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Spurious correlations between recent warming and indices of
local economic activity†
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ABSTRACT: A series of climate model simulations of the 20th Century are analysed to investigate a number of published
correlations between indices of local economic activity and recent global warming. These correlations have been used to
support a hypothesis that the observed surface warming record has been contaminated in some way and thus overestimates
true global warming. However, the basis of the results are correlations over a very restricted set of locations (predominantly
western Europe, Japan and the USA) which project strongly onto naturally occurring patterns of climate variability, or
are with fields with significant amounts of spatial auto-correlation. Across model simulations, the correlations vary widely
due to the chaotic weather component in any short-term record. The reported correlations do not fall outside the simulated
distribution, and are probably spurious (i.e. are likely to have arisen from chance alone). Thus, though this study cannot
prove that the global temperature record is unbiased, there is no compelling evidence from these correlations of any
large-scale contamination. Published in 2009 by John Wiley & Sons, Ltd.
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1. Introduction

Two recent papers (de Laat and Maurellis, 2006;
McKitrick and Michaels, 2007) (henceforth dLM06 and
MM07) have independently asserted that records of sur-
face warming are likely contaminated due to ‘anthro-
pogenic surface processes’. This could be interpreted as
either asserting that the ‘contamination’ is an artifact and
the surface records, therefore, give a misleading picture of
‘true’ global warming, or that unaccounted-for processes
need to be incorporated into climate model hindcasts.
These two studies looked at correlations over the 23-year
period (1979–2001) (in both cases) of local warming
with anthropogenic CO2 emissions in the dLM06 case
and with satellite data and various econometric measures
(Gross Domestic Product, literacy and educational levels,
population etc.) in the MM07 case. While the specific
analyses differ in the two papers, the net effect of the
choices made is to correlate very restricted spatial pat-
terns of economic activity with the pattern of warming.

There are a number of reasons why these analyses are
unlikely to have come to the correct conclusions (that
either an unaccounted-for process is significant or that
the data are contaminated). Firstly, there is significant
independent evidence for warming in the oceans, snow
cover, sea ice extent changes, phenological records etc.

* Correspondence to: Gavin A. Schmidt, NASA Goddard Institute for
Space Studies and Center for Climate Systems Research, Columbia
University, New York, NY, USA. E-mail: gschmidt@giss.nasa.gov
† This article is a US Government work and is in the public domain in
the USA.

which are consistent with the land station analyses (Bind-
off et al., 2007; Lemke et al., 2007; Trenberth et al.,
2007). Secondly, alternative hypotheses, that the corre-
lations are related to patterns of climate variability, or
related to known local forcing agents (such as tropo-
spheric ozone, black carbon etc.) were not considered.
Finally, the proposed processes to explain these corre-
lations appear inadequate. In dLM06, the so-called con-
tamination is also detected in satellite records, ruling out
small-scale local problems with the measuring network
of surface stations (urban heat island effects or micro-
site issues). Other explanations of their results include
potentially real features of the climate system, but are
either already included in climate models to some extent
(land use change), or are generally considered to be neg-
ligible on the global scale (direct waste heating). It is
certainly possible that these last features are not correctly
specified, or are more significant than generally thought,
however, before any attribution to a cause can be made,
we have to assess whether the correlations actually have
any statistical power to detect an anomaly.

The climate system has a great deal of unforced
weather ‘noise’ that has significant decadal variations and
complex spatial structure which is uncorrelated with any
external climate driver. This leads to the well known
phenomenon that the variability of trends over specific
regions is a strong function of their spatial extent. The
smaller the area selected, the greater the spread in
the observed trends. For instance, the individual grid
box trends in the HadCRUT3v dataset over the period
1979–2001, range from −0.6 to 1.2 °C/decade compared
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to the trend of 0.17 ± 0.01 °C/decade in the global mean
(Brohan et al., 2006). There is a similar variance in
trends at any one grid box over the same period seen in
individual simulations in climate models ensembles. For
instance, in an ensemble of 20th Century simulations with
the Goddard Institute of Space Studies (GISS) ModelE-R
at the grid point centered on 37.5 °E, 50 °N (in Eurasia,
picked at random), trends go from −0.17 to 0.5 °C/decade
in five ensemble members with identical forcing over the
same 1979–2001 period (Hansen et al., 2007).

This spread across space in the observations or any
specific simulation and across simulations, implies that
there is a spatial scale below which attribution of short-
period trends to specific forcings is impossible (since any
forced signal is drowned out by the unforced ‘noise’).
That scale will depend on the duration of the record and
the strength of the forcing. For the late 20th Century,
attribution of trends is possible at the continental level,
but not generally at smaller scales (IDAG, 2005; Zhang
et al., 2006). Thus, it might be expected that correlations
based on regional patterns that are less than continen-
tal in extent will exhibit a great deal of variability and
will not be particularly useful in detecting and attribut-
ing climate change nor in detecting potential problems in
specific datasets.

Whether the reported correlations in dLM06 and
MM07 can be used to determine if there is an un-
accounted-for contamination of the surface data there-
fore depends on how significant those correlations really
are given the magnitude of the unforced variability in the
system. Note that this is a completely separate source of
‘noise’ than the uncertainty in actual measurements or in
the fitting of a linear trend and, in fact, is much larger
than either.

There is a relatively easy way to assess whether there
is any true significance to these correlations. We can take
fully consistent model simulations for the same period
and calculate the distribution of the analogous corre-
lations. Those simulations contain no unaccounted-for
processes (by definition!) but plenty of internal variabil-
ity, locally important forcings and spatial correlation. If
the distribution encompasses the observed correlations,
then the null hypothesis (that there is no contamination)
cannot be rejected. This calculation does not imply that
the modelled distribution is a complete simulation of the
same distribution in the real world. However, since the
real world is likely to be more variable (due to unre-
solved sub-grid-scale processes in the models, or more
complex forcings than are accounted for), showing that
any observed correlation is truly reflecting something out-
side the modelled framework requires, at minimum, that
it be outside the existing models’ range.

There are a number of suitable model simulations that
can be assessed. First, we use a set of simulations using
fully coupled models driven by 20th Century forcings.
These runs have consistent changes in the sea surface
temperature and land temperature and capture the long-
term trends well, but because of their dynamic ocean
component the internal variability will be uncorrelated

with that in the real world (Hansen et al., 2007). For
instance, El Niño-like variability is a large part of the
internal variability of the system and over a short time-
period (as considered here), the random nature of its
occurrence, or its lack of fidelity in amplitude and phasing
might compromise any comparison with the real world.
Thus, a further set of simulations are those forced with
ocean sea surface temperatures and with the external 20th
Century forcings (AMIP-style runs, Gates et al., 1999).
These runs have correctly timed El Niño events and vol-
canoes as in the real world and similar large-scale long-
term trends. However, they are not fully consistent with
the forcings and may show biases in ocean/land contrasts.

Analyses were made of various simulations using GISS
ModelE archive for the 20th Century, using estimates of
all appropriate forcings (see Schmidt et al. (2006) and
Hansen et al. (2007) for details). Specifically, 4 ensemble
members from an AMIP-style simulation including all
forcings (AMIPf8) were used, and 5 ensemble members
of the coupled atmosphere–ocean model GISS-ER 20th
Century simulations. The forcings in each case are all
the same, but the specific sequence of weather and
internal variability is uncorrelated between the runs. The
5 independent members of the coupled model ensemble
each start from initial conditions 20 years apart from their
pre-industrial control run so that the spread in response
due to uncertain ocean initial conditions can be estimated.

Whether the model simulations show qualitatively sim-
ilar correlations to those reported for the real world will
allows us to assess whether the observed correlations sig-
nificantly detect a real pattern. If they do not, then that
would imply that some process (potentially a contamina-
tion of the surface record) that was not included in these
models could be responsible. However, if these patterns
do show up, we need to determine whether this is related
to internal variability or whether they arise in response
to various forcings. If we can show either, then we may
be in a position to attribute the observed correlations.

2. de Laat and Maurellis (2006)

The analysis method in dLM06 is to split a particular
temperature dataset into two classes according to a local
threshold based on 1990 EDGAR2 anthropogenic CO2

emissions (in kgC/m/yr) (van Aardenne et al., 2001)
(building off an earlier paper de Laat and Maurellis,
2004). They used both the HadCRUT2 temperature
data (Jones and Moberg, 2003) and a satellite-derived
estimate for the lower troposphere (UAH version 5.0)
(Christy et al., 2003). Here, I will just use the more
up-to-date HadCRUT3v product (Brohan et al., 2006).
It is noted that the EDGAR2 1990 emissions estimates
have not changed appreciably in later versions and so
the same version for consistency will be used. The
emissions used in dLM06 did not include emissions
from aircraft, international shipping, or biomass burning,
thereby restricting the emissions to industrial emissions
from land areas (Jos de Laat, personal communication).
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Neither the update to HadCRUT3v nor the exclusion of
some sources of CO2 emission make any appreciable
difference to the results.

For each class of points, the area-weighted mean
temperatures are calculated and the trend estimated
using ordinary least-squares regression. This is denoted
‘method 2’ in dLM06 and is what was used in that paper
despite the text mistakenly indicating that ‘method 1’
(the area-weighted mean of the trends) was used (Jos
de Laat, personal communication). There is only a minor
difference in the resulting trends (and that depends solely
on missing values), but in the ‘method 2’ case, the
uncertainties are easier to calculate. The distinction is
irrelevant to the calculations that follow. The trend for
all points above and below the threshold are plotted as
a function of increasing threshold. The error bars are the
1σ uncertainty in the trend estimate and do not include
uncertainties in the underlying dataset, nor do they correct
for possible auto-correlation and so underestimate the true
uncertainty (Santer et al., 2000).

In Figure 1, is reproduced the key calculation in
dLM06 for the observed temperature data (1979–2001).
Their result was that there is a correlation between
higher trends and local industrial activity and a similar
phenomenon is seen here (the uptick in the black curve).
Also plotted is the same calculation for each of the 4
AMIPf8 ensemble members for the same time-period
along with the minimum and maximum spread in the
error bars associated with determining a linear trend. The
results for the coupled model ensemble fall within the
envelope of the AMIP results and so are not shown for
clarity. As can be seen, there is a large spread in the
trends as the CO2 emission threshold increases, all of
which is attributable to internal atmospheric variability.
One ensemble member coincidently reproduces almost
exactly the observed situation. The standard deviation of
the right-most calculations is greater than 0.1 °C/decade.
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Figure 1. Correlations of temperature trends with CO2 emissions (as
a proxy for anthropogenic activity) as a function of the emissions
threshold. The observed data are in black while the identical analysis
for 4 AMIP-style runs using GISS ModelE are shown in blue. The

shading denotes the 1σ uncertainty in the least-squares regression.

Thus, a two-sigma uncertainty on the high threshold
trends is at least 0.2 °C/decade, placing the observed
values well within the expected distribution.

This is a very different comparison to that shown
in dLM06 where they showed results from two models
each with a single simulation, neither of which showed
any influence from the CO2 emissions thresholding.
The explanation is however clear. The model analysis
in dLM06 used 100 years of data from each model
(model years 2000–2099) and the simulations had a
very strong 1% increasing CO2 forcing (Jos de Laat,
personal communication). Both factors serve to reduce
the impact of any internal variability on the analysis, as
could be deduced from the much smaller error bars on
the trends for the models compared to the observations.
Those previous comparisons were not, therefore, useful in
assessing the role of internal variability in contributing to
the dLM06 result on much shorter timescales and under
milder forcing conditions.

2.1. Sensitivity to time-period

We can use the emissions in 1990 as a reasonable estimate
for the pattern of industrial activity since at least the
1940s, thus we can also test the importance of time-
period and start date within the observational record and
in the simulations. If the surface data are contaminated
then one would expect a consistent pattern through time,
whereas if the correlation is spurious, one would expect a
spread of results. Using a start date every 10 years from
1930 onwards, a calculation of the above- and below-
threshold trends for each subsequent 23-year period (the
same length as for the 1979–2001 period considered
above) was made. Since the mean global trend varies
considerably over each sub-period, the results are more
clearly shown as the difference between the above- and
below-threshold trends.

Figure 2 shows that the spread of results is indeed
large, in striking support of the internal variability
hypothesis. The most striking example is for the
1950–1972 case where the trends are significantly more
negative in the high CO2 threshold points. If the cause of
the higher trends for the high threshold points in the more
recent time-period was caused by urbanization or local
land use change, there is little reason to expect a switch in
sign from the 1950s to the present, and so these potential
causes are inconsistent with this result. This might also
have been deduced from the result reported in dLM06,
that the thresholding of the satellite data showed a similar
pattern.

3. McKitrick and Michaels (2007)

The approach of MM07 is slightly more direct. They
simply looked for correlations between land surface
trends and a rather eclectic mix of climate and econo-
metric variables. More specifically, they assumed that
the surface trends can be modelled as a linear func-
tion of the Microwave Sounding Unit (MSU) lower
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Figure 2. Correlations of 23-year temperature trends with CO2 emis-
sions using the HadCRUTv3 using different starting dates. The differ-
ence between the above-threshold trend and the below-threshold trend
is plotted for clarity. The equivalent spread from a single realization

from the model is shown in the background for comparison.

tropospheric (LT) trends (‘trop’) plus additional vari-
ables. The MSU-LT records came from the University
of Alabama Huntsville (UAH) analysis (Spencer and
Christy, 1990) [updated to version 5.2]. Alternative ver-
sions of the same product exist from Remote Sensing
Services (www.remss.com version 3) which has larger
global long-term trends than the UAH version, the dif-
ferences due primarily to decisions made in tying together
different satellite records (Mears and Wentz, 2005). The
basic assumption in MM07 is that the satellite trends are
a more robust measure of the true surface warming, and
that economic correlations to the residuals should be a
fingerprint of potential contamination.

There are a number of problems with this basic hypoth-
esis. First, the lower troposphere (centred ∼4 km above
the surface) is physically expected to have more spa-
tially homogeneous temperature trends than the surface
due to the greater mixing of lower tropospheric air masses
compared to the surface layers. Thus, even in a perfect
situation there will be significant residuals that could well
be correlated to the pattern of human development since
that is not randomly distributed. The attempts in MM07
to account for that appear rather simplistic.

More importantly however, as previous criticism (Ben-
estad, 2004) of an earlier version (McKitrick and
Michaels, 2004) of MM07 pointed out, the significance
of the correlations is likely over-estimated since spa-
tial correlations were not taken into account. Adjacent
grid boxes in both economic and climate data are not
independent (Jones et al., 1997), and assuming that they
are leads to over-estimating the significance of any cor-
relation and the potential for over-fitting any statistical
model. Some indication of this is given by the fact that
the largest ‘contamination’ deduced from their method-
ology are in very remote polar regions such as Svalbard
or the South Orkneys, hardly sites of significant industry
(Rasmus Benestad, pers. communication).

The same economic indicators as MM07 (see that
publication for sources and full definitions) have been
used. The most important of these (according to the
results in MM07) are ‘g’ (1979 Gross Domestic Prod-
uct (GDP) divided by land area), ‘e’ educational attain-
ment (literacy levels and secondary schooling), ‘x’ miss-
ing months in the temperature records, ‘p’ population
growth (1979–1999), ‘m’ income growth (1979–1999),
‘y’ GDP growth (1979–1999), ‘c’ coal consumption
growth (1980–2000).

For simplicity, only two tests used in MM07 – their
‘SURF’ multiple-regression model, where they include
‘trop’, other physical variables and ‘g’, ‘e’, ‘x’, ‘p’ ‘m’
‘y’ and ‘c’ as dependent variables, and ‘G3’, which
uses only ‘g’, ‘e’, and ‘c’ among the economic variables
are reproduced. These are chosen because these are the
ones used for the claims of high nominal significance
(P < 1 × 10−14) and for their subsequent ‘correction’ of
the surface temperature data. Note that the use of these
variables and methodology is only so that it is possible
to examine the fragility of the previously published
correlations. No support for the original experimental
design is implied and none should be inferred.

3.1. Sensitivity to observational records

Reproduced first are the results from Table II in MM07
for tests SURF and G3 (Table I in this paper). The
emulation, using the multiple-linear regression routines
from Legendre (2002) gives exactly the same regressions,
and while the tests for significance are different (two-
tailed tests with 10 000 Monte Carlo permutations of the
residuals), there is a one-to-one match with the nominally
significant terms as derived by MM07. This demonstrates
that there is no effective difference in the statistical
procedures used.

Second, the same calculation with updated tempera-
tures (CRUTEMv3) and with the RSS version of the
MSU-LT data are performed. As would be expected from
the greater global trend in the RSS product, the regres-
sion coefficients to ‘trop’ increase when compared to
the UAH product. More interestingly, the significance
of correlations to population, income and GDP growth
disappear, pointing clearly to the fragility of these rela-
tionships. This loss of significance is related to the switch
of satellite data and should raise concerns that the original
significance was overstated, possibly because of the spa-
tial correlation issue mentioned above. One other minor
difference is that the correlation to the absolute latitude
becomes significant. The economic indices ‘g’, ‘e’ and
‘c’ do, however, remain nominally significant (under the
MM07 assumptions).

Performed next are these same regressions using sur-
face temperature and emulated MSU-LT data from five
realizations, and the ensemble mean from 20th Century
coupled simulations, again using data from 1979 to 2001.
When using output from model simulations, the ‘x’ vari-
able is not used (since all records within the models
are complete). The results show that the only consis-
tently significant regression across all simulations is with
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Table I. Regression coefficients for the fit between the surface
temperature record, the MSU-LT record and various climate
and economic indices as defined by MM07 as follows: ‘trop’ is
the MSU-LT temperature trend, ‘slp’ is mean climatic sea level
pressure, ‘dry’ is a dummy variable indicating a mean dewpoint
below 0 °C, ‘dslp’ is dry’ times ‘slp’, ‘water’ is a flag for a
coastline in the grid cell, and ‘abslat’ is the absolute latitude.
Economic variables are described in the text. Bold denotes
nominal significance as defined in MM07 (without adjusting

for spatial correlation) (compare with MM07 Table I).

Variable CRUv2 + UAH MSU CRUv3 + RSS MSU

SURF G3 SURF G3

Intercept −4.20808 −3.78891 −2.22913 −1.11246
Trop 0.86307 0.88841 0.98721 1.00240
Slp 0.00442 0.00408 0.00239 0.00122
Dry 0.57042 1.58466 0.19861 −0.29344
Dslp −0.00046 −0.00146 −0.00013 0.00036
Water −0.02892 −0.02448 −0.01688 −0.01214
Abslat 0.00062 −0.00030 0.00281 0.00274
g 0.04316 0.04803 0.04445 0.05510
e −0.00269 −0.00280 −0.00252 −0.00212
x 0.00412 0.00288 −0.00035 −0.00032
p 0.38391 0.15135
m 0.40932 0.26628
y −0.30475 −0.21597
c 0.00618 0.00762

n 440 440 434 434
r 0.53 0.51 0.52 0.51

the MSU-LT values (Table II). Although each simula-
tion has some significant regression to one or more eco-
nomic indicators, no economic indicator is significant for
all the simulations, and significant correlations exist for
the economic variables even with the ensemble mean.
Correlation coefficients (and regressions between ‘surf’
and ‘trop’) are uniformly higher as would be expected

in the absence of any observational uncertainty or sub-
grid-scale variability in either the surface temperatures or
MSU-LT trends. One point possibly worth noting is that
the correlations with ‘g’ and ‘e’ are of the opposite sign
to those in the regressions with the observed data.

In the G3 test, the correlations in the model to the
economic variables ‘g’ and ‘e’ is even more striking
(Table III). Three out of five have nominally significant
regressions to ‘e’, and two out of five runs have signifi-
cant regressions to both ‘g’ and ‘e’, as does the ensemble
mean (as with the observed data). The t-test values are of
comparable size (though slightly smaller) to those seen
in the original tests.

Also performed were the same calculations with the
AMIPf8 runs and their ensemble mean (not shown) and
it was found that ‘e’, ‘p’ and ‘g’ were each significant in
the SURF experiment in one specific run, but no other. In
the G3 experiment, one run shows that ‘g’ is significant,
and one run has ‘e’ significant, each with a positive
regression.

Since there is no economic or other contamination in
the models, the preponderance of nominally significant
correlations certainly implies that the reported F -test
values are not a fair assessment of the hypothesis
put forward by MM07. We find that supposedly 95%
significant correlations to ‘g’ and ‘e’ (in experiment G3)
occur in 3 and 4 (respectively) simulations out of 9,
roughly 7 times as often as should be expected if the
‘significance’ test used by MM07 had even its minimum
reported power. This clearly demonstrates that there are
far fewer degrees of freedom in these correlations than
they assumed.

4. Discussion

The two sets of tests used here are very different in
nature, and yet within the consistent model context, our
results are similar to those seen in the observations.

Table II. As in Table I, column 1, but with output from GISS-ER (Schmidt et al., 2006).

Variable SURF test (GISS-ER)

RunA RunB RunC RunD RunE Ensemble

Intercept 2.26641 2.05760 2.13344 6.85362 −4.33633 1.11121
Trop 1.44023 1.43273 1.32420 1.48376 1.12618 1.22160
Slp −0.00222 −0.00222 −0.00222 −0.00694 0.00417 −0.00118
Dry −1.57550 0.05045 0.17500 0.93299 3.79676 0.82598
Dslp 0.00153 −0.00006 −0.00015 −0.00099 −0.00375 −0.00083
Water −0.02033 −0.03532 −0.04576 −0.03065 −0.04219 −0.03610
Abslat −0.00005 0.00128 −0.00078 0.00195 0.00115 0.00074
g −0.01171 −0.00208 −0.00330 −0.01793 −0.01107 −0.00763
e −0.00030 0.00057 0.00087 0.00076 0.00061 0.00036
p −0.17525 −0.09212 −0.05862 −0.06243 0.03953 −0.06663
m −0.15285 −0.16996 −0.05782 −0.03183 −0.02871 −0.08630
y 0.08856 0.13842 0.05174 0.03535 −0.00528 0.05728
c 0.00060 −0.00114 −0.00118 0.00067 0.00188 0.00032

R 0.69 0.79 0.70 0.73 0.65 0.68
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Table III. As in Table I, column 2, but with output from GISS-ER.

Variable G3 test (GISS-ER)

RunA RunB RunC RunD RunE Ensemble

Intercept 3.33518 2.24250 1.58085 6.33386 −2.62692 1.85955
Trop 1.37771 1.41803 1.31042 1.46890 1.08848 1.22844
Slp −0.00336 −0.00234 −0.00167 −0.00643 0.00249 −0.00193
Dry −3.04618 −0.29150 0.41295 1.09698 2.49981 0.03369
Dslp 0.00297 0.00028 −0.00039 −0.00114 −0.00248 −0.00005
Water −0.02771 −0.03490 −0.04526 −0.02716 −0.04670 −0.03757
Abslat 0.00054 0.00097 −0.00074 0.00192 0.00099 0.00080
g −0.01335 −0.01053 −0.00294 −0.01463 −0.01814 −0.01119
e 0.00009 0.00031 0.00077 0.00072 0.00072 0.00043

r 0.67 0.79 0.69 0.72 0.62 0.67

Since there is no extraneous contamination possible in
the model runs, and since the results are not consistent
across all runs (which could be indicative of a forced
response to perhaps, aerosol, ozone forcing or land use
change, all of which are represented (albeit imperfectly)
within these simulations), the only remaining conclusion
is that these correlations are due to intrinsic ‘weather’
variability within the models.

It is therefore necessary to look a little deeper into
what the source of these correlations are. In both the
above cases, the calculations boil down to spatial corre-
lations on extremely restricted domains or with smooth
fields. The general problem is associated with the con-
cept of ‘field significance’ (Livezey and Chen, 1983),
i.e. how to determine whether a spatially correlated field
is significantly related to a time series or other field
when the number of separate point-to-point correlations
is much larger than the true number of the degrees
of freedom. Monte Carlo tests with suitably generated
data that conforms to the null hypothesis are a standard
approach. However, in this case it is not at all obvious
how to synthetically generate such data in a meaning-
ful way.

Figure 3(a) shows the spatial extent of the grid points
used in the right-most few points in Figure 1. It should
be clear that their areal extent is small (∼1% of the
globe, 3% of the land area, for the threshold above
0.2 kgC/m/yr) and very specific to the Northern Hemi-
sphere mid-latitudes (a few boxes each from Califor-
nia, northeastern USA, central Europe, eastern China,
Japan, northern India). For this area, given the dis-
tribution of trends in individual grid boxes and the
spatial correlation among them, one would expect the
range of trends to span 0.3 to 0.4 °C/decade (assum-
ing roughly 10 degrees of freedom), as indeed they do
(Figure 1).

Similarly, the structure of the fields that appear signifi-
cant in MM07 (‘g’ and ‘e’, Figure 3(b) and (c)) are either
very focused or have a very low number of degrees of
freedom, certainly not the 400+ assumed in the signifi-
cance tests used by MM07 (and above). The temperature
fields of ‘surf’ and ‘trop’ (updated to CRUTEM3v and

RSS MSU-LT, Figure 3(d) and (e)) also have significant
structure. Their difference (scaled as suggested by the
regression in column 4 of Table I) is shown in Figure 3(f)
and appears to have more degrees of freedom though still
not the 400+ assumed.

However, it may be possible to estimate the true num-
ber of degrees of freedom in these fields (while noting
that this is a rather ill-posed question). Figure 4 shows
the normalized semi-variogram for the key data used in
MM07. For each radius of influence (r on the x-axis,
measured in great circle radians), is calculated the aver-
age E[(xij − xkl)

2]/2 (including areal weighting) for each
point (k,l) within a distance r of point (i,j ) (normalized
so that variance of the whole field is 1). For fields with
spatial correlation, this value will be significantly less
than the total field variance for a small radius of influ-
ence. At r = 2π , the area encompasses the whole globe,
and the semi-variogram is equal to the total variance. The
grey lines correspond to the same calculation but for syn-
thetic data at the same resolution. We start off with ran-
dom uncorrelated data at each grid point (drawn from a
Gaussian distribution with mean 0, σ = 1). We then pro-
gressively smooth this data spatially with an increasing
radius of influence. We estimate the degrees of freedom
(dof) in this smoothed data as the number of times the
smoothing area fits on the globe (= 2/(1 − cos(r)) where
(as above) r is the great circle angle in radians). For a
smoothing radius of about 2000 km (r = π /10), there are
about 41 dof.

There is some variability in the semi-variograms for
different realizations of the random field, but the results
in Figure 4 are typical. By comparing the actual data
to the synthetic data, it can be seen that the ‘surf’ and
‘trop’ variables have patterns that are similar to fields
with around 20 to perhaps 60 dof. This is consistent
with recent estimates for the surface temperature patterns
which suggest around 50 dof on the annual timescale
(and less for multi-decade trends) (Wang and Shen,
1999; Brohan et al., 2006). For the economic variables,
‘g’ has perhaps 100 dof, but a somewhat abnormal
structure, while ‘e’ has more like 15. There is, of
course, some uncertainty here, but the point to be
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Figure 3. The spatial patterns of (a) the high CO2 emission grid boxes, (b) the GDP divided by land area (‘g’) and (c) Educational attainment
(‘e’), (d) the ‘surf’ temperature trends from CRU, (e) the ‘trop’ MSU-LT trends from RSS, and (f) ‘surf’-‘trop’ temperature differences. This

figure is available in colour online at www.interscience.wiley.com/ijoc
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Figure 4. The semi-variogram for the data used in MM07 compared to
a example of random synthetic data on the same grid (grey lines). The
synthetic data range from a completely uncorrelated field, to fields that
have been progressively smoothed. As the smoothing increases, the
number of effective degrees of freedom decreases, calculated as the
number of independent areas that will fit over the globe at that level of
smoothing. The effective spatial degrees of freedom in the MM07 data
can be estimated from the correspondence with the synthetic data. This
figure is available in colour online at www.interscience.wiley.com/ijoc

stressed is that there is nothing like as many as 440
dof as assumed in the nominal significance calculations
used in MM07. If we sub-sample the data so that
the number of samples is closer to the dof indicated
above, the significance of correlations to ‘g’ and ‘e’
become marginal or disappear depending on the sub-
sample. Notably, the correlation to ‘g’ is very fragile
disappearing completely even with a sub-sampling of 1
in 4 points.

Thus in both cases examined here, it is apparent
that the true significance of the analyses is much less
than previously claimed, and that the previous con-
clusions that there must be a large bias to the sur-
face temperature record, are unsupported. It is possible
that a more rigorous analysis could reveal such a bias,
but at minimum, the robustness to alternate sources of
data must be assessed and a much more conservative
approach taken to the problem of spatial correlation. The
availability of dozens of 20th Century climate model
simulations from the CMIP3 database (http://www-
pcmdi.llnl.gov/ipcc/about ipcc.php) is an invaluable
resource for testing any such corrections and should be
used in assessing any new claims.
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Errata for “Spurious correlations between recent
warming and indices of local economic activity” by
G.A. Schmidt

A number of minor errata are required for a recent paper,
Schmidt (IJoc, 2009).

- S09 mistakenly described the temperature trends for
McKitrick and Michaels (2007) section as being from 1979-
2001, when actually the trends are taken from 1979-2002
(inclusive) as in MM07.

- Calculations of the trends in CRU data in the paper
were affected by an error in how missing data was dealt
with. The results affected are Table 1 (the update to
CRUv3+RSS). No substantial change in the text is required.

- The model SAT and MSU-LT trends used were too
small by a constant factor of 0.7188 due to an error in how
missing data was dealt with (the constant factor was partic-
ular to the number of years read in vs. the number of years
used in the calculation). Since the relationship between the
new corrected values and the originals is constant, only the
regression coefficients for variables other than ’trop’ in Ta-
bles 2 and 3 are affected (by roughly 1/0.7188, with some
variation due to round off). None of the significance calcu-
lations, nor the discussion is affected.

1



2 SCHMIDT (2009): ERRATA

CRUv3+RSS MSU
Variable SURF G3

Intercept -4.19849 -2.76839
trop 0.96992 0.97963
slp 0.00437 0.00287
dry 0.39609 -0.42244
dslp -0.00032 0.00048
water -0.00857 -0.00412
abslat 0.00331 0.00334
g 0.04176 0.05273
e -0.00296 -0.00246
x 0.00117 0.00144
p 0.15243
m 0.27626
y -0.23124
c 0.00825

N 422 422
r2 0.51 0.50

Table 1. Partial original Table 1 (corrected).

SURF test (GISS-ER)
Variable runA runB runC runD runE Ensemble

Intercept 3.14215 2.88634 2.95166 9.53691 -6.00788 1.56216
trop 1.44038 1.43259 1.32441 1.48327 1.12639 1.22117
slp -0.00307 -0.00311 -0.00307 -0.00965 0.00577 -0.00165
dry -2.18790 0.03039 0.25836 1.28293 5.25923 1.13518
dslp 0.00212 -0.00004 -0.00023 -0.00136 -0.00520 -0.00114
Water -0.02822 -0.04908 -0.06361 -0.04267 -0.05863 -0.05006
abslat -0.00007 0.00178 -0.00109 0.00272 0.00160 0.00103
g -0.01621 -0.00268 -0.00465 -0.02505 -0.01548 -0.01066
e -0.00042 0.00079 0.00121 0.00105 0.00084 0.00049
p -0.24432 -0.12847 -0.08108 -0.08785 0.05528 -0.09191
m -0.21386 -0.23692 -0.07981 -0.04503 -0.03921 -0.11909
y 0.12405 0.19291 0.07154 0.04976 -0.00792 0.07907
c 0.00082 -0.00159 -0.00164 0.00094 0.00260 0.00044

r2 0.69 0.79 0.69 0.73 0.65 0.68

Table 2. Original Table 2 (corrected).



SCHMIDT (2009): ERRATA 3

G3 test (GISS-ER)
Variable runA runB runC runD runE Ensemble

Intercept 4.63495 3.14662 2.17974 8.81204 -3.63595 2.59554
trop 1.37773 1.41792 1.31052 1.46841 1.08877 1.22810
slp -0.00467 -0.00328 -0.00230 -0.00894 0.00344 -0.00269
dry -4.23896 -0.44838 0.59262 1.50947 3.46035 0.04195
dslp 0.00414 0.00043 -0.00056 -0.00158 -0.00343 -0.00006
Water -0.03852 -0.04850 -0.06291 -0.03780 -0.06491 -0.05209
abslat 0.00075 0.00134 -0.00103 0.00267 0.00138 0.00112
g -0.01857 -0.01446 -0.00411 -0.02044 -0.02527 -0.01559
e 0.00013 0.00042 0.00108 0.00100 0.00100 0.00060

r2 0.67 0.79 0.69 0.72 0.62 0.67

Table 3. Original Table 3 (corrected)


