
The Trainer's Friend, Inc.

6790 E. Cedar Ave., Suite 201 Telephone: (800) 993-8716

Denver, Colorado 80224 (303) 393-8716

U.S.A. E-mail trainers@trainersfriend.com

Internet www.trainersfriend.com

Applications Assembler Programming for z

A Technical Discourse



Acknowledgements

I wish to thank the following people for their help and input on this paper.

Hunter Cobb, The Trainer's Friend - for raising the questions that lead to my
writing the paper, and for assistance in checking the content.

Ed Jaffee, Phoenix Software - for posting code snippets that provided me with
new insights and a deeper understanding

Abe Kornelis - for careful proofing and thoughtful suggestions for improvements

Lindy Mayfield - for careful reading and pointing out at least one embarrassing typo

Charles Mills - for causing me to think more deeply about the implications and
details of reentrant code

Gerhard Postpischil - for spotting some typos and reporting them to me

Many others on usenets and listservs that I follow daily.



Assembler

Copyright � 2008 by Steven H. Comstock 1 Assembler

Section Preview

� Applications Assembler Coding for z

� Modern Applications Programming in Assembler

� 64 bit Registers

� Importance of the Cache

� The Goal of Baseless Programming

� Relative Branching

� The Long Displacement Facility

� The Extended Immediate Facility

� AMODE Implications

� Changes in Program Linkages

� Save Area Conventions

� Coding for Reenterability

� Establishing the Environment

� Coding Style

� Code Samples

V1.5



Modern Applications Programming in Assembler

This paper is an attempt to describe various techniques for Assembler coding
when working in z/OS. The focus is on applications programming. Assembler
programmers for ISVs (Independent Software Vendors) often have to use
system hooks, exits, and facilities that applications people needn't worry
about. Still, there are probably thoughts in here that will be of interest to ISV
programmers too.

The issues we are looking at have to do with writing maintainable code that
takes advantage of the advances in the Assembler itself and in the hardware
instruction set that has been enhanced enormously in recent years. Some of
the facilities we discuss predate the z Systems but are recent enough to
warrant inclusion in the new styles of programming.

From a hardware perspective, then, we want to be aware of:

* Impact of the cache on performance
* Impact of 64-bit registers
* Impact of 64-bit addressing
* Availability of new instructions, specifically these features:

+ Relative branching
+ The Long Displacement facility
+ The Extended Immediate facility

From a software perspective, we want to take advantage of:

* Facilities for linkages in a 64-bit world
* Macro instructions that support 64-bit virtual
* Changes to existing macros
* Assembler facilities such as new extended mnemonics

Note that we don't actually discuss writing AMODE 64 code in this paper, but
rather we discuss preparing to write AMODE 64 code. This paper got longer
than expected, so coding AMODE 64 programs is discussed in a separate
paper.

Copyright � 2008 by Steven H. Comstock 2 Assembler



Modern Applications Programming in Assembler

These notes are not concerned with the latest "tricks", or with coding for
special situations, but rather how to code basic linkages and when to use
new instructions and capabilities for the common cases. We assume you do
not have to write code that works in both newer and older processors, just
the newer models of z series machines.

The focus here is writing new code, but some of the ideas can surely be
used in maintaining existing code.

The major issues we are trying to meld are:

* 64-bit registers
* Importance of the cache
* The goal of baseless programming
* Importance of relative branching
* Long displacement facility
* Extended Immediate facility
* AMODE implications

Keep in mind there are many ways to accomplish our task, and many people
have different approaches, all of which work. Our only criteria for program
goodness, ultimately, are these:

* It must work correctly
* Performance must be acceptable

other useful criteria:

* Must be easy to read
* Must be easy to run / operate
* Must be easy to maintain / modify

Copyright � 2008 by Steven H. Comstock 3 Assembler



64-bit Registers

All general purpose registers (GPRs) on z/Architecture systems are 64 bits in
length. This does not mean you need to be in 64-bit addressing mode to use
all 64 bits. For example, most instructions for doing binary arithmetic still
work on 32-bit values. To do 64-bit integer arithmetic you must use the new
instruction set, but you can do this while running in AMODE 24, 31, or 64.

When an address is calculated by the CPU, whether it is a branch address or
the address of a data item, the CPU always creates a 64-bit intermediate
address. Then the effective address is either used as is (if you are running
AMODE 64) or truncated to 24-bits or 31-bits (if you are running AMODE 24
or AMODE 31, respectively).

When the contents of a register are referenced as data, which bits participate
depend on the instruction used, not the current AMODE.

Copyright � 2008 by Steven H. Comstock 4 Assembler



Importance of the Cache

Each CPU has an I-cache (Instruction fetch cache) and a D-cache (Data
cache); cache is retrieved and restored to memory in 256 byte "lines".
I-cache contents are assumed to be read only; D-cache contents are
assumed to be modifiable (and thus may need to be reflected back in
memory). If there are instructions and data in the same cache line and any of
the data is changed, both caches need to be refreshed. This can cause a big
performance hit. So the coding guidelines include:

separate instructions and data areas by [at least] 256 bytes
note that even non-modifiable data in the I-cache takes
up room that could be used to hold more instructions

code in a reentrant style
reentrant code by its very nature separates instructions and data
and never causes cache refresh due to storing into itself

Pipelines

You might be aware that the processor has multiple pipelines feeding it,
anticipating and preparing instructions and data in advance of their use. If
some instruction must wait for the result from a prior instruction, there can be
a pipeline stall; when the processor takes a branch path that was not
anticpated or expected, all or part of the pipeline can be flushed. But these
behaviors are not influenced much by whether code is reentrant or baseless.
Stalls are influenced by the sequence of instructions coded, and flushes can
be minimized by thinking about the conditional branch choices you make.
Neither of these concerns are addressed in this paper.

Think of the pipeline as anticipating the future, and the cache as saving the
recent past, in case it comes in handy.

Copyright � 2008 by Steven H. Comstock 5 Assembler



The Goal of Baseless Programming

One of the major difficulties in writing or maintaining Assembler code has
been running out of registers to use as base registers for addressability to
instructions or data.

A number of instructions and facilities have been introduced to help alleviate
that problem. On the hardware side, relative branching, long displacement,
and extended immediate facilities have had the largest impact. Collectively
they have led to an informal movement to write what is called "Baseless
programming".

This term is a bit of a misnomer. You need base registers for addressability
to your data items. But with a little care you can remove or reduce the need
for base registers for your instructions!

On the software side, the Assembler's support of labeled USINGs and
dependent USINGs can reduce the number of registers you need for
covering DSECTs.

While baseless programming is a worthwhile goal, we will find in some cases
it is very difficult to accomplish. Do not let the wrong criteria drive your
efforts. If you can make a program be "baseless", then good for you. But if
the effort outweighs the results, don't waste time on it.

Copyright � 2008 by Steven H. Comstock 6 Assembler



Relative Branching

The relative branching instructions do not branch to an address specified by a
base+displacement or base+index+displacement, but rather the target address is
specifed as a relative location from the instruction itself. That is, "branch to the

address x bytes away from here". x is specified as an immediate halfword or
fullword signed integer indicating how many halfwords away the target is. You
typically code the immediate operand as a label and the Assembler computes
the displacement for you. Halfword integers allow for branching to locations

�64KiB away; Fullword integers allow for branching to locations �4GiB away.

Here is a summary of available branching instructions, and, for conditional
branches, what mnemonics to use in order to generate relative branches.

BAL, BALR - first, these should be replaced with BAS, BASR respectively

but then, BAS can be replaced by one of these:

BRAS - Branch Relative and Save; halfword immediate; 4 byte instruction

BRASL - Branch Relative and Save Long; fullword immediate; 6 bytes

Note: you can code JAS and JASL, respectively for these instructions

Note: there is no replacement for BASR, since it only uses registers

BC - Branch on Condition has two counterparts:

BRC - Branch Relative on Condition; halfword immediate; 4 byte instruction

BRCL - Branch Relative on Condition Long; fullword immediate; 6 bytes

BCT - Branch on Count, has two slightly different counterparts:

BRCT- Branch Relative on Count; halfword immediate; 4 byte instruction; the
count register (first operand) is a 32-bit register value

BRCTG - Branch Relative on Count Grande; halfword immediate; 4 byte
instruction; the count register (first operand) is a 64-bit register value

Also, we have BCTG and BCTGR which are "Grande" versions of BCT and

BCTR, but not "relative" versions

As with BASR, there are no "relative" counterparts for BCR or BCTR

Copyright � 2008 by Steven H. Comstock 7 Assembler



Relative Branching Extended Mnemonics

Mnemonic stands for this can also use Interpretation

J BRC 15 BRU Unconditional

JNOP BRC 0 BRNOP no-op

JH BRC 2 BRH High

JL BRC 4 BRL Low

JE BRC 8 BRE Equal

JNH BRC 13 BRNH Not High

JNL BRC 11 BRNL Not Low

JNE BRC 7 BRNE Not Equal

JP BRC 2 BRP Positive

JM BRC 4 BRM Minus

JZ BRC 8 BRZ Zero

JO BRC 1 BRO Overflow

JNP BRC 13 BRNP Not Positive

JNM BRC 11 BRNM Not Minus

JNZ BRC 7 BRNZ Not Zero

JNO BRC 14 BRNO No Overflow

JLU BRCL 15 BRUL Unconditional

JLNOP BRCL 0 n/a no-op

JLH BRCL 2 BRHL High

JLL BRCL 4 BRLL Low

JLE BRCL 8 BREL Equal

JLNH BRCL 13 BRNHL Not High

JLNL BRCL 11 BRNLL Not Low

JLNE BRCL 7 BRNEL Not Equal

JLP BRCL 2 BRPL Positive

JLM BRCL 4 BRML Minus

JLZ BRCL 8 BRZL Zero

JLO BRCL 1 BROL Overflow

JLNP BRCL 13 BRNPL Not Positive

JLNM BRCL 11 BRNML Not Minus

JLNZ BRCL 7 BRNZL Not Zero

JLNO BRCL 14 BRNOL No Overflow

JAS BRAS

JASR BRASL

JCT BRCT

JCTG BRCTG

Copyright � 2008 by Steven H. Comstock 8 Assembler



More Relative Branching

The "index" branching instructions also have both Grande and relative
counterparts:

BXH - Branch on Index High has

BXHG - Branch on Index High Grande

BRXH - Branch Relative on Index High (may use JXH mnemonic)

BRXHG - Branch Relative on Index High Grande (may use JXHG)

BXLE - Branch on Index Low or Equal has

BXLEG - Branch on Index Low or Equal Grande

BRXLE - Brand Relative on Index Low or Equal (may use JXLE mnemonic)

BRXLG - Branch Relative on Index Low or Equal Grande (may use JXLEG)

The remaining two branching instructions, BASSM and BSM do not have
relative nor Grande counterparts: they simply work differently depending on the
current addressing mode.

The first step in writing baseless code is to replace all non-relative branch
instructions that have a storage address target with relative branch instructions
(or equivalent mnemonics). This much generally works with no other changes.
Except for macros that may have the older branch instructions embedded in
them, including IBM supplied macros, although many have changes such as:

* Sensitivity to ARCHLVL in the SYSSTATE macro settings

* Options for you to specify which branch instructions you prefer

Also, IBM provides a copy book, IEABRC, that maps non-relative branch

instructions to relative branches. You issue "COPY IEABRC" near the top of
your code (at least before you issue any IBM macros) and this is pretty good
magic. It doesn't work for all formats of branches, but it has saved us a lot of
work from time to time.

Copyright � 2008 by Steven H. Comstock 9 Assembler



The Long Displacement Facility

This facility introduced some new instructions, and enhanced some existing
instructions, to support 20-bit signed displacements instead of 12 bit unsigned
displacements. This allows an instruction to reference a storage location up to

�512KiB from the base register address, instead of the 12-bit range of 0-4095
bytes from the base register address. These instructions include:

OpCode extends name OpCode extends name
AY A Add AHY AH Add halfword
ALY AL Add Logical CY C Compare
CHY CH Compare Halfword CLY CL Compare logical
CLIY CLI CompareLogicalImm. CLMY CLM Compare Logical Under Mask
CVBY CVB Convert to Binary CVDY CVD Convert to Decimal
ICY IC Insert Character ICMY ICMY Insert Chr. Under Mask
LY L Load LAY LA Load Address
LB n/a Load Byte LGB n/a Load Byte Grande
LHY LH Load Halfword LMY LM Load Multiple
MVIY MVI Move Immediate MSY MS Multiply Single
NY N aNd NIY NI aNd Immediate
OY O Or OIY OI Or Immediate
STY ST Store STCY STC Store Character
STCMY STCM StoreCharUnderMask STHY STH Store Halfword
STMY STM Store Multiple SY S Subtract
SHY SH Subtract Halfword SLY SL Subtract Logical
TMY TM TestUnderMask XY X eXclusive or
XIY XI eXclusive or Immediate

Generally speaking, the earlier instructions are four byte instructions while the
long displacement versions are six byte instructions. So they take 50% more
space in a program, possibly requiring additional base registers(!). On the other
hand, these instructions can reference data more than 4KiB away from a base
register, so you may need fewer base registers. In this case, you need to take
some time and think about each particular program to decide if any long
displacement instructions will help you.

Copyright � 2008 by Steven H. Comstock 10 Assembler



The Extended Immediate Facility

This facility, introduced in models announced in September, 2005, provides
instructions that have 32-bit immediate operands. This helps by not requiring
defining data areas (no base/displacement space), and by including data
fetch as part of the instruction fetch cycle. The instructions in this facility
include:

AFI - Add Fullword Immediate

AGFI - Add Grande Fullword Immediate

ALFI - Add Logical Fullword Immediate

ALGFI - Add Logical Grande Fullword Immediate

CFI - Compare Fullword Immediate

CGFI - Compare Grande Fullword Immediate

CLFI - Compare Logical Fullword Immediate

CLGFI - Compare Logical Grande Fullword Immediate

IIHF - Insert Immediate High Fullword (leftmost word in 64-bit GPR)

IILF - Insert Immediate Low Fullword (rightmost word in 64-bit GPR)

LGFI - Load Grande Fullword Immediate (load fullword then sign extend)

LLIHF - Load Logical Immediate High Fullword (zero reg. then IIHF)

LLILF - Load Logical Immediate Low Fullword (zero reg. then IILF)

NIHF - aNd Immediate High Fullword

NILF - aNd Immediate Low Fullword

OIHF - Or Immediate High Fullword

OILF - Or Immediate Low Fullword

SLFI - Subtract Logical Fullword Immediate

SLGFI - Subtract Logical Grande Fullword Immediate

XIHF - eXclusive or Immediate High Fullword

XILF - eXclusive or Immediate Low Fullword

One extremely important instruction for baseless programming that does not
belong to any facility (it's part of the original System z hardware) is:

LARL - Load Address Relative Long; it takes a signed fullword immediate
operand as a relative displacement (in halfwords) from the instruction location
itself and places the resulting address into the first operand (a register)

Copyright � 2008 by Steven H. Comstock 11 Assembler



AMODE Implications

On z machines, a program can be initially started in 24-bit AMODE, 31-bit
AMODE, or 64-bit AMODE. Then a program can switch AMODEs (note that a
program running above the line can not run AMODE 24, but a program
running below the line can run in any of the three modes). A program can
call a subroutine and switch AMODEs at the point of call (static call; assumes
subroutine is able to handle the specified AMODE). Dynamic calls use
system-assisted linkages, and these can also involve changing AMODE
based on the binder properties of the target module.

Some instructions operate differently in different AMODEs. Primarily this
manifests itself in whether calculated addresses end up being 24-bit, 31-bit,
or 64-bit addresses, and whether unused bits are set to zeros or left
unchanged. All addresses are always first calculated as 64-bit "intermediate"
addresses, and then the effective address is calculated depending on the
current AMODE.

Switching AMODE can result in some surprises, primarily when the leftmost
word of a register used for addressing contains non-zero values and you
switch to or from AMODE 64.

An informal goal of this paper is to make suggestions for writing code that is
not initially expected to run AMODE 64, but to make coding decisions that
might make it easier to change to run in AMODE 64 if that becomes
necessary.

Copyright � 2008 by Steven H. Comstock 12 Assembler



Changes in Program Linkages

The tradition of having R15 point to the entry address of a program on entry
is not maintained in AMODE 64. If an instruction has been branched to using
BASSM, and the instruction is to get control in AMODE 64, the rightmost bit
of the target address in the second operand must be set on. This makes the
address an odd number, which is not valid.

A better way is to use the new LARL instruction (Load Address Relative
Long). This instruction has two operands: a register and an immediate
fullword of data. The second operand contains a signed integer indicating
how many halfwords away, relative to the location of the instruction itself, to
use in address calculation. So the current address + 2*(second_operand) is
placed into the first operand.

Example:

LARL 12,MYPGM

instead of

LR 12,15

The nice thing is LARL works in all AMODEs, so you might as well get into
the habit of using LARL in all routines, regardless of AMODE. One less
decision to make in your life.

So you want to code in a way that handles all AMODEs as much as
possible. Two other related issues:

* Save areas need to allow for 64-bit registers [old routines do not do this]
NOTE: All save areas must be located below the bar

* Parameters may need to be passed as 64-bit addresses

Copyright � 2008 by Steven H. Comstock 13 Assembler



Save Area Conventions

z/OS has made a number of changes in save area formats in support of
64-bit registers. In particular, the format called F4SA ("Format 4 Save Area")
is 18 doublewords (144 bytes) and designed to be used when calling
programs that start out in AMODE 64. The layout is:

+ 0 x'00000000' c'F4SA'

+ 8 c(GPR14)

+ 16 c(GPR15)

.

.

.

+120 c(GPR12)

+128 a(previous_savearea)

+136 a(next_save_area)

Note that this changes the traditional forward chain pointer and backward
chain pointer to the end of the save area instead of at the beginning

Room is provided for 64-bits for all registers

* A subroutine can check something like: clc 4(4,13),=c'F4SA'

if it expects it might get invoked using this kind of save area

* The convention remains that R13 points to the save area on entry to
the program

Copyright � 2008 by Steven H. Comstock 14 Assembler



Save Area Conventions, continued

An alternative save area format is F5SA. This is a F4SA with 16 words (64
bytes) appended. The last 16 words are for saving the high order words of
the passed registers. So the program that is called using a standard save
area that needs to preserve the values in the high order word of the registers
because it will be using at least some registers as 64-bit values, should use
a F5SA for this purpose. (This will only occur in a subroutine, see next
paragraph.)

From z/OS V1R3 on, the system always supplies a 144-byte save area
(although it doesn't have the 'F4SA' string in it) to programs it invokes (that is
from PGM= on EXEC JCL statement, from TSO CALL, or from dynamic call
structures (LINK, XCTL, ATTACH, etc.) ).

A passed parameter list is still set up with R1 pointing to a list of addresses.
The list can be above the bar, or point to addresses above the bar, but in
either of these cases the caller and the callee both have to know the format
of the list. [Also, if the parameter list consists of 64-bit addresses, the
tradition of turning on the leftmost bit of the last entry is not supported.]

New code should always provide a 144-byte save area; whether subroutines
use it or not does not matter. Each program can continue to use classic save
area linkages or it can save registers in the F4SA style: since the saving and
returning is localized to your program, you can choose either approach with
no impact on other programs.

Some programmers prefer to use BAKR / PR linkages, which use a
system-provided stack to save GPRs and ARs. The author is not fond of this
approach for several reasons: 1) save area chains are not available or
meaningful in a dump; 2) it's possible to get a stack full exception; 3) the
instruction is described in the chapter on Control Instructions, not the chapter
on General Purpose Instructions, in the Principles of Operations; 4)
performance can be quite slow.

Copyright � 2008 by Steven H. Comstock 15 Assembler



Coding for Reenterability

For the application programmer, the main work in making a program
reentrant is ensuring no byte of the load module is modified while the
program is running. This is accomplished by:

* Dynamically obtaining storage from outside the load module

* Initializing this storage with values from the constants area of the
load module

* Referencing the external storage version of items in instructions and
macro operands for operations where the items might be changes

Obtaining storage may be done by invoking any one of several system
services, including:

* GETMAIN - around the longest; fastest; not as many options / features
* STORAGE - more recent; more sophisticated options
* CPOOL - cell pools; most appropriate when working with many "cells"

of the same size
* IARV64 - for obtaining large amounts of storage (>1MB) above the bar
* IARCP64 - for obtaining cellpools above the bar
* IARST64 - for obtaining small amounts of storage (<=64K) above the bar
* CEEGTST - LE callable routine

[For most application programs, we recommend GETMAIN as by far the best
service to use. This macro and its service are not going to be enhanced,
however, so if you have advanced or special needs look at STORAGE for
below the bar requests or IARV64 or IARST64 for above the bar requests.]

Then create a DSECT that describes the items in the GETMAINed area.
After issuing your GETMAIN you receive the address of the storage back in
R1; copy this value into another register and establish the register as the
base for the DSECT. Next copy initial values from your constant area into
their respective DSECT locations.

This can be quite tedious and confusing at coding time, so here are some
tips to help you…

Copyright � 2008 by Steven H. Comstock 16 Assembler



Coding for Reenterability

For IBM-supplied macros, use List and Execute forms where possible. Copy
the List form into your GETMAINed area and reference this location from
your Execute form. We provide specific examples later.

Establish a naming convention for data items. Perhaps "src_" as a prefix for
source values (constants) then copy to the data items in your DSECT from
src_ with the same names.

If source values are in the same order and displacements in your constants
area as in your DSECT, a single move can copy multiple fields at once, thus
gaining performance. But be careful when doing maintenance.

You can use a DSECT area for multiple occurrences of a parm area. For
example, a list form of a CALL macro should allow for the maximum number
of parms in any of your calls, say:

plist call ,(0,0,0,0),mf=l

then every call in your code can reference this, like:

call rtn1,(string1,string2),vl,mf=(e,plist)
call rtn2,(string3)vl,mf=(e,plist)
call rtn3,(x,y,z,four),vl,mf=(e,plist)

Always have the Assembler calculate lengths for you, for example:

WTO wto text=,routcde=(11),mf=l
string1 dc h'12',cl12'Twelve bytes'
string2 dc h'26',cl26'This is the second string.'
string3 dc h'258',258c'9'
size_tot equ *-WTO

then you can use the equated symbol in instructions and constant
definitions, for example:

LA 3,size_tot
or

incr dc a(size_tot)

Copyright � 2008 by Steven H. Comstock 17 Assembler



Coding for Reenterability

One approach that combines writing code that is both reentrant and
"baseless" is to only provide base registers for data:

* One [or more] for constant area
* One [or more] for GETMAINed area (this should include the save

area you establish, at the beginning of it)
* None for your CSECT per se

The major difficulty is macro expansions that include classic branches, like:

+ B *+8

these kinds of branches require addressability (they resolve as base /
displacement) within the CSECT.

We'll demonstrate ways to work around this for some specific IBM macros
later, which may give you some insights for handling locally written macros
with the same shortcomings. As we said before, it may be more trouble than
it's worth in some cases.

* For a main program, being reentrant minimizes or eliminates cache
refreshes, so there is some [potential] performance improvement

+ but there is no gain to being shared by multiple tasks, since
a 'main' is, by definition, the top task

+ in fact, a main program may not be truly reentrant and you won't
be able to tell when submitted from JCL or TSO CALL

* However, if a main program is put into the Link Pack Area, and you
invoke it via JCL (use no STEPLIB nor JOBLIB), the program must
be RENT and run from an authorized library

If the program is marked RENT but run from a non-authorized
library, it might run cleanly some times and abend other times

* Finally, if a program is to be run under the OMVS shell, it must be
reentrant (even if it is not bound / linked as RENT)

Copyright � 2008 by Steven H. Comstock 18 Assembler



Establishing the Environment

For standard macros to give expansions using new instructions or in a
particular AMODE or style, you can issue the SYSSTATE macro specifying
the desired environment; this sets some global symbol values, and various
system services macros test these and generate appropriate instructions.

There are only two parameters the application programmer is concerned
with, AMODE64 and ARCHLVL. AMODE64 can be YES or NO, with a default
of NO; specify YES if you want macros to be aware of running AMODE64.
ARCHLVL is 0, 1, or 2, with a default of 0; options 0 and 1 are for ESA/390
and ESA/390 with some retrofitted instructions. You want 2: z/Architecture.
So you would normally code a SYSSTATE as:

[name] SYSSTATE ARCHLVL=2,AMODE64=YES

or

[name] SYSSTATE ARCHLVL=2,AMODE64=NO

Old code will work as before, without a SYSSTATE macro, because the
defaults are set up for old code to Assemble as before.

You might have occasions to issue these at different points in your program,
in particular changing AMODE64 if your program switches into and out of
AMODE 64, so that macros in different ranges of your code generate the
correct instruction sequences.

Remember: SYSSTATE is only used to set global symbols used by macro
expansions. If you are not using macros impacted by these settings, you
don't need to code this macro at all.

Copyright � 2008 by Steven H. Comstock 19 Assembler



Establishing the Environment, 2

Some of the commonly used macros that test these two parameters are:

ARCHLVL AMODE64

ABEND
ATTACH ATTACH

ATTACHX
CALL CALL
ENQ ENQ
DSPSERV DSPSERV
FREEMAIN FREEMAIN
GETMAIN GETMAIN
IARV64 IARV64
LINK LINK

LINKX
LOAD

RETURN
SAVE SAVE
STORAGE STORAGE

TIME
WTO
WTOR

XCTL XCTL
XCTLX

Copyright � 2008 by Steven H. Comstock 20 Assembler



Coding Style

There are a number of issues regarding coding style that we should address:

� Case sensitivity - originally Assembler programs were written in
all uppercase: after all, keypunches didn't have lowercase
characters

� For a long time now, the Assembler has allowed mixed case
code, even in macro invocations, although you should code

*PROCESS COMPAT(NOCASE,MACROCASE)
at the top of your code, to enable this

� We have come to prefer mixed case code, some people despise
it, and the rest are indifferent

� Some characters are hard to differentiate when reading mixed
case code; especially lowercase 'el', uppercase 'eye', and
numeric 'one'; compare for readability:

ds cl111
ds CL111

cl 3,fielda
CL 3,fielda

� Our examples will tend to be mostly lower case, but we will
uppercase letters where it seems to help readability

Copyright � 2008 by Steven H. Comstock 21 Assembler



Coding Style

� Long names - originally names had to be a maximum of 8
characters and only alphanumeric and national characters

� For a long time now, the Assembler has allowed names up to 63
characters in length, and you can use an underscore (_) as a
valid character in a name

� Program organization - there are very few rules you must follow

� The major style approaches, historically, have been:

� All instructions at top, data items at bottom

� Linkage code, jump around data items, data items, bulk of
program logic

� Mix data near instructions where data used; this involves a lot
of jumping around so you don't fall into data

� We have, ourselves, gone through various swings in approach;
our current thinking is this:

� For non-reentrant programs where you provide one or more
base registers for everything, the first approach makes sense

� For reentrant programs where you provide a base register for
instructions, the first and second approaches make sense

� There is no case where the third approach makes sense

� For reentrant, baseless programs, this organization seems
best: linkage code, logic, constant data items, dsects for work
areas (very much like the first option); however note that if
you make use of certain attributes (e.g., D', O', and T') you
must define symbols above these kinds of references)

Copyright � 2008 by Steven H. Comstock 22 Assembler



Coding Style

� Use of literals - we are not a fan of literals, although many are;
we always define a data item and reference that name

� Structured macros - there is a separate, priced, Assembler
supplement called the HLASM toolkit which includes some pretty
neat tools: structured macros, program analysis routines, and
more

� We do not use the structured macros because: 1) not everybody
has the package, and 2) we find the resulting code more difficult
to read, not less; but, to each his own

� Register equates - we use these sometimes, but not consistently,
just a personal foible

� You can include equates for the GPRs by including the macro
YREGS any place in your source code

� There is another macro, ASMDREG, that includes equates for all
the registers; our version was found in a data set named
HLA.SASMMAC2

� Many shops have their own macros that take care of this,
perhaps in conjunction with setting up initial addressability

Copyright � 2008 by Steven H. Comstock 23 Assembler



Code Samples

The rest of this paper consists of code fragments demonstrating various
techniques to consider for use in your code. All our code samples, reentrant
or not, baseless or not, are designed to be AMODE 31, RMODE 31. The
base code contains two WTO macros, a CALL macro, and some simple I/O,
to help us verify correct Assembly of at least a minimal level, when we tested
the programs.

The programs we used for these experiments:

PGM1 - non-reentrant, not baseless; traditional

PGM2 - non-reentrant, but baseless

PGM3 - reentrant, not baseless; traditional reentrant style

PGM4 - reentrant and baseless; the ultimate goal

The complete programs are available in the ASM library of the base
programmers toolkit from The Trainer's Friend.

Visit http://www.trainersfriend.com/TTFStore/index.html for more
information about toolkits.

Copyright � 2008 by Steven H. Comstock 24 Assembler



Code Samples

Entry / exit linkages - non-reentrant, not baseless

� *PROCESS COMPAT(NOCASE,MACROCASE)
� sysstate archlvl=2

pgm1 csect
pgm1 amode 31
pgm1 rmode 31

using pgm1,12
save (14,12)

� larl 12,pgm1
st 13,save+4
la 13,save

.

.

.
l 13,save+4
return (14,12),,rc=0

.

.

.
� save dc 36f'0'

end pgm1

� This is pretty classic / standard except for lines

� - the *process to support mixed case
� - the sysstate macro to support z/Architecture
� - the LARL instruction to get addressability
� - the save area size of 36 fullwords instead of 18 fullwords

(actually, it might be more clear to code the request as

save dc 18D'0' to indicate a request
for 18 doublewords)

Copyright � 2008 by Steven H. Comstock 25 Assembler



Code Samples

Entry / exit linkages - non-reentrant, baseless

*PROCESS COMPAT(NOCASE,MACROCASE)
sysstate archlvl=2

pgm2 csect
pgm2 amode 31
pgm2 rmode 31

� copy ieabrc
save (14,12)

� using data,12
� larl 12,data

st 13,save+4
la 13,save

...
l 13,save+4
return (14,12),,rc=0

...
� data ds 0f

save dc 36f'0'
end pgm2

Notes

� - we needed to insert the copy ieabrc to make the wto and call
macro expansions work; for the reentrant case, this is not needed

Even so, we had to do extra work to make the call work; we
discuss our findings in later examples

� - here is where we establish addressability to our data area

� - we needed to provide a label at the beginning of our data area
to indicate where addressability should start (we could have

used the existing save label, but felt it better to create a new
label that only has this purpose)

Copyright � 2008 by Steven H. Comstock 26 Assembler



Code Samples

Entry / exit linkages - reentrant, not baseless

*PROCESS COMPAT(NOCASE,MACROCASE)
sysstate archlvl=2

pgm3 csect
pgm3 amode 31
pgm3 rmode 31

using pgm3,12
save (14,12)
larl 12,pgm3

� getmain r,lv=worksize
� st 13,4(1)
� lr 13,1
� using wareas,13

...
� lr 1,13
� l 13,4(13)
� freemain r,lv=worksize,a=(1)

return (14,12),,rc=0
...

� ltorg
	 wareas dsect

save ds 36f'0'
...


 worksize equ *-save
end pgm3

What's new

� - here we obtain storage for our save area and changeable variables
� - � - here we link the save area and provide addressability
� - 	 - save the address of gotten storage, point back to incoming SA

 - free gotten storage before leaving
� - although we don't use literals, macros sometimes do; this gathers

literals together, out of the way of our DSECT addressability
� - gather description of external storage into a DSECT

 - note we have the Assembler calculate size of storage to get

We also had to change some of the logic for macro calls - discussed later

Copyright � 2008 by Steven H. Comstock 27 Assembler



Code Samples

Entry / exit linkages - reentrant, baseless

*PROCESS COMPAT(NOCASE,MACROCASE)
sysstate archlvl=2

pgm4 csect
pgm4 amode 31
pgm4 rmode 31

� using data,12
save (14,12)

� larl 12,data
getmain r,lv=worksize
st 13,4(1)
lr 13,1
using wareas,13

...
lr 1,13

� l 0,fsize
l 13,4(13)
freemain r,lv=(0),a=(1)
return (14,12),,rc=0

...
data ds 0f

� fsize dc a(worksize)
...

ltorg
wareas dsect
save ds 36f'0'
...
worksize equ *-save

end pgm4

What's new

� and � - addressability to data, not the CSECT
� - something about the FREEMAIN expansion requires this (but not

the GETMAIN expansion)
� - use an adcon to generate an unsigned integer, since cannot

code f(equate_symbol)

Copyright � 2008 by Steven H. Comstock 28 Assembler



Code Samples

At this point we discuss some of the requirements / idiosyncracies of some
commonly used IBM macros, in each of these four contexts.

Getmain

� This macro has a lot of operands and options, but here are the
ones we care about:

GETMAIN R,LV=size

� size may be specified as an integer or a symbol or as LV=(0),
where you have pre-loaded the number of bytes into R0; the
system rounds up to a multiple of 8, if necessary

� This form of the macro can only obtain storage below the line,
which is desirable if you will be putting DCBs in your gotten
storage, which is required if you are running AMODE 31

� The address of the gotten storage is returned in R1

GETMAIN RU,LV=size

� Same as above, except storage can be above the line, you can
further extend the request by one of these:

GETMAIN RU,LV=size,LOC=24
GETMAIN RU,LV=size,LOC=31
GETMAIN RU,LV=size,LOC=(24,31)
GETMAIN RU,LV=size,LOC=(31,31)

� And so on; '24' means "below the bar", '31' means above the bar,
and when you have two operands, the first is location for the
virtual storage and the second is the location for the backing
storage; there are some others, but usually the first two are
sufficient for our needs

� 'BELOW' and 'ANY' are synonyms for '24' and '31' respectively;
they are still supported but the numeric values are recommended

Copyright � 2008 by Steven H. Comstock 29 Assembler



Code Samples

GETMAIN for data items is only required for our reentrant programs. But
because we are running AMODE 31 / RMODE 31, we need to use GETMAIN
for our DCBs in the non-reentrant programs.

You can ask for storage conditionally, in which case you should check R15
for a return code. But our feeling is for the code on entry, you should have
no problem obtaining storage, and if you do, using the R form, you will be
abended by the system.

You should make no assumptions about the state of gotten storage. z/OS
promises to set it to binary zeros under a few conditions (8K or more
requested from a pageable, private subpool; 4K or more requested from a
pageable, private subpool and BNDRY=PAGE is also requested [this cannot
be specified with the R option])

Freemain

If you get storage, at end of task the system frees it up for you. It is
considered better practice to explicitly free it, however. The tricky part is that,
in our cases, the gotten storage contains the address of our save area,
which contains the address of our caller's save area. So we need to grab the
backward chain pointer before we exit. So our code is:

lr 1,13
l 0,fsize <-- only needed for baseless case
l 13,4(13)
freemain r,lv=(0),a=(1)
return (14,12),,rc=0

� If you don't specify lv=(0), code it like getmain (lv=worksize), and
then freemain generates a L instruction with a target of *-4; this
requires addressability in the CSECT, which we have explicitly
omitted in the baseless versions

Copyright � 2008 by Steven H. Comstock 30 Assembler



Code Samples

WTO - non-reentrant

� This little service is invaluable for development and debugging in
the non-LE world; it has several options, but we have found that
the most useable is this format:

WTO TEXT=(r),ROUTCDE=(11)

� In this case, r designates a register, (2)-(12), that contains the
address of the message, which must be presented as a
halfword-prefixed string; the string is the text to display, the
halfword prefix contains the length of the text; maximum length is
126 bytes

� The message text is written to the JCL listing (that's the
ROUTCDE=(11) effect )

Copyright � 2008 by Steven H. Comstock 31 Assembler



Code Samples

WTO - reentrant

� If the service is to be requested in a reentrant program, you must
provide a list and execute form of the macro; the list form will be
copied into your gotten storage, and your execute forms will
reference the list format; some examples

� mvc msg2(msg_size),src_msg2
mvc wto(wto_size),src_wto

...
la 3,msg1

� wto text=(3),mf=(e,wto)
la 3,msg2
wto text=(3),mf=(e,wto)

...
data ds 0f

� msg1 dc h'20',cl20'This is message one.'
� src_msg2 dc al2(msg_size)

dc c'Today is: '
dc cl10' '
dc c'.'

� msg_size equ *-src_msg2
� src_wto wto text=,routcde=(11),mf=l
� wto_size equ *-src_wto

*
ltorg

wareas dsect
save ds 36f'0'

� wto wto text=,routcde=(11),mf=l
	 msg2 ds h

ds c'Today is: '

 date ds cl10' '

ds c'.'
worksize equ *-save

Notes on the next page …

Copyright � 2008 by Steven H. Comstock 32 Assembler



Code Samples

WTO - reentrant, Notes

� - the two lines here populate the message we will be building
dynamically and the list form of the WTO macro

� - the four lines here demonstrate invoking the WTO service twice;
note that both invocations reference the same list form of the macro

� - this line defines a message that is not modified (thus it is in the
constants area)

� - this line and the next three define the source for the message
we will be building dynamically filling in the blank

� - here is where we have the Assembler calculate the size of the
the source field

	 - this is the source for the list form of the WTO macro


 - again, get the Assembler to calculate a size

� - this line reserves space in the gotten storage area for our list
form WTO expansion

� - these four lines reserve space for the message text; notice the
use of DS but putting values in, for documentation


 - this is the field we will be filling in before issuing the message

A return code is passed back in R15: 0 is good, anything else indicates a
problem of some degree or other.

This code works the same in both the baseless and non-baseless programs
that are coded as reentrant.

Copyright � 2008 by Steven H. Comstock 33 Assembler



Code Samples

CALL

The CALL macro is how z/OS Assembler handles static calls. The macro
identifies the program to invoke and passes a list of parameters. The called
routine will be bound to the calling routine at program bind time.

Again, there are a few versions of interest to us:

call pgm,(parm,parm,...)
call pgm,(parm,parm,...),vl
call pgm,(parm,parm,...),mf=(e,plist)
call pgm,(parm,parm,...),vl,mf=(e,plist)

plist call ,(0,0,...),mf=l

Notes

� The macro generates a Vcon for the called program, builds a list
of addresses of the parameters, sets R1 to point to the list, loads
the Vcon into R15, and issues BALR 14,15 to effect the actual
transfer to the subroutine

� The programmer can load the subroutine address into R15 and
issue the call as call (15),(parm,...)

� Technically, you can issue a CALL to any point in your program,
but that creates unnecessary overhead

� Any number of parameters may be passed (including zero)

� If the parameter is the contents of a registers, enclose it in
parentheses: call pgm,((4),area)

Copyright � 2008 by Steven H. Comstock 34 Assembler



Code Samples

CALL - Notes, continued

� The VL option forces on the leftmost bit of the last address in
the list of parameters, to signify end of list; optional

� Reentrant programs must use the list / execute forms; you can
code the list form right in the DSECT for gotten storage, and you
do not need to populate it: the execute form just uses the area
and builds the parts it needs

� You can use one list form (we always name it "plist" for
parameter list), for all execute form calls in your program, as
long as the list form has at least as many parameter slots as the
greatest number of parameters in any execute form

Examples

From our non-reentrant versions:

lhi 4,3
call appadate,((4),date)

From our reentrant versions:

lhi 4,3,
call appadate,((4)),date),mf=(e,plist)

...
ltorg

wareas dsect
save ds 36f'0'
wto wto text=,routcde=(11),mf=l
plist call ,(0,0,0,0),mf=l
msg2 ds h

ds c'Today is: '
date ds cl10' '

ds c'.'
worksize equ *-save

Copyright � 2008 by Steven H. Comstock 35 Assembler



Code Samples

CALL - special features

There are two additional parameters you can code on CALL that are of
interest to us:

� LINKINST=instruction_name - you can request an instruction
different from BALR, such as BASR or BASSM to be used to do
the actual transfer of control

� LINKOP=val1 for the operand(s) of the linkage instruction (default
is '14,15'); if you have only a single value, it can be specified
outside of apostrophes, otherwise you code: LINKOP='val1,val2'

� The key is, after substitution is the result a valid machine
instruction?

� Both of these operands may be specified on standard form or the
execute form

� They need not be specified on the list form, which is just for
holding parameter addresses

Copyright � 2008 by Steven H. Comstock 36 Assembler



Code Samples

CALL - difficulty

In the non-reentrant but baseless program (pgm2), we found out that the
standard format of CALL generates a BAL around a constant; we had to put
in addressability in for a short range:

using (*,end1),5
larl 5,*
call appadate,((4),date)

end1 ds 0h

� The problem goes away once you get reentrant and use the list
and execute forms

Copyright � 2008 by Steven H. Comstock 37 Assembler



Code Samples

Doing I/O

I/O processing is a large, complex issue. In this paper we provide a brief
introduction to the main issues for programs using the four styles we have
been discussing. We hope this provides enough insight for you to
successfully meet your specific I/O needs.

Keeping in mind we want to run AMODE 31 / RMODE 31, recall that we
need to have DCBs reside below the line. The solution is code DCBEs
containing 31-bit addresses we need and point to these DCBEs from the
DCBs.

We address six macros: DCBE, DCB, OPEN, CLOSE, GET, PUT, in that
order.

DCBE

� A DCBE will be needed for each DCB you expect to OPEN; the
contents of a DCBE may be updated, so for reentrant versions of
code, you may need to copy your DCBE(s) into gotten storage

� Although there are many parameters here, we only care about a
few:

dcbe1 dcbe eodad=eof,rmode31=buff,synad=err1
dcbe2 dcbe rmode31=buff,synad=err2

� 'eof' identifies the label in your program where control should
pass on end of file (only makes sense for input files, of course)

� 'rmode31=buff' says open should get buffers from above the line

� synad= identifies the address of an error handling routine (if any)
that should get control in the event of an uncorrectable I/O error

Copyright � 2008 by Steven H. Comstock 38 Assembler



Code Samples

The synad routine can be very simple:

err1 abend 1
err2 abend 2

� Note that this simple format of ABEND Assembles properly and
works fine in reentrant, non-reentrant, baseless, non-baseless
environments equally well

Next, the DCBs; we go with the minimum for one input and one output file:

file1 dcb ddname=zinputx,dsorg=ps,macrf=(gm),dcbe=dcbe1
file2 dcb ddname=reprt,dsorg=ps,macrf=(pm),dcbe=dcbe2, x

recfm=f,lrecl=60

Now, even for our non-reentrant programs, we need to get storage below the
line and copy the DCBs there. So, in anticipation of this, we actually set up our
DCBs this way:

src_files ds 0h
file1 dcb ddname=zinputx,dsorg=ps,macrf=(gm),dcbe=dcbe1
fsize1 equ *-file1
file2 dcb ddname=reprt,dsorg=ps,macrf=(pm),dcbe=dcbe2, x

recfm=f,lrecl=60
fsize2 equ *-file2
filesize equ *-src_files

Copyright � 2008 by Steven H. Comstock 39 Assembler



Code Samples

Then we need to include a DSECT that covers the area for the files, maybe:

ltorg
fileDsect dsect
files ds 0h
infile ds xl(fsize1)
outfile ds xl(fsize2)

Of course, for the reentrant programs we simply need to add infile and

outfile as above into the existing DSECT Now we're ready to examine the
actual I/O processing macros

For reentrant programs, we have included room for our DCBs in our original
GETMAINs. For the non-reentrant programs, before we can do any I/O, we
need to get storage below the line and copy the DCBs there:

getmain r,lv=filesize
lr 3,1
using fileDsect,3
mvc infile(fsize1),file1
mvc outfile(fsize2),file2

Then, the OPEN:

la 4,fsize1(,3)
open ((3),(input),(4),(output)),mode=31

Notes

� The basic form of OPEN requires DCBname for the first operand
of each pair of operands (DCBname,(open_option))

� The DCBname can't be a name in a DSECT unless you are using
list and execute forms of OPEN

� For our code here, R3 contains the address of the copy of file1,
the LA instruction sets the address of the copy of file2 into R4

Copyright � 2008 by Steven H. Comstock 40 Assembler



Code Samples

In the case of our reentrant programs, we must use the list and execute
forms of OPEN, since the standard form of OPEN builds its parameter list
inline. So we need to build a source for the list form, provide for space in our
gotten storage DSECT, and copy the source for OPEN (and CLOSE) into the
gotten storage. The pieces look like this:

mvc openwk(size_opn),opens
.
.
.
open (infile,(input),outfile,(output)), x

mf=(e,openwk),mode=31

In our constants / data area:

opens open (,,,),mf=l,mode=31
size_opn equ *-opens
closes close (,,,),mf=l,mode=31
size_clo equ *-closes

And in our DSECT:

openwk open (,,,),mf=l,mode=31

Note that the openwk area can be used for both OPEN and CLOSE, so no
need to have separate areas.

You could check R15 after the OPEN: a value of zero means all files were
successfully OPENed.

Now for doing the real I/O …

Copyright � 2008 by Steven H. Comstock 41 Assembler



Code Samples

For all four programs, we can retrieve (GET) and write (PUT) records using
the same syntax, no special concerns:

get infile,inrec
.
.
.
put outfile,outrec

� Where 'inrec' and 'outrec' are in your data areas or your gotten
storage, depending on which style of coding you are using

� Note that error checking is done by the access method; if a
non-recoverable I/O error is encountered, the access method will
branch to your SYNAD routine, if you have one

Finally, at end of file, you will be branched to your EODAD routine

(shutdown in all our samples) where you should close your files:

close ((3),,(4)),mode=31

for the non-reentrant programs; or

close (infile,,outfile),mf=(e,openwk),mode=31

for the reentrant programs.

Again, you might check R15 after CLOSE for errors. In our samples, we
checked R15 after both OPEN and CLOSE, and for a non-zero value jumped
to an ABEND 0 macro. (Kinda' crazy have a User abend code of zero, but it
works and keeps the style consistent.)

Copyright � 2008 by Steven H. Comstock 42 Assembler



Some Observations on DCBEs

The Data Set Macros manual has inconsistent, sometimes misleading,
comments about DCBEs. You may need to test each case where you use
them. We believe this much is true:

* If you want your program to run AMODE 31, your DCBs must be
below the line; but routines such as EODAD and SYNAD must have
31 bit addresses, regardless of where the routines are actually
located

In this case, you need a DCBE because the DCB itself only
supports 24-bit addresses. When you specify DCBE=dcbename
in your DCB, the macro expands the DCB so that the first word
contains the 31-bit address of your DCBE (and two bits are also
turned on indicating there is a DCBE)

The question arises if the DCBE itself is ever modified (see page 38).
The manual seems to indicate the DCBE is modified in certain cases,
including when your are using "31-bit SAM" support, which would seem
to include our small sample programs. But for our two reentrant
programs (PGM3 and PGM4) we did nothing to copy the DCBEs
into gotten storage, yet we Assembled and bound with the RENT
option and the program ran with no errors - until I ran them under
the OMVS shell; then they abended. Ah hah!

Copyright � 2010 by Steven H. Comstock 43 Assembler



Some Observations on DCBEs

Suppose you encounter a situation where you abend because OPEN tries to
modify a DCBE. In that case, you will need to include DSECT entries for the
DCBE(s) affected, and copy the DCBE(s) from your constants section into
those DSECT areas. AND (here's the secret) you need to put the address of
the DCBEs in gotten storage into the the first words of the corresponding
DCBs in gotten storage.

The same code works for both PGM3 and PGM4 type coding:

* After you move the DCBs to gotten storage, move the DCBEs,
and set the DCBs in gotten storage to point to the DCBEs in
gotten storage:

...
mvc outfile(fsize2),file2
mvc gdcbe1(szdcbes),dcbe1
la 3,gdcbe1
st 3,infile
la 3,gdcbe2
st 3,outfile

* In your constants area:

dcbe1 dcbe eodad=shutdown,rmode31=buff,synad=err1
dcbe2 dcbe rmode31=buff,synad=err2
szdcbes equ *-dcbe1

* In your DSECT area:

openwk open (,,,),mf=l,mode=31
gdcbe1 dcbe eodad=shutdown,rmode31=buff,synad=err1
gdcbe2 dcbe rmode31=buff,synad=err2

... and that's it. So we modified PGM3 and PGM4 to take this approach.

Copyright � 2008 by Steven H. Comstock 44 Assembler



We hope you found this little paper helpful. We plan to write some further
papers on related topics; tentatvely: "64 Bit Assembler Coding" and "Coding
Assembler for LE" If you are interested in these, drop me a line or give me a
call.

If you have suggestions for improvements, or you spot an error, or you have
a question, feel free to contact me (see the front cover for contact
information).

Copyright � 2008 by Steven H. Comstock 45 Assembler


