003.4865.

Santos, P.; Colton, S.; and Magee, D. R. 2006. Predictive
and descriptive approaches to learning game rules from vi-
sion data. In Proc. of IBERAMIA-SBIA, 349-359.

Toss. http://toss.sf.net.

Vardi, M. Y. 1982. The complexity of relational query lan-
guages. In Proc. of STOC’82, 137-146.

