

ibm.com/redbooks

Programming with
VisualAge for Java
Version 3.5

Osamu Takagiwa
Frederik Haesbrouck

Veronique Quiblier
Sarah Poger

Teach yourself VisualAge for Java
the easy way

Use relational databases and the
WebSphere Test Environment

Develop applications,
applets and servlets

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Programming with VisualAge for Java
Version 3.5

April 2001

SG24-5264-01

International Technical Support Organization

© Copyright International Business Machines Corporation 1998, 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Second Edition (April 2001)

This edition applies to Version 3.5 of VisualAge for Java, Professional Edition, for use with the Windows
NT or Windows 2000 operating systems.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special notices” on page 367.

Take Note!

Contents

Figures .xi

Tables. xvii

Preface .xix
The team that wrote this redbook. xix
Comments welcome. xx

Chapter 1. Introduction to the environment . 1
VisualAge for Java product family . 1

VisualAge for Java Professional Edition . 2
VisualAge for Java Entry Professional Edition . 4
VisualAge for Java Enterprise Edition . 4
VisualAge for Java Entry Enterprise Edition . 5
Updates to VisualAge Java . 5

Building your first applet . 5
Let’s get started! . 7
SmartGuide . 8
The Workbench. 12
Modifying your applet . 14
Creating an animated applet . 15
Changing the properties of the applet . 16

Building your first application . 17
Running a program as an applet and application . 20
The VisualAge for Java Source View window. 21

The VisualAge for Java Scrapbook . 22
Using the Scrapbook. 22
Scrapbook context . 25
Correcting errors in the Scrapbook . 25
If your Scrapbook page remains busy. 27

Customizing VisualAge for Java. 28
Workbench Options. 28

Building your first servlet . 31

Chapter 2. Organizing your code. 41
Projects in VisualAge for Java . 41

Adding features . 42
Packages in VisualAge for Java. 42
The Workbench . 43

The Workbench Projects page . 44
The Workbench Packages view . 46
© Copyright IBM Corp. 2001 iii

Using types from other packages. 48
The Workbench Resources page . 50
The Workbench Classes page . 50
The Workbench Interfaces page . 52
The Workbench All Problems page. 52

Full source code edit . 55
Code Assists . 56
Importing and exporting with VisualAge for Java . 57

Importing into VisualAge for Java . 58
Exporting from VisualAge for Java . 60

Chapter 3. Migrating to Java2 . 65
The Fix/Migrate SmartGuide . 65
The repair process . 68
Migrating your servlet and JSPs. 70

Chapter 4. Beginning the ATM project . 73
Problem domain . 73
Building the ATM model . 75

Use cases . 76
ATM state diagrams . 78
Analysis class diagram . 82
Design class diagrams . 84
Interaction diagram . 89

Overall architecture . 91
The big picture . 91
GUI client . 92
Browser client . 93
Database access. 94

Example implementation . 95
Detailed steps implementing the first class . 96
Reusing existing method to create a new method 101
PrimaryKey class hierarchy. 102
Creating an inner class . 103
Persistency based on HashMaps . 105
Finder methods . 105
Implementations of the state diagram . 106
Test application . 107

Chapter 5. Creating servlets . 109
Overview of Java servlets . 109
The Java Servlet API . 113
Building the ATM application servlets . 116
iv Programming with VisualAge for Java Version 3.5

Chapter 6. Creating JSPs. 129
Java Server Pages . 129
How Java Server Pages work . 130
JSP interactions . 131
Invoking a JSP by URL . 132

Calling a servlet from a JSP . 132
JSP 0.91 and 1.0 . 133
Designing the JSP model . 134

Model-View-Controller (MVC) . 134
Servlet based modeling. 135

Building the ATM application . 138
JSP tags . 140

Chapter 7. Creating GUI applications . 143
Abstract Windowing Toolkit and Java Foundation Classes refresher 143
Visual Composition Editor . 144

The Beans Palette. 146
Modification of the Beans Palette . 147
Visual Composition Editor toolbar . 149
The free-form surface . 149

Working with beans in the Visual Composition Editor 150
Adding beans . 150
Customizing Beans . 151
Naming beans . 154
Beans List . 155
Factory and variable . 155

Visual Programming in action. 156
The ATM classes created . 157
Building the CardBean class . 159
Building the CardBeanHome class . 164
Building the BankAccountBean class . 167
Building the ATM application. 169
Connections . 175
Connection properties . 177
Creating connections . 178

Chapter 8. Versioning your code . 183
introduction to versioning . 183

Program elements. 184
Workspace versus repository . 185

The workspace is only a cache . 186
Backup or restore the workspace . 187
Clean workspace copy . 188
 v

Multiple workspaces on one repository . 189
Backup or restore the repository . 189
Workspace versus repository continued . 190

Version control . 191
Editions and versions . 191
Consequences of versioning. 193
How to version elements with VisualAge for Java 194
Apply this to the ATM application . 197
Methods, a special case . 197
Importance of versioning your code regularly . 198
Fields and inner classes . 199
Versioning resource files . 199

Using editions. 201
Method edition tab. 201
Comparison result window . 203
Merging compared elements. 205
Types edition tab. 209
Packages edition tab . 210
Projects edition tab . 211
Replacing current edition . 213
External versioning systems . 216

Import and export effects . 217
Import and export with Java files. 217
Import and export with repository files . 218

Repository Explorer . 222
Purging and restoring elements . 225
Compacting a repository . 226
Go To tools . 228
Solutions . 228

Chapter 9. Testing and debugging the Web application 231
VAJ Debugger . 231

The debugger . 231
The Debug Page . 231
The Breakpoints Page. 236
The Exceptions Page . 241
External Debug . 243
Generating a Class Trace . 245
Performance and the Class Trace option . 245
Inspectors . 245
The Inspector window . 246

WebSphere Test Environment (WTE) . 249
Start the WebSphere Test Environment . 250
vi Programming with VisualAge for Java Version 3.5

Testing JSPs under WebSphere Test Environment . 254
VisualAge for Java configuration for JSPs . 254
Running a simple JSP. 255

Debugging servlets and JSPs . 257
Debugging a servlet . 257
JSP Execution Monitor . 259
Debugging JSP generated source code . 261
Debugging JSP without importing . 262

Persistent Name Server . 262
WebSphere Test Environment — advanced configuration 265

Types of resources . 265
Resource locations . 265
The key configuration files . 266

WebSphere Test Environment — multiple Web applications. 270
Configuring multiple Web applications . 271
Using the ServletEngineConfigDumper servlet . 273

Chapter 10. Using relational databases . 275
JDBC 2.0 . 275

DataSource versus DriverManager. 278
Queries and result sets . 278
Stored procedures . 279
Updating the database . 279
Using SQLJ inside Visual Age for Java . 280
Data access beans. 281
Making the ATM persistent. 285

Prerequisites . 285
Creating tables . 286

Making the card class persistent . 287
Creating the Select beans . 288

Card Select bean . 288
Card Select All bean . 299
CardAcctSelect . 299

Modify beans . 300
Card Insert . 301
Card Delete . 303
Card Update . 304
Card Visual Composition Editor View . 306
Modifying related methods . 306

Data Access Beans with an application . 309

Chapter 11. Internationalization . 311
Java Internationalization Framework . 311
 vii

Locales . 311
Resource bundle . 314

Internationalization in VisualAge for Java . 316
Building a language panel . 320

LanguagePanel view . 320
Creating the resource bundles . 321

Dynamically changing the locale . 323
Loading resource bundles. 323
Retrieving resources from resource bundles . 324
Finishing the LanguagePanel . 324
Formatting dates and times. 328

Other internationalization considerations . 331
Using predefined formats . 331

Internationalization in the Web environment . 336
Character codes on the Web . 337

Chapter 12. Deploying the Web application . 341
Before you start . 341
Using WebSphere Application Server . 342

Deploying a Web application. 343
Planning for multiple Web applications . 348
Deploying a JSP . 349

Deploying an application . 349
Include Referenced Types . 350

Deploying an applet . 352
Web browsers . 352
CLASSPATH or CODEBASE . 352
Applet Tags . 353
Deploying the ATMApplication applet . 355
Deploying supporting code . 355

Appendix A. JSP tag syntax . 357
JSP tag syntax summary . 357

WebSphere specific tags . 359

Appendix B. Using the additional material . 363
Locating the additional material on the Internet . 363
Using the Web material . 363
System requirements for downloading the Web material 363
How to use the Web material . 364
viii Programming with VisualAge for Java Version 3.5

Appendix C. Special notices . 367

Appendix D. Related publications . 371
IBM Redbooks . 371
IBM Redbooks collections . 371
Other resources . 372
Referenced Web sites . 372

How to get IBM Redbooks . 373
IBM Redbooks fax order form . 374

Glossary . 375

Abbreviations and acronyms . 383

Index . 385

IBM Redbooks review . 391
 ix

x Programming with VisualAge for Java Version 3.5

Figures

1. The VisualAge for Java Welcome dialog box . 7
2. The Quick Start dialog box. 8
3. The Create Applet SmartGuide . 9
4. The Properties page of the Create Applet SmartGuide 10
5. The Events page of Create Applet SmartGuide. 11
6. The Code Writer page of Create Applet SmartGuide 12
7. The Workbench . 13
8. Your first applet running in the Applet Viewer . 14
9. Class Properties window for the HiThere class . 16
10. Creating the HiAgain Application . 17
11. Application Attributes . 18
12. The VisualAge for Java Console . 20
13. The Source View window. 21
14. Launching the Scrapbook in VisualAge for Java . 23
15. Evaluating Java Code in the Scrapbook . 23
16. Console output for the loop executed in the Scrapbook 24
17. Using operators in the Scrapbook . 25
18. An error message in the Scrapbook window . 26
19. Using the Code Assist facility. 27
20. Workbench Options . 29
21. The Servlet SmartGuide . 32
22. Servlet SmartGuide Import Statement window . 33
23. Servlet attributes . 34
24. HiHttpServlet Source View. 35
25. Starting the WebSphere Test Environment . 37
26. WebSphere Test Environment Control Center . 38
27. Console window when starting the WTE Servlet Engine 39
28. HiHttpServlet Output . 40
29. The Workbench toolbar . 43
30. Workbench Projects page . 45
31. Workbench Packages page . 47
32. Create Class SmartGuide: Import statement dialog box 49
33. Workbench Resources page . 50
34. Workbench Classes page . 51
35. Workbench Interfaces page . 52
36. Workbench All Problems page. 53
37. Warning Dialog: Undefined Variable . 54
38. Source View. 56
39. Code Assists . 57
40. Importing Java Files into VisualAge for Java . 59
© Copyright IBM Corp. 2001 xi

41. Importing from another repository . 60
42. The Export SmartGuide . 61
43. Exporting to a Jar file . 63
44. How to start the Fix/Migrate SmartGuide. 66
45. The Fix/Migrate SmartGuide window. 67
46. Fix/Migrate SmartGuide- Excluded packages- . 68
47. ATM use case diagram . 77
48. ATM state diagram. 79
49. Sub state Diagram of ATM In Use State . 80
50. Analysis class diagram . 83
51. ATM related part of the design model . 85
52. Design class diagram related to primary keys . 86
53. Transaction . 87
54. TransactionAbortedException diagram . 88
55. Sequence diagram for the ‘get money’ scenario . 90
56. Architectural diagram . 92
57. Specify BigInteger as superclass. 97
58. Second page of ‘Create new class’ SmartGuide for Money 98
59. Skeleton method in class browser . 100
60. Overview of communication between Web browser and servlet 111
61. Multiple requests reaching the servlet . 113
62. Workbench after creating the eight servlets. 118
63. ShowATMServlet in the Web browser . 123
64. InsertCardServlet in the Web browser . 125
65. EnterPINServlet in the Web browser . 126
66. EnterPINServlet in the Web browser — invalid PIN 126
67. ChooseAccountServlet . 127
68. ChooseActionServlet . 127
69. EnterAmountServlet. 128
70. ChooseActionServlet — View Transaction History selected by user. . . . 128
71. The JSP processing life-cycle on first-time invocation. 131
72. Sample JSP including a servlet . 133
73. Sample JSP forwarding processing to a servlet 133
74. Model-View-Controller design . 135
75. Servlet-only model . 136
76. Servlet-JSP model . 137
77. The Visual Composition Editor. 145
78. Nonvisual Bean Icons . 146
79. The Beans Palette with Swing . 147
80. Modifying the Beans Palette . 148
81. Modify Palette dialog box. 148
82. Selection and Choose Bean tools on the Palette. 150
83. Choose Bean Dialog . 151
xii Programming with VisualAge for Java Version 3.5

84. Property sheet of a JTextField bean . 152
85. Bean pop-up menu for class and variable . 154
86. The finished ATM Applets . 156
87. Classes defined in com.ibm.itso.sg245264.atm.memory package 157
88. Classes defined in com.ibm.itso.sg245264.atm,database package 158
89. Add package window . 159
90. Create Class SmartGuide . 160
91. Create Class SmartGuide — Attributes window 161
92. BeanInfo window for CardBean Class . 162
93. Create Class CardBeanHome -— Attributes window 165
94. Create class BankAccountBean — Attributes window. 167
95. Create the ATMApplication Applet. 169
96. Create ATMApplication — Applet Properties window 170
97. The Beans List . 171
98. JAppletContentPane Property sheet . 172
99. Choose CardBeanHome Bean . 173
100.Choose CardBean bean . 174
101.The ATMApplication View . 174
102.ATMApplication connection view. 180
103.The ATMApplication applet view . 181
104.Versionable program elements . 184
105.Interaction between IDE components, workspace, and repository 185
106.Exit dialog of VisualAge. 186
107.Basic state diagram for editions . 192
108.Project browser menu bar . 195
109.Popup menu for a package expanded on the Manage option. 195
110.Versioning dialog window . 196
111.Dialog to specify the name of each sub-element 196
112.‘Show edition names’ — toggle . 197
113.Using the popup menu on a method to go directly to its edition tab 201
114.Edition tab in method browser showing a list view of available editions . 202
115.Hierarchical view of the editions on the edition tab 203
116.Comparison result window in action . 204
117.Replace with Alternative option to merge source 206
118.Shadow objects are unchangeable warning . 207
119.The two versions of the ‘Compare With’ popup menu submenu. 208
120.Edition tab in class browser. 209
121.Edition tab in Package Browser . 210
122.Edition tab in project browser . 212
123.‘Replace Wtih’ submenu available from many places 213
124.Replacement dialog for a class element . 214
125.Replacement Dialog for resource files . 215
126.Add To Workspace from the edition popup menu 215
 xiii

127.Create package SmartGuide . 216
128.Export to a repository file, second page of SmartGuide 219
129.Specify the packages and the editions to export 220
130.Import from resource file dialog. 221
131.Repository Explorer e on package tab . 223
132.Repository Explorer showing the available projects 224
133.Confirmation before purging elements . 225
134.Restore purged items . 226
135.Cannot compact the repository while there are open editions 227
136.Compacting will remove open editions and will create a backup 227
137.Go To dialog . 228
138.Solutions are manipulated in the Repository Explorer 229
139.Popup menu for solution list . 229
140.Solution export dialogs . 230
141.Debug Page Toolbar . 232
142.Debugger option . 233
143.Running programs in the Debugger . 234
144.Watches window . 235
145.Evaluation window. 235
146.Breakpoints Page toolbar . 236
147.Breakpoint in the Paint Method . 238
148.Conditional Breakpoint Configuring Dialog Box 240
149.Breakpoint Configuring Dialog Box: Printing Diagnostics 241
150.Exceptions. 242
151.External method breakpoint dialogs . 244
152.An Inspector window . 246
153.Changing the Value of a Field . 247
154.Evaluating Code in the Context of an Object . 248
155.WebSphere Test Environment . 249
156.WebSphere Test Environment Control Center . 250
157.WebSphere Test Environment Class Path . 251
158.Servlet Engine Console Status . 252
159.HiHttpServlet output . 253
160.The default_app.webapp: JSP 1.0 configuration. 255
161.The default_app.webapp: JSP 0.91 configuration. 255
162.Very simple JSP response . 256
163.Very simple JSP source . 256
164.Debugging the HiHttpServlet . 258
165.ServletEngineRunner threads . 259
166.JSP Execution Monitor options . 260
167.JSP Execution Monitor window . 261
168.JSP settings . 262
169.Persistence Name Server settings . 263
xiv Programming with VisualAge for Java Version 3.5

170.Persistence Name Server console . 263
171.DataSource configuration . 264
172.Servlet engine configuration . 274
173.Add a JDBC driver to the workspace classpath 277
174.dialog during translation process. 280
175.Workspace SQLJ menu . 281
176.SQLJ Properties window . 281
177.Relationship between the select and modify objects. 284
178.CreateTable class . 286
179.Change the VCE palette to the data access beans. 287
180.Choose the Select data access bean . 287
181.Properties window for the Select bean . 288
182.New database access class . 289
183.Connection Alias Definition . 290
184.New SQL Specification . 291
185.SQL Assist SmartGuide — Tables . 292
186.SQL Assist SmartGuide — Condition 1 . 293
187.SQL Assist SmartGuide — Columns . 294
188.SQL Assist SmartGuide — SQL. 295
189.Specify Parameter Values. 296
190.SQL Execution Result Set. 296
191.Created SQLs . 298
192.SelectAllSQL Result . 299
193.CardAcctSelectSQL . 300
194.Modify Bean . 301
195.SQL Assist SmartGuide — Insert . 301
196.SQL Assist SmartGuide — Insert Value. 302
197.Insert . 302
198.SQL Assist SmartGuide — Delete . 303
199.SQL Assist SmartGuide — Update Values . 304
200.SQL Assist SmartGuide — Update Statement . 305
201.Card Visual Composition Editor . 306
202.CardQuery Applet — Visual Composition Editor 310
203.AllLocaleList connections . 313
204.AllLocaleList applet . 314
205.Externalizing strings . 317
206.String externalization editor. 319
207.The LanguagePanel in the Visual Composition Editor 321
208.Externalizing the SelectLanguageLabel . 322
209.LanguagePanel connection. 327
210.Running LanguagePanel. 328
211.LanguagePanel View2 . 329
212.LanguagePanel Output with dates and times . 331
 xv

213.setting up converter manually . 338
214.Show Config Servlet . 339
215.Web Application name . 344
216.Parent Servlet Engine . 344
217.Add a Servlet -— Select the ITSO Web Application 346
218.Select ATM.jar . 346
219.Specify the Servlet class . 347
220.WebSphere Standard Administrative Console . 348
221.Exporting the ATM to a jar File . 351
222.Testing the ATM Application . 351
223.Class diagram . 365
224.JavaDoc . 366
xvi Programming with VisualAge for Java Version 3.5

Tables

1. Object-oriented terms . 6
2. Default VisualAge for Java projects and their contents 42
3. .Toolbar icon descriptions . 44
4. JSP conversion map . 71
5. Terms used. 109
6. The stages of the servlet life-cycle. 114
7. Methods used to request a servlet. 116
8. All servlets needed for the ATM application . 117
9. Scope. 120
10. Differences between workspace and repository 191
11. Accessing relational data in Java. 275
12. Summary of data access beans . 282
13. Summary of JSP tag syntax. 357
14. IBM extensions to JSP for variable data . 360
15. WebSphere scripting language extensions (XML format only) 361
© Copyright IBM Corp. 2001 xvii

xviii Programming with VisualAge for Java Version 3.5

Preface

This IBM Redbook provides you with sufficient information to effectively use
the VisualAge for Java Professional Edition Version 3.5 environments to
create, manage, and deploy Web-based applications using methodologies
centered around servlets, applets, Java Server Pages, and JavaBean
architectures.

This book is intended to be read by anyone who requires both introductory
and detailed information on software development in the Java and
Web-based application environment using applets, servlets, and Java Server
Pages. We assume that you have a good understanding of Java and some
knowledge of HTML.

We describe the Java development though the VisualAge for Java product.
Following this, we cover Java applications, Java applets, servlets, and JSP
programming, and 3-tier application design concepts. Using the knowledge
developed in these chapters, we then provide detailed information on the
development environments offered by VisualAge for Java. These chapters
will assist you in using the features offered by these tools, such as integrated
debugging, the WebSphere Test Environment, and publishing of Web site
resources.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Osamu Takagiwa is an Advisory I/T Specialist with the IBM International
Technical Support Organization, San Jose Center. He writes extensively and
teaches IBM classes worldwide on all areas of Application Development.
Before joining the ITSO 4 months ago, Osamu worked in IBM Japan as an I/T
Specialist.

Frederik Haesbrouck is a Java Architect working for his company FreWare
bvba in Belgium. He graduated as a computer scientist at the University of
Ghent in 1995. After some experience as an employee of different firms
including Alcatell Bell, IBM Belgium, and eXpanded Media, he started
working as an independent Java Architect contractor all over.

Veronique Quiblier is an Application Development Specialist with IBM
Technical Sales for EMEA. She has 15 years of experience in the field of
application development.
© Copyright IBM Corp. 2001 xix

Sarah Poger is a programming manager with SunGard Futures Systems in
Chicago, Illinois. She has over 5 years of application development and
architecture experience, primarily in the finance sector. She is currently
working on several Internet applications targeted for brokerage firms.

Thanks to the following people for their invaluable contributions to this project:

Ueli Wahli
International Technical Support Organization, San Jose Center for his ongoing
support in all aspects of application development and redbook publishing

John McLean
Program Director Language Products, IBM Silicon Valley Lab

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

 • Fax the evaluation form found in “IBM Redbooks review” on page 391 to
the fax number shown on the form.

 • Use the online evaluation form found at ibm.com/redbooks

 • Send your comments in an Internet note to redbook@us.ibm.com
xx Programming with VisualAge for Java Version 3.5

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction to the environment

VisualAge for Java product is IBM’s integrated, visual development
environment for building Java applications, servlets, applets, and Java
Beans. VisualAge for Java supports the complete cycle of Java program
development. Using the true rapid application development (RAD) capability
provided by VisualAge for Java, you can shorten the development life cycle of
your applications and improve their time to market.

VisualAge for Java is a comprehensive, best-of-breed Java tool for creating
e-business applications that target the IBM WebSphere software platform for
e-business — the industry's most flexible and reliable e-business foundation
for the rapid development and delivery of a brave new world of e-business
applications. The ability to rapidly build, test, and deploy e-business
applications sets VisualAge for Java apart from its competition.

In this chapter you will find a short description of the VisualAge for Java
product family and an overview of VisualAge for Java Version 3.5. You will
learn the basic terms that you need to understand to create your first
program. Before you finish reading this chapter, you will have your first Java
program up and running on the Web!

VisualAge for Java product family

VisualAge for Java Version 3.5 is available in four editions:

 • VisualAge for Java Professional Edition
 • VisualAge for Java Entry Professional Edition
 • VisualAge for Java Enterprise Edition
 • VisualAge for Java Entry Enterprise Edition

This book covers the VisualAge for Java Version 3.5 Professional Edition and
the VisualAge for Java Version 3.5 Entry Professional Edition, without
describing the features of VisualAge for Java Enterprise Edition and
VisualAge for Java Entry Enterprise Edition.

IBM also has several other offerings related to VisualAge for Java, including:

 • VisualAge Developer Domain (VADD)

VisualAge Developer Domain (VADD) is Java developer’s central access
point for products, JavaBeans, tools, tech tips, demos and samples,
product support, and product updates. In addition, VADD gives you access
to an ever-expanding technical library of Java information, including
newsletters, IBM Redbooks, technical articles, white papers, IBM Systems
© Copyright IBM Corp. 2001 1

Journal articles, product documentation, FAQs, presentations, and
educational opportunities. VADD is also a great place for you to exchange
information with a worldwide community of Java developers through the
forums and newsgroups.VADD offers you different access levels,
depending on your needs.

You can learn more about VisualAge Developers Domain at:

www.software.ibm.com/vadd

 • WebSphere Application Server

IBM WebSphere Application Server is an e-business application
deployment environment built on open standards-based technology. It is
the cornerstone of WebSphere application offerings and services. The
Standard Edition lets you use Java servlets, Java Server Pages and XML
to quickly transform static Web sites into vital sources of dynamic Web
content. The Advanced Edition is a high-performance EJB server for
implementing EJB components that incorporate business logic. The
Enterprise Edition integrates EJB and CORBA components to build
high-transaction, high-volume e-business applications.

VisualAge for Java Professional Edition
VisualAge for Java Professional Edition is an integrated visual environment
that supports the complete cycle of Java program development. VisualAge for
Java gives you everything you need to perform the development tasks.
described below. The IDE includes:

 • Incremental compiler

Changes to your code are compiled "on-the-fly" as you work with
individual methods and class declarations. Errors in your code are
immediately flagged so that they can be fixed while you are concentrating
on that part of the code.

 • Repository-based environment

All of the code in the development environment is stored in a repository.
This repository enables incremental compilation and provides for very
powerful search capabilities. The code that you are working with is stored
in a workspace. Version management is built into the repository, and
versions or editions of code are automatically stored when you change
any program element (method, class, package, or project) in your
workspace.
2 Programming with VisualAge for Java Version 3.5

VisualAge for Java Professional Edition is a single-user, repository-based
environment. If you work as part of a development team, you may want to
consider using VisualAge for Java Enterprise Edition.

 • Project-based development

VisualAge for Java provides projects. The basic Java environments
provide only the concept of a package to organize your work. In VisualAge
for Java you organize your packages in projects.

 • Source code editor

A full-featured syntax editor, which helps you write error-free source code.

 • Advanced coding tools such as automatic formatting, automatic code
completion, fix-on-save, and suggested corrections feature

 • An integrated debugger

 • A Visual Composition Editor, which enables you to develop your
application visually

 • A JavaBean creation tool to create 100% pure Java beans that you can
use with the Visual Composition Editor

New powerful features that come with Version 3.5 of VisualAge for Java
Professional Edition include:

 • Full Java 2 SDK, Standard Edition, V1.2.2 support

 - JDK 1.2.2
 - Swing 1.1

 • Fix/Migrate SmartGuide assists with Swing 1.0.3 ->Swing 1.1 Migration

 • Full source code editing

The new option Open Source View provides you with another way to view
entire source in editor. Code assist is available in source view. The file
format/order is preserved. The editor-oriented programmers should like
this!

 • Improved inner class support

You can Browse/Edit inner classes/methods like normal classes/methods
in IDE.

 • Manage non-Java artifacts from Resources view

Non-Java artifacts are not stored in repository. They are managed based
on date/time stamp when resources are released

 • Enhanced code formatting

 • Servlet SmartGuide generates servlets, JSP files, and prototype HTML
Chapter 1. Introduction to the environment 3

 • All Problems page filtering

Filter warnings/errors on All Problems page

 • New WebSphere Test Environment Control Center

You can Start/Stop Servlet Engine, Start/Stop Persistent Name Server
(PNS),Set JSP Execution Monitor Settings and Define Data Sources

VisualAge for Java Entry Professional Edition
The VisualAge for Java Entry Professional Edition provides the same
functions as VisualAge for Java Professional, with a limit of 750 Java types
(classes and interfaces).

To download VisualAge for Java, Entry Professional Edition, Version 3.5 you
must be a registered user of VisualAge Developer Domain and logged in.
Registration is free.

VisualAge Developer Domain(VADD) Web site:

www.software.ibm.com/vadd

VisualAge for Java Enterprise Edition
VisualAge for Java Enterprise Edition is an enterprise-aware, Java
application development environment for teams of Java developers. Use it to
extend existing server data, transactions, and applications to e-business.

In addition to the functions in the Professional Edition, VisualAge for Java
V3.5 Enterprise Edition supports:

 • Updated Enterprise Access Builder (EAB) functionality that consolidates
connectors at a JDK 1.2.2 level and positions customers for compliance to
the emerging Java 2 Platform, Enterprise Edition JCX API.

 • Enhanced Enterprise Access Builders (CICS TS, IMS, Encina, MQSeries,
TXSeries, Host-On Demand, and SAP R/3) that provide more connectivity
than any other Java IDE.

 • Test client generation that speeds testing of server side Java code (EJB
components). Also generates clients to Enterprise Access Builders
connectors.

 • Enterprise JavaBeans components. Generation of and complete support
for the EJB specification, through wizards, persistent mapping tools,
dependency management, and improved test and advanced deployment
tools.
4 Programming with VisualAge for Java Version 3.5

 • XMI Toolkit for integration with the Rational Rose product, and other
XMI-based UML modelling tools.

 • Interface definition language (IDL) development environment and
improved support for multiple object request brokers (ORBs), which can
now be loaded into and unloaded from the development environment.

VisualAge for Java Entry Enterprise Edition
The VisualAge for Java Entry Enterprise Edition provides the same functions
as VisualAge for Java Enterprise Edition, with a limit of 750 Java types
(classes and interfaces).

To download VisualAge for Java, Entry Enterprise Edition, Version 3.5, you
must be registered user of VisualAge Developer Domain and logged in.
Registration is free.

VisualAge Developer Domain(VADD) Web site:

www.software.ibm.com/vadd

Updates to VisualAge Java
Updates to the different editions of VisualAge Java are provided at the
VisualAge Developer Domain (VADD) Web site:

www.software.ibm.com/vadd

Building your first applet

Now that you have an idea of the capabilities of VisualAge for Java, you can
build your first applet.

Before starting, you should familiarize yourself with the terms in Table 1.
If you are not familiar with any of the terms in Table 1 or you are new to the
Java language itself, first read some of the resources listed in “Locating the
additional material on the Internet” on page 363.
Chapter 1. Introduction to the environment 5

Table 1. Object-oriented terms

Term Definition

Class A template for creating objects. A class defines the behavior
and properties that are common to all objects of that class.

Interface A specification of behavior that a class must provide if it
implements the interface.

Object An instance of a class. An object shares the behavior of all
objects of the same class, but each object can have a
different state.

Applet A special kind of class introduced in Java. Its instances
usually run in a Web browser such a Netscape Navigator.
Contrast with Application.

JApplet If you want to use Swing components in the applet, use
JApplet as the super class rather then Applet.

Swing Set Swing Set = JFC (Java Foundation Classes)
JFCs are building blocks that are helpful in developping
interfaces to Java applications. They allow Java applications
to interact more completely with existing operating systems.

Application In Java programming, a self-contained, stand-alone Java
program that includes a static main method. It does not
require an applet viewer. Contrast with Applet.

Attribute or field A data variable held by a class.

Access modifier In Java the access modifiers are public, private, protected,
and default or package.

Method or Message Objects communicate with each other by sending messages.
When an object receives a message, a corresponding
method, defined in the class definition, is invoked to perform
the required task.

Package A collection of Java classes that typically serve a common
purpose. This is Java’s way of organizing classes into logical
entities that are easier to maintain and understand than a
huge set of classes at the same level.

Server The computer that hosts the Web page that contains an
applet. The .class files that make up the applet, and the
.HTML files that reference the applet reside on the server.

Servlet Server-side programs that execute on and add function to
Web servers. Java servlets allow for the creation of
high-performance, cross-platform Web applications.
6 Programming with VisualAge for Java Version 3.5

Let’s get started!
Before you go any further, you must have VisualAge for Java installed on your
computer. Your first Java class is a simple applet that displays the text of your
choice in the applet’s window. You launch VisualAge for Java by
double-clicking the IBM VisualAge for Java icon in the IBM VisualAge for
Java folder or selecting Start→Programs→IBM VisualAge for Java for
Windows→IBM VisualAge for Java.

If this is the first time you have started VisualAge for Java, a dialog box will
inform you that some features are being installed. Next, the Welcome to
VisualAge dialog box (see Figure 1) is displayed. The Welcome to VisualAge
dialog box is shown when you start the VisualAge for Java IDE, unless you
deselect the checkbox at the bottom of the window. Click Close to close the
dialog box.

Figure 1. The VisualAge for Java Welcome dialog box

A different dialog, the Quick Start, can also be used to start. The Quick Start
is available from the Workbench→File menu (see Figure 2).
Chapter 1. Introduction to the environment 7

The Workbench window opens the first time you start VisualAge for Java. The
Workbench is where you usually create and manipulate your classes. From
the Workbench you can launch the Quick Start window. Open the Quick Start
now, by selecting File→Quick Start from the menu bar.

Figure 2. The Quick Start dialog box

Using the Quick Start dialog, you can select from three options:

 • Basic: Create a new Applet, JApplet, Class, Interface, Project or
Application, or experiment with code.

 • Repository Management: Compact the repository.

 • Features: Add or Delete features to your environment.

You are going to create an applet, so select Basic→Create Applet and click
OK.

SmartGuide
VisualAge for Java uses SmartGuides (which are similar to Wizards in other
products) to help you create Java applets, servlets and applications. Clicking
the OK button on the Quick Start window opens the Create Applet
SmartGuide (Figure 3), which guides you through the process of creating
your new applet class.
8 Programming with VisualAge for Java Version 3.5

Figure 3. The Create Applet SmartGuide

To create your applet, fill in the text fields (Project, Package, and Applet
name) as shown in Figure 3. Leave Applet selected as Super class. This
means that java.applet.Applet class is used as your Super class. Deselect the
Browse applet when finished and Compose the class visually
checkboxes. We discuss Visual Programming in Chapter 7, “Creating GUI
applications” on page 143.

Click the Next button to access the second page of the SmartGuide. Note
that the project is a folder which provides a way to organize your Java and
related codes. We also discuss this in Chapter 2, “Organizing your code” on
page 41.
Chapter 1. Introduction to the environment 9

Figure 4. The Properties page of the Create Applet SmartGuide

These options are:

 • Create for main method, which creates a Frame window class and
instantiates your applet inside.

 • Your applet can contain threads. You also can add thread programming
manually.

Leave the default selections (see Figure 4) and click the Next button.
10 Programming with VisualAge for Java Version 3.5

Figure 5. The Events page of Create Applet SmartGuide

These options creates an event-handler method in your applet class. As your
first applet does not use any events, just click the Next button (Figure 5).
Chapter 1. Introduction to the environment 11

Figure 6. The Code Writer page of Create Applet SmartGuide

Select the Write example checkbox and click the Finish button as shown in
Figure 6. VisualAge for Java now creates the code needed for your new
applet. The dialog closes and lets you work with the Workbench window (see
Figure 7).

Believe it or not, you have just created your first applet with VisualAge for
Java! Now you can use the WorkBench to examine and run your applet.

The Workbench
The Workbench is the main control center of the VisualAge for Java IDE.
From the Workbench, you can access projects, packages, and classes; and
you can modify and test your code with just a few mouse clicks.
12 Programming with VisualAge for Java Version 3.5

Figure 7. The Workbench

To test your newly created applet, click the plus sign next to your project and
your package to expand them and then select the HiThere applet. Select
Selected→Run→In Applet Viewer from the menu bar of the Workbench to
run the applet. You can also run your applet by clicking the Run button (the
left-most button with the picture of a person running).

The Applet Viewer opens and runs your applet (Figure 8). The Applet Viewer
is a utility that lets you test your applets without having to use a Web browser.
You may have to resize the window to see the complete message.
Chapter 1. Introduction to the environment 13

Figure 8. Your first applet running in the Applet Viewer

Congratulations, you have built and tested your first applet with VisualAge for
Java!

Modifying your applet
To modify the applet to show different text, select your class in the
Workbench. The class definition of the applet is displayed in the Source pane
of the Workbench window and looks like this:

import java.applet.*;
import java.awt.*;
/**
* Insert the type's description here.
* Creation date: (11/16/2000 11:54:36 PM)
* @author:
*/
public class HiThere extends Applet {

Font font = new Font("Dialog", Font.BOLD, 24);
String str = "Welcome to VisualAge";
int xPos = 5;

}

14 Programming with VisualAge for Java Version 3.5

To change the text “Welcome to VisualAge” to any string you like, just type
over the text. Save your changes by selecting Edit→Save from the menu bar.
VisualAge for Java compiles the code immediately, and you can test the result
by again selecting Selected→Run→In Applet Viewer from the menu bar.

You do not even have to close the Applet Viewer to see the changes! Change
and save the text, then select Applet→Reload from the menu bar of the
running Applet Viewer.

This simple example shows how VisualAge for Java can help you create Java
programs. You did not have to edit, save or compile any file. You simply
changed the code generated automatically by VisualAge for Java, saved it,
and ran it. This reduced development time is a reality, thanks to the
incremental compiler, which compiles changes to your code on the fly when
you save it.

Creating an animated applet
Now that you are becoming more familiar with the VisualAge for Java IDE, it is
time to create your second applet. With VisualAge for Java, it is easy to
create applets that scroll text from one side of the applet to another.

This time you create a new class without using the Quick Start. Instead,
expand the Programming ITSO project by clicking on the + (plus sign) and
then select the com.ibm.itso.sg245264 package. Next, click on the Create
Applet icon (the one with the capital A on it) on the tool bar of the
Workbench. The SmartGuide appears again, requesting you to fill in
information about your second applet. Because you selected the package, the
Project and Package fields are already filled in (if not use the same names as
in your first applet). Enter HiThereAgain in the Applet Name field and make
sure the Browse applet when finished checkbox is not selected. Click the
Next> button to access the Applet Properties page. Select the Yes, create
an applet which runs in a thread radio button, and click the Next button.
From the Events page, just click the Next button. Select Write example
checkbox from the Code Writer page and click the Finish button.

Run the applet by selecting it in the Workbench and then selecting
Selected→Run→In Applet Viewer from the menu bar.

Your application should show a marquee text scrolling from left to right. You
have just built an animated applet.
Chapter 1. Introduction to the environment 15

Changing the properties of the applet
An HTML applet tag is required to run an applet within a browser, and within
that tag there are some required fields. VisualAge for Java automatically
creates the applet tag for you. If you want to change any of the properties or
add new ones, you open the Properties window for the class. Select the
HiThere class in the Workbench and then select Selected→Properties. The
window shown in Figure 9 appears.

The first time you ran your HiThere applet (Figure 8 on page 14), the applet
size was not perfect. On the Applet page of the Properties window, change
the Width to 300 and the Height to 100 and run your applet again. In the other
pages of this window you can set the Class path for the applet (where the
Applet Viewer looks for external classes) and see other properties of the
class. If this class were a Java application (which you are about to build), you
could set the command line parameters here.

Figure 9. Class Properties window for the HiThere class
16 Programming with VisualAge for Java Version 3.5

Building your first application

In this section you create a Java application that prints a string to the
VisualAge for Java Console. The Console is a window that displays
messages sent by your application to the standard output of the operating
system and where you enter input for your applications. To create a class that
can be run as an application, without the Applet Viewer or a Web browser,
you have to implement a method called main in your class.

Now start creating your application. In the Workbench, select the package
you created (com.ibm.itso.sg245264), then select Selected→Add→Class
from the menu bar. Enter HiAgain in the Class Name field (see Figure 10).

Figure 10. Creating the HiAgain Application
Chapter 1. Introduction to the environment 17

When you created your applet, the super class was java.applet.Applet.
Now because you are creating a class that does not need a user interface
and does not reuse the behavior of other objects, the super class is
java.lang.Object.

Deselect the Browse the class when finished and Compose the class
visually checkboxes.

Click the Next> button to access the second page of the SmartGuide
(Figure 11), where you specify attributes of your new class.

Figure 11. Application Attributes
18 Programming with VisualAge for Java Version 3.5

Select the main(String []) checkbox under Which method stubs would you
like to create and click the Finish button. VisualAge for Java creates a class
declaration and constructor for HiAgain and a stub, or skeleton code, for the
main method.

VisualAge for Java can automatically generate method skeletons for:

 • The common methods listed on the SmartGuide

 • Constructors declared in the super class

 • Methods that must be implemented because of abstract inheritance or
interfaces that the class implements

In the Source pane of the Workbench you can see the definition of your newly
created class. In the Browse pane, expand the class by clicking the plus sign
to the left of it, and you can see the main method. Select this method, and the
Source pane shows you the method implementation. Only a stub of the
method has been generated, but you can change that by adding the following
code to the method body:

System.out.println("This is my first application!");

The System.out.println() statement prints a string to the standard output,
which in turn is displayed in the VisualAge for Java Console window.

Your main method should now look like this:

/**
* Starts the application.
* @param args an array of command-line arguments
*/
public static void main(java.lang.String[] args) {

// Insert code to start the application here.
System.out.println("This is my first application...!”);

}

Save the changes you made, using the menu bar (Edit→Save) or the
Control-S key combination, and you are ready to see the results of your work.
Select Selected→Run→Run Main from the menu bar. The Console window
(Figure 12) opens to display the result. Notice that you do not have to select
the class itself; the Run function knows which class you are working with and
runs that class.
Chapter 1. Introduction to the environment 19

Figure 12. The VisualAge for Java Console

You have successfully created a Java application. The Console window
displaying the text that your application generated is used as a standard
output window for messages and for entering input through the standard
input.

For each Java program that writes to or reads from the Console that you are
running, the Console shows a line in the All Programs pane. To view the
output or enter input for that program, select it in the All Programs pane.

Running a program as an applet and application
With VisualAge for Java, you can easily build an applet that can be run as an
application: Your applet has to implement the main method to handle opening
a window without an Applet Viewer or a Web browser.

To create this kind of applet, click the Applet icon in the tool bar, and the
SmartGuide creates the necessary implementation for you. After providing
names for the project, package, and class, select the Next button to access
the Applet Properties SmartGuide. Select the Yes, create an Applet which
can be run by itself or in an Applet Viewer radio button, and click the Next
button. Click the Next button in the Events page. From the Code Writer page,
select the Write example radio button and click the Finish button. Notice that
20 Programming with VisualAge for Java Version 3.5

the Selected→Run menu has both Run Main and In Applet Viewer options
available if you select the class in the workbench.

The VisualAge for Java Source View window
The Source View window enables you to view a complete class, including all
of its methods. In this view, you can see and edit the class definition and all of
the methods of a class at one time. The fields and methods of the class are
listed in the Elements pane. The Source View contains a method and field
tree that is dynamically updated

Select the HiThere class in the Workbench and then select Selected→Open
Source View from the menu bar. The window shown in Figure 13 appears.

Figure 13. The Source View window

To modify the applet to show different text, double-click on the str field within
the elements pane. The code is then highlighted in the Source pane. To
change the text “Welcome to VAJ”, just type over the text. The incremental
compiler bring errors, if any, in the Problems pane at the bottom of the
window. Save your changes by selecting Edit→Save from the menu bar. You
can test the result by clicking the Run button (the left-most button with the
picture of the running person).
Chapter 1. Introduction to the environment 21

You can work with more then one class at a time. In the Source View window,
select the Open Type button (the one with the capital C on it) and type hi as
Pattern, select HiAgain from the Type names list and select the OK button.
From the Source View Window you can select the class you want to work with
by selecting the appropriate class button (just below the menu bar buttons).

The VisualAge for Java Scrapbook

The Scrapbook enables you to evaluate Java expressions. Just type in any
expression, highlight it, and execute it. The Scrapbook can have several
pages. You can consider each page of the Scrapbook to be a separate JVM
that compiles or runs separate code fragments. The Scrapbook can also be
used to edit and import files.

Using the Scrapbook
To enter and run Java code in the Scrapbook:

From the Workbench menu bar select Window→Scrapbook (Figure 14) to
display the Scrapbook window (Figure 15).

Type some Java code (for example, the code shown in Figure 15) into the
Scrapbook and highlight the text by using the mouse or the shift and cursor
keys.

From the menu bar select Edit→Run or click the Run button on the tool bar.
22 Programming with VisualAge for Java Version 3.5

Figure 14. Launching the Scrapbook in VisualAge for Java

Figure 15. Evaluating Java Code in the Scrapbook

By highlighting the Java statements and selecting Edit→Run, you instruct the
compiler to compile the statements and execute them immediately. A Console
window opens, and the output of the System.out.println("Loop number: " + i);
statement is displayed (Figure 16).
Chapter 1. Introduction to the environment 23

Figure 16. Console output for the loop executed in the Scrapbook

If you want to save the code you have created in the Scrapbook, select
File→Save from the menu bar, and you can save the Java source code into a
text file.

Figure 17 shows some examples of using operators in the Scrapbook.
24 Programming with VisualAge for Java Version 3.5

Figure 17. Using operators in the Scrapbook

Scrapbook context
When you execute code in the Scrapbook, the code runs in the context of a
static method in the Object class. Select Page→Run In to change the context
in which the code runs. By changing the context, the code in the scrapbook
would be run as if it was in the (static) method main() of the selected type
instead of that of Object.

You can create an instance of the type and then perform operations on it. The
benefit of the Page→Run In selection is that you do not have to use absolute
package names and you are running with private access permission on the
class. Because the context is defined by the Run In function, you cannot use
import statements in the Scrapbook.

Correcting errors in the Scrapbook
If you make a coding mistake, for example, you type the letter o instead of the
number 0 in the i > 0 statement, VisualAge for Java places a highlighted
message where it detects the mistake (Figure 18).
Chapter 1. Introduction to the environment 25

Figure 18. An error message in the Scrapbook window

In this case, four simple steps will correct the error:

1. Read the error message to determine what is wrong.

2. Press the Delete key to delete the compiler information.

3. Correct your code.

4. Run your example again.

VisualAge for Java also provides Automatic Code Completion, also known as
Code Assist or Code Clue. Code Assist can help you locate the correct type,
method, or field while you are coding. You can invoke it from method source,
Scrapbook, Inspector windows, the event-to-code editor, the conditional
breakpoint editor and the Source View. To see Code Assist in action, go to
the Scrapbook window. Type System.out. (You can type one or more of the
starting letters), hold down the Control key, and press the spacebar. A dialog
appears showing all possible methods you could call in the System.out
context (see Figure 19): just press Enter to paste the current selection.

When you save methods, VisualAge for Java provides you with a list of
suggested corrections for errors in your code. You can select the correction,
save the code as is, or cancel the save.
26 Programming with VisualAge for Java Version 3.5

Figure 19. Using the Code Assist facility

If your Scrapbook page remains busy
Whenever a code fragment is evaluated in a Scrapbook page, that page is
made inactive (busy) for the duration of the evaluation. Two visual cues
indicate that a page is busy: The document icon in the tab contains a small
clock icon, or the status line for the busy page contains the following text:
“This page is busy running the selected code.”

The page remains busy until the selected code fragment is finished running.
Your page may remain busy because the code actually takes a long time to
evaluate, or you are debugging a thread started from that page.

To terminate the evaluation of the code and return the page to its original
state, select Page→Restart Page from the menu bar. Note that all threads,
and therefore all windows, started from that page will be stopped and closed.
Chapter 1. Introduction to the environment 27

Customizing VisualAge for Java

You may have noticed by now that your windows may not look exactly like
those in this book. We changed our environments to make the screen
captures as readable as possible. It is possible to customize VisualAge for
Java in several ways:

 • Workbench Options

 • Tool Integration Framework

 • Palette modification

In this section you will learn about the Workbench Options. Tool Integration
Framework is an API set that enables to control VisualAge tools from your
Java code. Palette modification is discussed in Chapter 7, “Creating GUI
applications” on page 143, “Modification of the Beans Palette” on page 147.

Workbench Options
The Workbench Options (accessed by selecting Window→Options from the
Workbench menu bar), enable you to customize the VisualAge for Java
environment in many ways (see Figure 20).
28 Programming with VisualAge for Java Version 3.5

Figure 20. Workbench Options

For a complete description of the options, see the VisualAge for Java product
documentation. Some of the options you may use throughout this book are:

 • General

 - Cache

The Cache feature improves the performance of the VisualAge for Java
IDE considerably. You can set the number of classes cached in memory
and on your hard drive.
Chapter 1. Introduction to the environment 29

 • Appearance

 - Source

To make your source code easy to debug, you can choose the font
type, size, and foreground and background color of the source code.
You can customize different colors for the default code, its comments,
keywords, literals, errors and HTML Tags.

 - Printer

This option lets you chose the default printer for VisualAge for Java.

 • Coding

 - Debugging — The debugger options are discussed in Chapter 9.,
“Testing and debugging the Web application” on page 231.

 - Formatter — Many developers are stringent about the formatting of
their code. With VisualAge for Java you can set the way your code is
formatted:

 • Compound statements begin a new line

 • Opening braces begin a new line

 • Compact assignment statements

 • Keep ‘else if ’ on the same line

 • Keep existing layout

 • Set a maximum line length

 • Spacing: You can specify if you only want one blank line in your
code, or if you want to remove all blank lines. You can also modify
the indentation settings.

 - Method Javadoc

This option provides a text template for comments added when you
create a method with the Add Method SmartGuide. The comment is
inserted into Javadoc-style comments.

 - Type Javadoc

This option provides a text template for comments added when you
create a class or interface with the Add Class, Add Servlet or Add
Interface SmartGuide. The comment is inserted into Javadoc-style
comments.
30 Programming with VisualAge for Java Version 3.5

 • RMI Registry — With VisualAge for Java Professional, you can develop
distributed Java applications that use RMI. You can:

 - Start the RMI registry on VisualAge startup

 - Use the default or another RMI port

 - Restart or stop the RMI registry

Building your first servlet

A servlet is a server-side component written in Java witch is protocol and
platform independent. A servlet run inside a Java enabled server or
application server, such as the WebSphere Application Server.

A servlet is invoked by a server in response to a request from a client.
Typically the server is a Web server, and the client is a Web browser.

In VisualAge for Java, you can create, run, and debug servlets within the
VisualAge for Java environment.

VisualAge for Java provides the Create Servlet SmartGuide, which can be
use to develop servlets and their related Web resources quickly.

In this section you create a very simple HTTP servlet that accepts a request
and writes a response.

Before starting to create your Servlet, you need to add new features to your
workspace: the Servlet API feature and the WebSphere Test Environment
feature. From the Workbench, select File→Quick Start from the menu bar.
Then select Features→Add feature and select the OK button. From the
window displayed, select the Sun Servlet API 2.1 feature and IBM
WebSphere Test Environment 3.5 (use Ctrl + select for the second
selection. The two lines selected must be highlighted) and select the OK
button. From the Workbench window, you now can see the two new projects
added named Servlet API Classes and IBM WebSphere Test Environment.

Now start creating your servlet. In the Workbench, select the package you
created (com.ibm.itso.SG245264), then select Selected→Add→Servlet from
the menu bar. The Create Servlet SmartGuide window appears. Enter
HiHttpServlet in the Class Name field (see Figure 21).
Chapter 1. Introduction to the environment 31

Figure 21. The Servlet SmartGuide

Select Add Package button to display the Import statement window (see
Figure 22).
32 Programming with VisualAge for Java Version 3.5

Figure 22. Servlet SmartGuide Import Statement window

Type java. as Pattern and select java.io from the Names list. Select the Add
button. Use the same process to add javax.servlet and javax.servlet.http
packages. Close the Import statement window by selecting the close button.

From the Create Servlet Window, select the Next button to access the
SmartGuide page where you specify attributes of your new servlet.
Chapter 1. Introduction to the environment 33

Figure 23. Servlet attributes

Select only the doGet() checkbox under Which method stubs would you like
to create and click the Finish button to generate the Servlet,

VisualAge for Java Servlet SmartGuide will automatically generate default
versions and signatures for the selected methods and add them to the class’s
source code.

In the Workbench you can see a new line added for your newly created class.
Select this new class and select Selected→Open Source View to get a view
of the complete class generated, including all of its methods (Figure 24).
34 Programming with VisualAge for Java Version 3.5

Figure 24. HiHttpServlet Source View

From the elements pane of the HiHttpServlet Source View, double-click on
the performTask method. The code is then highlighted in the Source pane.
You then have to add the heart of this servlet, the implementation of the
performTask method for the handling of the request and response objects of
the servlet (see the HiHttpServlet code below)

package com.ibm.itso.sg245264;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
/**
* Insert the type's description here.
* Creation date: (2/17/2001 8:48:43 PM)
* @author: Administrator
*/
public class HiHttpServlet extends HttpServlet {

/**

* Process incoming HTTP GET requests
*

Chapter 1. Introduction to the environment 35

* @param request Object that encapsulates the request to the servlet
* @param response Object that encapsulates the response from the servlet
*/
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

performTask(request, response);

}
/**
* Process incoming requests for information
*
* @param request Object that encapsulates the request to the servlet
* @param response Object that encapsulates the response from the servlet
*/
public void performTask(HttpServletRequest request, HttpServletResponse
response) {

try

{
// Insert user code from here.

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<HTML><TITLE>HiHttpServlet</TITLE><BODY>");
out.println("<H2>Servlet API Sample - HiHttpServlet</H2><HR>");
out.println("<H4> This is created by VisualAge Java Servlet” +

“SmartGuide!</H4>");
out.println("</BODY><HTML>");
out.close();

}
catch(Throwable theException)
{

// uncomment the following line when unexpected exceptions
// are occuring to aid in debugging the problem.
//theException.printStackTrace();

}
}

In this simple servlet, you will not do anything with the request. You do some
handling of the response object, which is responsible for sending your
response back to the client. Your response is a formatted HTML page.
36 Programming with VisualAge for Java Version 3.5

Save your changes by selecting Edit→Save from the menu bar. To test the
result you will use the WebSphere Test Environment.

The WebSphere Test Environment (WTE) enables you to run your servlet in a
controlled, simulated Web Application Server environment (Figure 25). See
Chapter 9, “Testing and debugging the Web application” on page 231, for
more information on the WTE.

Figure 25. Starting the WebSphere Test Environment

To test your HiHttpServlet, start WTE from the Workbench window selecting
Workspace→Tools→WebSphere Test Environment.

The WebSphere Test Environment Control Center opens. Select Servlet
Engine, this displays the Servlet Engine options in the right pane (see
Figure 26).
Chapter 1. Introduction to the environment 37

Figure 26. WebSphere Test Environment Control Center

Select Edit Class Path... button.Click Select All button. This will include your
project (ITSO) on the class path. Select the OK button.

Then start the servlet engine by clicking the Start Servlet Engine button.
This activates a Console window. Wait until you can see the message
Servlet Engine is started (see Figure 27).
38 Programming with VisualAge for Java Version 3.5

Figure 27. Console window when starting the WTE Servlet Engine

You can also see the message Servlet Engine is started at the bottom of the
WebSphere Test Environment Control Center window.

You are now ready to launch your servlet. Open your favorite Web browser.
Invoke your servlet from the browser by using the URL:

http://127.0.0.1:8080/servlet/com.ibm.itso.sg245264.HiHttpServlet.

You should see the results of your servlet’s execution displayed in your Web
browser window. The results of your HiHttpServlet are shown in Figure 28.
Chapter 1. Introduction to the environment 39

Figure 28. HiHttpServlet Output
40 Programming with VisualAge for Java Version 3.5

Chapter 2. Organizing your code

With VisualAge for Java you use projects and packages to organize your
work. Projects are a feature of VisualAge for Java that provide a high-level
means of grouping the development efforts of a project. Packages are the
standard Java scheme of organizing classes and interfaces that are intended
to work together.

In this chapter you will learn to work with projects and packages in VisualAge
for Java.

Visual Age for Java uses projects and packages to organize your code.
Projects contain everything that is currently being worked on by a developer.
Projects contain packages, which in turn contain Java classes and interfaces.
Projects can also contain resources. Resources are non-Java files which are
considered part of an application. Resources are covered in more detail
in“The Workbench Resources page” on page 50.

In this chapter you will learn about the tools Visual Age for Java provides to
help manage and maintain your work. We will also cover bringing in external
Java code and resources and exporting your work.

Projects in VisualAge for Java

You have already created a project to organize all of the work you do while
reading this book. Projects provide a way of organizing your Java code at the
highest level. Whenever you create a new package, you must place it in a
new or existing project. Projects do not have any equivalent in the Java
language.

In VisualAge for Java 3.5, projects contain Java packages plus other
resources. Resources are related files that are part of the Web application,
such as images, multimedia, JSPs, and static HTML documents.
© Copyright IBM Corp. 2001 41

The first time you start VisualAge for Java and go to the Workbench, you see
several projects in your workspace, all of which contain several packages.
Table 2 lists these projects and their contents.

The code in the projects in Table 2 cannot be modified or deleted. It is
required by VisualAge for Java to function correctly.

Adding features
You need to add several features to develop database applications, servlets,
as so on. To add a feature, select Quick Start from File menu or press F2.
Select Features and Add Feature from Quick Start dialog, then click OK
button. You can choose available features from list. You need to add at least
the WebSphere Test Environment, Servlet, IBM JSP samples, and Data
Access Beans to execute samples in this book.

Packages in VisualAge for Java

Packages are Java containers used to group related classes and interfaces
together. The package name is part of a fully-qualified class name. It is
important to decide how to group various classes together.

You have a choice of using a fully qualified name or using an import
statement. VisualAge for Java searches for external packages in the
classpath of the workspace. The classpath can be changed by options dialog.

Table 2. Default VisualAge for Java projects and their contents

Project Contents

IBM Java Implementation com.ibm.uvm.* packages, which enable and
support the VisualAge for Java VM and
environment

Java Class Libraries java.* and javax.* packages, which contain the
Java Class Libraries

Sun Class Libraries PM Win32 sun.* packages, which are extensions to
standard java.* packages
42 Programming with VisualAge for Java Version 3.5

The Workbench

To understand how VisualAge for Java organizes projects and packages, you
have to know a little more about the Workbench. The Workbench provides
different views of your current development environment or workspace. The
layout of the Workbench window depends on the tab selection above the
pane. To switch between the Projects, Packages, Resources, Classes,
Interfaces, and All Problems pages, just click on the corresponding tab. The
menu bar of these pages also changes as you switch from tab to tab.

From any Workbench page you can access the menu of the currently selected
item (project, package, resource, class, interface, or method) in two different
ways. You can:

 • Access the pop-up menu by right-clicking the selected item
 • Use the menu bar

The pop-up menu of the Source pane and the Edit menu in the menu bar
have the same contents. The Browse pane’s pop-up menu is the same as the
Selected menu in the menu bar.

The Workbench also provides a toolbar for quick access to functions.
Figure 29 shows the toolbar, and Table 3 describes the icons.

Figure 29. The Workbench toolbar

Toggle Edition Name

Create Field

Create Method

Create Interface

Create Applet

Create Class

Add Package

Add Project

Search (has submenu with right click)

Open Debugger

Run (has submenu with right click)

Create Applicatipon

Create Servlet

Create Interface

Create a Version
Chapter 2. Organizing your code 43

Table 3. .Toolbar icon descriptions

The Workbench Projects page
The Projects page of the Workbench (Figure 30) contains two panes: a
Browse pane and a Source or Comment pane.

Icon Description

Run Run the selected class or a class from the
selected project or package. Shows history
by clicking right button.

Open Debugger Start the debugger.

Search Search for a reference or declaration of a
field, method, or class. Shows history by
clicking right button.

Add Project Add a project to the current workspace.

Add Package Add a package to the current selected
project.

Create Class Invoke the Create a new Class SmartGuide.

Create Applet Invoke the Create a new Applet SmartGuide.

Create Interface Invoke the Create a new Interface
SmartGuide.

Create Servlet Invoke the Create a new Servlet
SmartGuide.

Create Application Invoke the Create a new Application
SmartGuide.

Create Method Invoke the Create a new Method
SmartGuide on an existing class.

Create Field Invoke the Create a new Field SmartGuide
on an existing class.

Toggle Edition Names Show or hide the edition names of program
elements.

Version Make a Version.
44 Programming with VisualAge for Java Version 3.5

Figure 30. Workbench Projects page

The orientation of the panes is by default set to horizontal. If you want to
change the orientation, you can select Window→Flip Orientation.

If you select a program element in the Browse pane, which contains code,
such as a class, interface, or method, the other pane is labeled Source and
contains source code. If you select a package or project, the other pane is
labeled Comment and contains any comments you have added to the project
or package.

A tree view of the projects, packages, classes, and interfaces that are
currently loaded in your workspace is shown in the Browse pane when you
select the Projects, Packages, Classes, or Interfaces views. The Projects
view is the default view shown when you open the Workbench for the first
time. To collapse or expand any item in the list, click the plus or minus sign to
the left of the item (or use the plus sign and minus sign keys). To show the
source code for an item in the Source pane, select the item, using your
mouse.

Source Pane

Browse Pane

Tab Selection

Status Bar

Bookmarks

Filters
Chapter 2. Organizing your code 45

You can create new projects by selecting Selected→Add→Project in any
browser window.

Other features in window
VisualAge for Java provides many useful features for viewing different parts of
your projects. Three of these features are:

 • The Projects page enables you to set bookmarks. In the upper-right corner
of the Browse pane, click on the plus sign to set a bookmark. When you
want to return to a particular piece of code, click the number that appeared
when you created the bookmark.

 • You can use three filters to show public members only or static members
only and show all fields (class variables).

 • You can clone any window in VisualAge for Java. Selecting
Window→Clone opens another window in the same context. A clone of a
window can be very useful when you need two similar views, but be
careful about updating the same class in two views. It is possible to
overwrite changes you have made in one view with changes made in
another window.

 • Double-clicking on the title bar of any pane maximizes that pane within the
window. Double-click again to restore the normal view. You can also select
Window→Maximize Pane/Restore Pane

The Workbench Packages view
The Packages page of the Workbench (Figure 31) contains three Browse
panes — All Packages, Types, and Methods — and one Source pane.
46 Programming with VisualAge for Java Version 3.5

Figure 31. Workbench Packages page

You can use Packages→Layout to customize your view, and you can choose
between Tree Layout or List Layout. You can access the same functionality
through the layout icons at the top right of the All Packages pane.

The Orientation option is also available for this view under Window.

Creating packages
With the JDK, directories are used to organize packages on your file system,
whereas in VisualAge for Java packages and classes are kept in the
workspace.

The workspace contains all of the program elements with which you are
currently working. Rather than creating directory structures, VisualAge for
Java organizes its packages and classes internally. If you export classes, the
directory structure is created on your file system. This approach makes
managing packages and classes simple. Although classes of your projects
are kept in the workspace, any resources of those projects are kept
separately in your local file system in this directory:

\[vaj installed directory]\ide\project_resources\project_name

Root
Minus
one
Chapter 2. Organizing your code 47

In Java you can declare a class to be part of a package by using the package
keyword at the top of your Java source file:

package account;
public class BankAccount{

private string accountId;
private double balance;

}

In VisualAge for Java you select the package that will contain each new type
that you create. If you specify a package name that does not exist, that
package will be created for you. After creating new classes in a selected
package, the package name is not shown in the code; it is implied in the list of
classes in the package.

You can also create or import code that has been defined with the default
package, the package used when no package is explicitly defined. Because
you cannot access members of a default package from other packages, the
use of a default package is not recommended.

You can also create new packages by selecting Selected→Add→Package in
any browser window. To create the Automated Teller Machine (ATM)
application used throughout this book, you need two packages:

com.ibm.itso.sg245264.atm.memory
com.ibm.itso.sg245264.atm.database

Create these two packages now by selecting the Programming VAJ V3.5
project and then Selected→Add Package. Fill in the Create a new package
named with field with the name of the first package and click Finish, then
repeat the process for the second package.

Root Minus One
Click Root Minus One button on the top right corner to see inherit class
members.

Using types from other packages

With VisualAge for Java or the JDK environment, you have two ways of using
a class from another package:

 • Refer to the class by using the fully qualified name

 • Use the import keyword
48 Programming with VisualAge for Java Version 3.5

You can either import all types defined within a package or be more selective.
Note that importing a package does not import the subpackages of that
package, you have to import them separately. You can use the star notation
(java.awt.*) to import all types within a package, but you have to separately
import any subpackages, such as java.awt.event.

If you already know which packages you will need within your class when you
are creating it, use the Attributes dialog box (which opens when you click
Next in the Create Class or Interface SmartGuide). The Attributes dialog box
enables you to specify the packages to be imported. Use the Add Class and
Add Package buttons to browse and select classes and packages to import
into your class (Figure 32).

You can also add the import statements manually by editing the class
declaration.

Figure 32. Create Class SmartGuide: Import statement dialog box
Chapter 2. Organizing your code 49

The Workbench Resources page
The Resources page of the Workbench (Figure 33) shows all resources
contained in your project. You can add or remove the resources or directory
structures that related to your project. Several JSP files and SQLJ files
related to the projects are shown.

To add or remove resource files, use the popup menu and select add or
delete. To edit the file, double click on the file or use open menu. VisualAge
for Java opens the resource file using related application.

The resource files will be stored in the repository file when you make a
version of your project. Unless you make a version, resource files are kept in
the project_resources directory under the VisualAge for Java installed
directory and are not copied to the repository.

Figure 33. Workbench Resources page

The Workbench Classes page
The Classes page of the Workbench (Figure 34) contains three panes: Class
Hierarchy, Methods, and Source.
50 Programming with VisualAge for Java Version 3.5

Figure 34. Workbench Classes page

You can change the layout of your classes, using Classes→Layout from the
menu or the layout icons at the top right of the Class Hierarchy pane. You
can also select the orientation of the Browse pane, using Window→Flip
Orientation. Click Root Minus One icon at the top right of the Member pane
to show inherit class members.

The Classes view is useful because it shows the class hierarchy of types, and
you can quickly follow the inheritance tree of classes. In the Classes view you
can quickly find a class you are interested in by selecting Classes→Go To
Class and then typing in the class name until the complete name shows up in
the list.

Navigation aids
The Go To Class function is just one of the many navigation aids in the
WorkBench. Here are some other aids:
Chapter 2. Organizing your code 51

 • Each window has a different Go To option.

 • Each window has an Open To, which opens the selected item in a
selected browser.

 • Each window has a Clone function if you want to have two views of the
same information.

 • You can search for different items, using Workspace→Search.

 • You can find all code that has references to a selected type, using
Selected→References To.

The Workbench Interfaces page
The Interfaces page of the Workbench (Figure 35) is similar to the Classes
page (Figure 34) except that it displays interfaces instead of classes. The
Interfaces page consists of three panes: Interfaces, Methods, and Source.

Figure 35. Workbench Interfaces page

The Workbench All Problems page
On the All Problems page you can find all incorrect code in the workspace.
The incorrect code found within a method causes the method to be flagged
52 Programming with VisualAge for Java Version 3.5

with a red X, and the method’s class will be flagged with a grey X (see
Figure 36). If you have incorrect code in a class or interface declaration, the
class or interface is flagged with a red X.

Figure 36. Workbench All Problems page

If some problems are known, you can filter them and hide certain ones. There
are three ways to apply a filter:

 • Select Show all problems to see all problems.

 • Select Exclude deprecated warnings to hide deprecated warnings.

 • Select Show only errors to hide all warnings.

You can also narrow the search range to specific projects by using working
sets. To use a working set, select the projects that you would like to include in
the working set dialog that appears when you click Filter Problems
→Working Set....
Chapter 2. Organizing your code 53

In your version of VisualAge for Java, you should not have any errors (not
yet, anyway!). You can create an error to see the result:

 • Select the Projects tab on the Workbench.

 • Expand (click on the plus sign) the HiThere class and then select the
main(String)[] method.

 • Add the line: x=2; before the closing brace (}) and save the method (using
Edit→Save or Control-S).

Figure 37 shows the Warning dialog box that appears when you attempt to
save incorrect code. At this point you can cancel, return to the code and fix
the error, or save the code with the error.

If VisualAge for Java can suggest corrections to the code, it displays them in
the lower pane. You can select the entry under Suggested corrections and
click the Correct button to correct your code.

 • Click the Save button in the Warning dialog.

Figure 37. Warning Dialog: Undefined Variable

 • Select the All Problems tab on the Workbench(not shown). Select the
main method, delete the line x=2;, and save the method. The problem
should disappear.
54 Programming with VisualAge for Java Version 3.5

In most cases, when you type incorrect code, you get the Warning dialog
shown in Figure 37. In some cases, when the VisualAge for Java compiler
cannot parse the incorrect code, you get an Error dialog. In this case, you
must return to the code and fix it before you can save it. If VisualAge for Java
can suggest corrections to the code, it shows them in the lower pane.

Leaving errors in your code
It may seem a little strange to leave errors in your code. However, in
VisualAge for Java there is little risk. For example, if you forget to create a
variable before you reference it, you can save the code that references the
variable, go the All Problems page later, and add the variables to the class
declaration.

In the worst case, where you are not sure what you should fix, you can just
return to an earlier version of the code.

Full source code edit

The Source View provides a full source code editing capability. For
programmers that like to edit a complete class source file instead of individual
methods, this facility is the answer. To use this Source View from the
Workbench, use Open Source View menu. You can also use this full source
code editing in class browser. In this case, click Source tab in class browser.

Source View is not part of the Workbench and is a separate window
(Figure 38). The Source View browser consists of three panes: Elements,
Source and Problems.
Chapter 2. Organizing your code 55

Figure 38. Source View

The Source pane shows all of your source code, and you can jump to your
method or definition statement by clicking on the Elements pane. The Order
of methods is preserved from the first import, or when changed in the Source
View. When exporting a class, the sequence is preserved as well. VisualAge
for Java does not modify the file format, and includes black lines and
indentations.

There is only one window with the Source View. Each class will be a page in
this view. You can edit multiple classes in one time by selecting a tab. You
can also edit in parallel in Source View and in another view.

Note that the first open may take a while to fill the left-hand side of the split
screen.

Code Assists

While editing your code, VisualAge for Java Code Assists can help you type.
Code Assists show you a list of candidates that satisfy your incomplete
typing. To show the list, press Control plus the Space key (Figure 39).
56 Programming with VisualAge for Java Version 3.5

Figure 39. Code Assists

Importing and exporting with VisualAge for Java

You have already learned that VisualAge for Java Professional stores your
projects in a repository, not directly in the file system. To deploy your Java
projects, or to share code with other developers, you have to import and
export Java classes.

You can import and export Java classes and resources to and from the
VisualAge for Java environment in several formats:

 • Directory

You can import Java source code or class file from the file system. The
source code is compiled as it is imported, and package hierarchies are
retained. You would export Java source code when you want to share it
with developers who are using a different development environment or
edit it using a different editor from that provided with VisualAge for Java. If
you specify the directory as the package, you can import entire packages
under the specific package. This function also imports resources under the
directory. To import resources, click Details button next to Resource
check box and select the resources that you would like to import.
Chapter 2. Organizing your code 57

 • JAR files

Java archive (JAR) is a platform-independent file format that enables you
to compress a Java applet and its resources (such as .class files, images,
and sounds) into a single file. JAR files are a good way of distributing Java
applets, applications, and their supporting resources. You can install the
files on a Web server where Web browsers can access them. You can
export a complete VisualAge for Java project as a JAR file.

 • Repository (known as VisualAge for Java interchange files)

Repository files are used to exchange Java classes, which are built with
VisualAge for Java Professional, among different VisualAge for Java
Professional environments. The files maintain version information and
comments as well as visual development information.

When you import a Repository file, it is loaded into your repository. You
then have to load it into your workspace from the repository. If you would
like to load to your workspace automatically, select this option on the
repository import dialog. This function loads only the most recent project.
Otherwise, you should load your project manually. Any program elements
that you export by using a repository file must be versioned first. Versions
and the repository are fully explained in “Workspace versus repository” on
page 185.

Importing into VisualAge for Java
Note that importing code into the VisualAge for Java environment is not the
same as using the import keyword in Java source code.

To import code into VisualAge for Java:

1. Open the Import dialog, using one of these methods:

 - File→Import from the menu bar on any page.

 - Selected→Import from the menu bar on the Projects page.

 - Packages/Types→Import from the menu bar on the Packages page.

 - Classes→Import from the menu bar on the Classes page.

 - Interfaces→Import from the menu bar on the Interfaces page.

A SmartGuide prompts you for the source of import (Figure 40).
58 Programming with VisualAge for Java Version 3.5

Figure 40. Importing Java Files into VisualAge for Java

2. Select the source of import:

 - Directory — .java or .class files

 - Jar file — .jar files

 - Repository — repository files

For Directory and Jar file imports, select:

 - The directory where the import files reside

 - The specific classes (source or bytecode) and resources to be
imported

 - The project into which to import the classes

 - Whether or not to overwrite existing resources

For Repository imports, select:

 - The repository file to be imported

 - The specific projects or packages to import (Figure 41)
Chapter 2. Organizing your code 59

Figure 41. Importing from another repository

In addition to normal import/export options, another solution is to use a
container that holds a group of projects. You can create solutions that contain
related projects that you want to import or export as a group, for example a
set of projects that you want to send to a particular customer. Solutions and
repositories are discussed in more detail in “Import and export effects” on
page 217. This chapter will focus on the import/export tool as it affects going
to/from JARS and directories.

Exporting from VisualAge for Java
To export code from VisualAge for Java:

1. Optionally, select one or more projects, packages, or classes or
interfaces.

 - When you select a package, all classes and interfaces in the package
are exported.

 - When you select a project, all classes of all the packages within that
project are exported.
60 Programming with VisualAge for Java Version 3.5

2. Open the Export dialog (Figure 42), using one of these methods:

 - File→Export from the menu bar on any page

 - Selected→Export from the menu bar on the Projects page

 - Packages/Types→Export from the menu bar on the Packages page

 - Classes→Export from the menu bar on the Classes page

 - Interfaces→Export from the menu bar on the Interfaces page

Figure 42. The Export SmartGuide

To choose a manifest file to create or update to contain your class or bean
information, specify the file name of the manifest file.
Chapter 2. Organizing your code 61

3. Select the export destination:

 - Directory — .java or .class files

 - Jar file — .jar files

 - Repository — repository files

For Directory exports, select:

 - The root directory where the export files will reside

 - The specific classes (source or bytecode) and resources to be
exported

 - You can also set several options on the export:

 • Select referenced classes to export

 • Deselect the BeanInfo and Property Editor classes from the export

 • Whether to create HTML files to launch applets

 • Whether to overwrite existing files

 • Whether to open the created HTML files in a browser

 • Whether to seal the package

Each packages can be specified as seal. Seal information will be
written in manifest file of the JAR file.

For Jar file exports (Figure 43), the options include those for Directory
exports as well as these:

 - Selecting specific beans and classes to export

 - Whether to compress the contents of the Jar file

For Repository exports, select:

 - The repository file to be exported

 - The specific projects or packages to export
62 Programming with VisualAge for Java Version 3.5

Figure 43. Exporting to a Jar file

Hints for exporting your code
VisualAge for Java has some powerful new features for exporting code. The
Deployment Wizard is invoked by selecting the Select referenced types and
resources button. The Deployment Wizard automatically includes the types
your code needs. Therefore, your exported Jar files will only include the code
they need.
Chapter 2. Organizing your code 63

When exporting a Jar file, you can select specific beans to export. This action
forces the creation of a manifest file in your Jar file, enabling other
environments to recognize the beans in your Jar file and other VisualAge for
Java environments to automatically add beans from the JAR file to the
palette.

If the JAR file is to be directly used in the Classpath for a Java application or
applet, do not compress its contents.

You can also now export Visual Composition Editor information in Java
source and class files. Select the Generate meta data method checkbox in
the Design Time section of the Options dialog. VisualAge for Java will
generate a getBuilderdata method that contains the Visual Builder
information for the class.
64 Programming with VisualAge for Java Version 3.5

Chapter 3. Migrating to Java2

VisualAge for Java Version 3.5 Professional Edition provides the full Java 2
SDK, Standard Edition, V1.2.2 support. This includes:

 • JDK 1.2.2

The IBM Developer Kit for Java code is based from Sun. The IBM
requirements are: better performance, decreased time to market,
improved scalability, and expertise.

The IBM DK 1.2.2 provides enhanced functions and maintenance over the
SUN reference SDK.

 • Swing 1.1

 • JSDK 2.1 + IBM Extension

The JSDK 2.1 provides support to create and test Servlet 2.1 and test JSP
0.91 or 1.0 (WebSphere Application Server + FIXPACK2 supports JSP
1.1, but VisualAge for Java 3.5 + Patch 2 does not).

The Fix/Migrate SmartGuide

VisualAge Java Version 3.5 offers a tool, the Fix/Migrate SmartGuide, which
provides an easy way to migrate the base Java classes and the Swing
classes from JDK 1.1.x to JDK 1.2.2. It also migrates the Visual Composition
information for Swing classes.

You can migrate any package or class names, for example,
com.sun.java.swing.* ==>javax.swing.*

You can import code from VisualAge Java Version 2 or 3.

Do not make an open edition: The Migrate tool works on versioned editions
only.

Select the class you want to migrate.

You can start the Fix/Migrate SmartGuide by selecting, from the Workbench
window, Selected→Reorganize→Fix/Migrate (see Figure 44).
© Copyright IBM Corp. 2001 65

Figure 44. How to start the Fix/Migrate SmartGuide

The Fix/Migrate SmartGuide window opens. You can then indicate the
From/to entries for class or package names that have changed (see
Figure 45).

Select the Include JDK1.2 renamed packages checkbox to migrate the
Swing classes in a Java application.
66 Programming with VisualAge for Java Version 3.5

Figure 45. The Fix/Migrate SmartGuide window

Select the Next button.

The window from which you can specify package names to be excluded from
the package name changes opens (see Figure 46).

To specify a package, append .* to the package name. For example, to repair
all classes in myPackage, enter myPackage.* In the To field, enter the current
name of the renamed class or package. Click Add.
Chapter 3. Migrating to Java2 67

Figure 46. Fix/Migrate SmartGuide- Excluded packages-

Select the Finish button to run the migration.

You can then open the Visual Composition Editor and test.

The repair process

The Fix/Migrate SmartGuide can also repair broken class or package
references due to migration of classes to the Java 2 SDK or the renaming of
user-defined program elements. Because this sort of repair is not an exact
science, follow these tips for the best results.

In the Workbench, look at the All Problems page to get a sense of what is
broken. If possible, repair references at the class level. This gives you the
most control over the order in which classes are repaired, minimizing
transient compilation problems. If you do repair at the package or project
68 Programming with VisualAge for Java Version 3.5

level, VisualAge processes BeanInfo classes before their associated bean
classes.

Repair referenced classes first, as necessary. Proceeding in this direction
ensures that API updates for a referenced program element are available
when the classes that refer to it are repaired.

If a given class has an associated BeanInfo class, repair the BeanInfo class
first.

To fix errors in visual composites that remain after all classes have been
repaired, open the composites in the Visual Composition Editor and
regenerate code from the Bean menu.

To migrate references to the IBM Data Access libraries from Version 1.0 to
Version 2.0, specify the following changes:

COM.ibm.ivj.eab.data.* to com.ibm.ivj.eab.dab.*

COM.ibm.ivj.javabeans.* to com.ibm.ivj.eab.dab.*

To migrate references to the javax.swing.preview.JFileChooser class, specify
the following change:

javax.swing.preview.* to javax.swing.*

Successful migration of class references to the Java 2 SDK does not ensure
that all beans run as you expect them to.

Sun's implementation of some beans might have changed, so test migrated
beans thoroughly.

You must use this tool for repairing visual composites, even if you make
corrections by hand. This is because metadata must also be repaired. If you
do not repair the metadata, VisualAge will probably generate incorrect code.

VisualAge can correct references to the following program elements: classes,
interfaces, and packages:

 • Superclass designation
 • Import designations
 • User-defined fields and methods
 • Fields and methods that are generated for visual composites
Chapter 3. Migrating to Java2 69

If VisualAge detects any transient problems during the repair, an error
window will appear. Make a note of the error and click OK to continue the
process. In most cases, errors occur because of the order in which
references are being repaired; these errors are usually corrected by the
time that all references have been repaired. Following the repair guidelines
will minimize this occurrence.

Migrating your servlet and JSPs

If you are migrating your servlet to JSDK2.1, which has been supported since
WebSphere Application Server 3.0, you may update the following deprecated
APIs. These APIs may be removed in the near future:

Sun APIs
HttpSessionContext
HttpSession.getSessionContext
HttpSession.isRequestedSessionIdFromUrl
HttpServletResponse.encodeUrl
HttpServletResponse.encodeRedirectUrl
HttpServiceRequest.setAttribute
HttpServiceResponse.callPage
ServletRequest.getRealPath
ServletContext.getServlet

IBM APIs
com.ibm.servlet.personalization.sam (removed)
com.ibm.servlet.servlets.personalization.util (removed)
com.ibm.servlet.connmgr

If your JSP is written in JSP 0.91, it is good time to update to JSP 1.0. You
can use 0.91, but in the future, this may not be possible. To use JSP 0.91,
check first to make sure that your code is not using deprecated servlet APIs.

If you are using com.sun.server.http.HttpServiceRequest or
com.sun.server.http.HttpServiceResponse, you have to change the package
name to javax.servlet.
70 Programming with VisualAge for Java Version 3.5

Migrating JSP 0.91 to 1.0
To migrate your JSP, you have to change the tag (see Table 4).

Table 4. JSP conversion map

JSP 0.91 JSP 1.0

<SERVLET> <jsp:include>

<BEAN> <jsp:useBean>

<REPEAT> <tsx:repeat>
Chapter 3. Migrating to Java2 71

72 Programming with VisualAge for Java Version 3.5

Chapter 4. Beginning the ATM project

This chapter introduces the sample application that we will use throughout
the book. It outlines the problem domain, including an object-oriented
analysis, and presents the overall architecture of the solution.

This example application may seem familiar to people who read the previous
version of this book, Programming with VisualAge for Java, Version 2,
0130212989, or to people who read the IBM Redbook, VisualAge for Java
Enterprise Version 2: Data Access Beans - Servlets - CICS Connector,
SG24-5265. Be forewarned, however, that only the problem is the same! The
solution is different, as we will now focus on deploying it as a Web application
where we will deal with an inherently stateless client.

Problem domain

In order to explain the various features of VisualAge for Java, we will apply
the theory (explained in the following chapters), by developing one true Web
application. The problem to be solved by the application is explained first.

In short, we will focus on a simulation of the interaction with an Automated
Teller Machine (ATM), as originally used to get money “out of the wall”.
All around the world there are many different names for those machines,
although the basic concept is essentially the same worldwide: You insert your
card, type in a number, choose the amount of money, get the money, and
recover your card.

Such ATM machines differ in many ways. One difference is in how or when
the resulting money transaction is booked: Often it will be deducted directly
from a bank account, or it might be regarded as taking a credit. The cards in
these cases would then be called debit or credit cards respectively.
Nowadays it is common for ATMs to accommodate both situations, but in this
book, we will limit our scope to debit cards. Consequently, when we use the
term card, you should think about a debit card.

There are also big differences to observe in the set of other services provided
by ATM machines worldwide: They show the balance and history of the bank
account, and they allow you to wire money, request cheques, put money in an
electronic purse, make an appointment with a person from your bank, apply
for a short term loan, and so on. Here we will talk about an ATM which is only
capable of dispensing money and showing some detail on a bank account.
© Copyright IBM Corp. 2001 73

We continue simplifying by saying that each card has to be associated to at
least one bank account. The card in our situation could be used to check the
balance and get the history of transactions on the associated bank account,
besides the original notion of ‘distributing money’. The received money is
directly deducted from the associated bank account, as in the case of a debit
card.

In most countries the card can also be associated to many different bank
accounts: Checking or saving accounts of somebody are normally accessible
using only one card. But also, accounts owned by different persons can be
manipulated using only one card. In addition, a bank account itself can be
associated to many cards, as in the example of a company account where
many people have the right to deduct money from one account. Those people
would then only have one card giving access to both their own account and to
this company shared bank account.

Our example application has no notion of the owner of an account, it will
simply allow different accounts to be associated to one card and different
cards to one bank account in order to incorporate all of the above cases. In
our situation only the card itself has an owner.

Let us now explain what we understand by the term transaction. We say that
a transaction is always between two accounts: The balance of the source
account is deducted and the target account is augmented with the amount of
money specified by the transaction. When the transaction involved collecting
cash money, the target account would be a bank account associated to the
ATM. A refill of an electronic purse on the other hand would have an
(imaginary) bank account indicating that purse as target of the transaction. As
a consequence of all this, we can assume that the amount of a transaction
cannot be negative. To keep track of things, each deposit or withdraw is
represented by a transaction.

We make the distinction between checking accounts and savings accounts. A
checking account would have an overdraft protection up to a certain amount
of money: This has the effect that money can be redrawn from the account
even if there is not enough money left, up to that overdraft amount as a
negative balance. Note that this is not exactly the way the US checking
accounts work, although overseas checking accounts used to work like this.
A savings account also has a peculiarity: There is a minimum (positive)
balance to be respected at all times.With the ATM you can get money from
either checking or savings accounts, an assumption which — for a change —
does not match most European customs.
74 Programming with VisualAge for Java Version 3.5

Another rather obvious simplification of the real world problem is to ignore the
existence of different currencies and fractions: Therefore, we will talk about a
certain amount of money while not specifying its currency — we will simply
call it Money.

This example still resembles a real world application in some respects. Think
about the following configuration: a “cyber” ATM (Web site on the Internet)
that enables persons with an electronic purse to refill that purse via the
Internet using a debit card. All you would need to accomplish this is a device
to read your card and a device to update your electronic purse, both
connected to a computer on the Internet.

When using SmartCard technology for both the identification of the debit card
and as an implementation of the electronic purse, one could suffice with a
SmartCard reader attached to the serial port of a regular computer. This
configuration is already in use in some countries (for example, Belgium)
where debit card and electronic purse happen to be on one and the same
physical card.

Besides a Web application, we will also develop a Swing based application
based on this common ATM problem description as we illustrate the usage of
the graphical editor of VisualAge for Java (see Chapter 7, “Creating GUI
applications” on page 143).s

Building the ATM model

The goal in building a model for the example application is one of
communication and documentation: At the end of this chapter, you should be
able to easily find your way in the code of the example based on the different
diagrams and comments included here. If you understand everything in this
chapter, you should understand everything in the test implementation that we
will discuss at the end of this chapter.

When analyzing the above description of the problem domain, we directly
discover the following candidates to be modelled as objects in our example
application:

Card Gives access to one or more bank accounts

Bank account Either checking or savings accounts

Money Represents an amount in a given currency

Transaction A record of a money transfer between accounts

Person The human being interacting with an ATM machine
Chapter 4. Beginning the ATM project 75

Bank Institution issuing the bank accounts and the cards

ATM Machine allowing you to get cash money with a card

Electronic purse Electronic device that can be used as a regular purse

PIN Personal Identification Number protecting a card

We will keep these definitions in mind while we try to get more detailed insight
by specifying the use cases.

Use cases
Here, we observe one actor: Person. This actor represents somebody with a
card that physically fits into the card reader of the ATM machine. He or she is
the only one to interact with the ATM application (which is everything behind
the systems border).

The general diagram showing the interaction between Person and the system
representing our ATM application is presented in Figure 47. We have eight
use cases:

Accept Card ATM shows a welcome message; Person can insert a
card into the card reader of the ATM.

Validate Login ATM lets Person type in the PIN for the inserted card.

Consume Card Person tried too many times to enter a valid PIN;
the card reader stores the card somewhere inside the
ATM; then ATM displays a message.

List Accounts All the accounts that the inserted card gives access to
are listed, Person can select one account to work with

Show Account Detail ATM shows the selected account and offers Person
the choice of getting money or seeing the history list
of transactions.

Dispense Cash ATM asks how much money Person wants to
withdraw and will give that money when the
conditions (balance on account, enough money in
ATM, and so on) allow it.

Show Account HistoryATM lists the transactions on the current account.

Eject Card Person wants to stop working with the ATM; the card
reader gives back the current card; the ATM displays
a message asking to remove the card.
76 Programming with VisualAge for Java Version 3.5

A more detailed description of the use cases in the diagram can be obtained
by browsing the HTML version of the model that was generated with Rational
Rose. It is part of the resource package, available for download from the
Redbook site or on the provided CD provided (see Appendix B, “Using the
additional material” on page 363).

Figure 47. ATM use case diagram

You might have noticed that we have a use case called ‘Dispense Cash’ and
no ‘Refill Electronic Purse’. When elaborating the use case descriptions, we
noticed that they become unnecessarily complex by trying to make a
distinction between the electronic purse card and the debit card. Another
observation in favor of removing this concept from our example, is that the
use case ‘Dispense Cash’ is basically just the same. Besides, more people
will recognize an ATM dispensing ‘real money’ then a system refilling an
electronic purse.
Chapter 4. Beginning the ATM project 77

In the beginning of this section we already came up with a first draft for a set
of objects. We now see that we need to adjust this. The electronic purse
would disappear but some components of the ATM are mentioned so many
times by now, that we add them to our list of candidates to become objects in
our example application:

 • Card reader
 • Cash dispenser

Another observation, when reading the use cases, is that we need to consider
the state of the ATM when specifying a condition on a use case.

ATM state diagrams
The state of the ATM really says which actions are possible and which are
not. In designing a Web application, it is very important to consider this.
Unlike with regular client / server applications, it is possible for a client to try
to execute actions which are not allowed in a certain state of the system. The
reason for this is twofold.

First of all, the protocol used in the communication between both parties in a
legacy client / server application is more secure (or more easily secure), so
we can rely on the identity of the client. The HTTP protocol used in Web
applications is prone to ‘fake’ clients (except for its HTTPS dialect), who can
easily invoke requests ‘at the wrong time’.

Secondly, there is no way the server can call back to the client to ensure that
it is talking to a valid client — that is, a client which is only requesting services
at the proper times. Clients expressing the behavior of taking care when to
fire actions would typically implement, for themselves, a sort of state. The
HTTP protocol, however, is stateless and unidirectional, so this situation
cannot be attained with normal Web clients.

To document the states of a certain type, UML provides us with state
diagrams. Such a diagrams show all possible states a certain type can be in,
together with all the possible transitions between those states. The
transitions between the states can be caused by both internal as by external
actions. Not all possible actions are listed: If they have no impact on the state
of a type and when they can be executed at all times (read: in all states of the
type), then it is uncommon to list them at all in a state diagram.

We made two state diagrams for the ATM system because we have two big
categories of states. The states where the ATM machine is used by
somebody, all have common behavior: No other person can use it, the ATM
can time-out because the user did not touch it for a certain time, and so on.
78 Programming with VisualAge for Java Version 3.5

First we model this set of ‘In Use’ states as one, in order to compare it with
the others, then we go into detail on the different ‘sub’ states of an ATM when
it is being used. Figure 48 shows the general states for the ATM; Figure 49
explains the sub-states that make up the ‘In Use’ state in the first state
diagram.

Figure 48. ATM state diagram

The ‘insert card’ action is mentioned twice as an action on which an ATM in
the ‘Ready To Use’ state can react. The first transition occurs when Person
enters a card which is not recognized by the card reader. The card reader will
then eject that card and the ATM will stay in the ‘Ready To Use’ case. Only a
card recognized by the card reader will be able to change the state of the
ATM into ‘In Use’, which is represented by the second ‘insert card’ transition.

The ‘In Use’ can be abandoned not only by a time-out (when for a certain
amount of time, there was no interaction between the ATM and Person), but
also by one of the transitions modelled in the sub-states diagram detailing the
‘In Use’ state: see Figure 49.
Chapter 4. Beginning the ATM project 79

Figure 49. Sub state Diagram of ATM In Use State

The diagram shows six sub-states of the ATMs general ‘In Use’ case:

Not Logged On The card reader contains a card, but Person
did not authenticated itself (by PIN) yet as
being the owner of the card.

Bank Accounts Listed The ATM displays the list of bank accounts
associated with the current card.

Bank Account Chosen Person chooses one of the bank accounts
associated with the card or the card has only
one bank account associated to it, in which
case this account was choose implicitly.
80 Programming with VisualAge for Java Version 3.5

Ask Amount The ATM asks Person to specify the amount of
money he wants to get.

Dispense Money The cash dispenser of the ATM is searching
for the requested amount of money and
presents it to be taken by Person.

Transaction History Listed The ATM presents the list of transactions for
the current bank account.

Once again, we advise you to take a closer look at these diagrams by
browsing the UML diagrams themselves, although some explanations are in
order here.

The first thing to notice is that Person can at any time choose to stop the
current session, with the exception of when the cash dispenser is giving
money. The ATM will direct the card reader to eject the card and the system
will return to the ‘Ready To Use’ state.

Another thing to notice is that there are four different transitions possible after
the action of entering a PIN code:

 • This is the normal case when PIN is validated and the ATM presents the
list of associated bank accounts.

 • This is the same as the above, but involves the case of having only one
account associated to the card.

 • The PIN code is incorrect; Person gets another chance to fill in the correct
PIN.

 • The PIN code is still incorrect, and there were too many attempts.

Two transitions on the diagram are marked with a ‘(dash). The ‘Collect
Money’ action is done by Person. This would be detected by the cash
dispenser in a real world application. In our implementation we simplify by
saying that the ATM automatically returns to the ‘Bank Account Chosen’ state
after a certain amount of time. This period is dependant on the amount of
money to be dispensed.

This means that the ‘Collect Money’ action will not be implemented, the state
of the machine will always make the transition by itself.

The transition between the ‘Not Logged On’ and the ‘Ready To Use’ state —
which happens when too many attempts (of the action: ‘enter PIN’) took place
— will also be skipped as a simplification.
Chapter 4. Beginning the ATM project 81

Analysis class diagram
Let us now look back at our candidates to become types in our application.
Two more proposed candidates are rejected because they do not seem to be
used to solve our scope of the ATM problem:

A Bank is never mentioned anymore, so it seems that the difference between
bank institutions is not more relevant to our case. We give the BankAccount
type itself the responsibility of keeping track of all bank accounts. This
approach uses the types ATM, Card, and Transaction, which now have to
take care of their instances, together with providing the necessary behavior to
search in those lists of objects.

Another type we mentioned before and that we leave out is Person. The client
of a normal application can have some attributes and behavior. In a Web
application, however, we cannot reach the client to retrieve those attributes or
to call its methods (see also the discussion at the beginning of “ATM state
diagrams” on page 78). This makes Person also superfluous.

Below is the list of classes we do retain:

ATM Machine allowing you to get cash money with a card

Bank account Either checking or savings accounts

Card Gives access to one or more bank accounts

CardReader Device in which Person inserts a card

CashDispenser Device that can dispense cash money

Money Represents an amount in a given currency

PIN Personal Identification Number protecting a card

Transaction A record of a money transfer between accounts

Figure 50 shows the static relationship between these types. Some methods
are also listed, together with the most important attributes.
82 Programming with VisualAge for Java Version 3.5

Figure 50. Analysis class diagram

Study this diagram and the associated documentation carefully in order to get
a sound understanding of the requirements for our Web application.

We briefly describe the main relations here: We say that a Card is secured
(from unauthorized usage) by a PIN; only when a correct number (checked by
the PIN) is given, the ATM will allow additional actions using the card. The
card reader accepts cards, that give access to — at least one, but possibly
more — bank accounts.

All transactions have a source and a target account. Remember that no
money can be deposited or withdrawn without a transaction: Even an ATM
withdrawal is represented by a transaction. Therefore an ATM is associated
with a (target) bank account ‘receiving’ all money transferred from the
account the user chooses when asking for cash money from the ATM.
Chapter 4. Beginning the ATM project 83

Each transaction also keeps track of the amount of Money involved. Bank
accounts have a balance. On top of that, a CheckingAccount is protected with
an overdraftLimit, and a SavingsAccount specifies a minimumBalance.
Money is dispensed by the CashDispenser device of the ATM.

This is a model that represents the (limited) problem we want to tackle in
terms of the problem domain. It is a deliverable used in analyzing a problem.
Next we are to make some decisions that will eventually lead to a design
model which is expressed in terms of concepts used to solve the problem.

Design class diagrams
In this section we look at how the model explained before can be turned into a
system that instantiates business objects that are able to solve the stated
problem: We now start the design phase. Note that we already assume using
Java as the language for the implementation when taking the design
decisions in this chapter. The design phase could also be split into a
language independent version — and a Java version, but this would make
this chapter needlessly longer.

First we look at the PIN type mentioned in the analysis (Figure 50). It models
PINs that are only accessible by a Card instance. Its only responsibility is to
match a given string of numbers with itself in order to authenticate the owner
of the Card. Here we decide to incorporate PIN into Card: Figure 51 shows
that Card gets the responsibility of validating a PIN.

The link between ATM and BankAccount in the analysis class diagram says
(see the associated note) that the amount of each cash withdrawal is limited
to the actual amount of cash available in the ATM. This means that the
transaction — with as target the bank account associated to the ATM — can
fail by this restriction. We had to decide where to implement that restriction:
Make it a responsibility of the ATM or of the BankAccount. Checking if there is
enough money to dispense can be compared to the restrictions on checking
and savings account that restrict withdrawals based on the respective limits
‘overdraft’ and ‘minimumBalance’ which can also cause the transaction to fail.

Because of that we decided to put the implementation of checking this
limitation at the side of the bank account. More specifically, we made up a
new type of account: ATMAccount. To enable it to perform its control, an
ATMAccount has an additional attribute representing the initial (or maximum)
amount of cash money available to the ATM to dispense. Each time money is
dispensed it is done at the same time as transferring the amount of money
from the user’s account to that ATMAccount, at which time it does the
necessary checking.
84 Programming with VisualAge for Java Version 3.5

Every dispense of money is compensated by a deposit on the associated
ATMAccount, keeping the ‘value’ of the ATM constant over time. Compare
this ATMAccount with a cashier’s account used to book all money
transactions a certain cashier is handling. The balance of such an account,
together with the real amount of cash available in the cashier’s drawer would
also have to be the same at all times.

Note that we do not have to make another attribute indicating the actual
amount of cash available to the dispenser, as it can be deducted from both
the balance and the initial amount: It should always be the difference
between the current balance and the initial amount of cash.

Figure 51. ATM related part of the design model

The above diagram shows that ATM also contains a CashDispenser and a
CardReader besides its ATMAccount. All three subparts of the ATM are fully
bound to the ATM: They are created at the same time, they cannot exist
without their ATM, and they have in common that they are not viewable from
the outside. The ATM uses them to implement its behavior, all requests go to
the ATM which then decides whether to forward them to its parts.
Chapter 4. Beginning the ATM project 85

Figure 51 also tells you that we gave each Card, BankAccount, ATM and
Transaction an identity (attribute id). This will allow us to retrieve instances of
this class. You can say that they are the primary key to retrieve objects of
those types. We want to make sure that all these references have some
common behavior (conversion to/from string, comparison, and so on.),
although we also want to avoid intermixing ids pointing to different sorts of
objects. Using inner classes and having them extend a common PrimaryKey
class (see Figure 52) meets all this requirements.

Besides wanting to store primary keys in a database, we also want to include
them in Web pages — thus, the need for conversion to and from the String
type and constructor from a String. For convenience we provide a default
constructor that generates a primary key value itself.

The hashCode() method (together with equals()) enables us to store and
retrieve the business objects using the HashMap type.

Figure 52. Design class diagram related to primary keys
86 Programming with VisualAge for Java Version 3.5

The classes of all identifiable business objects — which are responsible for
keeping track of all their instances — all implement a finder method: This
method takes a primary of the corresponding type and looks to see if it can
find an object with a matching key. If it cannot find one, we create a new
object — with reasonable default state — instead. This will keep our testing
code a lot simpler, because it will always work even when no testing data is
supplied.

Transactions are one of these BOs that are identifiable by their own
specialization of PrimaryKey. As you can see in Figure 53, the only way to
create a Transaction object is by using the Transaction class method
createTrx(). This method is responsible to ensure that no withdrawal without
deposit (or no deposit without withdrawal) can take place. It will throw a
TransactionAbortedException when it cannot create a (full) transaction and
will revert all changes already done to return to the state at the start of the
method.

Figure 53. Transaction
Chapter 4. Beginning the ATM project 87

This TransactionAbortedException is the parent of some other exceptions as
you can see in Figure 54: A NotEnoughCashException is thrown by an
ATMAccount when trying to do a deposit (compensating a money withdrawal)
that would bring the balance above the initialAmountCash value: It prevents
trying to dispensing more money then available to the CashDispenser of the
ATM.

The other two exceptions descend from ExceedLimitException, which
indicates that a user’s account cannot cover the withdrawal. The
OverdraftLimitExceededException signals that the current money transfer
from this account would bring its balance below the overdraft limit of the
CheckingAccount. BelowMinimumBalanceException does the same, but for
SavingsAccounts that would go below their minimum balance.

Figure 54. TransactionAbortedException diagram

This structure will prove very handy when using JSPs (Chapter 6, “Creating
JSPs” on page 129) to customize the error messages of our Web application:
The internal processing logic will handle (and eventually re-throw)
TransactionAbortedExceptions while those JSPs can be designed in a more
granular fashion (afterwards), because they can help the user find out what
has happened, based on the exact subtype.
88 Programming with VisualAge for Java Version 3.5

Note that all these exception types have only one constructor. The String
passed describes the error message in a human readable form, suitable for
debugging or testing purposes.

Another class that may seem superfluous at first sight is Money. We choose
to model it as a separate type in order to make it easier when people want to
extend this design by using a real-world version of money with currency and
fractions (an argument which also holds true for the other types). Another
advantage is the familiar Java type of checking: In the case of human error, it
is less likely that you will accidentally misuse a method when taking a
parameter of type Money, then when accepting a regular number. Also, the
compiler will detect the error — even before running the program — if you are
trying to pass inappropriate values.

When carefully examining the above diagrams — together with the complete
design available as described in Appendix B, “Using the additional material”
on page 363 — you may have noticed the fact that the identifiable BOs have
no method allowing us to remove them. This is another simplification we took:
Adding those methods would not bring much to our discussion, while not
allowing it also relieves us from discussing synchronizing access to the
HashMap we will use in the first implementation and eliminating existing
references to these objects.

Interaction diagram
As an illustration of how the business objects mentioned above work together
to accomplish the requested functionality, we made a sequence diagram. The
scenario we choose is the most fundamental, that of getting money out:

Preconditions:

Person has entered his card in an ATM, authenticated, chosen a
checking account, and asked to withdraw money: The ATM in the
ASK_AMOUNT state, it asks the amount. Person wants to get 100, the
chosen checking account has enough money to cover this transaction
and the ATM also has the 100 in cash.

Scenario:

Person enters 100. The ATM withdraws the current (checking) account
with 100 and its CashDispenser unit dispenses 100. Person takes the
money. ATM returns or showing the current account.

The sequence diagram in Figure 55 shows that the actor (Person) entering
100 results in a message to the ATM: getMoney. The ATM then asks
Transaction to create a new instance given the current (checking) account as
Chapter 4. Beginning the ATM project 89

source, its ATMAccount as target and the amount (100): createTrx.
Transaction creates a new instance of itself and call the method withdraw on
the checking account. This one checks its balance and subtracts the amount
from it. Transaction then asks the ATMAccount the deposit. The ATMAccount
also first checks before adding it to its balance. The transaction succeeded so
Transaction adds its newly created instance to the list. ATM changes its state
to DISPENSE_MONEY and asks the dispenser to dispenseMoney. After the
CashDispenser gives the cash, the ATM returns to the
BANK_ACCOUNT_CHOOSEN state.

Figure 55. Sequence diagram for the ‘get money’ scenario

We hope that the design of our application is clear to you by now. If not, we
suggest that you consult the complete model and its documentation (see
Appendix B, “Using the additional material” on page 363). We can now go on
discussing the infrastructure, putting all these things together with the
different implementations.
90 Programming with VisualAge for Java Version 3.5

Overall architecture

This section will lay out the different environments where the example will be
used. The business objects designed before will form the basis of this all.
They model the solution and are therefore the only ones responsible for
executing the business logic.

If — at all — there happens to be any business logic present in other parts
than these business objects, it will not impact the implementation of the logic
in the BOs. Therefore it should only be used as an aid serving the purpose of
enhancing a particular case. For example, the entered PIN number could be
checked against illegal characters by using JavaScript in a HTML form asking
to enter this PIN code. Although this might have been a business rule that will
be checked again by the BOs, the use of JavaScript and duplicating this is
generally considered a good implementation in that it avoids server
round-trips: JavaScript is implemented in the user’s browser which should be
responsive, in contrary to a check with the BOs over the Internet which has a
greater chance of being slow.

The big picture
The business objects are shown in Figure 56 as being the center of it all. The
architecture throughout this book is a basic three-tiered model. The top layer
represents persistent storage, while the middle layer is the implementation of
the business logic (BO-layer). Everything below represents some kind of
interface specific to the environment of the user of the application. This layer
basically translates the input to and the output from the core implementation
of the program.
Chapter 4. Beginning the ATM project 91

Figure 56. Architectural diagram

You can see two major implementations of the representation layer:

 • GUI, traditional C/S client
 • Browser, Web application

GUI client
The Graphical User Interface (GUI) version will be implemented as a Java
application and as an applet. This client will illustrate the Visual Composition
Editor (VCE) component of VisualAge for Java. For a change, this does not
implement the ATM interaction, but instead, it provides some kind of
administrative client to access the ATM system.

Insert Card Servlet

Enter PIN Servlet

Show ATM ServletsChoose Account Servlet

Choose withdrawal history Servlet

Enter amount Servlet

Out of order

Ready to use

Not logged on

Bank accounts listed

Bank Account Chosen

Ask amount

Dispense money

Transaction history listed

Browser

X-www.

Welcome to the
ITSO ATM

Enter Card:

Insert

GUI Client

Servlets

Card Bean

Card Bean Home

Bank Account Bean

Java Beans

All Cards

JSPs

BankAccount Card

Money

AT MTransaction

Business Objects

SavingsAccount ATMAccountCheckingAccount
Cash

Dispenser
Card Reader
92 Programming with VisualAge for Java Version 3.5

As you will see in Chapter 7, “Creating GUI applications” on page 143, the
VCE works on JavaBeans. The block shown in Figure 56 shows some
JavaBeans wrapping the business objects. A difference to note already, is
that the class level responsibilities of the BOs are now separated and put in a
JavaBean with the Home suffix: Finder methods on the Card are, for
example, implemented by CardBeanHome which forwards its request to the
corresponding Card class method.

Browser client
The Web application implementation can be seen as a convertor which
converts HTTP requests to messages sent to the BOs. The results are then
converted to HTML and sent back (again using the HTTP protocol) to the
browser based client.

The Web application block as shown in the above figure contains two blocks:

 • Servlets
 • Java Server Pages

Chapter 5, “Creating servlets” on page 109 explains what servlets are and
implements the example application without using JSPs. Chapter 6, “Creating
JSPs” on page 129 then explains what JSPs are and make a new
implementation based on a servlet-only implementation to use those JSP
techniques.

In the beginning of this chapter we explained a crucial difference between
traditional Client /Server applications and Web applications (clients of Web
applications are inherently stateless): In short, Web applications should
expect calls on all their methods at anytime, also when not appropriate
considering the state of the underlying BOs. In designing this application, we
have already ensured against improper use by fixing the states of the ATM.

The states of the ATM indisputably say what can be done with an ATM at any
given time in its life cycle. Following this and because of the fact that you can
easily discover the state of a real ATM by looking at it, we can associate the
ATM states with the different representations of the ATM. Both the servlet
implementation and the JSP implementation will exploit this fact. The central
part in this is the ShowATMServlet, whose only responsibility is to return the
current ATM (if it can determine any) in the state it is currently in. This servlet
is the only one which will create a response to the client browser (eventually
indirectly through forwarding to JSPs): Client requests on all other servlets
(including JSPs) are forwarded to this ShowATMServlet. This construction
insures that the access to the application (guarded by the ATM) is sound at all
times.
Chapter 4. Beginning the ATM project 93

The other servlets use the ATM to forward requests asking to take an action
on the ATM. These actions (origination from the user of the system) can
easily be found by examining the use case diagram (Figure 47 on page 77):
Each servlet corresponds to a use case invoked by an action of Person. The
mapping between the functional requirements and the implementation is
made straightforward by this construction.

After analyzing and checking the HTTP request, the action servlets invoke
the corresponding methods on the BOs, in this case primarily on the ATM as
corresponding model representing the application. The result of these calls
will either be a state change in the ATM or an error. In both cases the ATM
has to be shown (eventually together with an error message), so those ATM
servlets forward the request always to the ShowATMServlet to generate the
response based on the current state of the ATM.

Database access
The link between the business objects layer and the database pictured at the
top is, for reasons of simplicity, implemented inside another version of the
business objects. A better way would be to have some intermediate
persistence layer. However, this book only explains the VisualAge for Java
Professional version features, which do not include the Persistence Builder
Feature one would use to implement such a persistence layer more
efficiently. For a discussion on how to build such a layer, you will need to
consult a specialized lecture.

The implementation based on database persistence is explained in
Chapter 10, “Using relational databases” on page 275. This implementation
will, however, be completely compatible with the reference implementation
(based on memory persistency) that we explain below: You should be able to
replace the implementations for every client layer implementation without
changing anything but the import statements to refer to the two corresponding
packages:

com.ibm.itso.sg245264.atm.memory This will contain the in-memory
example implementation explained in
the next section.

com.ibm.itso.sg245264.atm.database This will contain the database
implementation described in
Chapter 10, “Using relational
databases” on page 275
94 Programming with VisualAge for Java Version 3.5

The database will be accessed using JDBC 2.0, so you could choose any
database engine with a confirming driver on whatever platform you choose.
The fact that this third tier can be put physically on a different computer,
without changing the code, is one of the benefits of using JDBC. More on the
database part can be found in Chapter 10, “Using relational databases” on
page 275.

Example implementation

In a sense we will have three different client applications accessing the
business objects, also having two different implementations. The reference
implementation is explained in this section. It focusses on the business logic
implementing the design model explained earlier.

A practical way to start off is by generating the skeletons of the Java classes
directly from the design tool. We used a linkage tool with Rational Rose and
VisualAge for Java. To use this tool, you need to download and install a patch
and the Rational Rose modeling tool. Refer to Rational‘s Web site:

http://www.rational.com/support/downloadcenter/upgrades/rose.jsp

All the code of everything explained here and the rest of the application can
be found in full in the accompanied resources; see Appendix B, “Using the
additional material” on page 363. Therefore, there is no need to type all of the
code yourself, although you might want to start it out yourself as an exercise
and copy additional code to complete the whole sample inside your IDE. Also,
there is another exercise that we would advise you to do to ensure you that
you comprehend everything: Go back to the requirements section in this
chapter, decide on adding or changing some functionality, then describe and
implement this using the supplied code.

We start our explanation just as you should start your own project yourself,
assuming that you have just installed VisualAge for Java without using any
previous code generation (in contrast to the above). We begin by explaining,
in detail, a good way to do this, so you can begin to feel comfortable using the
tool. Be aware that there are many ways to accomplish things, so our choice
of certain ways here is only meant as an introduction. Later on, you might find
that you prefer some ways above others. This section will also give you some
“Tips & Tricks” using VisualAge for Java.

The Workbench of VisualAge should always be your starting point, as you
would normally start browsing to an existing project or create a new one.
Chapter 4. Beginning the ATM project 95

First, we must create a project. Remember that VisualAge organizes
packages into projects (see: Chapter 2, “Organizing your code” on page 41).
To do this, click:

Type in the name of this project: ATMExampleApplication. (When we do not
mention to change something else, it means that you should stick with the
default values presented by the dialogs.)

Next we create two packages: One for the reference implementation itself,
and one that should contain the code which is independent of the in-memory
implementation (for example, the code for the test application). We open the
Project browser for the newly created project, or we make sure to select this
new project in the Workbench before invoking the ‘Create new package’
SmartGuide. Click:

Type the names of the packages we chose, following the naming
conventions:

 • com.ibm.itso.sg245264.atm.memory

 • com.ibm.itso.sg245264.atm

Detailed steps implementing the first class
We will now start by implementing the design class Money. For the previous
discussion we now that it only has to represent an amount, without fractions
or any currency indication. The operations on Money are just the normal
arithmetic. We chose to use the BigInteger type from the java.math package
and implement Money as a child of BigInteger. To proceed, click:
96 Programming with VisualAge for Java Version 3.5

Type in Money as name of the class and click the Browse button behind the
entry field for the superclass. Start by typing “big”, as shown in Figure 57.

Figure 57. Specify BigInteger as superclass

The first list automatically refreshes when typing in, to match the pattern you
typed in, appended with an asterisk (*). The second list will show the package
names which contain the currently selected type (or the first one in the list).
Such dialogs are used throughout VisualAge for Java; they give you a fast
and safe way to specify a type.
Chapter 4. Beginning the ATM project 97

On the next page of the SmartGuide, we specify that we will reference the
BigInteger type in the import statement using the Add Type... button. Then
we deselect Copy constructors from superclass to avoid the generation of
those (because we might otherwise end up with unintended implicit castings),
as shown in Figure 58.

Figure 58. Second page of ‘Create new class’ SmartGuide for Money

When we have finished the SmartGuide, the Money class appears in our
project browser. Now we have to double-click Money to browse the class.
98 Programming with VisualAge for Java Version 3.5

We see that the class definition contains a comment block with some tags. It
includes the author’s name and marks it with a timestamp (to change this, go
to “Customizing VisualAge for Java” on page 28 for instructions on how to use
this Javadoc template).

The first thing to do is to change the comment on the class (and change some
things conforming coding guidelines):

import java.math.BigInteger;
/**
* Represents an amount of money.
* The currency is not taken into account here.
* This basically represents only a quantity, without a fraction.
* We use BigInteger as basis for our implementation.
*
* Creation date: (12/15/00 6:04:18 PM)
* @author: Frederik Haesbrouck
*/
public class Money
extends BigInteger {
}

We continue by creating a method which can tell us whether a Money object
is positive (will be used by the ATM preventing it from dispensing negative
amounts of money). The implementation is straightforward:

return (compareTo(ZERO) >= 0);

This uses the compareTo() method implemented at the BigInteger level to
compare the current value with the BigInteger constant ZERO. We use the
‘Create Method or Constructor’ SmartGuide to create this method. Click:

This will give you a dialog where you can specify the signature of the method.
Note that although you can change the return type later on, you have to
specify a return type here. Enter:

boolean isPositive

Go to the next screen and change the access modifier to public. Click Finish
to end up with a skeleton of the method (Figure 59).
Chapter 4. Beginning the ATM project 99

Figure 59. Skeleton method in class browser

This generated piece of code provides enough to use the method already
without changing, in case you want to copy your design and gradually add the
necessary logic afterwards.

Another great aspect of it is — once again — the generated Javadoc
comment block: It automatically inserts the applicable Javadoc tags (@return,
@param, @exception, and so on.) and marks it with a timestamp (see
“Customizing VisualAge for Java” on page 28 how-to this Javadoc template).

We start by changing the text “Insert the method's description here.“into “Is
this instance positive (0 inclusive)? ”. It is a good practice to start by
explaining what you want this method to do, before implementing it. Press the
shortcut CRTL-S to save your changes.

Replace the default implementation of returning false with the implementation
mentioned above. This is should be the result:

/**
* Is this instance positive (0 inclusive) ?
*
* Creation date: (12/15/00 6:20:30 PM)
* @return boolean
*/
public boolean isPositive() {

return (compareTo(ZERO) >= 0);
}

100 Programming with VisualAge for Java Version 3.5

You may have already noticed a red cross in front of the Money class in the
Project browser of the Workbench, indicating an error. The corresponding
message shows us that our Money type is missing a constructor.

We will fix this error by making a String constructor. Invoke the class
SmartGuide as described before and choose to create a constructor, add a
parameter anAmountStr of type String. This constructor will throw an
exception when it cannot convert the supplied string into an amount, so on
the third page of the SmartGuide you add NumberFormatException to the
throws list. Adjust the comment and implement this constructor to become:

/**
* Create an amount of money equal to the given
* String representation of it.
*
* Creation date: (12/15/00 9:36:49 PM)
* @param anAmountStr java.lang.String
* @exception java.lang.NumberFormatException When the parameter cannot be

converted to a number
*/
public Money(String anAmountStr)
throws NumberFormatException {

super(anAmountStr);
}

We want to use arithmetic functions like add and subtract directly inherited
from BigInteger, but as you will see, these return BigInteger instead of Money
instances. We solve this problem by making an additional constructor, called
a copy constructor.

Reusing existing method to create a new method
Instead of using the SmartGuide, we create this constructor by changing the
previous one and pressing Ctrl-S, which defaults into saving the code (and
hence creating a new constructor) while leaving the original untouched. (See
“Customizing VisualAge for Java” on page 28 to change default behavior):

/**
* Copy ctor from its parent type.
*
* @param anAmount BigInteger
* @exception java.lang.NumberFormatException Will never be thrown
*/
public Money(BigInteger anAmount)
throws NumberFormatException {

super(anAmount.toString());
}

Chapter 4. Beginning the ATM project 101

The implementations of the add and subtract methods now simply use this
constructor to transform the result from their parents implementation into
objects of the type Money:

/**
* Convenience method.
*
* Creation date: (12/15/00 11:56:26 PM)
* @return com.ibm.itso.sg245264.atm.memory.Money
* @param anAmount com.ibm.itso.sg245264.atm.memory.Money
*/
public Money add(Money anAmount) {

return new Money(super.add(anAmount));
}
/**
* Convenience method.
*
* Creation date: (12/16/00 12:09:11 AM)
* @return com.ibm.itso.sg245264.atm.memory.Money
* @param anAmount com.ibm.itso.sg245264.atm.memory.Money
*/
public Money subtract(Money anAmount) {

return new Money(super.subtract(anAmount));
}

We finish the implementation of the Money class by adding convenience field
to refer to ZERO — comparable to the above methods — allowing us to use
ZERO directly without having to “cast” it to Money from BigInteger.

public final static Money ZERO = new Money(BigInteger.ZERO);

We hope that you now have a better idea of how to use the VisualAge
environment to enter code. The other classes will not be discussed anymore.
We will only point out some peculiarities that might need more explanation.

PrimaryKey class hierarchy
The PrimaryKey class is implemented based on a String. We chose this
because of two reasons: we need a string representation and because it is
easier to be able to use normal names for IDs.

The field id contains the String, method getIdAsString() gives the string
representation this ID. In contrary, the toString() method returns the ID in
such a way that it is clear what it is and what its value is when browsing with
the Inspector (used when debugging; see Chapter 9, “Testing and debugging
the Web application” on page 231).This holds also true for the other classes
we develop.
102 Programming with VisualAge for Java Version 3.5

Besides the obvious String constructor we also provide a default constructor
that generates a — nearly 100% unique — primary key:

id = Long.toString((new Date()).getTime());

This construction returns the current time on a millisecond precision, the
change of retrieving twice the same value is very small, although existent.

In this implementation we will use HashMaps when implementing the
persistency in the different classes. A HashMap associates a key with a
value, values can be retrieved by providing the corresponding keys. The
PrimaryKey objects will be used as keys for the objects to be stored in those
HashMaps. The key of a hashmap must implement both hashCode() and
equals(). The signature of the equals method takes a general Object as
parameter, this is the way you should cope with it:

/**
* Uses the equals implementation of the underlying String.
* Needed for use in HashMap.
*
* Creation date: (11/28/00 4:17:42 PM)
* @return boolean
* @param anObject java.lang.Object
*/
public boolean equals(Object anObject) {

try {
return id.equals(((PrimaryKey) anObject).id);

} catch(ClassCastException ex) {
return false;

}
}

We now show you how we implemented the Transaction class as an example
of a class which produces ‘identifiable’ objects (representing ‘logs of a
transfer of money’) and has the responsibility to keep track of all its
instances.

Creating an inner class
After creating the Transaction class, we add a specialized version of the
PrimaryKey as inner class. The way you add inner classes in VisualAge for
Java is not obvious at first, so we will show you how. You have to get to the
class declaration: Select the Transaction class (open it in the Class Browser
or select it from the Workbench or some other browser) and make sure that
there no method is selected (eventually deselect by holding the CTRL key).
Then insert the code inside the class declaration like this:
Chapter 4. Beginning the ATM project 103

public class Transaction

{

public static class TransactionPK
extends PrimaryKey
{

public TransactionPK()
{

super();
}
public TransactionPK(String anId)
{

super(anId);
}

}

The inner class Transaction$TransactionPK will now appear in the list with
the field and methods of the enclosing class (this is new from v3.5). When
you click this, it shows exactly the things you typed in just before.

The main responsibility of the Transaction class is to transfer money from one
account to another as one transaction: Either such a transfer will complete, or
it will roll back as if nothing happened. If it was successful, it will make a new
instance that specifies the transfer with timestamp and references to the
involved accounts. The createTrx() does just that. Consider that, although this
implementation is not bullet-proof, it serves as an example:

./**
* This method tries to make a transaction of the specified
* amount of money for the given source account
* onto the given target account.
*
* @param aTrxAmount
* @param aSrcAccount
* @param aTrgtAccount
* @return Transaction Transaction instance indicating this transaction if successfull.
* @exception TransactionAbortedException It will throw an exception if the transaction

could not be completed, after it rolled back any of the already token steps.
* @roseuid 3A1ABBA202A8
*/
public static Transaction createTrx(

Money aTrxAmount,
BankAccount aSrcAccount,
BankAccount aTrgtAccount)

throws TransactionAbortedException
{

Transaction tempTrx = new Transaction(aTrxAmount, aSrcAccount, aTrgtAccount);

// deduct from aSrcAccount
try {

aSrcAccount.withdraw(aTrxAmount);
} catch(TransactionAbortedException ex) {
104 Programming with VisualAge for Java Version 3.5

throw ex;
}

// add tot aTrgtAccount
try {

aTrgtAccount.deposit(aTrxAmount);
} catch(TransactionAbortedException ex) {

// put money back on aSrcAccount
aSrcAccount.deposit(aTrxAmount);
// NOTE: theoretically this could also throw exception...
throw ex;

}

allTransactions.put(tempTrx.getId(), tempTrx);
aSrcAccount.addTransaction(tempTrx);
aTrgtAccount.addTransaction(tempTrx);

return tempTrx;
}

The constructor used by this method should not be accessible from outside
the class, transactions should only be made by the createTrx() method,
therefore it is the only constructor of Transaction and it is declared as private.

Persistency based on HashMaps
The Transaction class (among others) implements its persistency
responsibility by using a HashMap. Each time a new transaction is created, it
is added to the HashMap. The createTrx() method of Transaction (see above)
contained this line that adds the newly created transaction with its primary
key as key:

allTransactions.put(tempTrx.getId(), tempTrx);

This getListOfAllCards() method shows how easy it is for the Card class to
produce this list of all its instances:

/**
* Get the list of all the Cards currently in the system.
*
* Creation date: (12/4/00 2:18:39 PM)
* @return java.util.Vector
*/
public static Vector getListOfAllCards() {

return new Vector(allCards.values());
}

Finder methods
The ‘finder’ methods described before are also implemented easily. Together
with the code to create a usable new Card when the findWithCardPK() finder
cannot find the requested Card, this results in the list:
Chapter 4. Beginning the ATM project 105

/**
* This finder will search for the Card with the given
* primary key and return it.
* It will create a new Card with the given primary key
* if it didn't found an existing Card with that primary key.
* That newly created Card will also be associated to
* two newly created BankAccounts (one Checking and one Savings).
*
* Creation date: (11/22/00 5:12:16 PM)
* @param anId CardPK Primary key
* @return Card instance
*/
public static Card findWithCardPK(CardPK anId) {

Card tempCard;
Vector tempAccountsV = new Vector();

if((tempCard = (Card) allCards.get(anId)) == null) {
// create new one
tempCard = new Card(anId);
// associate checking and savings account with the same PK as base
tempAccountsV.addElement(new CheckingAccount(

new BankAccount.BankAccountPK(anId.getIdAsString() + 'C')));
tempAccountsV.addElement(new SavingsAccount(

new BankAccount.BankAccountPK(anId.getIdAsString() + 'S')));
tempCard.setBankAccounts(tempAccountsV);

}

return tempCard;

We limited the scope of this example by not allowing the deletion of the
object, which makes sure that we do not have to provide a method removing
instances of the HashMap.

Implementations of the state diagram
ATM class implements the state diagrams — described at the beginning of
this chapter — in a simple and direct way: Each of its methods
(corresponding to the actions eventually inducing a state transition) works in
three steps:

1. It checks if the ATM is in the correct state.

2. It does its job.

3. It changes the state of the ATM when necessary.

The states themselves are constants on the ATM class which have the
ATMState type (inner class of ATM). We chose the String type as a basis for
the ATMState so we can put the description on the type inside which can be
practical when debugging. The fact that ATMState is a separate type makes it
easier to change its implementation later and to have all of the benefits from
the strong typing feature of Java.
106 Programming with VisualAge for Java Version 3.5

At this point, combining the introduction of the coding with the design material
from before, should enable you to finish the complete memory
implementation of the ATM business objects.

Test application
The last thing to do is to make a test application that will test the whole
package. (Note that the unit testing was done by implementing a main()
method on some of the classes.) Remember that we already made a package
inside the current project for this test class: com.ibm.itso.sg245264.atm.

This testing class is outside the package so it should also be used to tune the
accessors of the different methods on the ATM classes.

As said before, the ATM business objects will be implemented again later on
in Chapter 10, “Using relational databases” on page 275. This test class will
ensure us of this compatibility issue.

We have four scenarios which are implemented as methods that are called
from the main() of the TestATMApplication class:

testRoundTripScenario

RoundTripScenario will test a typical scenario for an ATM: Get money from
one of the accounts and look at the transaction history afterwards.

testGUIScenario

The GUIScenario will start of with a list of all Card instances in the system.
It allows choosing one of them to see its detail. The detail shows the
owner of the card, the primary key and a list of associated BankAccounts.
From this list BankAccounts can be added or deleted. Adding an account
is accomplished by showing a list of all BankAccounts to choose from.
This scenario also tests an invalid attempt to add an account twice.

testGetMoneyOneAccountScenario

This method will test the case of taking out money when only one account
is associated with the Card.

testATMRetrieval

This is a test method for the creation and retrieval of an ATM from
persistency.

This concludes our chapter introducing the sample application to be used
subsequently. We hope it has also been helpful in familiarizing you with the
VisualAge for Java environment.
Chapter 4. Beginning the ATM project 107

108 Programming with VisualAge for Java Version 3.5

Chapter 5. Creating servlets

This chapter is designed to introduce servlets both in concept and in practice.
We cover the servlet API, runtime environment, and life-cycle, focusing on the
portions that are utilized in building our ATM Web application. If you are
already familiar with servlets, this chapter will still be of benefit because other
chapters build on the concepts and the ATM Web application presented here.

There is already a great deal of electronic and printed documentation
covering this technology. For complete documentation, pleas refer to
http://java.sun.com/products/servlet/, which is the Sun Java Servlet API
Specification. Other servlet references are suggested in Appendix D,
“Related publications” on page 371. In order to test the servlets shown here,
refer to Chapter 9, “Testing and debugging the Web application” on page 231.
The ATM servlets can be deployed to any Web application server that
supports servlets. For more information about deployment, see Chapter 12,
“Deploying the Web application” on page 341.

Overview of Java servlets

Servlets are designed as a platform-independent way of extending any
application server. In this chapter we will limit ourselves to servlets that
extend a Web server. The terms used in this chapter are defined in Table 5.
These terms can have different meanings in other contexts and in other
books. We define the terms as they are used in this book. In order to
understand how servlets work, it is important to understand in general how
Web servers work and the basic nature of the HTTP protocol.

Table 5. Terms used.

Term Definition

Web server Any server program that implements the
HTTP protocol and is able to communicate
with Web browsers using HTTP.

Web application server Any Web server that can run servlets and
Java Server Pages.

Web application A collection of related resources that are
available on a Web server. This can
include static HTML documents, images,
multimedia, servlets and/or JSPs.
© Copyright IBM Corp. 2001 109

Servlets are typically used to provide dynamic Web pages and to take some
action on behalf of an end-user. Servlets are run inside the Java Virtual
Machine (JVM) of the server. Therefore all servlets running inside a single
server can share access to resources, such as open database connections
and other Java business objects. Servlets are not dependant on the
resources available on the client. A servlet can interact with any Web
browser, even if the Web browser does not support Java.

Servlets are similar in some ways to other technologies used to extend the
function of a Web server, such as CGI programs. Servlets should not be
equated with Java applets, as applets run on a client Web browser in a
restricted environment. Servlets receive a request from a Web browser and
dynamically build a response. The response can be based on information
accessed from a database, business objects, or other sources of information.
The flow of the communication is as follows:

1. The Web browser sends a request to a Web server for one particular
servlet. The request includes the URL of the desired servlet.

2. The Web server receives the request and determines that the request is
for a servlet.

3. The Web server passes the request to the Web application server (which
is typically on the same physical machine)

Web browser Any client program that implements the
HTTP protocol and is able to communicate
with Web servers using HTTP. Two
examples are Netscape Navigator and
Microsoft Internet Explorer.

servlet A Java program that extends the Java
class HttpServlet and runs inside a Web
application server.

persistence The ability of a program to have a state
and to remember information in between
requests.

request An HTTP request which includes
information such as the URL of a
resource.

response An HTTP response which could include an
HTML document, or an image.

Term Definition
110 Programming with VisualAge for Java Version 3.5

4. The Web application server receives the request and passes it to the
correct servlet.

5. The servlet runs and builds a response. The response is usually based on
the request and other resources, such as a database and other Java
business objects.

6. The servlet sends the response to the Web application server.

7. The Web application server sends the response back to the Web server.

8. The Web server sends the response back to the Web browser from step 1.
Then the communication channel to the Web browser is closed.

9. The Web browser displays the response to the end-user.

The above steps are best illustrated in Figure 60.

Figure 60. Overview of communication between Web browser and servlet

If the Web browser requests a new servlet (or even the same servlet) the
communication process starts over from the beginning. Since the
communication channel is closed after each request is answered, the any
additional requests are treated identically by the Web server as the very first
request. This type of communication is described as “stateless.” Neither Web
browser nor Web server has any knowledge of the condition of the other. The
Web server has no knowledge whether it is answering many different Web
browsers, or many requests from a single Web browser.

Business
Objects

X-www.

Web
browser

JDBC
Database

Legacy
application

WebApplication Server

Web Server

2

7 3

Is this a
URL for a
servlet?

8

1

6 4

Servlet A: run
doGet or
doPost5

Request

Request

Response

Response
Chapter 5. Creating servlets 111

Fortunately, the Web application server provides several forms of persistence
to our servlets. The following list highlights some of the many advantages of
servlets over other server-side technologies such as CGI.

 • Servlets are portable and platform independent. Servlets are Java
programs so they can run on any Java Virtual Machine and on any Web
application server that supports to the Java Servlet API.

 • Servlets have persistence and high performance. The servlet is only
loaded once by the Web application server and simply invoked for each
request. This allows the servlet to preserve information between different
requests, such as open database connections. In addition the Java Servlet
API defines a session object which can be used to preserve information
from a particular user.Additionally servlets are multi-threaded which
means all requests are processed in a single process or job.

 • Servlets are Java programs. This means that servlets gain all the
benefits of the Java language and virtual machine, which include
object-orientation, access to the full Java API, the ability to use any Java
package, automatic garbage collection, etc.

Servlets need to be written as thread-safe programs. The possibility exists for
one method which modifies a shared variable, to be executed simultaneously
in multiple threads. For more information about threading issues and
thread-safe programming in Java, refer to Appendix D, “Related publications”
on page 371. For a visual illustration of multiple requests reaching the servlet
at the same time, refer to Figure 61.
112 Programming with VisualAge for Java Version 3.5

Figure 61. Multiple requests reaching the servlet

The Java Servlet API

The Java Servlet API is a group of Java classes which define a standard
interface between a servlet and a Web application server. These classes
allow the servlet to access the request initiated by the Web browser, any
parameters that were set, and the Web application containing the servlet. The
API also provides access to persistence mechanism called a session and
methods for managing the life-cycle of the servlet. The life-cycle of every
servlet includes the stages described in Table 6.

Web Application Server

JVM

Instance of Servlet A

int i=1

Servlet A
thread 1

Servlet A
thread 2

Request A

Response A

doGet

out.print(i)

Request B

Response B

doGet

out.print(i)
Chapter 5. Creating servlets 113

Table 6. The stages of the servlet life-cycle

The API is contained in two Java packages:

 • javax.servlet
 • javax.servlet.http

These packages are part of Java 2 Platform Enterprise Edition (J2EE) and
are included in all versions of Visual Age for Java 3.5. The API includes many
classes for advanced servlet programming. In this section we will focus on the
classes that will be used to implement the ATM application.

The HttpServletRequest class provides methods to access all parts of the
request from the Web browser. This class provides access to any information
entered into an HTML form, along with any additional information sent by the
browser. The Web application server can add extra information to the request
before it forwards it to a servlet.

The HttpServletResponse class represents the output that the Web browser
is expecting to receive. The response is typically an HTML document, such
as in our ATM Web application. The response could also be an XML
document or any other file format.

The HttpSession class represents a persistent object for each user. The Web
application server maintains all session objects and tracks which session is
associated with each user. Servlets can ask the Web application server to
create and retrieve the session object. Once the servlet has a session object,
it can put objects into the session, or get existing objects out of the session.
The servlet can also request to expire the session, which causes the server to

Description of stage Method called

The servlet is loaded into memory by the Web application
server for the first time. The instance variables are initialized
and stay in memory until the end of the life-cycle. This typically
happens the first time a Web browser requests the servlet. The
server administrator can also choose to load certain servlets
whenever the server is started.

init

One or more Web browsers have requested the same servlet.
A thread is created for each request. Each thread has access
to the shared instances variables and to its own request.

n/a

Each thread handles its own request and generates a
response. The response is send back to the Web browser.

doGet or doPost

The servlet is removed from memory by the Web application
server. This typically happens when the server is shut down.

destroy
114 Programming with VisualAge for Java Version 3.5

remove the session from memory. The server will also expire sessions
automatically if it does not receive any new requests in some set time period
(that is, the session will time-out). The time period is set by the server
administrator. As we have discussed earlier in this chapter, Web servers are
stateless — every request is treated the same. This is still true: whenever a
request is received by the server, the server checks if a session exists for this
particular browser. In our ATM application we use the session to store the
ATM object for each user.

The ServletContext class represents the Web application in which a servlet is
running. The servlet can use this class to forward the request to another
servlet or JSP in the same Web application. The ServletContext class can
also be used to find information about the application, such as version
information or the true document root within the server’s file system. In our
ATM application, this class is used to forward the request from one servlet to
another.

The Cookie class represents the cookies in the HTTP header. The HTTP
protocol allows a Web server to send small amounts of data to the browser
along with its response. Each cookie can have an expiration date that the
browser is expected to honor. Each cookie is simply a String name/value pair.
The HTTP protocol also allows the Web server to retrieve a cookie it has set
in the past. There are several limitations. Most Web browsers allow a user to
reject cookies and to clear existing cookies. A knowledgeable user could
modify the value of a cookie before it is returned to the server. In spite of
these limitations, cookies are useful for storing small amounts of data for
each user for long amounts of time, with virtually no cost to the server. Most
Web application servers use cookies as a way of tying a session object to a
particular user. If a servlet writes a cookie, it cannot be retrieved by other
servlets until after the response has been received by the Web browser and
the browser initiates a new request.

Requests for a servlet can be initiated by a user in several ways. The servlet
method (doGet or doPost) reached depends on the request. The differences
are summarized in Table 7.
Chapter 5. Creating servlets 115

Table 7. Methods used to request a servlet

The HTTP GET method concatenates the form data to the URL. So a GET
request to a servlet would look like:
http://www.sitename.com/servlet/MyServlet?name=Sarah.

Even if HTTPS is being used, the URL is sent in plain text. Do not use the
GET method if the form contains sensitive data. The method HTTP POST
does not append form data to the URL. Servlets is not required to handle both
doGet and doPost. Depending on the nature of the Web application,
implementing both doGet and doPost may not be desired.

Building the ATM application servlets

Our ATM servlets will be part of a three-tier architecture. The first tier is the
presentation layer, the second tier is the business objects, and the third tier is
external sources of data, such as a database or legacy data. The
presentation layer for the ATM application is comprised of HTML documents
and servlets. In this chapter the HTML will be hard-coded into the servlets.
This is only a temporary measure: in Chapter 6, “Creating JSPs” on page 129
the HTML will be moved into JSPs. Refer to Figure 56 on page 92 for a visual
guide to the architecture. The servlets will process the data entered by the
user then validate the data by calling methods on the business objects. The
servlet will then forward the request to another servlet (the ShowATMServlet)
which will decide which screen to show next.

We are writing eight servlets for our ATM application. There is one servlet for
each possible interaction with the user, as shown in Figure 47 on page 77.
There are three additional servlets for the user walking up to the ATM, the
user leaving the ATM, and the user choosing a new action after looking at the
transaction history. These servlets are summarized in Table 8. They build on
the business objects discussed in Chapter 4, “Beginning the ATM project” on
page 73. It is critical to understand the overall design of the business objects
before attempting to implement the servlets.

User Action Servlet method invoked

User directly types in a URL in their Web browser. doGet

User clicks a Submit button in an HTML form that
specifies GET for the method.

doGet

User clicks a bookmark in their browser. doGet

User clicks a Submit button in an HTML form that
specifies POST for the method.

doPost
116 Programming with VisualAge for Java Version 3.5

Table 8. All servlets needed for the ATM application

Name Purpose When it is called

ShowATMServlet This servlet will create (if
necessary) and display the ATM
object in its current state. It decides
what HTML document to create
based on the current state of the
ATM object.

1)When the user
initially walks up to the
ATM, that is, they type
in a URL.
2) When another
servlet wants to show
the current state

InsertCardServlet To get the card that the user
entered and to validate it by
inserting the card into the ATM
object.

When the user clicks
the Next button
after inserting their
card.

EnterPINServlet To get the PIN that the user entered
and validate it by entering the PIN
into the ATM object.

When the user clicks
the Next button after
typing their PIN.

ChooseAccountServlet To get the account that the user
selected and validating it by
choosing that account on the ATM
object.

When the user clicks
the Next button after
selecting an account.

ChooseActionServlet To get the action that the user
selected, such as withdrawal
money, view transaction history, or
change accounts. Then try to
perform that action on the ATM
object.

When the user clicks
the Next button after
selecting an action.

EnterAmountServlet To get the amount to withdraw that
the user entered. Then validate the
amount by trying to withdraw that
amount from the bank account.

When the user clicks
the Next button after
typing an amount.

ShowActionsServlet To request that the ATM object
show all available actions.

When the user clicks
the link labeled
Choose a different
action in the
transaction history
screen.

StopServlet To change the ATM object’s state
back to “READY_TO_USE.” The
user could choose to start a new
interaction with the ATM object, or a
new user could access the ATM
object.

When the user clicks
the Restart hyperlink
on any screen
Chapter 5. Creating servlets 117

Use the Servlet SmartGuide to create all eight servlets in the ITSO project (or
whatever you happened to name your project). The most important element is
the package name and class names. Create all the servlets in the package
named “com.ibm.itso.sg245264.atm.servlets” To learn how to use the Servlet
SmartGuide, please refer to “Building your first servlet” on page 31. Make
sure to select both the doGet() and doPost() check boxes under Which
method stubs would you like to create. After all the servlet classes are
created by the SmartGuide, your project tab in the workbench should match
Figure 62.

Figure 62. Workbench after creating the eight servlets

The first servlet we will enhance is the ShowATMServlet. We will open the
class browser window by double-clicking the class name in the workbench.
Then we will modify the performTask method. This method is called by both
doGet and doPost. You will need to add the following code to the performTask
method:

ATM userATM = createOrRetreiveUserATM(request, response);

// add the userATM object to the request, to ensure the JSPs only use the
request attributes.

request.setAttribute("userATMrq", userATM);

//Use hard-coded HTML pages
showNextPage(request, response, userATM.getState());
118 Programming with VisualAge for Java Version 3.5

The above code first gets the ATM that this user will interact with. If they are a
returning user and already have an ATM, then that will be retrieved. If this is
their first visit, then a new ATM object will be created and added to the
session object. Furthermore, the key for the ATM object is stored in a cookie.
This is so we can recognize a user even in the case where the session has
expired. For performance reasons, most sessions are short lived. Storing a
cookie on the browser does not consume any server resources.

The following code shows the implementation of the method
createOrRetreiveUserATM. This is the only place in the entire ATM
application that a session is created or changed. All other servlets (and later
JSPs) rely on the ShowATMServlet to handle the task of recognizing new and
returning users.

private ATM createOrRetreiveUserATM(HttpServletRequest request, HttpServletResponse
response) throws Exception {

String cookie_value = null;
String atm_key= null;
boolean no_ATM_cookie_found = true;

// Get the current session object, create one if necessary
HttpSession session = request.getSession(true);

// Try to retieve the userATM from the session.
ATM userATM = (ATM)session.getValue("userATM");
if (userATM == null){

//Check if our cookie is available in the browser.
Cookie[] cookies = request.getCookies();
if (cookies != null) {

// cookies are present! loop through all the cookies looking
// for the one we want. If we find the cookie we want,
// assign its value to atm_key.
for(int i=0; (i < cookies.length) && no_ATM_cookie_found; i++){

if (cookies[i].getName().equals("ATM_KEY")){
atm_key = cookies[i].getValue();
no_ATM_cookie_found= false;

}
}

}

if(no_ATM_cookie_found) {// no ATM in session, no cookie
// this means the user has never used the ATM application.
userATM = new ATM();

// put the ATM key into a cookie. That way we can recognize repeat
// users even if they do not have a session.
Cookie atm_key_cookie= new Cookie("ATM_KEY" , userATM.getId().getIdAsString()

);
atm_key_cookie.setPath("/"); // this is optional. It means that any program

on this server can view the cookie.
response.addCookie(atm_key_cookie);

}
else{ //no ATM in session, have cookie

// user is a returning user.
userATM = new ATM(new ATM.ATMPK(atm_key));

}

if (userATM.getState() == ATM.OUT_OF_ORDER){
Chapter 5. Creating servlets 119

userATM.initialize();
}
if (userATM.getState() == ATM.READY_TO_USE) {

session.putValue("userATM", userATM);
}
else{

throw new Exception("Error:ATM is not ready to use. The current ATM state is:"
+ userATM.getState());

}
}

return userATM;
}

It may seem confusing as to why we use both the session value and the
request attribute to store the userATM. Our reasoning is based on the
following assumptions and decisions:

1. We do not wish to use the session object in JSPs because it adds
complexity to the architecture.

2. It is easier to track use (or misuse) of the session object in the Visual Age
for Java environment in servlet code, rather than in JSPs.

3. We want servlet to JSP communication handled strictly by using the
request attributes The JSP’s are part of the presentation layer and should
not assume anything about the architecture of the servlets and business
objects.

The difference between putting objects in the session, request, and
application containers is the visibility of the objects. In traditional
programming languages, we can only define a variable’s scope as global or
local. In Java programming we can limit scope to a block, method, object, or
class. In servlet programming we have even more choices! The additional
Servlet choices for scope are explained in Table 9.

Table 9. Scope

Mechanism Visibility

Request Visible to any servlet or JSP processing the same request. Once the
browser has received the response, the request object and any
objects stored inside are destroyed.

Session Visible to any servlet or JSP processing a request from the same user.
Objects in the session are destroyed when the session expires.

Application Visible to any servlet or JSP that is part of the same Web application
defined by the server administrator. Objects are destroyed when the
ServletContext is destroyed.
120 Programming with VisualAge for Java Version 3.5

In the performTask method of the ShowATMServlet, the method
showNextPage is called. The showNextPage method decides what page is
shown to the user. The code for this method is shown below.

private void showNextPage(HttpServletRequest request, HttpServletResponse
response, ATM$ATMState curstate) throws Exception {

if (curstate == ATM.OUT_OF_ORDER){
showOUT_OF_ORDERpage(request, response);
}

else if (curstate == ATM.READY_TO_USE){
showREADY_TO_USEpage(request, response);
}

else if (curstate == ATM.NOT_LOGGED_ON){
showNOT_LOGGED_ONpage(request, response);
}

else if (curstate == ATM.BANK_ACCOUNTS_LISTED){
showBANK_ACCOUNTS_LISTEDpage(request, response);
}

else if (curstate == ATM.BANK_ACCOUNT_CHOOSEN){
showBANK_ACCOUNT_CHOSENpage(request, response);
}

else if (curstate == ATM.ASK_AMOUNT){
showASK_AMOUNTpage(request, response);
}

else if (curstate == ATM.DISPENSE_MONEY){
showDISPENSE_MONEYpage(request, response);
}

else if (curstate == ATM.TRX_HISTORY_LISTED){
showTRX_HISTORY_LISTEDpage(request, response);
}

else{
throw new IllegalStateException();

}
}

Notice that the only criteria for deciding which page to show is based on the
current state of the ATM object. This helps protect our application from
allowing the user to produce errors simply by using the Back button in the
browser or book marking a particular page. In a poorly designed Web
application, it is very easy for any user to produce errors or perform an invalid
action simply by using standard Web browser features, such as “back”,
“forward”, “reload”, and “add bookmark”.

Here is the code from the method showREADY_TO_USEpage:
Chapter 5. Creating servlets 121

public void showREADY_TO_USEpage(HttpServletRequest request, HttpServletResponse
response) throws java.io.IOException {

ATM userATM = (ATM)request.getAttribute("userATMrq");
response.setContentType("text/html");
PrintWriterout = response.getWriter();

out.println("<HTML><HEAD>");
out.println("<TITLE>" + userATM.getState() + "</TITLE>");
out.println("</HEAD><BODY>");
out.println("<P>Please enter your card now.
");
out.println("If you don't have a card reader, type in your card number.
");
out.println("<FORM METHOD='POST'"

+ "ACTION='/servlet/com.ibm.itso.sg245264.atm.servlets.InsertCardServlet'>");
out.println("card number: <INPUT TYPE=TEXT NAME='cardnum' SIZE=10>");
out.println(" <INPUT TYPE=SUBMIT VALUE='Next'>");
out.println("</FORM> </P>");
out.println("<P>"

+ "Restart</P>");
out.println("</BODY></HTML>");

}

This method simply sends a simple HTML page to the Web browser. The rest
of the show<statename>page methods are nearly identical. The only
difference is the hard-coded HTML. All of the code developed for the entire
ATM application is available on the Internet as noted in Appendix B, “Using
the additional material” on page 363.

To start using the ATM Web application we need to call the ShowATMServlet
from a Web browser. The simplest way to do this is to type the URL for the
servlet:

http://127.0.0.1:8080/servlet/com.ibm.itso.sg245264.atm.servlets.ShowATMServlet

http://127.0.0.1/servlet/com.ibm.itso.sg245264.atm.servlets.ShowATMServlet

The first URL will call the servlet in the Visual Age for Java WebSphere Test
Environment, which is covered in Chapter 9, “Testing and debugging the Web
application” on page 231. The second URL will call the servlet in the
WebSphere Application Server, which is covered in Chapter 12, “Deploying
the Web application” on page 341

After entering the URL for the ShowATMServlet, your browser should match
Figure 63. After typing the URL for the servlet in the browser, the browser
sends an HTTP GET request to the servlet. The doGet method receives the
request from the browser and a response object to use for the reply. The
doGet method then calls the performTask method, giving it the request and
response objects. The performTaskmethod does all the work (by calling other
private methods.) When the doGet method ends, the response is sent to the
Web browser. So by the time your browser matches Figure 63, the doGet
method has already finished executing and the request object has been
destroyed.
122 Programming with VisualAge for Java Version 3.5

The HTML that is required for the Next button to successfully call the next
servlet (InsertCardServlet) and pass along the data the user types, is
highlighted below:

<FORM METHOD='POST'
ACTION='/servlet/com.ibm.itso.sg245264.atm.servlets.InsertCardServlet'>
<INPUT TYPE=TEXT NAME='cardnum' SIZE=10>
<INPUT TYPE=SUBMIT VALUE='Next'>
</FORM>

By specifying POST for the form method, this forces the Web browser to use
the HTTP POST method when sending the request. The ACTION tells the
Web browser where to send the request. The name ‘cardnum’ in the input tag
tells the browser what to name the parameter sent inside the request. When
the user clicks the button identified as type=SUBMIT, the browser will sent
the request to the InsertCardServlet.

Figure 63. ShowATMServlet in the Web browser

The request is received by the doPost method of the InsertCardServlet. The
implementation of this method is shown below:

public void doPost(HttpServletRequest request, HttpServletResponse response) throws
javax.servlet.ServletException, java.io.IOException {

try{
performTask(request, response);

}catch(Exception exp){
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<HTML><HEAD>");
out.println("<TITLE>InsertCardServlet Error</TITLE>");
out.println("</HEAD><BODY>");
out.println("<P>Error: " + exp.getMessage());
out.println("</P>");
out.println("</BODY></HTML>");

};

This method simply calls the performTask method. The implementation is
shown below:
Chapter 5. Creating servlets 123

public void performTask(HttpServletRequest request, HttpServletResponse response) throws
Exception{

HttpSession session = request.getSession(false);
if (session != null){

ATM userATM = (ATM)session.getValue("userATM");

if (userATM != null){
Card userCard;
String cardstr= request.getParameter("cardnum");
//validate syntax of card number. It must be numeric.
try{

Double cardnum = new Double(cardstr);
}
catch(Exception exp){

throw new Exception(
"Invalid card number. Card number must be numeric.");

}

userCard = Card.findWithCardPK(cardstr);
userATM.insertCard(userCard);

}
}

RequestDispatcher dispatcher = getServletContext().getRequestDispatcher(
"/servlet/com.ibm.itso.sg245264.atm.servlets.ShowATMServlet");

dispatcher.forward(request, response);
}

The logic of this method can be summarized in these steps:

1. Retrieve the session object.

2. If the session exists, retrieve the userATM object

3. If the userATM object exists, get the value of the “cardnum” parameter
from the HTTP request.

4. Make sure the “cardnum” parameter is numeric.

5. Retrieve instance of the business object that is returned by the method
findWithCardPK. This method looks up business object by card number.

6. Insert the card instance into the ATM object. This is achieved by calling
the insertCard method provided by the ATM object.

7. Show the ATM object to the user. This is achieved by forwarding the
request to the ShowATMServlet.

Assuming we enter a valid card that is accepted by the ATM, then the next
screen we see in the browser should match Figure 64. In our prototype
application, all numbers are considered valid. Also the PIN is considered valid
if it is identical to the card number. In a production application, a card would
need to exist in order to be accepted, and the PIN would not match the card
number.
124 Programming with VisualAge for Java Version 3.5

Figure 64. InsertCardServlet in the Web browser

After typing the PIN and clicking the Next button, the EnterPINServlet is
requested using HTTP POST. The method of the servlet called is the doPost.
The implementation of the doPost method calls the performTask method, just
like the InsertCardServlet implementation. The implementation of the
performTask method is shown:

public void performTask(HttpServletRequest request, HttpServletResponse response)
throws Exception{

HttpSession session = request.getSession(false);
if (session != null){

ATM userATM = (ATM)session.getValue("userATM");
if (userATM != null){

String pinstr = request.getParameter("pin");
if (pinstr != null){

userATM.enterPIN(pinstr);
}

}
}
RequestDispatcher dispatcher = getServletContext().getRequestDispatcher(

"/servlet/com.ibm.itso.sg245264.atm.servlets.ShowATMServlet");
dispatcher.forward(request, response);

}

The logic of the EnterPINServlet is nearly identical to the InsertCardServlet.
The only change is the retrieval of the parameter named “pin” and then
entering the pin into the userATM object.
Chapter 5. Creating servlets 125

If the PIN is accepted by the userATM object, your browser will match
Figure 65. Otherwise, it will match Figure 66.

Figure 65. EnterPINServlet in the Web browser

Figure 66. EnterPINServlet in the Web browser — invalid PIN

Each of the rest of the servlets follow the same design principles:

1. It retrieves the session object.

2. It retrieves the userATM object from the session.

3. It gets the request parameter(s) the user entered.

4. It performs rudimentary validation on the parameters.

5. It calls the appropriate method on the userATM object, which further
validates the data and potentially causes the userATM to change states.

6. It forwards the request to the ShowATMServlet
126 Programming with VisualAge for Java Version 3.5

The rest of the screens for our ATM Web application are shown in Figure 67,
Figure 68, Figure 69, and Figure 70.

Figure 67. ChooseAccountServlet

Figure 68. ChooseActionServlet
Chapter 5. Creating servlets 127

Figure 69. EnterAmountServlet

If you want to see the screen for the state DISPENSE_MONEY, then the
EnterAmountServlet would need to be modified to call the getMoney method
in a new thread. The getMoney method returns only after the dispensing
action is complete. Afterwards the ATM goes to the state
BANK_ACCOUNT_CHOOSEN, which is what the user sees. Normally the
money would be physically spit out of the machine or added to an electronic
wallet on the browser. In our ATM application, the message “CashDispenser:
Dispensing 55 ...” is written to standard output.

Figure 70. ChooseActionServlet — View Transaction History selected by user
128 Programming with VisualAge for Java Version 3.5

Chapter 6. Creating JSPs

There are many tools to create/edit JSPs, including WebSphere studio or any
text editor. VisualAge for Java allows a JSP to be included in a project as a
resource. The JSP must exist in order to add it to the project. After it is added
to the workspace, the first time a JSP resource is opened, VisualAge for Java
will ask which external program to use for editing JSPs. This choice is saved
in the workspace. It can be changed by modifying the resource associations
for the workspace. In a Microsoft Windows environment, the default setting
for a file association will be used if it exists. If a resource association is made
in VisualAge for Java, then it will be used regardless of the Microsoft
Windows setting.

Note: If you plan to use WebSphere studio to edit JSPs please refer to
Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for
Java, SG24-5755 for information about synchronizing projects between the
two tools.

Java Server Pages

Java Server Pages (JSPs) are similar to HTML files, but provide the ability to
display dynamic content within Web pages. JSP technology was developed
by Sun Microsystems to separate the development of dynamic Web page
content from static HTML page design. The result of this separation means
that the page design can change without the need to alter the underlying
dynamic content of the page. This is useful in the development life-cycle
because the Web page designers do not have to know how to create the
dynamic content, but simply have to know where to place the dynamic
content within the page.

To facilitate embedding of dynamic content, JSPs use a number of tags that
enable the page designer to insert the properties of a JavaBean object and
script elements into a JSP file. A number of development tools, such as the
WebSphere Studio Page Designer, can be used to visually create a page
containing dynamic contents based on the properties of Java beans.

Here are some of the advantages of using JSP technology over other
methods of dynamic content creation:

 • Separation of dynamic and static content

This allows for the separation of application logic and Web page design,
reducing the complexity of Web site development and making the site
easier to maintain.
© Copyright IBM Corp. 2001 129

 • Platform independence

Because JSP technology is Java-based, it is platform independent. JSPs
can run on any nearly any Web application server. JSPs can be developed
on any platform and viewed by any browser because the output of a
compiled JSP page is HTML.

 • Component reuse

Using JavaBeans and Enterprise JavaBeans, JSPs leverage the inherent
reusability offered by these technologies. This enables developers to
share components with other developers or their client community, which
can speed up Web site development.

 • Scripting and tags

JSPs support both embedded JavaScript and tags. JavaScript is typically
used to add page-level functionality to the JSP. Tags provide an easy way
to embed and modify JavaBean properties and to specify other directives
and actions.

How Java Server Pages work

Java Server Pages are made operable by having their contents (HTML tags,
JSP tags and scripts) translated into a servlet by the application server. This
process is responsible for translating both the dynamic and static elements
declared within the JSP file into Java servlet code that delivers the translated
contents through the Web server output stream to the browser.

Because JSPs are server-side technology, the processing of both the static
and dynamic elements of the page occurs in the server. The architecture of a
JSP/servlet-enabled Web site is often referred to as thin-client because most
of the business logic is executed on the server.

The following process outlines the tasks performed on a JSP file on the first
invocation of the file or when the underlying JSP file is changed by the
developer (Figure 71):

 • The Web browser makes a request to the JSP page.

 • The JSP engine parses the contents of the JSP file.

 • The JSP engine creates temporary servlet source code based on the
contents of the JSP. The generated servlet is responsible for rendering the
static elements of the JSP specified at design time in addition to creating
the dynamic elements of the page.
130 Programming with VisualAge for Java Version 3.5

 • The servlet source code is compiled by the Java compiler into a servlet
class file.

 • The servlet is instantiated. The init and service methods of the servlet are
called, and the servlet logic is executed.

 • The combination of static HTML and graphics combined with the dynamic
elements specified in the original JSP page definition are sent to the Web
browser through the output stream of the servlet’s response object.

Figure 71. The JSP processing life-cycle on first-time invocation

Subsequent invocations of the JSP file will simply invoke the service method
of the servlet created by the above process to serve the content to the Web
browser. The servlet produced as a result of the above process remains in
service until the application server is stopped, the servlet is manually
unloaded, or a change is made to the underlying file, causing re compilation.

JSP interactions

There are a number of methods that a JSP can use to interact with the Web
environment. Primarily, a JSP will use a JavaBean object to present dynamic
content. However, a JSP can also invoke another JSP page by URL, by
including another JSP or HTML page in the include directive, or by calling a
servlet.

This section describes these interactions.

JSP

Source

JSP

Parser

Java

Source

Java

Compiler

JSP

Servlet

Web
Page

(HTML)

Web
Browser

Web Server

Request

Result
Chapter 6. Creating JSPs 131

Invoking a JSP by URL

A JSP can be invoked by URL, from within the <FORM> tag of a JSP or
HTML page, or from another JSP.

To invoke a JSP by URL, use the syntax:

http://servername/path/filename.jsp

For example, to invoke the Very_Simple.jsp, use this URL:

http://localhost/itso/Very_Simple.jsp <== WebSphere
http://localhost:8080/itso/Very_Simple.jsp <== VA Java

Calling a servlet from a JSP
You can invoke a servlet from a JSP either as an action on a form, or directly
through the jsp:include or jsp:forward tags.

Form action
Typically, you want to call a servlet as a result of an action performed on a
Java Server Page. For example, you may want to process some data entered
by the user in an HTML form when they click the Submit button.

To invoke a servlet within the HTML <FORM> tag, the syntax is:

<FORM METHOD="POST|GET" ACTION="application_URI/JSP_URL">
<!-- Other tags such as text boxes and buttons go here -->

</FORM>

For example:

<form method="POST"
action="/servlet/com.ibm.itso.sg245264.atm.servlets.ShowActionsServlet">

JSP include tag
You can include the output of a servlet in a JSP using the jsp.include tag:

<jsp:include
page="/servlet/com.ibm.itso.sg245264.atm.servlets.ShowActionsServlet" />

Figure 72 shows a JSP that includes the servlet.
132 Programming with VisualAge for Java Version 3.5

Figure 72. Sample JSP including a servlet

When you run this JSP, the output of the servlet is imbedded in the JSP
output.

JSP forward tag
You can forward processing from a JSP to a servlet using the jsp.forward tag:

<jsp:forward
page="servlet/com.ibm.itso.sg245264.atm.servlets.ShowActionsServlet" />

Figure 73 shows a JSP that forwards processing.

Figure 73. Sample JSP forwarding processing to a servlet

JSP 0.91 and 1.0

The JSP 1.0 specification contains the following changes and additions over
the JSP .91 specification:

 • Tags use XML formatting. For example, the JSP bean declaration tag
<BEAN> is now declared using the syntax <jsp:useBean ...>. Similarly,
WebSphere specific tags such as <REPEAT> are now declared using the
syntax <tsx:repeat>.

 • Tags are case sensitive.

<HTML><BODY>
<H2> JSP to Servlet </H2>
<HR>
<jsp:include
page="servlet/com.ibm.itso.sg245264.atm.servlets.ShowActionsServlet" />
<HR>
<H2>End of servlet include</H2>
</HTML></BODY>

<HTML><BODY>
<H2> JSP to Servlet </H2>
<HR>
<jsp:forward
page="servlet/com.ibm.itso.sg245264.atm.servlets.ShowActionsServlet" />
<HR>
<H2>End of servlet include</H2>
</HTML></BODY>
Chapter 6. Creating JSPs 133

 • Standard tags use the mixed-case convention of Java code, for example,
jsp:useBean.

 • Server-side includes (SSI) have been replaced with the <%@ include %>
directive.

 • jsp:getProperty and jsp:setProperty tags have been defined.

 • jsp:request has been added, providing runtime forward and include
functionality.

 • jsp:include has been added to include resources from other files.

 • jsp:plugin has been added.

 • Implementation of LOOP, ITERATE, INCLUDEIF and EXCLUDEIF tags has been
postponed pending enhancements to the tag extension mechanism.

 • <SCRIPT> </SCRIPT> tags have been superseded with <%! ... %>

There have been other releases of the JSP specification such as .92 and .93.
The additional functionality offered by these releases has not been discussed
in this chapter.

Designing the JSP model

Before we implement the JSP model, let us quickly review the current servlet
model. Today’s most affordable implementation method is the
Model-View-Controller (MVC) implementation. Our servlet model is already
designed using the MVC model, and we have implemented JSP as the View
component.

Model-View-Controller (MVC)
The Model-View-Controller model divides control unit, business logic, and
view by their roles. This model allows the Web designer to design the
front-end material, and the system programmer to design the business logic.
In our model, and this is a major pattern, the servlet should not contain any
business logic or view function. Business logic is handled by JavaBeans, and
view is handled by HTML or JSP. The servlet will be a controller that invokes
an appropriate business logic and view (Figure 74). Most of our servlets work
as controllers, but only ShowATMServlet has both controller and view
function, because we want to demonstrate how the servlet-only model works
and how it differs from the servlet-JSP model.
134 Programming with VisualAge for Java Version 3.5

Figure 74. Model-View-Controller design

Servlet based modeling
We modified ShowATMServlet, which works as the controller and view. This
version of ShowATMServlet no longer supports the view. Each servlet
forwards a request to ShowATMServlet, then ShowATMServlet dispatches it
to the proper JSPs.

Figure 75 is the servlet-only model. ShowATMServlet (working as controller)
handles the first request (1) then uses ATM beans (models) to manipulate
data and returns the returned result data through ShowATMServlet (working
as view). The next requests are triggered from several forms that generated
by ShowATMServlet. Then we go through each controller servlet and ATM
beans, finally going back to ShowATMServlet, and that generates the
resulting HTML.

Now we take away the view logic from ShowATMServlet and create JSPs as
view. ShowATMServlet works as controller, and each controller servlet
forwards to ShowATMServlet. However, ShowATMServlet itself does not
generate the view, but forwards to JSPs, which handle the view (Figure 76).

WEB
Browser

DB

Result
JSPs

Application
Server

Java
Beans

1

2

3

4
5

6

Servlet

ControllerController

ViewView ModelModel

Servlet

Result
JSPs
Chapter 6. Creating JSPs 135

Figure 75. Servlet-only model

Here is a JSP based cash dispense flow:

1. The first request is sent from the browser to use the ATM.

2. ShowATMServlet checks availability of ATM using ATM beans.

3. ShowATM dispatches a request to READY_TO_USE.jsp to show the
account number screen.

4. Account number request has been sent to InsertCardServlet.

5. InsertCardServlet checked logon status using ATM beans, then forwards it
to NOT_LOGGED_ON.jsp through ShowATMServlet.

6. NOT_LOGGED_ON.jsp shows the pin number input screen.

7. The pin number request has been sent to EnterPinServlet.

8. EnterPinServlet checked that the pin number is correct using ATM beans,
then forwards it to BANK_ACCOUNT_LISTED.jsp to show the account
selection screen.

WEB
Browser

DB2

Data
Beans

Application
Server

ATM
Beans

1
2

3

4

5

6 7

89

InsertCard

ChooseAccount

ChooseAction

EnterPIN

ShowAction

Stop

Servlets

ShowATM

Controller

View
136 Programming with VisualAge for Java Version 3.5

9. The account selection request has been sent to ChooseAccountServlet,
which forwards it to BANK_ACCOUNT_CHOSEN.jsp to show the process
menu which contains Withdraw, Show History and Change Account types.

10.To withdraw cash, select Withdraw.

11.The Withdraw request has been sent to ChooseActionServlet, which
forwards it to ASK_AMOUNT.jsp to inquire about a withdraw amount.

12.Once the amount is entered, the withdraw process has been done through
EnterAmountServlet and ATM bean (CashDispencer bean). Now we go
back to the menu.

13.The Show History request from the process menu has been sent to
ChooseActionServlet, which forwards it to TRX_HISTORY_LISTED.jsp
after it has been processed by the ATM bean.

Figure 76. Servlet-JSP model

WEB
Browser

DB2

Data
Beans

Result
JSPs

Application
Server

ATM
Beans

1

2

3

4
5

6

7
8

9

Servlets

ShowATM

ViewInsertCard

ChooseAccount

ChooseAction

EnterPIN

ShowAction

Stop

10

11

12
Chapter 6. Creating JSPs 137

Building the ATM application

The following code listing is the performTask method of ShowATMServlet:

public void performTask(HttpServletRequest request, HttpServletResponse response)
throws Exception {

ATM userATM = createOrRetreiveUserATM(request, response);

// add the userATM object to the request, to ensure the JSPs only use the request
attributes.

request.setAttribute("userATMrq", userATM);

//To use hard-coded HTML pages as described in the Servlet chapter, uncomment the
following line.

//showNextPage(request, response, userATM.getState());

// Next two lines get the JSP to show, then forward the request to the JSP. This is
the

// implementation built in the JSP chapter.
RequestDispatcher dispatcher = determineNextPage(userATM.getState());
dispatcher.forward(request, response);

}

This method uses the dispatcher.forward method instead of the
showNextPage method. The showNextPage method invokes several
methods that generate HTML tags directly. To determine which JSP will be
used to generate the HTML tags, we create the determineNextPage method.
The determineNextPage method checks current status and sets the target
JSP name to the ServletContext.

private RequestDispatcher determineNextPage(ATM$ATMState curstate) {
RequestDispatcher dispatcher= null ;

if (curstate == ATM.OUT_OF_ORDER){
dispatcher =

getServletContext().getRequestDispatcher("/itsojsp/OUT_OF_ORDER.jsp");
}

else if (curstate == ATM.READY_TO_USE){
dispatcher =

getServletContext().getRequestDispatcher("/itsojsp/READY_TO_USE.jsp");
}

else if (curstate == ATM.NOT_LOGGED_ON){
dispatcher =

getServletContext().getRequestDispatcher("/itsojsp/NOT_LOGGED_ON.jsp");
}

else if (curstate == ATM.BANK_ACCOUNTS_LISTED){
dispatcher =

getServletContext().getRequestDispatcher("/itsojsp/BANK_ACCOUNTS_LISTED.jsp");
}

else if (curstate == ATM.BANK_ACCOUNT_CHOOSEN){
dispatcher =

getServletContext().getRequestDispatcher("/itsojsp/BANK_ACCOUNT_CHOSEN.jsp");
}

else if (curstate == ATM.ASK_AMOUNT){
dispatcher = getServletContext().getRequestDispatcher("/itsojsp/ASK_AMOUNT.jsp");
}

else if (curstate == ATM.DISPENSE_MONEY){
138 Programming with VisualAge for Java Version 3.5

dispatcher =
getServletContext().getRequestDispatcher("/itsojsp/DISPENSE_MONEY.jsp");

}
else if (curstate == ATM.TRX_HISTORY_LISTED){

dispatcher =
getServletContext().getRequestDispatcher("/itsojsp/TRX_HISTORY_LISTED.jsp");

}
else{

throw new IllegalStateException();
}

return dispatcher;
}

Each of the JSPs works as dynamic HTML. A title is generated by an ATM
bean, and that shows current working status. Bold tags are major JSP tags
(we will describe these later):

<jsp:root
xmlns:jsp="http://java.sun.com/products/jsp/dtd/jsp_1_0.dtd">

<jsp:directive.page
errorPage="/itsojsp/error.jsp"

/>
<jsp:directive.page

import="com.ibm.itso.sg245264.atm.memory.Transaction"
/>
<jsp:directive.page

import="java.text.DateFormat"
/>
<jsp:useBean

id="userATMrq"
type="com.ibm.itso.sg245264.atm.memory.ATM"
scope="request"

/>
<jsp:declaration> Transaction curtran = null;</jsp:declaration>
<jsp:scriptlet> java.util.Vector alltrans = userATMrq.getTransactions();
</jsp:scriptlet>

<HTML><HEAD>
<TITLE><jsp:expression> userATMrq.getState() </jsp:expression></TITLE>

</HEAD><BODY>
<P ALIGN=CENTER>Transaction History</P>

<jsp:scriptlet>if(alltrans.capacity() > 0){</jsp:scriptlet>
<TABLE ALIGN=CENTER BORDER=1>

<TR><TH>Post Date</TH><TH>Post Time</TH><TH>Amount</TH><TH>Source Acct</TH><TH>Target
Acct</TH></TR>

<jsp:scriptlet> for (int i=0; i < alltrans.capacity(); i++){
curtran = (Transaction)alltrans.elementAt(i);

</jsp:scriptlet>
<TR>

<TD> <jsp:expression>
DateFormat.getDateInstance().format(curtran.getTimestamp()) </jsp:expression> </TD>

<TD> <jsp:expression>
DateFormat.getTimeInstance().format(curtran.getTimestamp()) </jsp:expression> </TD>

<TD> <jsp:expression> curtran.getTrxAmount() </jsp:expression> </TD>
<TD> <jsp:expression> curtran.getSrcAccount().getId().getIdAsString()

</jsp:expression> </TD>
Chapter 6. Creating JSPs 139

<TD> <jsp:expression> curtran.getTrgtAccount().getId().getIdAsString()
</jsp:expression> </TD>

</TR>
<jsp:scriptlet>} // end for loop. </jsp:scriptlet>
</TABLE>
<jsp:scriptlet>} else { // refers to if (alltrans.capcaity > 0) </jsp:scriptlet>

<P> No Transactions found. </P>
<jsp:scriptlet>} // refers to if (alltrans.capcaity > 0) </jsp:scriptlet>

<P>Choose a
different Action
</P>
<P>Restart
</P>
</BODY>
</HTML>
</jsp:root>

JSP tags
Java Server Pages are composed of standard HTML tags and JSP tags. The
available JSP tags defined in the JSP 1.0 specification are categorized as
follows. We used XML style JSP implementation in this case.

jsp:root
An XML document representing a JSP page has jsp:root as its root element
type. The top element has an xmlns attribute that enables the use of the
standard elements defined.

<jsp:root
xmlns:jsp="http://java.sun.com/products/jsp/dtd/jsp_1_0.dtd">

</jsp:root>

jsp:useBean
The jsp:useBean tag is used to declare a JavaBean object that you want to
use within the JSP. Before you can use the jsp:getProperty and
jsp:setProperty tags, you must have first declared your JavaBean using the
jsp:useBean tag. When the jsp:useBean tag is processed, the application
server performs a lookup of the specified given Java object using the values
specified in the id and scope attributes. If the object is not found, it will
attempt to create it using the values specified in the scope and class
attributes.

The syntax for inserting a JavaBean is:

<jsp:useBean id="beanInstanceName" scope="page|request|session|application"
typespec>

optional scriptlets and tags
</jsp:useBean>
140 Programming with VisualAge for Java Version 3.5

Here, typespec can be declared using any of the following variations:

class="package.class"
type="package.class"
type="package.class" beanName="package.class"

You can also embed scriptlets and tags such as jsp:getProperty within the
jsp:useBean declaration which will be executed upon creation of the bean.
This is often used to modify properties of a bean immediately after it has been
created.

An example of a simple form of bean instantiation is:

<jsp:useBean id ="userATMrq"
class="com.ibm.itso.sg245264.atm.memory.ATM"/>

This example tries to locate an instance of the ATM bean. If no instance
exists, a new instance is created. The instance can then be accessed within
the JSP using the specified id of ATM bean.

jsp:directive.page
A JSP directive is a global definition sent to the JSP engine that remains valid
regardless of any specific requests made to the JSP page. A directive always
appears at the top of the JSP file, before any other JSP tags. This is due to
the way the JSP parsing engine produces servlet code from the JSP file. The
page directive defines page dependent attributes to the JSP engine.

The syntax of a directive is:

<jsp:directive.page>

The following example is defining error.jsp.

<jsp:directive.page
errorPage="/itsojsp/error.jsp"

/>

jsp:declaration
A declaration block contains Java variables and methods that are called from
an expression block within the JSP file. Code within a declaration block is
usually written in Java, however, the WebSphere application server supports
declaration blocks containing other script syntax. Code within a declaration
block is often used to perform additional processing on the dynamic data
generated by a JavaBean property.

The syntax of a declaration is:

<jsp:declaration>
Chapter 6. Creating JSPs 141

For example:

<jsp:declaration> Transaction curtran = null;</jsp:declaration>

jsp:scriptlet
JSP supports embedding of Java code fragments within a JSP by using a
scriptlet block. Scriptlets are used to embed small code blocks within the JSP
page, rather than to declare entire methods as performed in a declarations
block. The syntax for a scriptlet is:

<jsp:scriptlet>

The following example uses a scriptlet to get all transaction data as a Vector
class.

<jsp:scriptlet> java.util.Vector alltrans = userATMrq.getTransactions();
</jsp:scriptlet>

jsp:expression
Expressions are scriptlet fragments whose results can be converted to String
objects and subsequently fed to the output stream for display in a browser.
The syntax for an expression is:

<jsp:expression>

Typically, expressions are used to execute and display the String
representation of variables and methods declared within the declarations
section of the JSP, or from JavaBeans that are accessed by the JSP. If the
conversion of the expression result is unsuccessful, a ClassCastException is
thrown at the time of the request.

The following example calls the getState method declared in the declarations
block and prints the result.

<jsp:expression> userATMrq.getState() </jsp:expression>

All primitive types such as short, int, and long can be automatically converted
to Strings. Your own classes must provide a toString method for String
conversion.
142 Programming with VisualAge for Java Version 3.5

Chapter 7. Creating GUI applications

In this chapter, we will discuss about Java client-side technology. We start
with AWT/JFC basics and then go through the client application of our ATM.
The Graphical User Interface (GUI) version will be implemented as a Java
application and as an applet. This client will illustrate the Visual Composition
Editor (VCE) component of VisualAge for Java. For a change, this
implements not the ATM interaction but instead provides some kind of
administrative client to access the ATM system.

Abstract Windowing Toolkit and Java Foundation Classes refresher

The Java 1.0 Abstract Windowing Toolkit (AWT) programming model is
awkward and non-object-oriented. The situation improved with the Java 1.1
AWT event model, which takes a much clearer, object-oriented approach,
along with the addition of JavaBeans, a component programming model that
is oriented toward the easy creation of visual programming environments.
Java 2 finishes the transformation away from the old Java 1.0 AWT by
essentially replacing everything with the Java Foundation Classes (JFC).

The JFC is also known by its code name Swing (derived from the music demo
given at the 1997 JavaOne convention in San Francisco). The JFC
component set is a new GUI toolkit that provides a rich set of windowing
components, the visual components used in GUI-based programs.

With the JFC, you can develop efficient GUI components that have exactly
the “look and feel” that you specify. For example, a program that uses JFC
components can be designed such that it will execute without modification on
any kind of computer and can always look and feel just like a program written
specifically for the particular computer on which it is running.

Beans from the AWT are provided in the java.awt package (Java class
libraries project). The JFC beans are provided in the javax.swing package.

Although Swing and AWT components can be mixed, it is inadvisable. For
this reason, VisualAge does not allow you to drop AWT beans on Swing
beans. Because you might want to add Swing beans to AWT beans that you
created before Swing was available, VisualAge does allow you to drop Swing
beans on AWT beans. You can morph the AWT beans to Swing beans when
you are ready to convert completely to Swing (See Chapter 3, “Migrating to
Java2” on page 65).
© Copyright IBM Corp. 2001 143

VisualAge provides its own BeanInfo classes for Swing and AWT beans.
These BeanInfo classes are tailored for visual composition.

Visual Composition Editor

The Visual Composition Editor is a powerful composing tool you can use to:

 • Build the user interface for your program by dropping beans.
 • Construct business logic by connecting the beans.
 • Edit existing beans.

The Visual Composition Editor (Figure 77) makes it easy to build applets,
beans, and entire applications using the functions available on the menu bar,
pop-up menus, tool bar, and the variety of reusable beans on the beans
palette. A description of the functions on the tool bar or beans palette
appears when the mouse pointer is positioned over the item.

The Visual Composition Editor window in Figure 77 includes several
components: the beans palette along the left side, the status area along the
bottom, the toolbar along the top, and the free-form surface where you lay out
the beans.
144 Programming with VisualAge for Java Version 3.5

Figure 77. The Visual Composition Editor

In VisualAge for Java, beans are the components that you manipulate when you
program visually. These beans are Java classes that adhere to the JavaBeans
specification. In the Visual Composition Editor, you select beans from a palette,
specify their characteristics, and make connections between them. Beans can
contain other beans and connections to beans.

Toolbar

Class Browser Tabs

Beans
Palette

Choose Palette
Category

Selection
Tool

Choose
Bean Tool

Status Line

Free Form Surface Visual Representation
of Bean
Chapter 7. Creating GUI applications 145

You use two types of beans within the Visual Composition Editor:

 • Visual Beans, which are subclasses of the AWT Component class (which
includes the JFC). Examples are List, JList, Button, JButton, and
TextField. Visual beans have a visual representation at design time that is
similar to their appearance at runtime. The design-time appearance of
JFC beans is their default appearance using the Metal Look and Feel; at
runtime they have the look and feel that your application specifies.

 • Nonvisual beans usually represent the business logic in your programs,
for example, a BankAccount bean. At design time nonvisual beans appear
by default as a puzzle icon, or they may have a specific icon associated
with them (Figure 78). They do not have a visual representation at
runtime.

Figure 78. Nonvisual Bean Icons

The Beans Palette
When you first start VisualAge for Java, the Beans Palette contains all of the
user interface beans in the AWT and JFC as well as some “helper” beans.
There are three categories of beans originally on the palette (see Figure 79);
you select them using the Choose Palette Category drop-down list. The
selections are:

 • Swing
 • AWT
 • Other (the helper beans)

There is also an Available selection on the Choose Palette Category that you
use to load additional features into the workspace.

Each category is further separated into subcategories by function. For the
JFC and AWT, there are three major subcategories:

 • Button and data entry
 • Containers
 • Menus

Within each sub-category you can identify individual beans, using “over-help”
(explanations that appear at the cursor when you leave the cursor over an
element on the screen).
146 Programming with VisualAge for Java Version 3.5

Figure 79. The Beans Palette with Swing

Always available directly below the Choose Palette Category button are the
Selection and Choose Bean tools:

Selection Use the Selection tool to select and move beans and
connections on the free-form surface.

Choose Bean Use the Choose Bean tool to add beans to the free-form
surface that are not on the Beans Palette.

Modification of the Beans Palette
You can modify the palette by resizing it, changing the icon size, or adding or
removing categories, separators, beans you have constructed yourself, or
beans supplied by a vendor.

To modify the Beans Palette, use the popup menu from the palette or select
Bean→Modify Palette as shown in Figure 80. After you invoke the function,
the Modify Palette dialog appears (Figure 81) where you can choose the bean
to modify on the palette.

If you import beans from a jar file, VisualAge for Java automatically prompts
you with the Modify Palette dialog.
Chapter 7. Creating GUI applications 147

Figure 80. Modifying the Beans Palette

Figure 81. Modify Palette dialog box
148 Programming with VisualAge for Java Version 3.5

Visual Composition Editor toolbar
The Visual Composition Editor toolbar provides you with easy access to
useful shortcuts for menu actions.

By moving your mouse pointer over each icon on the toolbar, a label will
appear that identifies the icon.

Most of the tools in the toolbar act on the beans that are currently selected in
the free-form surface.

Using the Visual Composition Editor Alignment Tools
The toolbar has several controls to align, distribute, and size the components
in the Visual Composition Editor. The controls only work with a null layout.
Because using a null layout is not recommended for writing portable
programs, you are better off not using the null layout and alignment tools
unless you know the displays on which your programs will run or if you are
creating a quick prototype.

You can also use the alignment and distribution tools to arrange the nonvisual
beans on the free-form surface. Using these tools and rearranging
connections can facilitate visual development.

The free-form surface
The free-form surface is where you do all of your visual programming. You
select a bean from the Beans Palette or use the Choose Bean tool and then
drop the bean on the free-form surface.

If the bean you are editing (the bean opened in the class browser) is a GUI
bean, that is, it descends from java.awt.Component, it will have a visual
representation (the large grey box shown in Figure 77 on page 145) on the
free-form surface. This representation is where you add other GUI
components to the bean. When you place beans onto any empty part of the
free-form surface, you are adding them to the bean and not to the visual
representation of the bean.

The empty part of the free-form surface is where you add invisible beans to
the bean you are editing. For example, in the ATM application you will add
buttons and text fields to the visual representation of the bean but you will
add the model beans (for example, Bank and CheckingAccount) to the
free-form surface outside the visual representation of the bean.

Regardless of the type of bean, every bean has a pop-up menu that contains
options you can use to modify or work with that bean.
Chapter 7. Creating GUI applications 149

Working with beans in the Visual Composition Editor

In this section you learn how to add beans to the free-form surface and
customize beans through their Property sheet.

Adding beans
The free-from surface is like a blank sheet of paper or work area where you
can add, manipulate, and connect the beans that you work with to create your
composite bean.

When you select a bean from the Beans Palette, the cursor is loaded with that
bean and appears as a set of cross hairs. The bean can then be added to the
free-from surface, the Beans List, or to an existing container bean (a bean
that descends from java.awt.Container). When unloaded, the cursor reverts
back to the Selection tool arrow (see left icon in Figure 82).

Figure 82. Selection and Choose Bean tools on the Palette

Select the Choose bean tool (the icon on the right in Figure 82) to retrieve a
bean that is not on the palette and drop it on the Beans List, the free-form
surface, or an existing container bean.

After you invoke the Choose Bean tool, the Choose Bean dialog (Figure 83)
appears. You can type the class name of your bean in the Class name field
(remember to use the fully qualified name) or use the Browse button to find
the class. In the Name field, type the name of the bean. Finally select
whether you are creating a class, a variable, or a serialized bean read from a
serialization file.
150 Programming with VisualAge for Java Version 3.5

Figure 83. Choose Bean Dialog

The Sticky function
To add multiple instances of the same bean, enable the Sticky function by
holding down the Control key while selecting the bean. Selecting a new bean
or the Selection tool disables Sticky.

Customizing Beans
Once you have dropped a bean on the free-form surface, you can customize
it by double-clicking the bean to open its Property sheet. You can also open a
bean’s property sheet by selecting Properties from the bean’s pop-up menu
or selecting the Show Properties button on the tool bar. Using the Property
sheet, you can change properties exposed by the bean as well as the bean
name.

You can edit the properties for a single bean or select several beans and
open a Property sheet for them. When you change a property on the Property
sheet for multiple selected beans, the change affects all beans selected.

Figure 84 shows the property sheet of a JTextField bean. Select the Show
expert features checkbox to access expert properties of the bean.
Chapter 7. Creating GUI applications 151

Figure 84. Property sheet of a JTextField bean

Each bean also has a pop-up menu (Figure 85) that you access by clicking
the right mouse button. The pop-up menu has the following selection items:

Properties Open the Property sheet for the bean.

Event to Code Start an event-to-code connection from this
bean.

Quick Form Lay out a GUI panel that corresponds to the
properties of a model bean. You specify the
visual bean to use for each property;
VisualAge drops the beans and connects
them to the model bean.

Open (Class only) — Open the bean’s class in a
class browser.

Promote Bean Feature Promote a feature of the bean as a feature on
the primary bean.

Change Type (Variable or factory only) — Change the
underlying type of the variable or factory.
152 Programming with VisualAge for Java Version 3.5

Morph Into Change the type of this bean or variable to
another closely related type and update any
conceitedness and properties. Morph Into can
be used to change a class to a variable and
vice versa or to change AWT components to
JFC components.

Change Bean Name Change the name of the bean in the Visual
Composition Editor. The change will also
affect the attribute name and the names of
accessors and mutator methods.

Delete Delete this bean from the free-form surface.

Layout Position the bean on the free-form surface.

Connect Start a connection from this bean.

Browse Connections List all connections to and from this bean. You
can also hide and show connections from the
bean.

Reorder Connections From Change the order in which connections from
this bean are fired.

Tear-Off Property Tear off a property from this bean so you can
access it as a variable on the free-form
surface.

Refresh Interface If the BeanInfo interface has changed, use
Refresh Interface to update the Visual
Composition Editor environment with the
changes.
Chapter 7. Creating GUI applications 153

Figure 85. Bean pop-up menu for class and variable

Quick Form is a new feature of VisualAge for Java version 3.5.You can use
the Quick Form SmartGuide to define and register quick forms. You can
register quick forms for reuse with any property of a specific type. The Quick
Form SmartGuide contains three parts:

Quick Form window You specify the properties to be included, the
components to be dropped, and the location of
the finished quick form. You can also register
a pre-existing visual bean as a quick form from
this window.

Quick Form Layout window You specify how you want VisualAge to lay the
components out.

Save Quick Form window You specify how you want VisualAge to save
and register your quick form for reuse.

Naming beans
The Visual Composition Editor assigns default names to distinguish beans
and connections when you generate the code to build programs. It assigns
bean names on the basis of the class name and the number of beans of that
type on the free-form surface or the name you specify when you use the
Choose Bean tool. You can give a bean a different name at any time.
VisualAge for Java uses the bean name in two ways:

 • The bean name is shown on the free-form surface and in the Property
sheet. This name is not equivalent to the name property on objects of the
Component class.
154 Programming with VisualAge for Java Version 3.5

 • The bean name is also used as the basis for the attribute name in the Java
source and the getter and setter methods generated for the bean. The
attribute name is typically ivjBeanName, where BeanName is the name of
the bean.

Give beans meaningful names if they will be accessed using Java code that
you write yourself. If you do not give beans meaningful names it will be
extremely difficult to write code that accesses the beans. For example, if you
add an Exit button to an application, VisualAge for Java gives it a name based
on the number of default button names currently in use. For example, the
name might be ivjButton111. It will be much easier to write code that
accesses the bean if you name the button ExitButton!

Properties created in the BeanInfo page use a similar naming convention.
The attribute has the prefix field instead of ivj, however.

Beans List
The Beans List is a very helpful tool. It shows all of the beans and
connections on the free-form surface. From the Beans List, you can:

 • Select or delete any bean
 • Access the pop-up menu and Property sheet for any bean
 • Move a bean to a different container or position in the container
 • Select or delete any connection
 • Connect beans

Factory and variable
Factory and variable are helper beans. Typically, when you add JavaBeans to
the free-form surface they are instantiated when your program starts or when
the bean is first accessed. In many cases, you do not want this behavior.
For example:

 • You may not know the specifics of a bean when the program starts.
 • You may not want to use the resources when the program starts.
 • You may only want a place holder or reference to an existing bean.

In these and other cases, you would use factories and variables instead of
beans. Factories are visual tools that create other beans. Variables are visual
place holders that reference other beans. Factories and variables are not
really JavaBeans, they are helpers that cause code to be generated for you.

You can also use factories and variables to visually program the construction
and manipulation of objects that are not beans, for example, objects that do
not have a default constructor.
Chapter 7. Creating GUI applications 155

Visual Programming in action

The ATM application described in Chapter 4, “Beginning the ATM project” on
page 73 is used in examples throughout this book. In this section you will use
the packages you have already developed to create simples GUI applets. The
first simple applet is a list of banking accounts. When selecting one of those
accounts, you can see details in a second window (see Figure 86).

Figure 86. The finished ATM Applets

You will use the packages you have already created in the previous chapters:

 • package: com.ibm.itso.sg245264.atm.memory
 • package: com.ibm.itso.sg245264.atm.database
156 Programming with VisualAge for Java Version 3.5

The ATM classes created
You will use the following classes already created in the previous chapters.

From package com.ibm.itso.sg245264.atm.memory: The list of classes is
shown in Figure 87.

Figure 87. Classes defined in com.ibm.itso.sg245264.atm.memory package
Chapter 7. Creating GUI applications 157

From package com.ibm.itso.sg245264.atm.database: The list of classes is
shown in Figure 88.

Figure 88. Classes defined in com.ibm.itso.sg245264.atm,database package

Before creating the new classes, you have to create a new package. Use the
Add Package button (the fifth button in the Workbench tool bar) to start the
Add Package SmartGuide. Type com.ibm.itso.atm.applet in the package field
(see Figure 89).
158 Programming with VisualAge for Java Version 3.5

Figure 89. Add package window

To be able to work with Java Beans in your ATM GUI application and reuse
the classes you have already created, you will use the wrapping technique.
This will wrap the Business Objects already defined into JavaBeans. With this
technique, you will be able to replace the Business Objects by another
implementation.

This means that you will be able to use either the Business Objects defined in
the package com.ibm.itso.sg245264.atm.memory or the Business Objects
defined in the package com.ibm.itso.sg245264.atm.database just by
modifying your import statements.

Building the CardBean class
With the CardBean class, you will wrap the Business Object Card into the
JavaBean CardBean.
Chapter 7. Creating GUI applications 159

To create the CardBean class, use the Create Class SmartGuide: From the
Workbench, select the Create Class button (the sixth button in the tool bar).
Type CardBean in the Class name field and select the Next button (see
Figure 90).

Figure 90. Create Class SmartGuide

In the Attribute Window, add the following import statements, Add Package:
com.ibm.itso.sg245264.atm.memory and Add Type: Java.util.vector. In What
interface should this class implement, select the ADD button and type
serializable as Pattern (see Figure 91). Select the Finish button.
160 Programming with VisualAge for Java Version 3.5

Figure 91. Create Class SmartGuide — Attributes window

From the workbench window, Open the new created class CardBean. Select
the BeanInfo tag. You will add the following properties:

Name Type Readable Writable Bound

owner String Yes No No

bankAccounts Vector Yes No No

bankAccountBeans Vector Yes No No
Chapter 7. Creating GUI applications 161

To add the properties described, use the Create Property Feature button
(the third button within the BeanInfo tool bar). Enter the features as described
for each property.

Your BeanInfo window contains now owners, bankAccounts, and
bankAccountBeans properties (see Figure 92).

Figure 92. BeanInfo window for CardBean Class

The CardBean() constructor should match the following code:

/**

* CardBean constructor comment.
*/
public CardBean() {

cardImpl = null; // just satisfying JB
162 Programming with VisualAge for Java Version 3.5

Add a new constructor to match the following code:

/**
* CardBean constructor comment.
*/
CardBean(Card aCard) {

cardImpl = aCard;
}

Edit the getOwner() method source to match the following code:

/**
* Gets the owner property (java.lang.String) value.
* @return The owner property value.
*/
public java.lang.String getOwner() {

return cardImpl.getOwner();
}

Edit the getBankAccounts() method source to match the following code:

public Vector getBankAccounts()
throws Exception {

Vector tempV, newV;
Iterator i;

tempV = cardImpl.getBankAccounts();
i = tempV.iterator();
newV = new Vector(tempV.size());
while(i.hasNext()) {

newV.addElement(new BankAccountBean((BankAccount) i.next()));
}
return newV;

}

Edit the getBankAccountBeans() method to match the following code:

public Vector getBankAccountBeans()
throws Exception {

Vector tempV, newV;
Iterator i;

tempV = cardImpl.getBankAccounts();
i = tempV.iterator();
newV = new Vector(tempV.size());
while(i.hasNext()) {

newV.addElement(new BankAccountBean((BankAccount) i.next()));
}
return newV;
Chapter 7. Creating GUI applications 163

}

Modify the toString implementation to return a variable cardImpl:

/**
* Insert the method's description here.
* Creation date: (12/6/2000 1:05:49 AM)
* @return java.lang.String
*/
public String toString() {

return cardImpl.toOneLineString();
}

Building the CardBeanHome class
Create a CardBeanHome class using the Create Class SmartGuide from your
Workbench window. Type CardBeanHome in the Class name field and select
the Next button. In the Attribute window, add the following import statements.
Add package: com.ibm.itso.sg245264.atm.memory and Add Type: Vector
and AbstractListModel. In What interface should this class implement,
select the Add button and type serializable as Pattern (see Figure 93). Select
the finish button.
164 Programming with VisualAge for Java Version 3.5

Figure 93. Create Class CardBeanHome -— Attributes window

From the Workbench window, open the new created class CardBeanHome.
Select the BeanInfo tag.

To find a CardBean based on a String representation of its primary key,
create a new method feature using the New Method Feature SmartGuide with
the following features:
Chapter 7. Creating GUI applications 165

Fill in the method to match the following code:

/**
* Perform the findWithCardPK method.
* @return com.ibm.itso.sg245264.atm.applet.CardBean
* @param primaryKeyStr java.lang.String
*/
public CardBean findWithCardPK(String primaryKeyStr)
throws Exception {

/* Perform the findWithCardPK method. */
return new CardBean(Card.findWithCardPK(primaryKeyStr));

}

In order to get all beans of type CardBean, create a new method feature
using the New Method Feature SmartGuide with the following features:

Fill in the method to match the following code:

public AbstractListModel getListOfAllCardBeans()
throws Exception {

/* Perform the getListOfAllCardBeans method. */
final Vector aV = Card.getListOfAllCards();
return (new AbstractListModel() {

Vector tempV = aV;
public int getSize() { return tempV.size(); }
public Object getElementAt(int i) { return new

CardBean((Card)tempV.elementAt(i)); }
});

}

Name Return Type Parameters Parameter 1 BeanInfo
option

findWithCardPK CardBean 1 String
primaryKeySTR

preferred

Name Return Type Parameters BeanInfo
option

getListOfAllCardBeans AbstractListModelt 0 preferred
166 Programming with VisualAge for Java Version 3.5

Building the BankAccountBean class
To create the BankAccountBean class, use the Create Class SmartGuide:
from the Workbench, select the Create Class button (the sixth button in the
tool bar). Type BankAccountBean in the Class name field and select the
Next button. In the Attribute window, add the following import statements.
Add Package: com.ibm.itso.sg245264.atm.memory and Add Type:
Java.util.vector. In What interface should this class implement, type
serializable (see Figure 94).

Figure 94. Create class BankAccountBean — Attributes window
Chapter 7. Creating GUI applications 167

Modify the BankAccountBean implementation to match the following code:

/**
* BankAccountBean constructor comment.
*/
public BankAccountBean() {

BankAccountBean = null; // because needed for JBs, does nothing !
}

Create BankAccountBean(BankAccount) to match the following code:

**
* BankAccountBean constructor comment.
*/
BankAccountBean(BankAccount aBankAccount) {

bankAccountImpl = aBankAccount;
}

Modify the toString implementation to return a bankAccountImpl variable:

public String toString() {
return bankAccountImpl.toOneLineString();

}

Now you have a complete model!
168 Programming with VisualAge for Java Version 3.5

Building the ATM application
Create a new Applet using the Create Applet SmartGuide: From the
workbench window, select the Create Applet button from the tool bar. In the
Applet name field type ATMApplication, select the JApplet checkbox as
Superclass, select Compose the class visually (see Figure 95).

Figure 95. Create the ATMApplication Applet
Chapter 7. Creating GUI applications 169

Select the Next button. In the Applet Properties window, select Yes, create
an applet witch can be run by itself or in an applet viewer (see Figure 96).
Select the Finish button.

Figure 96. Create ATMApplication — Applet Properties window

The Visual Composition page of the ATMApplication class browser opens.
Open the Beans List by selecting Tools→Beans List.
170 Programming with VisualAge for Java Version 3.5

Notice that there are several beans in the list (see Figure 97). The first
ATMApplication represents the complete bean you are editing and is really
just a place holder. The second ATMApplication is the subtype of JApplet that
you created, and the AppletContentPane is the content pane for the applet.
Remember that the JFC splits the functionality of many components between
a pane and the component itself.

Figure 97. The Beans List

The Beans List window displays an ordered list of the beans and connections
on the free-form surface. The beans are initially listed in the order in which
they were dropped, which also reflects the tabbing order. If we change the
order of beans that have tabbing set, the Visual Composition Editor reflects
the updated tabbing order.

Keeping the Beans List visible is a good idea most of the time. It will help you:

 • Locate components that are under other components.
 • Move or manipulate components when layout managers are in effect.
 • Quickly see the names of various components and connections.

Select JAppletContentPane. You can select it in the Beans List or by clicking
anywhere within the visual representation of the applet. Open its Property
sheet (see Figure 98). Notice how many more properties this component has.
Set layout to GridBagLayout

It is a good idea to select the Show expert features checkbox now, so that
you will always see all features. If you find that there are too many features
and you do not use many of them, you can deselect the checkbox later.
Chapter 7. Creating GUI applications 171

Figure 98. JAppletContentPane Property sheet

Adding the JList Bean
Now you add the JList Bean: select JList from the Beans Palette and drop it
on the JAppletContentPane.

Adding the CardBeanHome Bean
To access the Card and to display it on the JList, you need the
CardBeanHome bean.
172 Programming with VisualAge for Java Version 3.5

To add the CardBeanHome Bean: select the Choose Bean tool. Select the
Class radio button and click Browse. Select
com.ibm.itso.sg245264.atm.applet.CardBeanHome from the list and click
OK. Enter card Bean Home in the Name field (see Figure 99). Click OK
again.

Figure 99. Choose CardBeanHome Bean

The cursor now becomes a cross-hair. Move the cursor over an empty area of
the free-form surface and click the left mouse button to drop the bean.

Adding the JDialog components
To display the detail of a selected card, you add new components. Select a
JDialog from the Bean Palette and drop it on the free-form surface.

Drop a JTextField in the JDialog1 and set the beanName property to Owner.

Drop a JList in JDialog1 set the beanName property to AccountsList.

Adding the CardBean Bean
To add the CardBean Bean: select the Choose Bean tool. Select the Class
radio button and click Browse.

Select com.ibm.itso.sg245264.atm.applet.CardBean from the list and click
OK. Enter selectedCB in the Name field (see Figure 100). Click OK again.
Chapter 7. Creating GUI applications 173

Figure 100. Choose CardBean bean

The free-form surface and the Beans List should now look similar to those in
Figure 101.

Figure 101. The ATMApplication View
174 Programming with VisualAge for Java Version 3.5

Saving and generating the bean
It is a good idea to save your work frequently while visually programming, so
select Save Bean from the Bean menu bar item. This action generates the
Java code to correspond to the interface and connections you have
constructed in the Visual Composition Editor. To work with the code of the
beans and connections you add in the Visual Composition Editor, you must
save the bean first. You cannot just switch to another view and edit code.

Connections
The Visual Composition Editor provides you with four connection types:

 • Property-to-property connections
 • Event-to-method connections
 • Code (script) connections
 • Parameter connections

Property-to-property connections:
A property-to-property connection links two JavaBean properties together.
This connection causes the value of one property to reflect the other. A
property-to-property connection appears as a dark blue line with dots at
either end. The solid dot indicates the target, and the hollow dot indicates the
source. When your bean is constructed at runtime, the target property is set
to the value of the source property. These connections never take
parameters.

After the initial setting of the target property, property-to-property connections
require events to fire the connection. Both the source and the target can have
events to fire them. If one end of the connection does not have an event, the
connection is unidirectional. If neither end has an event, the connection only
fires once to initialize the target. If both ends have events, the connection is
bidirectional.

Property-to-property connections have a Properties dialog where you can
choose the source and target properties and events and reverse the
connection.

For indexed properties, VisualAge for Java generates two get-set method
pairs, one for the array and one for accessing elements within the array.
When you connect indexed properties, VisualAge for Java uses the accessors
for the entire array. If you want to access an individual element, you must
create an event-to-method or event-to-code connection to the specific
accessors.
Chapter 7. Creating GUI applications 175

Event-to-method connections:
An event-to-method connection calls the specified method of the target object
whenever the source event occurs. Often a good deal of the behavior of an
application can be specified visually by causing a method of one bean to be
invoked whenever an event is signaled by another bean.

If the method connected to takes parameters, you can specify them through
the Connection Properties dialog box or with parameter connections. In the
Connection Properties dialog box, you can also specify whether the
parameter passed to the method will be the event object generated by the
event.

An event-to-method connection appears as a unidirectional dark green arrow
with the arrowhead pointing to the target.

Code connections:
It often happens that you want some processing to occur when an event is
signaled, but none of the beans on the free-form surface exposes a method
that does exactly what you want. In this case, VisualAge for Java enables you
to connect to non public methods in the class you are editing. These methods
of the class are called code, to distinguish them from the public methods that
you may have created for your primary class and exposed as bean methods.

A code connection appears as a unidirectional dark green arrow starting from
the side of the free-form surface (representing the primary class) with the
arrowhead pointing to a grey box containing the name of the method.

Code connections can simplify the number of connections you need to make
in your application.

Parameter connections:
A parameter connection supplies an input value to the target of a connection
by passing either a property's value or the return value from a method. In a
parameter-from-method connection, the connection appears as a
unidirectional violet arrow with the arrowhead pointing from the parameter of
the original connection to the bean containing the method providing the value.
In a parameter-from-property connection, the connection appears as a violet
line with the dots at either end. The solid dot indicates the target, and the
hollow dot indicates the source. The original connection is always the source
of a parameter connection; the source feature is the parameter itself.

You can also make parameter connections from other connections. Some
connections have return values, and all connections can throw exceptions.
176 Programming with VisualAge for Java Version 3.5

You can connect these return values (normalResult) and exceptions
(exceptionOccurred) as parameters on other connections.

VisualAge for Java represents connections as private methods on the primary
bean and names the connections on the basis of the type and number of
connections using P (property/parameter), E (event), M (method), or C
(code). For example, the first event-to-method connection in a bean would be
named connEtoM1. You can change the connection names to make the code
more readable.

Connection properties
Each connection type in VisualAge for Java has a different set of properties
that can be accessed through the Properties dialog box. To get to the
Properties Dialog box, double-click on the connection or select the
connection on the free-form surface or in the Beans List and select
Properties from the pop-up menu.

The various possibilities for the connection types are described below.

Property-to-property connections:
The following are property-to-property connections:

Source property The source bean for the connection

Target property The target bean for the connection

Source event The source bean event that fires the connection to set
the target bean property

Target event The target bean event that fires the connection to set
the source bean property

Event-to-method connections:
The following are event-to-method connections:

Event The source object event that fires the connection

Method The target object method that is invoked when the
connection fires

Pass event data If true (or checked), and if the method takes
parameters, the event object associated with the
event is passed as a parameter
Chapter 7. Creating GUI applications 177

Code connections:
The code connections are essentially event-to-method connections, so you
can specify the same properties.

Parameter connections:
The parameter connection properties are the same as the
property-to-property connection properties.

Creating connections
Now you can make some connections in your ATMApplicationapplet. The first
time you develop a program, using visual connections can be quite a change,
so make sure you read and understand the connection while you are making
it. This will also help you avoid errors as you work through the examples.
Once you understand why you are creating the connections in the example,
you will be able to decide which connections you need in your own programs.

Event-to-method connection:

When the ATMApplication applet initializes, it should read the parameters
with which it was supplied to build the Card list. The event that triggers this is
the init() event. Follow these steps to connect the init() event to the
getall method on the CardBeanHome:

Click with the right mouse button on an empty area of the free-form surface
(representing the primary class or applet). Select Connect from the pop-up
menu. Select Connectable Features.

In the Start Connection from (ATMApplication) dialog select the Event radio
button. Then select init() and click OK.

The cursor is now a spider connected to the source of the connection. Click
the left mouse button over the cardBeanHome bean and select getall.

Event-to-method connection:

Click with the right mouse button on the green connection you’ve just created.

Select Connect from the pop-up menu. Select normalResult.

The cursor is now a spider connected to the source of the connection. Click
the left mouse button over the Jlist1 bean and select model.
178 Programming with VisualAge for Java Version 3.5

Property-to-property connection:

Click with the right mouse button over the JList1. Select Connect from the
pop-up menu. Select selectedValue.

The cursor is now a spider connected to the source of the connection. Click
the left mouse button over the selectedCB bean and select this.

Property-to-property connection:

Click with the right mouse button over the selectedCB bean. Select Connect
from the pop-up menu. Select owner.

The cursor is now a spider connected to the source of the connection. Click
the left mouse button over the Owner JTextField and select text.

Event-to-method connection:

Click with the right mouse button over the JList1. Select Connect from the
pop-up menu. Select Connectable Features.

In the Start Connection from (ATMApplication) dialog select the Event radio
button. Then select listSelectionEvents and click OK.

The cursor is now a spider connected to the source of the connection. Click
the left mouse button over the AccountsList JList and select Connectable
Features.

In the End Connection to (ATMApplication) dialog select the Method radio
button. Then select setListData(Vector) and click OK.

Now the connection is shown as a dotted line. The dotted line indicates that
the connection (or more accurately, the method called by the connection)
requires a parameter, in this case the bankAccountBeans.

Parameter-from-property connection:

Click with the right mouse button over the dotted line of the previous
connection. Select Connect from the pop-up menu. Select listData.

The cursor is now a spider connected to the source of the connection. Click
the left mouse button over the selectedCB bean and select Connectable
Features.

In the End Connection to (selectedCB) dialog select the Property radio
button. Then select bankAccountsBeans and click OK.
Chapter 7. Creating GUI applications 179

The last connection is the connection between the two windows:

Event-to-method connection:

Click with the right mouse button over the JList1. Select Connect from the
pop-up menu. Select Connectable Features.

In the Start Connection from (JList1) dialog select the Event radio button.
Then select mouseClicked and click OK.

The cursor is now a spider connected to the source of the connection. Click
the left mouse button over the JDialog title bar and select show().

In the End Connection to (ATMApplication) dialog select the Method radio
button. Then select setListData(Vector) and click OK.

Figure 102 shows the connections of your applet.

Figure 102. ATMApplication connection view
180 Programming with VisualAge for Java Version 3.5

Now run the applet and ensure that it works as designed. Figure 103 shows
the final result.

Figure 103. The ATMApplication applet view
Chapter 7. Creating GUI applications 181

182 Programming with VisualAge for Java Version 3.5

Chapter 8. Versioning your code

This chapter discusses the versioning system incorporated into the VisualAge
for Java IDE. It also explains the repository and how this relates to the
workspace discussed in Chapter 2, “Organizing your code” on page 41.

We hope that this chapter will give you some feeling of the power of this
system and will make it clear to you why VisualAge does not store each Java
class in a separate file. Understanding this system is probably one of the
most difficult tasks for a new VisualAge user. However, this same complexity
is also one of the reasons that many programmers prefer the VisualAge
environment above others in the long run.

Note: The versioning system explained here is only applicable to the
Professional Edition of VisualAge for Java. Versioning in the Enterprise
Edition is intermixed with the concepts of owners (and access control),
therefore it is much more elaborate.

The VisualAge dialogs explained here are the Repository Explorer and the
usage of the Edition tab appearing on many other browsers. The Comparison
Result Window, which shows differences in code and enables merges, is also
explained, together with some options that were skipped on other dialogs
related to the repository.

introduction to versioning

Let us look at the features you normally have at your disposal when you want
to undo changes in your source code:

 • Using the ‘Undo’ function of the editor, which may support multiple levels:
This normally works on editor commands that can be reversed, and that
are kept in a strict sequential order on a stack which is probably limited in
size. Undoing changes in this way has no concept of classes, methods,
and so on.

 • Using ‘Revert to saved’ will restore the last version (of the whole class)
you saved on disk.

 • Using a traditional versioning system will let you choose among all
versions of classes that you checked in over time, based on the files in
which they are contained.

Although this last feature gives you a lot of possibilities, it is still not flexible to
use: You have to think in terms of files when you want to restore or compare
to a previous version.
© Copyright IBM Corp. 2001 183

VisualAge is better just in that respect: It lets you reason on versions of the
things you are used to working with: methods, packages, and projects, as
well as classes and interfaces.

Program elements
All the things you can apply versioning to, are called versionable program
elements for the VisualAge versioning feature: see Figure 104:

Figure 104. Versionable program elements

The subsystem of VisualAge that is responsible for versioning the program
elements is called Envy. It is used in other VisualAge products as well (such
as VisualAge for SmallTalk) and it is also available in a multi-user version (it
comes with the VisualAge Enterprise edition).

Chapter 2, “Organizing your code” on page 41 has already explained briefly
that we have a workspace and a repository. In those terms, the workspace
contains program elements that you work on. When you revert to another
version of the program element, VisualAge will get that version from the
repository and put it in the workspace, replacing the previous one: The
workspace is actually the “space you work in”: you only work with one
particular version of a program element, hence the workspace can only
contain one.

The repository, on the other hand, contains every version of every program
element. It adds the time dimension to program elements, much like a regular
versioning system does with files. It is the database containing the master
copies of every program element, in multiple versions.

Let us investigate these concepts more thoroughly.
184 Programming with VisualAge for Java Version 3.5

Workspace versus repository

The repository is the database containing all (editions of) source, consider
the workspace as a cache on the repository: It will only contain elements that
are also present in the repository. When adding new program elements in the
workspace (creating a new class, interface, method, package project), a copy
of the element is also stored in the repository, as with a write-through cache.

This cache is stored in memory when using VisualAge for Java and is stored
into a file to enable a quick rebuild of the cache on startup. The file in which
the workspace is stored is called ide.icx. The repository is a file which is
called ivj.dat. See Figure 105 for an overview:

Figure 105. Interaction between IDE components, workspace, and repository
Chapter 8. Versioning your code 185

The picture shows that almost all browsers of VisualAge (all the browsers
introduced to you so far in this book) only access the memory version of the
workspace.

The workspace can only have one edition of a certain set of editions for a
program element. This edition is also present in the repository, along with the
rest of the set of editions for this element.

When you exit VisualAge for Java, the dialog window shown in Figure 106 will
always pop up:

Figure 106. Exit dialog of VisualAge

You can either press Cancel or OK on this window: It forces you to save a
workspace copy on the file system. You can also manually store your
workspace by using the menu option on every VisualAge window:
File -> Save Workspace.

Note that VisualAge also stores the option settings (explained in,
“Customizing VisualAge for Java” on page 28) and the breakpoints
(Chapter 9, “Testing and debugging the Web application” on page 231) into
the workspace.

The Repository Explorer browser and the Edition tab (the two windows in the
top right of Figure 105) may look unfamiliar to you. We will explain them in full
detail later in this chapter. For now, just remember that these are the only
browsers which show you a view on the repository.

The workspace is only a cache
As the case with normal write-through caches, no harm is done when the
workspace disappears: Keep this in mind, you cannot lose your code,
because it is always in the repository!

For the memory copy of the workspace, this can be the case when VisualAge
was stopped without saving the workspace: The computer went out of power
and the system stalled, so a hard reset was necessary.
186 Programming with VisualAge for Java Version 3.5

On the next reboot, VisualAge will start from the previous stored version and
will try to re-synchronize with the repository: it will say something like
“Checking inconsistencies”. If this has happened, check the latest things you
worked on: If you see an old version of your code, make sure that you load
the last changes back into the workspace (we explain how to do this later).

If you also lost your workspace file (these things may happen with a total
system crash), you are still all right! Basically, you have only lost a cache.

The section below explains how to back up and restore a workspace. Here is
a list of what you can lose when losing a workspace file:

 • Program elements or the last editions of them may not be loaded in the
workspace automatically after restoring a workspace: Later on we will
explain how to browse the repository in order to find and load (the correct
edition of) elements

 • Options settings of the VisualAge IDE

 • Unsaved pages from the Scrapbook

 • Breakpoints settings

 • Contents of the Log and Console windows

These are very few, so never panic when you have problems with your
workspace, remember it is basically just a cache.

Backup or restore the workspace
A workspace file (.icx) always has an associated text configuration file (.ini)
with the same name. Besides information about the corresponding repository,
this file also contains some user settings. You should keep those files
together at all times.

With a standard Windows installation, these files are:

C:\Program Files\IBM\VisualAge for Java\ide\program\ide.icx
C:\Program Files\IBM\VisualAge for Java\ide\program\ide.ini

You make a backup of these files when they are not being written to by a
running copy the IDE. A regular file copy will do, for example from a
command line (assuming T: is a network drive that is automatically
backed up):

copy C:\Program Files\IBM\VisualAge for Java\ide\program\ide.i*
T:\vajbu\ws\
Chapter 8. Versioning your code 187

To restore a workspace, shut down VisualAge for Java and replace the
existing copies of these files with their backup version:

copy T:\vajbu\ws\ide.i* C:\Program Files\IBM\VisualAge for
Java\ide\program\

After restarting VisualAge, you will only see the program elements from the
time you made the backup, in the editions from that time. You only need to
add the additional program elements (and restore newer versions of the
existing: see below) to be back on track.

The size of the workspace file depends on how much code it contains. A big
environment will eventually hurt the performance of VisualAge. After working
some months with VisualAge, people tend to end up with a lot of code in their
workspace that is not used anymore. A common solution to this is to restore a
‘clean’ copy of the workspace and gradually add the elements until you have
everything you need.

There are two things which can help you prevent from running into such a
situation in the first place:

 • Put code that you do not change often (for example, common libraries)
outside the workspace in a JAR or class files and reconfigure your project
to use the code from there (see Chapter 9, “Testing and debugging the
Web application” on page 231).

 • Have a separate workspace for each project you work on (see “Multiple
workspaces on one repository” on page 189).

We will first come back on the “clean” workspace copy before going into the
details of using multiple workspaces.

Clean workspace copy
The documentation of VisualAge for Java tells you to take a backup of the
initial workspace just after installation and use this when you experience
problems with your workspace. It also explains that the VisualAge for Java
installation program is also able to restore the initial workspace.

Of course, a fresh copy from just after the installation will work. The downside
of this, however, is that you lose your settings (and some other things listed
above). Instead, we suggest that you start once from an installation
workspace and adjust all the option settings as you usually set them. Delete
projects you do not need, and add some other projects you will always need.
188 Programming with VisualAge for Java Version 3.5

Then save this workspace as your own “clean’” copy. This will take a while,
but it will save you much time (and frustration) when you have to replace your
workspace in the middle of a project.

Remember to copy the pair (the .icx and the .ini file) together at all times.

Multiple workspaces on one repository
Multiple workspaces can connect to one repository (just think of the copies
you make as a backup). You can make different workspaces for each project
you work on, which all use the same source’ storage. An unsupported feature
of VisualAge for Java lets you specify which workspace to use as a command
line option: The command-line argument -i takes a filename as an argument:

ide.exe -i MyWorkspace.icx

Note: As you can see, you only have to specify the .icx file; VisualAge for
Java assumes that it will find a corresponding file with the .ini extension.

Wrapping up: At the beginning of each project you should duplicate your
clean workspace copy and rename it to reflect your project. Then add a
shortcut for starting VisualAge for Java with these newly created files.

When VisualAge for Java does not want to start (to diagnose: the process
stops after the splash screen), it is probably due to a corrupt workspace. In
this case, you can easily restore another workspace. Take a copy of the
existing workspace and restore the clean copy. Try to start the VisualAge IDE
once again.

Backup or restore the repository
From the above discussion it is clear that the repository is the critical point for
failure, rather then the workspace. Let us reassure you, the chances to end
up with a corrupt repository are very small!

The Envy back-end has been around for a long time (longer than Java itself)
and has a very good track record on this. Make sure to contact the support
team or the news groups (see “VisualAge for Java product family” on page 1),
when you think you have a corruption problem: This may help you determine
if it is really the case.

However, this does not exclude possible hardware failure. Unfortunately, hard
disk crashes still happen every now and then!

To protect you against this, the same measures as with normal file based IDE
systems or versioning systems suffice: Take backups regularly!
Chapter 8. Versioning your code 189

The only file needed to back up all your Java sources is ivj.dat located in a
standard Windows installation:

C:\Program Files\IBM\VisualAge for Java\ide\repository\ivj.dat

Shut down VisualAge for Java before taking a backup, to make sure this file
does not change while copying. Simple copy commands to back up and
restore also suffice here:

copy C:\Program Files\IBM\VisualAge for Java\ide\repository\ivj.dat
T:\vajbu\repos\

copy T:\vajbu\repos\ivj.dat C:\Program Files\IBM\VisualAge for
Java\ide\repository\

You can also decide to use a repository server (which comes with additional
management tools) instead of a local file. Such a repository server is IP
based and consists of multi-platform software. It comes with the Enterprise
edition of VisualAge for Java. We refer you to the literature on the Enterprise
version for more information: see Appendix D, “Related publications” on
page 371.

Later on in this chapter, we will also talk about resource files. As we will see,
they are not stored in the repository, so remember to make a backup from
those too!

Workspace versus repository continued
Because Java is an interpreted language (after compilation into bytecode)
and does not need linkage, the environment can easily recompile parts of the
whole system without bringing down a running program (a feature that greatly
expands the debugging capabilities, as will be explained in more detail in,
“VAJ Debugger” on page 231).

You may also know by now that VisualAge will alert you if some piece of code
contains errors when you ask it to save. So, it will probably not surprise you to
learn that VisualAge actually compiles each piece of code upon saving it.

The bytecode obtained is kept inside the system to enable fast execution of
code: No need to compile anything anymore when you run a program. Now
just think of it: What bytecode should be kept inside the system? Everything
you work on at the moment, in the version currently loaded, probably. So,
again, it should come as no surprise when we tell you that this bytecode is
actually stored in the workspace!
190 Programming with VisualAge for Java Version 3.5

No bytecode is stored in the repository, but everything that enters the
workspace is compiled first. This explains why it takes a while to add the
WebSphere Test Environment, for example, although it was in the repository
all the time. This may also be a reason the create your own clean copy of the
workspace discussed above.

To summarize this section on workspace and repository, we give you a list of
differences (which should be easy to understand by now):

Table 10. Differences between workspace and repository

Version control

We go back to our program elements concept at the beginning of this chapter.
The lifetime of these objects is key to understanding the whole versioning
system.

Editions and versions
Up till now we used the terms edition and version interchangeably. In
VisualAge the term edition has a broader meaning then version. Editions are
the basis of our discussion, so we will explain the meaning of the term version
in VisualAge shortly.

Workspace Repository

Workspace contains Java bytecode The repository contains the source

Only one edition of currently used program
elements

Contains every edition of every program
element that you ever developed

Used from Workbench and all browsers Only used from the Repository Explorer
and when browsing the editions of a
program element (see below)

Changes are not saved to the file version
of the workspace until you choose to save
it explicitly or you exit VAJ

Every code change you save is
immediately stored in the repository, the
ivj.dat file on disk

Elements can be deleted, removed from
the workspace

Editions of program elements can only be
removed after a two phased process
discussed below

Will grow initially, but can shrink again
later

Will grow in time

Can be lost or become corrupt without
loosing code

Contains all the code, should not be lost,
and will probably never corrupt
Chapter 8. Versioning your code 191

As we mentioned, the repository can only contain editions of program
elements: a program element does not exist when there is no edition of it in
the repository.

An edition of a program element can have two different states:

Open Think of this as the read/write state: This edition of the
program element can be changed.

Versioned This is a read-only state: The program element cannot
change.

The latter state can be considered (for now) as the final state: An edition of a
program element cannot go back to the Open (Read/Write) state once it is
“versioned” in VisualAge. The former state is used for work in progress.
Figure 107 shows this simple state machine:

Figure 107. Basic state diagram for editions

A ‘version’ is an abbreviation for ‘versioned edition’. When referring to
‘edition’ some VisualAge documentation uses it as an abbreviation of ‘open
edition’. We will try to keep the clear distinction in this chapter between the
general term ‘edition’ and the more specific terms ‘open edition’ and ‘version’.
192 Programming with VisualAge for Java Version 3.5

Editions can be created in many different ways, depending on the type of the
program element. We will explain this in more depth later on; for now, we will
only focus on the fact that they can be created.

Versions can be labelled, usually by a number (and a fraction) but other
names like “Deployed at the customer’s on 12/3/2000” are also allowed.
VisualAge will always propose to you a version name which starts with 1.0
and which continues from a previous version by adding 1 to the last digit of it:
The next time you version a program element which used to be in version
“v0.26”, VisualAge will suggest that you make it “v0.27”.

The key thing to remember about versions is that they always represent the
same state of the program element, which makes sense when you want to
refer to them using their label afterwards.

Open editions, on the other hand, cannot be labelled. VisualAge attaches a
timestamp to them at the time they are created:

TransactionAbortedException(11/21/00 7:20:38 PM)

Here is one question you might ask: What happens when a program element
is versioned; you cannot change it; what if you need to change something?

The answer is that VisualAge will automatically create an open edition of a
versioned program element when you change something about it. You then
have a new edition for that program element, with a life cycle of its own. Note
that — besides the action of creating a new program element — we now have
two ways to make a new edition. Later on, we will explain this in more detail.

Consequences of versioning
Here is another question: The program elements (projects, packages, types
and methods) are hierarchical structured (one is contained inside the other).
What happens with the elements in the tree ‘below’ and ‘above’ the versioned
element?

This answer will be more involved. Until now, things were very simple:

 • You have editions as the basic blocks.
 • They can be in only two states.
 • They are called open editions or versions depending on their state.
 • There is only one possible transition (by the action of versioning).

The effect upon the environment of the program element being versioned will
add some complexity to the system, although it will seem straightforward
enough once you grasp the concept.
Chapter 8. Versioning your code 193

Consider the following two things:

 • When you want to fix a package by versioning it, you want it to remain
completely the same, including all its classes with their respective
methods. The reason for versioning something is to be able to revert to the
exact same state later on, with the exact same state of the sub elements.

 • Changing one of the sub elements of the package (for example, a method)
also changes the package in a way: it is not anymore in the exact same
state as when you versioned it.

As a result, we have two basic rules of the versioning system:

1. When versioning a program element, all its sub-elements are versioned
when necessary (which means that they are versioned when they are in
an open edition).

2. Changing one of the sub-elements of a versioned element will result in
creating an open edition for that parent element (as well).

How to version elements with VisualAge for Java
That is enough theory for the moment — let us see how to version elements
in VisualAge for Java. As with most actions on displayed objects in the IDE,
there are many ways to invoke the versioning action.

We first see how to version using the normal menus from the menu bar. The
different browsers have menus with the name of the types of program
elements they can show in their different lists. The Workbench has only one
menu called ‘Selected’ which will change upon the current selection: The
content can resemble each of the menus described below. When elements of
different types are selected, this menu will only show a subset of the
intersection between them.

The names of the menus are either Project, Packages, Types, or Members.
Type means both Class and Interface; Members are Fields, Methods, or Inner
classes.

The Project Browser has the full range of menus: The Project menu and the
three others, because of its three cascading lists that show packages, types,
(in the selected package) and members (from the selected type).
194 Programming with VisualAge for Java Version 3.5

Figure 108 shows the menu bar of a project browser:

Figure 108. Project browser menu bar

All of these menus will have an option ‘Manage’ that expands to ‘Version...’.
When the selected items in the Workbench are of the same type, there will be
a Selected->Manage>Version... menu option.

The other menus in Figure 108 are present on all VisualAge for Java
windows: File, Edit, Workspace, Window, and Help. Their content is also
always the same (which must give some kind of relief to a new VAJ user),
although the menu items that are not applicable are greyed out.

Another — and perhaps more intuitive — way to version program elements
(which is valid in any of the windows) is to invoke their popup menu (normally
by pressing the right mouse button while pointing to a program element):
Figure 109 shows the popup menu for a package:

Figure 109. Popup menu for a package expanded on the Manage option
Chapter 8. Versioning your code 195

Choosing the ‘Version...’ menu item will bring up the window in Figure 110.

Figure 110. Versioning dialog window

This window always looks like this even when you only selected one item.
The reason is that the program element to be versioned might be the parent
of other program elements, which also have to be versioned.

The window will preselect the One Name radio button and suggest a version
name (as explained before). Choosing Automatic will version all
sub-elements by incrementing the last digit of the name of the previous
version (or replacing the last character with the next in the alphabet,
restarting at ‘A’ after reaching ‘z’). Name Each will bring up the following
dialog in Figure 111.

Figure 111. Dialog to specify the name of each sub-element

From Figure 111 you can see that — when you press the Details>> button —
VisualAge will display the list of the version names already in use.
196 Programming with VisualAge for Java Version 3.5

Apply this to the ATM application
Let us reconsider the example application. We assume that you created a
project with the com.ibm.itso.sg245264.atm.memory package and
implemented all classes that make up the core of our application. You
probably did not version before, so the project with all its sub-elements are
still in their initial open edition state.

Tip: When enabling the “Show edition names” toggle (see Figure 112), the
VisualAge IDE will put the label of the versioned editions after the name of
the program elements in lists or in the title bar of the corresponding browsers.
The program elements that are in open edition are appended with the
timestamp from the time they were created.

Figure 112. ‘Show edition names’ — toggle

Take the test to see if you understand the basic rules mentioned before:
Version that initial package and look at the tree starting from the project: The
project will still be in an open edition; the package and all the sub-elements
will have the name you choose. Look what happens when you change (and
save) something (even a Javadoc comment) on one of the classes or
methods: The package (and the class in the case of changing a method) will
again be in an open edition. Other classes are not affected, as nothing on
them changed. The project was changed, but as it is still in its initial open
edition, it can stay without changing the state of the edition: The label still
shows the date and time you created it.

Methods, a special case
Now we come to the first odd fact about using terms in VisualAge: The
documentation says that methods cannot be versioned, something you may
already notice by now. Also consider these excerpts from the documentation:

“A new open edition is created every time you save changes to the method ”
and “Methods are automatically versioned when the containing class is
versioned.”

Methods are special indeed in the way they are treated with respect to the
versioning. But we think it is easier to understand what happens by saying
that an edition of a method is never in the open state. When saved, VisualAge
puts the method directly in the versioned state, giving it the timestamp of
when it was created (saved) as the version label.
Chapter 8. Versioning your code 197

This means that every save of a method creates a new version, in other
words: You will never lose your (method) code, you will only lose subsequent
changes in class declarations and in the organization of your code.

This interpretation of the versioning process applied to methods is consistent
with our basic rules about the versioning: Versioning a class will never
version a method because it is always versioned. Changing a method is
considered as changing a part of the class, so it results in creating an open
edition of a versioned class.

This also explains why you can find back every change you made on a
method, where this is not true for other program elements: Subsequent
changes are only stored when you version the affected elements.

Importance of versioning your code regularly
This last observation is, in its turn, another reason we advise you to:

Version your code on a regular basis.

For example, you can version your code when you reach project milestones,
or when you need to exchange code with a colleague, and — on a more fixed
basis — you could do your versioning regularly at the end of each work week.

Some arguments offered for not versioning code are based on the idea that
you would only be losing some minor information:

 • You may believe that class declarations are not so complicated that you
need to keep their state at certain points in time.

 • Knowing which types or what version of the types were included in a
package at a certain point may not seem relevant to you.

 • You may not care about which packages (and versions of them) were
included in your project at a given time.

All those things maybe true, but versioning is a small effort which will enable
you to have that information at a moment’s notice, whenever needed.

We realize that it may seem useless to version your code when it is not
finished, or worse yet, if it is source that cannot compile. However, suppose
that someone asks you about a change you made weeks ago — a change
that is now causing problems in a colleague’s code. Your only resort to track
this change will be the versioned methods. You will have to remember which
package, class, and even which methods might affect the change. You will
have to sequentially browse through all versions, which were made each time
you pressed Ctrl-S.
198 Programming with VisualAge for Java Version 3.5

Shortly, we will also explain how you can easily browse through your editions,
at the different levels of the program elements, and compare the code
changes between editions. But for now, the main thing you need to remember
is this: Version your code regularly!

Fields and inner classes
You may have noticed that we did not talk about fields and inner classes
before. As Figure 104 on page 184 shows, these are not versionable program
elements.

Rather, they are considered as being part of the class declaration.
Subsequent changes to them are only persisted when the containing class is
versioned, as is the case with every non-method program element.

Versioning resource files
A new feature from VisualAge for Java version 3.5 onwards allows you to
version files that are external to VisualAge (especially non-Java files)
together with the project they reside in.

In Chapter 2, “Organizing your code” on page 41 you saw that you can
associate files that you use in your current project. You can add them to a
project which puts them in a special directory, so they will appear in the
Resource tab of the Project browser. Some additional features include using
the import and export features of VisualAge to respectively import them from
within VisualAge into your project and combine them with the regular
deployment of your project as a whole (see Chapter 12, “Deploying the Web
application” on page 341).

However, these files are not to be seen as a new sort of program element:
The only support is based on the idea of being able to restore another version
of a project as a whole, including the items listed in the Resource tab.

Hence, it is not surprising that these files are not put in the repository (which
only contains Java code).

Originally the files are only in that special directory, but when versioning
resources (by versioning the project), VisualAge creates a new directory
underneath the repository directory (the directory that contains the ivj.dat file,
see the foregoing discussion). The directory ivj.dat.pr contains subdirectories
for all projects of that exist, much like the subdirectories underneath
project-resources. The directory created upon versioning is named with the
timestamp of the open edition of the project before it was versioned.
Chapter 8. Versioning your code 199

The ‘versioned resources’ directories for the ATMApplication project could be:

C:\Program Files\IBM\VisualAge for Java\
ide\repository\ivj.dat.pr\ATMExampleApplication\20001215.133214

C:\Program Files\IBM\VisualAge for
Java\ide\repository\ivj.dat.pr\ATMExampleApplication\20001220.103052

C:\Program Files\IBM\VisualAge for
Java\ide\repository\ivj.dat.pr\ATMExampleApplication\20001220.104220

VisualAge will only make a new subdirectory to archive (all) the resources
when at least one of them is changed (and the change is reflected in the
project index file, see note). This can save you some disk space when
working with a huge set of resource files that will remains the same during
your Java development.

Note 1: Be careful when changing resource files outside VisualAge for Java.
VisualAge might not have noticed that they are changed, in which case it will
not make that a special directory, and will copy no files, meaning that you will
lose your subsequent changes on these resource files! This is only the case
for external changes not known to VisualAge, so you should be safe when
changing the files and their associated program from VisualAge. You can see
if VisualAge notices the change in one of the resource files, by checking if the
resource index file (.idx file) associated to the project is updated.

Note 2: When the resources are the only thing you changed in a versioned
project — even when this change is recorded in the resource index file — no
new edition of the project is created. Therefore, you will not be able to version
the project. One possible workaround is to change something in the comment
of the project to force the creation of a new edition for that project.

Because the resources are separately stored from the Java code, you have to
take care to include both the repository and these project directories in the
your backups.
200 Programming with VisualAge for Java Version 3.5

Using editions

By now, we suppose that you understood what editions are and how to
version them in VisualAge. But what can you do with all those editions?

Next, we will explain how you can see the history of editions for each
versionable program element.

Method edition tab
You can view the editions of a method from the edition tab of the method
browser: Simply click on the tab icon to bring the tab on top when you are
already in the method browser:

Because you will normally not be working in the method browser, but rather in
a class browser, you could also directly go to this tab by using the popup
menu on the method and choose ‘to open it for viewing its editions’: see
Figure 113.

Figure 113. Using the popup menu on a method to go directly to its edition tab

The simplest edition tab is the one for methods. By default, it gives you a list
of the editions that are present (and not purged, see later) in the repository.
This list is shown in the upper part of the window. Clicking on one of the
editions shows you the method code in that edition in the lower pane: see
Figure 114.
Chapter 8. Versioning your code 201

Figure 114. Edition tab in method browser showing a list view of available editions

Because methods are automatically versioned by VisualAge with the
timestamp as a label, this list shows only timestamps. But remember that
none of the editions shown is an open edition. The edition that is currently
loaded in the workspace (the edition you are working on) is marked with a ‘*’.

In Figure 114, we selected the version of two ‘saves’ ago: VisualAge actually
contacts the repository to show you this directly, without loading it in the
workspace. When you want to replace the loaded edition with the another you
choose: Editions -> ‘Add to workspace‘ from the menu bar or — more
intuitively — you can use the menu option on the popup menu of the edition.
202 Programming with VisualAge for Java Version 3.5

The upper pane of this edition tab has two little icons in the upper right. You
can compare them with the different icons we already discussed in Chapter 2,
“Organizing your code” on page 41 when discussing the different browser
windows and the workbench: They change the way the list in the upper pane
is shown:

Those icons work like a toggle. By default the first one (the list) is selected,
when you click on the second, the upper pane of your edition tab will show
the structure of the editions in a tree view: Figure 115.

Figure 115. Hierarchical view of the editions on the edition tab

A parent connection in this hierarchical representation means that an edition
was created from the other. Figure 115 shows that it is possible to have
multiple roots on an edition tree. This happens when VisualAge has no idea
which version you used to make the new edition you want to save. This can
be the case when creating a new edition when you import code (see later).

The figure also shows that you can collapse or expand parts of the tree by
clicking the ‘-’ or the ‘+’ sign respectively. When this window comes up, the
whole tree is expanded. When searching for an edition, you could collapse
the sub-tree that you already investigated so you will not try to investigate it
later on.

This representation shows much more information than the list view. It can be
especially useful when, for example, you have to figure out why you have
seemingly lost subsequent changes of a method: This usually turns out to be
caused by importing an old version or accidentally replacing an edition.

Comparison result window
Another tool that can you fix such problems is the comparison tool. We will
explain this tool directly for comparing any kind of program element, not only
for methods, since the differences are minor.
Chapter 8. Versioning your code 203

The comparison tool will help you in merging the differences between two
editions into one. When selecting two editions, the popup menu of an edition
will enable the menu option ‘Compare’. This will bring up a window like the
one you can see in Figure 116.

Figure 116. Comparison result window in action

The top list (Differences pane) is comparable to lists shown in the workbench:
It contains all sorts of program elements hierarchically structured. Depending
on the type of the program elements you compare editions from, it will contain
everything from packages to members. At each node where a difference was
detected, the second column specifies what kind of differences were found.

The source panes below show the two sources for the currently selected
program element. When you select an element in the list, it will highlight the
first difference found in the source panes. You can navigate through the list of
difference by clicking on the arrows in the upper right part of the window
(comparable with the arrows problems tab enabling browsing through the set
of problems):
204 Programming with VisualAge for Java Version 3.5

You can also navigate the differences by pressing CTRL-N (Next) or CTRL-P
(Previous) or by using the menus. When browsing through the list of
differences, the Differences pane will update its selected line with the
program element containing the showed differences.

Much like the collapsing of sub trees in the graphical edition view, this window
features functionality to hide all covered differences in a program element.
Use the button shown below:

If you click this button when a hidden program element is selected, it will
become ‘visible’ again.

To see the complete list again, include the hidden program elements, you
click change the toggle:

When this toggle is active, the hidden program elements in the list will be
shown with their names between parenthesis.

Merging compared elements
You can merge the source into one window stepping over each difference and
choosing the ‘Replace with Alternative’ in the popup menu of the source pane
to be used for the merge. This will replace the highlighted area with the one
from the other source pane (see Figure 117).
Chapter 8. Versioning your code 205

Figure 117. Replace with Alternative option to merge source

If you want to exchange the code show in the left source pane with the source
in the right (to replace all differences by the alternative at once), choose
‘Load Right’ from the program element popup or from the menu bar:
Differences → Load Right.

You would choose the Load Left when you want to replace the code in the
right pane with the one on the left side.

When one of the panes is empty, replacing the other with this one means
deleting it.
206 Programming with VisualAge for Java Version 3.5

You cannot change source code in an edition that is not loaded in the
workspace. Although VisualAge will let you merge code into a source pane
that corresponds to an edition currently not present in the workspace, it will
alert you of this when you try to save the changes or when you leave the
window by clicking on something else with the dialog window shown in
Figure 118.

Figure 118. Shadow objects are unchangeable warning

Therefore you should always be careful to merge into the source pane that
contains the loaded edition if you want to save the changes afterwards, which
is normally the case anyway.

Note: You are not limited to comparing different editions of the same program
element. You can also compare two different program elements together,
provided that they are from the same sort (compare between packages,
projects, types and members) and that they are both loaded in the
workspace.
Chapter 8. Versioning your code 207

In general, you can compare each program element to another edition from
the repository or to another program element by the same type everywhere
within VisualAge by using the ‘Compare With’ popup menu submenu. It
comes in two versions, depending on whether you selected one or two
elements: Figure 119.

Figure 119. The two versions of the ‘Compare With’ popup menu submenu

We will now show you the other edition tabs specific to types, packages, and
projects. From there, you can also start the comparison.
208 Programming with VisualAge for Java Version 3.5

Types edition tab
The edition tab for classes and interfaces is a little more complicated than the
one for methods. You access it either by using the ‘Open To -> Editions’
option from the popup or by clicking on the tab icon in the Class browser. It
contains three panes (see Figure 120).

Figure 120. Edition tab in class browser

The left upper pane is similar to the one we discussed with the method
browser. Notice, however, that we now have a mix of version labels and
timestamps of open editions as labels to the nodes.

The right upper pane will show all fields and methods that were included in
the class for the edition selected at the left. This list has similar filtering
functions as described for the normal browsers.

One other difference stands out: The icons for the elements are grey.
VisualAge uses this visual indication to remind you that these elements are
not currently loaded. They are shadow objects; see the discussion above.

The methods from the list are listed in the edition that were in at the time the
class was versioned, or in their last available edition within the open edition of
the class. You can, however, easily browse the other editions for the
individual methods by using the popup menu to open them in their edition tab.
Chapter 8. Versioning your code 209

The lower pane will show the class or interface declaration when no member
was selected, or the code of the selected member (in the version it was in).
When no edition is selected in the Editions pane, both other panes are blank.

From this window it should be clear to you that editions of types both contain
code as “organizational” information: The class declaration is bound to the
class edition, the version of the methods included in the class can be
regarded as a set of references to method versions.

Packages edition tab
This view adds another pane that contains a list, combining them to act like
cascading lists (see Figure 121).

Figure 121. Edition tab in Package Browser

On this level we no longer talk about code. The information stored in an
edition of a package is mainly concerned with which versions of program
elements were present when that package was in that state. The lowest pane
will now show the documentation associated to that package in the selected
edition when a selection is only made in the first pane.
210 Programming with VisualAge for Java Version 3.5

Notice that VisualAge will try to act “conveniently” when browsing cascading
lists: When you selected a certain version of a package, a particular class
within that package, and a method within that class. Changing the edition will
in most cases result in showing the same method, but in the edition it was in
when the package was versioned.

Of course, this will not work when one of the elements are missing in the
newly selected edition. This makes it possible to browse editions of program
elements based on the versions of their ancestor elements!

Projects edition tab
Projects have the characteristic that they can contain the exact same
package (if only they are not loaded at the same time: See Chapter 2,
“Organizing your code” on page 41). This browser will therefore be of great
help when, for example, you want to track the impact on a set of projects
(possibly corresponding to real life customer projects) of a bug that was
introduced by in a particular version of a package.

Besides the additional pane that shows which packages in which version
were used by a specific version of a project, this version of the edition tab
also includes a resource section. This resource pane shows the names of the
resource files and their timestamps. You cannot open the resources from
here, or copy them; you will have to restore the complete project if you want
to manipulate them.

Notice that the Project Browser showing the Edition tab has the most
extensive menu bar of all VisualAge windows: It includes both the menus for
all the types of program elements as the Edition and a Selected menu. The
Selected menu will unify the possible actions that are available for all the
selected elements across the six panes (see Figure 122).
Chapter 8. Versioning your code 211

Figure 122. Edition tab in project browser

We would also like to point out that the nice feature of showing packages in
the tree structure (rather than the flat sequential list) is available in the project
tab. The project browser and the workbench windows discussed in Chapter 2,
“Organizing your code” on page 41 also feature that functionality, review the
discussion over there for more information.
212 Programming with VisualAge for Java Version 3.5

Replacing current edition
There is another option in the popup menu of each program element (besides
the ‘Compare With’) which has to do with versioning: ‘Replace With’. It has
two options: ‘Previous Edition’ and ‘Another Edition...’ (see Figure 123).

Figure 123. ‘Replace Wtih’ submenu available from many places

This submenu is also available from all the type menus (also see “How to
version elements with VisualAge for Java” on page 194).

It will replace the current edition (version or open edition) with the previous
edition or with an edition you chose from a Replacement Dialog listing all
editions (only) in a list (see Figure 124).

The fact of replacing an edition in the workspace with another edition from the
repository is generally referred to as loading an edition from the repository.
Chapter 8. Versioning your code 213

Figure 124. Replacement dialog for a class element

The edition from before is left in the repository, in the state it was in: open or
versioned. If the edition you chose to load is versioned, then any change to
its definition or to its subparts will result in a newly created open edition. If
you choose to load an open edition, changes will be made in that same open
edition. The standard rule of creating a new open edition only when changing
an existing version, still stands.

Note that this can lead to multiple open editions for a specific program
element: Each time you go back to a version of a program element to change
something without first versioning the previously present edition, you create a
new open edition leaving the other as it was.
214 Programming with VisualAge for Java Version 3.5

The resource files also have a ‘Replace With’ submenu in their popup,
although the menu for the resource files only contains the ‘Another Edition...’
option (see Figure 125).

Figure 125. Replacement Dialog for resource files

From Figure 125, you can see that VisualAge generates a comment that it
attaches to the edition of the file in order to recognize it later on.

The ‘Add to Workspace’ popup menu option on items in the edition tab of the
browsers has the same effect as ‘Replace with’: It loads the selected edition
into the workspace. Because the replacement dialog only lists the editions
sequentially, it may be handier to select Open To -> Editions, browse the
hierarchical representation of the editions, and select Add to Workspace to
load it (see Figure 126).

Figure 126. Add To Workspace from the edition popup menu
Chapter 8. Versioning your code 215

Here is one last piece of advice: Always compare the edition you want to load
with the currently present edition by invoking Compare To on the two
editions!

Tip: To select a second edition in the hierarchical view of the editions you
must select the first one, press and hold Ctrl and right-click to obtain the
popup menu. A right-click in this view will cause the selection to change to
this element, so it is not feasible in the normal way.

An alternative for the ‘Add To Workspace’ option for program elements that
are not currently in you workspace is using the respective SmartGuides for
creating the different type of program elements discussed in Chapter 2,
“Organizing your code” on page 41. All the SmartGuides creating versionable
program elements have a ‘Add <program element type> from the repository’
as the last option for the radio button on their first page (Figure 127):

Figure 127. Create package SmartGuide

External versioning systems
To finalize this section, we offer a few words on the usage of other (external)
versioning systems in combination with VisualAge for Java.
216 Programming with VisualAge for Java Version 3.5

By now, it must be clear to you that a major advantage of VisualAge is the
fact that versioning is centered around program elements, in addition to the
granularity gained by using these program elements when applying
versioning.

You can use external SCM systems, but they are file based. Because they
essentially communicate by importing and exporting code from VisualAge
(see the discussion of consequences below), this kind of integration has its
limits.

Possibly the best combination is to use the VisualAge versioning system, and
only export your code to include it in another versioning system. In this way
you will be compliant with the rest of your company in case they are storing
all their documents in another versioning system.

Import and export effects

This section will consider what the effects of importing and exporting code are
on the versioning system and its various parts. There is a big distinction in
behavior between using regular .java, .class, .jar, or .zip files, as opposed to
using another storage format which we will explain shortly.

Import and export with Java files
Chapter 2, “Organizing your code” on page 41 explains how to import and
export code within VisualAge for Java from or to .java, .class, .jar, or .zip files.

Importing code is treated as just another way to create an open edition. But,
even when the current program element is in the open state, a new open
edition will be created!

VisualAge considers that everything inside a tree is ‘made from a parent
node’ (to which it will be linked). The import will create a new root, because it
is not possible to know what the exact predecessor was for imported code.

Finally, we now have all the cases in which a new edition (in the open state,
except with methods) of a program element is created:

1. When a new program element is created in the IDE.

2. When something is changed on a versioned edition of a program element,
or on its sub-elements.

3. When importing code from a .java, .class, or .jar file that replaces the
current edition of a program element.
Chapter 8. Versioning your code 217

Import and export with repository files
In this chapter we already saw that the VisualAge for Java IDE uses a
repository called ivj.dat to store all editions of all program elements. The
export to repository creates and updates similar files as this; they are called
repository files and should have a .dat extension.

These repository files can also contain more then one version of your code.
Just like the main repository of VisualAge, they store editions of program
elements. When the parent of imported edition is also available in the
repository (of the IDE that imports the element), it will be placed in the correct
place inside the existing edition tree, otherwise it will still create a new
(edition) root.

Where the regular import and export can only be invoked on packages or
types, the export to a repository file is only supported for packages, projects
and — as we will explain shortly — for solutions (see Figure 128).

Another limitation is that you can only export versioned editions of program
elements. This makes sense: How would you otherwise be able to know what
version of the sub elements would be in an exported open edition (where this
is not fixed)? Two exports of a same open edition would potentially be
different when allowing this.

Export
We will first explain the option in the export dialog (discussed in Chapter 2,
“Organizing your code” on page 41) to export to ‘Repository’, which will use
repository files.
218 Programming with VisualAge for Java Version 3.5

When exporting to a repository file, you have to specify the repository file and
choose which versions you want to export, see Figure 128. You can export
multiple editions of an element, not only the current version, but also versions
that are in the repository.

Figure 128. Export to a repository file, second page of SmartGuide

If you specify a file that does not exist, VisualAge will create a new repository
file. Reusing an existing repository file, on the other hand, will add the
editions you chose; they will be added to the existing editions.
Chapter 8. Versioning your code 219

Select the type of program elements you want to export and specify the
editions you want by pressing Details. The dialog (Figure 129) that pops up
will list every program element of the selected type that you can export. If you
choose one, the list at the right will show the available editions.

Figure 129. Specify the packages and the editions to export

When you select something in the first list, all editions of that element are
shown in the right list. When you select the first edition of a program element
that was not selected in the first list, it will automatically check the box in front
of that element.Below the lists you see how many program elements (in this
figure how many packages) you currently selected and how many selected
versions of those elements you currently have.

The program elements exported to repository files will keep everything
VisualAge adds to them; the Visual Composition Editor information (see
Chapter 7, “Creating GUI applications” on page 143), the comments on
program elements (see Chapter 2, “Organizing your code” on page 41), and
the edition information (explained before in this chapter). This is in contrary to
the export to traditional Java files which have no concepts of editions.

Therefore exporting to repository files is the preferred way to share code. As
an alternative to the team version of the versioning system (which is supplied
with the VisualAge Enterprise edition), you can use a common repository file:
Everybody releases their new versions into one common .dat file. You can
then chose individually what changes of other team members you import,
when to import them and still revert to previous editions if those changes do
not suit you.
220 Programming with VisualAge for Java Version 3.5

When you export projects and packages, your corresponding project
resource files are also exported when exporting to a repository file (unlike
exporting to a .jar file or directory where you have the choice to export them
or not). VisualAge will make a directory (at the same place and) with the
same name as your repository file appended with ‘.pr ’.

Let us assume our example code is in a project with the name
“ATMExampleApplication“, which contains the JSPs (developed in Chapter 6,
“Creating JSPs” on page 129) as resource files. If you are exporting this
project to a repository file named "D:\data\temp\test.dat"; then the following
path will be created as well, containing the corresponding versions of your
resources:

D:\data\temp\test.dat.pr\ATMExampleApplication\20001220.104220

Import
Unlike when importing from Java files, the import from repository file dialog
looks very much the same as its exporting counterpart: Compare Figure 128
on page 219 and Figure 130 below. They are the same, except for the
checkbox with ‘Add most recent project edition to workspace’ which you could
check when importing projects from the repository file. This will automatically
load the most recent edition of all projects you selected to import.

Figure 130. Import from resource file dialog
Chapter 8. Versioning your code 221

In the details dialog — which is exactly the same as the one used for
exporting code in Figure 129 — you can also specify multiple elements and
multiple versions of elements to be imported into the repository.

After importing code from a repository file, VisualAge will not load an edition
of that code to your workspace (except when checking the toggle mentioned
above for projects). This results in not seeing your code in the workbench,
which may confuse new users of VisualAge, who may think that the import did
not work!

There is a big difference in importing from Java files and repository files.
Importing from a .class, .java, .jar or .zip file will import the code in the
workspace (and as a side effect also in the repository). Where the import from
.dat files will import into the repository.

Tip: Think of this importing and exporting tools for resource files, as if it was
just one tool: a repository copying tool that is used to transfer editions of
elements from one repository to another (from an external .dat file to ivj.dat or
the other way around). This also explains why the respective import and
export dialogs are similar.

Repository Explorer

The Repository Explorer is a window that shows what editions of all sorts of
program elements are present in the current repository (only the ivj.dat file is
browsable). The way to explore this is by browsing from either a package
edition, a project edition, or a solution edition to the program element you
want to look at. Using the technique of the cascading list, you can navigate
down to the level of detail you want.
222 Programming with VisualAge for Java Version 3.5

Figure 131 shows the Repository Explorer on its Package tab.

Figure 131. Repository Explorer e on package tab

This display starts with a list of all available packages in the current
repository in the ‘Names Pane’. This list is probably much longer than the list
on the package tab of the workbench, showing all the packages available in
the workspace.

All functions explained before, when discussing the different Edition tabs on
the browser windows, are also applicable . here.

Here is a short recapitulation of the functions you would need in the major
usage scenarios:

 • The items displayed in the Repository Explorer are all shadow objects;
you can see and change the source of elements, but you cannot save your
changes.

 • The currently loaded edition of a program element is indicated with a ‘*’,
you can use the popup menu to add the selected edition to the workspace
(to become the currently loaded element).

 • You can compare between editions of the same program element or
between elements of the same type.
Chapter 8. Versioning your code 223

 • To see the edition history of the other elements (besides the solutions,
project and packages) browse them in the edition tab using the
Open To -> Editions menu option.

Editions of packages, projects and solutions can be listed sequentially or as a
graph in the second pane on the respective tabs of the Repository Explorer in
the ‘Editions Pane’.

The Project tab closely resembles the edition tab of the project browser
shown in Figure 122 on page 212, and is discussed above in the section on
editions. Figure 132 below shows that it is different only in that it adds the
additional pane with the list of all existing projects as the beginning of the
cascading lists.

Figure 132. Repository Explorer showing the available projects

Another view that might look completely new to you is the Repository
Explorer showing the Solution tab. This tab will be discussed shortly in the
section on solutions.
224 Programming with VisualAge for Java Version 3.5

Purging and restoring elements
One of the VisualAge actions on program elements that is only available from
the Repository Explorer is purging and restoring program elements.

Purging elements means that you mark elements to be deleted later on (when
compacting). They will not show up anymore in VisualAge. But you can still
get them back by using the restore function. Remember that you essentially
do not lose code by purging elements accidentally, until you compact the
repository, it can be restored.

You can only purge editions of elements that are not present in the (current)
workspace, VisualAge will generate an error if it detects an element that is
still in the workspace.

Before you purge anything VisualAge asks for a confirmation (Figure 133).

Figure 133. Confirmation before purging elements

You can only purge solutions, projects and packages. The other program
elements all link to editions of packages, they are purged when (all the
editions of) the packages they belong to are purged. More specifically, when
there is still a reference to a type (and its methods) present in the repository
(even only by an old version of the package) the full edition tree of the type
(and its methods) is preserved!

In other words: On the class, interface or method level, you either have the
full tree of editions, or you have nothing left of it (after compacting the
repository, of course).

Purging solutions or projects will only purge the organizational information:
What editions of packages were in a certain edition of a project and what
editions of projects were in a certain edition of a solution. Even when all
projects that ever contained a certain package are all purged, the package
itself will not be purged, it will remain in the repository even after compacting
it!
Chapter 8. Versioning your code 225

You can select to purge or restore an element from the edition of the element
(in the second list from the left) or you can purge or restore all editions of it by
starting these actions from the first program elements list.

Restoring elements is the act of undoing a previous purging of them. You can
always restore everything you purged up to the moment that you compact the
repository.

Figure 134 shows a list that will be presented when you want to restore a
package. This dialog looks the same whether you want to restore either one
of the tree types of elements you can purge.

Figure 134. Restore purged items

In fact the action of purging elements can be compared to marking it for
deletion for the compacting process. Restoring an element is only removing
that marking.

Compacting a repository
The compacting process will effectively remove all items marked for deletion
(by purging them). It will also remove any open editions of program elements.

The menu option to start compacting the repository can be found in the menu
bar: ‘Admin -> Compact Repository...’.

You can only compact the repository when no copies of the elements that
would be deleted are present in the workspace. For purged elements
VisualAge already alerted us to first remove the edition you want to purge
from the workspace. For the open editions that the compacting process will
remove, the warning is shown at this time (see Figure 135).
226 Programming with VisualAge for Java Version 3.5

Figure 135. Cannot compact the repository while there are open editions

Note that no open editions of program elements that you would be using can
get lost because you cannot start compacting until all elements in the
workspace are versioned!

Because you tend to end up with a lot of versions after a period of intense
development (remember: version regularly!), the repository may become too
large. Purging all the versions up till the one that you are finished with will
probably reduce your repository dramatically, as all deleted code will now be
removed from the repository.

Before compacting a repository, VisualAge will first make a copy of the
current one in ivj.bak. You can always revert the compacting process by
replacing ivj.dat by that backup file (after closing VisualAge).

You are reminded about these things by a dialog just before starting to
compact the repository (Figure 136).

Figure 136. Compacting will remove open editions and will create a backup

Note: Types that are included an open edition of a package (for example, the
automatically generated Default packages) are — even if they are
themselves versioned — deleted if they do not exist in a versioned edition of
that package! All open editions are deleted, and trees of editions of types and
methods are deleted if everything that once contained them is deleted.
Chapter 8. Versioning your code 227

Note: The possibility that you might “lose” your code is, by now, reduced to
the chance that you might accidentally purge all editions of the package in
which your code resides, and you have also compacted the repository and
removed the created backup file of the repository.

Go To tools
In the different tabs of the Repository Explorer you have a searching tool at
your disposal in order to find a particular item in the names pane. Much like
the dialogs used by the different SmartGuides to look up classes, this dialog
will allow you to use patterns to specify what your searching for (see
Figure 137). You can access it from the popup menu of the Names pane or
from the menu bar: ‘Names → Go To <typename>’.

Figure 137. Go To dialog

The list showing the results will automatically update after each keystroke.
When you click OK the Names list is positioned to the result from the Go To
dialog.

We will now explain the concept of solutions in more detail.

Solutions
Solutions provide a simple sort of configuration management across multiple
projects. They are very well suited to act as deployment units for real world
projects that may be incorporating multiple VisualAge projects.
228 Programming with VisualAge for Java Version 3.5

Solutions are groups of projects. You can assemble relating projects in one
solution which could be a convenience for importing and exporting. As you
might already notice in the export dialogs (Figure 128 on page 219) or on the
import dialogs (Figure 130 on page 221) for repository files, solutions are
listed as another program element to base exports and imports on. They are
not visible elsewhere in the workbench or type browsers.

The way to view all solutions (in the repository) is by using the Repository
Explorer. The Solution tab will let you view, create, and delete solutions (see
Figure 138):

Figure 138. Solutions are manipulated in the Repository Explorer

You can add solutions by using the ‘Solutions’ menu in the menu bar or by
using the popup menu of the list showing the solutions (Figure 139):

Figure 139. Popup menu for solution list
Chapter 8. Versioning your code 229

Solutions are also versionable program elements: Whenever you change a
solution by adding a (new edition) of a project, an open edition will be
created. The popup menu of that open edition will contain the ‘Version...’
menu option.

External repository files can also contain solutions. The import and export
dialogs for repository files have an option to use solutions as organizational
elements (see Figure 140).

Figure 140. Solution export dialogs
230 Programming with VisualAge for Java Version 3.5

Chapter 9. Testing and debugging the Web application

In this chapter we will be taking you through one of the nicest features of
VisualAge for Java: the integrated debugger. Besides showing you all the
important features you should use regularly, our goal is also to help you
appreciate the debugger. We want you to understand why you cannot
exchange implementations of the Java Virtual Machine in the VisualAge IDE
(even though this is a common practice with competing integrated
development environments).

The browsers explained here are the three tabs on the Debugger window and
the Inspector that is used to browse inside the virtual machine.

VAJ Debugger

If you are looking for reasons why you might want to use an IDE at all, this
one should be at the top of your list: Because it eases the (unit) testing and
debugging of your programming code. VisualAge (in our opinion) does an
especially good job of this: It gives you intuitive access to the whole system
that constitutes your program. As you will see later, it even allows you to
change everything on the fly.

The debugger
You use the debugger to step through and fix your Java code. As with the
Inspectors, you can also inspect and change the state of objects. Because
the debugger is tightly integrated with the VisualAge for Java IDE, you can
make changes to code in the debugger, and these changes are reflected in
your workspace.

The debugger display consists of two pages: the Debug Page and the
Breakpoints Page.

The Debug Page
The Debug Page toolbar (Figure 141) provides easy access to common
debug functions.
© Copyright IBM Corp. 2001 231

Figure 141. Debug Page Toolbar

The Debug page shows all currently running threads, grouped by program in
the All Programs/Threads pane. The running programs can be of three types
(Figure 143 on page 234):

System programs

If you have selected the Show system programs in debugger and
console option (Figure 142), system programs, including any open Visual
Composition Editor sessions will be displayed. A Visual Composition
Editor session can be identified in the list of running programs by the
format of the program name:
classname (VCE) (System) time.
For example:
HiThere (VCE) (System) (2/6/2001 2:29:21 PM)
Visual Composition Editor programs have two threads: the common AWT
event queue and a timer queue. Displaying these programs in the
debugger is useful for debugging code, such as property editors or
customizers, that is invoked by the Visual Composition Editor.

Scrapbook sessions

Scrapbook sessions are shown in the All Programs/Threads pane with the
name of the Scrapbook page as the title in the form:
page (time).
For example:
Page 1(2/7/2001 2:54:58 PM)
Simple Scrapbook programs have one thread named main.

Applets and applications

Applets and applications are shown in the All Programs/Threads pane in
the form:
Applet classname (time) for applets

Run

Display
Inspect

Step over

Run to return

Resume

Suspend

Terminate

Search

Enable

Step into

Break Points

Variables

Watch Window

Evaluation
Window

Window
232 Programming with VisualAge for Java Version 3.5

classname.main() (time) for applications.
For example:
Applet com.ibm.itso.sg245264.HithereAppletVCE (2/6/2001 2:29:21
PM)
Applets and applications have at least three threads: the AWT event
queue, a timer queue, and the other threads of the applet or application.
When a program is suspended because of a breakpoint, the AWT event
queue thread shows the call stack of your applet or application. If the
program is suspended because of an exception, the call stack shows up in
the thread that threw the exception.

Figure 142. Debugger option
Chapter 9. Testing and debugging the Web application 233

Figure 143. Running programs in the Debugger

When a program is expanded, the threads in the program are shown. When a
suspended thread is expanded, the execution or call stack is shown. The
execution stack shows the methods entered leading up to the method that
was executing when the thread was suspended.

Another pane is the Source pane, which shows the source code of the
method that is suspended.

The other panes on the Debug page show code relating to a selected
suspended thread:

Visible Variables Shows the visible variables in the thread.

Value Shows the value of the selected variable.

Source Shows the source of the method that is suspended.

The Visible Variables and Value panes can be separate windows. Click the
Visible Variable button on the toolbar to externalize this pane.

The Watches window
The Watches window provides a place to watch the value of any expression
as you step through a program that you are debugging. To open the Watches
window, click the Watches button on toolbar. The Watches window has two
columns: Expression and Value (see Figure 144). Before you start debugging
a program, enter the expressions you want to evaluate in the Expression
234 Programming with VisualAge for Java Version 3.5

column by double-clicking an expression field. Each time the debugger
suspends execution, the expressions listed in the Watches window are
evaluated and their values (or an error message if no value can be
determined) are shown in the Value column.

By right-clicking on a particular row, you can do the following actions on an
expression:

 • Edit the expression.
 • Delete the row from the Watches window.
 • Open an Inspector on the expression.
 • Open a class browser for the associated type.
 • Refresh the value.

Figure 144. Watches window

Evaluation
You can evaluate any expression in the source code to see what its value is.
To evaluate an expression, you can copy an expression into the Evaluation
window and evaluate it (see Figure 145).

Figure 145. Evaluation window

To open the Evaluation window, click the Evaluation Area toolbar button.
Copy in the expression from the debugger source pane to the Evaluation
window. Select it and right-click.
Chapter 9. Testing and debugging the Web application 235

From the pop-up menu, select one of the following options:

 • Run to run the selected code.
 • Display to display the results of running the selected code in the window.
 • Inspect to open an Inspector on the results of running the selected code.

The Breakpoints Page
The Breakpoints page shows:

 • All methods in the workspace that have breakpoints set in them
 • The source code for the methods

The Breakpoints page toolbar (Figure 146) provides buttons for manipulating
breakpoints.

Figure 146. Breakpoints Page toolbar

Clear all breakpoints in workspace

Clear all breakpoints in the method

Global Enable Breakpoints

External .class File Breakpoints

Search
236 Programming with VisualAge for Java Version 3.5

Adding breakpoints
Breakpoints can be set on any instruction in source code in the workspace.
The code must be saved and error free. You can set breakpoints only on
instructions, not on all statements in your code. For example, you cannot set
breakpoints:

 • In class declarations
 • In inner classes
 • On try or catch statements
 • On else or case statements
 • On comments

VisualAge for Java does not let you set a breakpoint in a class declaration.
If you try to set a breakpoint on an invalid statement in a method, the
breakpoint will be set on the next valid statement.

Breakpoints can be set at any time, including while code is being debugged;
that is, you can add a breakpoint to a method in a suspended thread's stack
without the execution of the program being reset to the beginning of the
method.

Follow these steps to set a breakpoint in the paint method of the HiThere
applet (see , “Building your first applet” on page 5):

1. Go to the Workbench and select the com.ibm.itso.sg245264 package and
then the paint method of the HiThere applet.

2. Double-click margin of the line containing g.drawString(str, xPos, 50).

You can also place the cursor in the line of code and set a breakpoint by
selecting Breakpoint from the Edit menu, typing Ctrl-B, or selecting
Breakpoint from the pop-up menu.

A breakpoint symbol appears in the margin of the Source pane next to the
line in which you set the breakpoint (Figure 147).
Chapter 9. Testing and debugging the Web application 237

Figure 147. Breakpoint in the Paint Method

Alternative way to open the Debugger
An alternative way of halting your program and opening the debugger is to
insert the halt method in your Java code. Like the inspect method, the halt
method is useful if you have a difficult-to-debug program that should not be
interrupted with breakpoints. However, it is most useful in debugging inner
classes where you cannot set breakpoints. To halt your program and open the
debugger insert the following code in your program:

com.ibm.uvm.tools.DebugSupport.halt();
238 Programming with VisualAge for Java Version 3.5

Removing breakpoints
Once a breakpoint is set, you can remove it at any time, including while you
are debugging the code that contains the breakpoint. If you remove a
breakpoint from a method while the thread it is in is suspended, the debugger
does not drop to the top of the method.

To remove a breakpoint in source code, double-click its symbol in the margin
of the pane. You can remove breakpoints from any Source pane (not just the
Source pane in the Breakpoints page in the debugger).

If you are in the Breakpoints page, you can also use the clear toolbar buttons
to clear breakpoints.

Disabling breakpoints
Suppose you want to run a program that has breakpoints set throughout its
code, but you do not want the debugger to open during this execution of the
program. You can disable the breakpoints by clicking the Enable
Breakpoints toolbar button so that it is in the "up" position. The IDE ignores
all breakpoints it encounters (although the debugger may still launch for other
reasons, such as an uncaught exception). All debugger symbols in the margin
of Source panes change color from blue to grey.

To re-enable all breakpoints in the workspace, click the Enable Breakpoints
button so that it is in the "down" position.

Conditional breakpoints
Conditional breakpoints are breakpoints that suspend code and open the
debugger only when certain conditions are met. For example, you can set a
breakpoint to suspend code only if a variable's value falls within a particular
range of values.
Chapter 9. Testing and debugging the Web application 239

To set conditions on the breakpoint in the paint method, click mouse button 2
on the breakpoint symbol, and select Modify from the pop-up menu. Select
on Expression checkbox and enter xPos == 50 and click OK (Figure 148). The
debugger opens on this breakpoint only if the xPos variable is equal to 50.

Figure 148. Conditional Breakpoint Configuring Dialog Box

In the Configuring dialog box (Figure 148), you can select a condition, or you
can type in your own condition. The dialog box contains up to 10 conditions
you have previously set on breakpoints. If the condition is evaluated to a
boolean value of true, VisualAge for Java suspends the code and opens the
debugger.

To narrow the timing, you can configure a breakpoint to specific thread or
iteration number.
240 Programming with VisualAge for Java Version 3.5

You can also configure a breakpoint to run a Java statement and then return
true or false. For example, when the IDE encounters the breakpoint, you can
have it output a message and then evaluate to false and not suspend the
code (Figure 149).

Figure 149. Breakpoint Configuring Dialog Box: Printing Diagnostics

The Exceptions Page
If an exception is thrown while a program is running in the IDE, and the
program does not catch it, usually the IDE debugger opens and the offending
thread is suspended. However, if the program catches the exception, the
debugger will not open, and the program will continue. Even if the program
outputs the stack trace when it catches the exception, you might not be able
to determine the exception’s origin.

To facilitate debugging, the IDE debugger lets you effectively set breakpoints
on types of exceptions. Therefore any time an exception of a certain type or a
subtype of that exception is thrown, the JVM suspends the thread that threw
the exception and opens the debugger. The suspended thread will be of the
form className (Exception Caught) exceptionclassname.
Chapter 9. Testing and debugging the Web application 241

Follow these steps to select a type of exception to be caught by the
debugger:

1. Select Debug→Caught Exceptions from the Window menu or click the
Caught Exceptions tab in the debugger.

2. From the list of available exception types (Figure 150), enable the
checkboxes of the types of exceptions on which you want to set
breakpoints. Remember that all subtypes of an exception are caught, so if
you select java.lang.Exception, all exceptions thrown will cause the
program to suspend.

3. Click OK.

Figure 150. Exceptions

Now when you run a program that throws an exception (of the types you
selected), the thread is suspended and the debugger browser opens,
regardless of whether the program catches the exception.
242 Programming with VisualAge for Java Version 3.5

The handleException Method
When VisualAge generates the code in the Visual Composition Editor, it
generates a handleException method for each class. This method is called
when any generated code throws an exception. By default the body of this
method is commented out, and you will not see exceptions being thrown.

By removing the comment symbols from the lines in handleException, you
can see the message and stack trace for each exception that causes
handleException to be run. Thus it is easy to spot problems during
development, although many exceptions may be displayed, especially if you
have many property-to-property connections where one side of the
connection is not initialized when the program starts. It is possible to catch
these exceptions within the user code section of the connection itself.

External Debug
VisualAge for Java Version 3.5 can run programs that dynamically load and
run external classes. External classes are classes that have not been
imported into the workspace, but rather reside in a class, Zip, or JAR file on
the file system. The path to the file must be part of the class path for the
program or the workspace.

If you want to debug such a program, you have the option of setting
breakpoints on methods in the external classes. Follow these steps:

1. Select breakpoints tab from the Debugger Window, and click the External
Breakpoints toolbar button in the debugger browser.

2. The Add External Methods dialog looks into .class, .zip, and .jar files and
lets you select methods of class3es within those files to add to the list of
methods available for setting breakpoints. To access methods in a .jar file:

a. Click File in directory.

b. Click Browse button next to File name.

c. Browse through the file system to the directory that contains the .class
files in which you want to set breakpoints.

 To access methods in a .class file that has been archived:

a. Click File in jar/zip Archive.

b. Click Browse button next to Archive name and select Zip Files (*.zip)
or Jar Files (*.jar).

c. Browse to the archive file that contains the .class files in which you
want to set breakpoints.

The dialog lists all of the class files in the selected directory or archive.
Select a file to see the list of methods available for setting breakpoints.
Chapter 9. Testing and debugging the Web application 243

3. You can add a break point on your source code on your archive file or
entry of your class method. Click the Details button.

4. To set a breakpoint on one of these methods, enable its checkbox.

5. Click OK to exit the dialog.

Figure 151 shows the dialogs used to set external breakpoints, which are set
at the method level, not on individual statements. To see the source for the
external file in the debugger, the Java code must be available and included in
the Source path for dynamically loaded classes setting in the Debugging
section of the Options dialog. Once the breakpoint is set, any thread that calls
it will be suspended when the method is entered. External breakpoints cannot
be conditional and do not display the breakpoint symbol in the Source pane
margin.

Figure 151. External method breakpoint dialogs
244 Programming with VisualAge for Java Version 3.5

Removing external debug breakpoints
To remove a breakpoint from an external method, clear its checkbox in the
External Method Breakpoints dialog. You can leave the method on the list so
that it is easily accessible if you want to set the breakpoint again later. If you
want to remove the method from the list, however, select it and click Remove.

Generating a Class Trace
The debugger generates a trace of class loading and initialization if you
enable the Class Trace option. The Class Trace is useful for determining
which classes your program uses and can help in debugging. To see the
trace, select the program (not a thread) in the All Programs/Threads pane of
the debugger. The trace is shown in the Source pane.

The trace is enabled through the Trace class initialization for running
programs option in the Debugging section of the Options dialog.

Performance and the Class Trace option
When the Class Trace option is enabled, some processing time is required to
compute and store the trace. As a result, the program may run significantly
more slowly.

Inspectors
You can use Inspectors to view and change the state of objects in your
programs. For example, if you are working in the Scrapbook, you can open an
Inspector by following these steps.

1. Open the Scrapbook and type the following code:

new java.awt.Point(1,2);

2. Highlight the code, and from the menu bar, select Edit→Inspect.
Chapter 9. Testing and debugging the Web application 245

Figure 152. An Inspector window

You can also open an Inspector by highlighting the code and then pressing
the accelerator key, Ctrl-Q, choosing Inspect from the pop-up menu, or
clicking the Inspect navigation button (the magnifying glass).

Inspectors are most useful when you are using the debugger. You can open
an Inspector on each object in which you are interested. As you step through
the program, you can see the state of all inspected objects at once.

Alternative way to open an Inspector window
An alternative way of opening an Inspector is to insert an instruction in your
Java code to inspect a specific object. This is a useful method if you have a
difficult-to-debug program that should not be interrupted with breakpoints. In
the Scrapbook type the following code:

String[] numbers = {"one", "two", "three"};
com.ibm.uvm.tools.DebugSupport.inspect(numbers);

Highlight the code and from the menu bar select Edit→Run
(or press Ctrl-E or click the Run navigation button). The following instruction:
com.ibm.uvm.tools.DebugSupport.inspect(anObject) advises the JVM to
open an Inspector on the specified object.

The Inspector window
The title bar of an Inspector window displays the type of the displayed class
and the context in which you have opened the Inspector. In the example in
Figure 152, the class is java.awt.Point, and the context is Page 1. There are
two panes in the Inspector window:
246 Programming with VisualAge for Java Version 3.5

Fields Shows the fields of the object.

Value Displays the values of the fields of an object.

The Fields pane displays items in hierarchical order with the inherited fields
first. Therefore, when you inspect a more complex object, the fields that you
have declared in your object are at the bottom of the Fields pane.

Changing the value of a field
In the Value pane of the Inspector window you can manipulate the values of
the object’s fields (Figure 153). Select the int x field and change 1 to 100,
then select Edit→Save (or use the accelerator key, Ctrl-S, or Save from the
Value pane’s pop-up menu). VisualAge for Java also prompts you to save the
field when you access another field.

Figure 153. Changing the Value of a Field

When stepping through your code with the debugger, you also can change a
field value on the fly and resume the execution of your program with the
changed field value.

Navigating to other fields or objects
If you have a more complex object, say, an aggregation of several objects, it
is easy to open an Inspector on the other objects. Just select the other object
in the Fields pane and choose Inspector→Inspect. In this way you can
inspect very complex data structures by accessing their different layers, just
like peeling an onion.
Chapter 9. Testing and debugging the Web application 247

The String class
Because the String class represents immutable strings, you cannot change
the characters of a String object in an Inspector window. However, you can
change the characters of a StringBuffer. In this case, you must enclose the
new character in single quotes.

Controlling the display of fields
When an Inspector first appears, all public, protected, and private fields of the
inspected class and the inherited classes are displayed. You can modify the
fields that are displayed, using any of these Inspector menu bar items:

 • Field Names Only

 • Public Fields Only

 • Hide Static Fields

 • Show Fields In
 - Actual Type
 - Declared Type

Evaluating code in the context of an object
If you open an Inspector on a particular object, you can apply methods to that
object and inspect the results. In Figure 154, for example, the getLocation
method is invoked on a Point object.

Figure 154. Evaluating Code in the Context of an Object

To evaluate an expression and display its result, type in the expression in the
Value pane, highlight it, and select Display from the menu bar or from the
Value pane pop-up menu.
248 Programming with VisualAge for Java Version 3.5

WebSphere Test Environment (WTE)

VisualAge for Java integrates much of the WebSphere Application Server
runtime so that debugging servlets and JSPs is possible in a highly integrated
development environment. The WebSphere Test Environment (WTE) in
VisualAge for Java actually encompasses the servlet and JSP runtime and
test environments.

The WTE enables us to run our servlet examples in a controlled, simulated
Web application server environment. Typically, one consequence of the
servlet life-cycle is that you must normally stop and restart the Web
application or reload the class file to apply your updated code changes. This
can become tedious during development, when you are making many
changes (see Figure 155).

Figure 155. WebSphere Test Environment

Fortunately, WTE offers a much more productive way to develop and test
servlets (and JSPs) for WebSphere. When you change a method in the
servlet, VisualAge for Java incrementally compiles only this modified method
of the class, not the entire class, and hot-links it into the running program.
This type of incremental compilation is an important productivity boost,
because you do not have to stop and restart the WTE in programs that you
are debugging to execute your updated code, and rebuild program state.

VisualAge for Java

DB2

CICS

MQ

other

access

W orkbench

Debugger

Console

W ebSphere Test Environment

Web Application

Servlet JSP

JSP Compiler

Servlet
Engine

JSP
Monitor

Repository
Directory structure

Browser

Project/Package/Class

IBMVJava
ide

project_resources
......
myProject
W TE

hosts
default_host

default_app

myWebApp
servlets

package
w eb

html
jsp
Chapter 9. Testing and debugging the Web application 249

To configure and run the WebSphere Test Environment, you use WebSphere
Test Environment project and WebSphere Test Environment Control Center.

The WebSphere Test Environment is a feature that has to be loaded into the
Workbench. Before starting, configuration of the class path is required.

We describe how to configure, run, and test our SimpleHttpServlet using the
WTE within the VisualAge for Java tool.

Start the WebSphere Test Environment
To start WebSphere Test Environment, select Tool menu Workspace and click
on the WebSphere Test Environment.

Figure 156. WebSphere Test Environment Control Center

Before start your Servlet Engine, ensure that your projects and classes are in
the class path by clicking the Edit Class Path button (see Figure 157).
250 Programming with VisualAge for Java Version 3.5

Figure 157. WebSphere Test Environment Class Path

Now we want to run the HiHttpServlet example in the WebSphere Test
Environment. Click Start Servlet Engine button on the WTE Control Center
(Figure 156). Check that your Servlet Engine icon goes to blue and console
window (see Figure 158). If your servlet process requires any classes (jar
files) that are not part of the VisualAge for Java workspace (for instance,
external API or DB2 jars, such as d:\SQLLIB\java\db2java.zip), you have to
add in the Options Dialog.
Chapter 9. Testing and debugging the Web application 251

Figure 158. Servlet Engine Console Status

Once started, you invoke the servlet from a Web browser by entering the
appropriate URL of the servlet, for example:

http://localhost:8080/servlet/com.ibm.itso.sg245264.HiHttpServlet

Stopping/restarting the Servlet Engine
You can stop or restart the Servlet Engine from the WebSphere Test
Environment Control Center. This will gracefully shut down the Web server
and call the destroy methods for any loaded servlets. One of the nice things
about this test environment, however, is that if you change your underlying
class, you most likely do not have to restart Servlet Engine allowing for
incremental development and debugging within the VisualAge for Java
environment.

One situation where you may have to restart the Servlet Engine is if you
change the init method of the class. Because the init is processed only once
within a servlet’s life-cycle, changes to this method (such as the changing of
initialization parameters), do not take effect until Servlet Engine is restarted.
252 Programming with VisualAge for Java Version 3.5

Console window
The VisualAge for Java Console window displays the status of the Servlet
Engine, and any servlets that you launch. The Console window basically
displays the standard output and standard error of the Java program’s
execution. If there were problems starting up the environment, they would be
display here. The messages that you see on successful start-up of the Servlet
Engine are shown in Figure 158.

We mentioned that the status of any of our servlets is also displayed in this
window. The HiHttpServlet servlet has started successfully if the line:
Instantiate: com.ibm.itso.sg255264.HiHttpServlet appears in the Console
window (Figure 158).

Launching the browser
If you launched your servlet through the Servlet Launcher method, you
should see the results of your servlet’s execution displayed in your Web
browser window. The results of the HiHttpServlet are shown in Figure 159.

Figure 159. HiHttpServlet output

Web host path
Notice that the servlet is invoked with http://127.0.0.1:8080 (or
http://localhost:8080). There may be variations here based upon your
TCP/IP settings, and any special configuration that you may do under WTE.

Servlet root path
The servlet Web path is /servlet/com.ibm.itso.sg245264.HiHttpServlet. The
/servlet/ path is the default for servlets running in the default application
environment in the WebSphere Test Environment. This corresponds to the
default_app Web application in the Web Application Server environment.
Chapter 9. Testing and debugging the Web application 253

Fully qualified class name
The fully qualified class name, com.ibm.itso.sg245264.HiHttpServlet, contains
the package name, com.ibm.itso.sg245264.

In our true WebSphere Application Server environment, we most likely would
not invoke our servlets directly by their fully qualified name, because we
would want to hide this implementation detail from the user. We do this by
creating aliases for Web invocation. Because this is how servlets are invoked
by default in the WTE, you have to keep this in mind when designing your
programs, and use relative paths in your code when appropriate.

VisualAge for Java provides the facility to use multiple Web applications and
servlet aliases. See , “Configuring multiple Web applications” on page 271 for
more information.

Testing JSPs under WebSphere Test Environment

This section describes how to run JSPs under the VisualAge for Java
environment, and how to have those JSPs interact with other servlets and/or
JavaBeans.

VisualAge for Java configuration for JSPs
You have to make sure that the WebSphere test environment features under
VisualAge for Java have been successfully installed and configured.

Visual Age for Java version 3.5 supports both JSP .91 and JSP 1.0 versions,
and defaults to JSP 1.0. To change the version of the JSP support used by
the Visual Age Test Environment, perform these steps:

 • Open the configuration file of the default application:

d:IBMVJava\ide\project_resources\IBM WebSphere Test Environment
\hosts\default_host\default_app\servlets\default_app.webapp

 • Find the JSP compiler servlet (Figure 160):
254 Programming with VisualAge for Java Version 3.5

Figure 160. The default_app.webapp: JSP 1.0 configuration

 • Change the text for the <code> tag (Figure 161):

Figure 161. The default_app.webapp: JSP 0.91 configuration

Running a simple JSP
JSPs in VisualAge for Java run in the same WebSphere Test Environment
that servlets do. (After all, JSPs actually become servlets once they are page
compiled.) Because we cannot create JSP files directly in the VisualAge tool,
we have to make sure that Servlet Engine can find the JSP files in the file
system.

Location of JSP files
The default location for HTML and JSP files is:

D:\\IBMVJava\\ide\\project_resources\\IBM WebSphere Test Environment
\\hosts\\default_host\\default_app\\web

<servlet>
<name>jsp</name>
<description>JSP support servlet</description>

<!--

<code>com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompile
Servlet</code>

-->

<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>
<init-parameter>
...

<servlet>
<name>jsp</name>
<description>JSP support servlet</description>

<!--

<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>
-->
<code>com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompile
Servlet</code>
<init-parameter>
...
Chapter 9. Testing and debugging the Web application 255

Running a simple JSP
VisualAge for Java ships with a couple of sample JSPs that we can use to
test out our configuration, and see that JSPs have been enabled. Follow
these steps to run the very_ simple.jsp example:

 • Start the Servlet Engine and wait until it is ready.

 • Enter the following URL in a Web browser:
http://127.0.0.1:8080/very_simple.jsp

Figure 162 shows a successful JSP response.

Figure 162. Very simple JSP response

As the message indicates, this is a VERY simple JSP. In fact, the only tags it
uses are HTML tags (Figure 163). It is essentially an HTML file saved with a
.jsp extension.

Figure 163. Very simple JSP source

<html><head><title>Very Simple JSP</title></head>
<body>
<h1>Very Simple JSP</h1>
</body>
</html>
256 Programming with VisualAge for Java Version 3.5

How do we know it ran as a JSP?
This file is still very much a JSP. This example does not have any advanced
JSP tags, so how do we know that ServletEngine really ran it as a JSP and
not as a regular HTML file? You can tell because of the .jsp file extension.

When WTE (and the WebSphere Application Server) receives a request for a
.jsp file, it compiles this JSP into a servlet. This happens only the first time the
JSP is requested; subsequent requests use the already compiled JSP.

So where is the compiled JSP stored? The JSP is translated into a servlet
Java source file, and imported into VisualAge for Java (JSP Page Compile
Generated Code project). The intermediate .java files, however, can be found
in the file system, in the WebSphere Test Environment \temp\ directory:

<IBMVJava>\ide\project_resources\IBM WebSphere Test Environment
\temp\Jsp1_0\default_app_very__simple_xjsp.java

Debugging servlets and JSPs

This section describes how we can debug our servlets and JSPs within the
VisualAge for Java environment.

Debugging a servlet
Now we will walk through the debugger by debugging and stepping through
one of our servlet examples.

Set a breakpoint
Set a breakpoint at the response.setContentType("text/html"); statement
in the performTask method.

Run the servlet
Start the Servlet Engine and launch the servlet. The browser window will be
launched, but will be waiting for the response from the servlet. You should
see the code stop at your breakpoint in the Debugger window (Figure 164).
Your request is captured by the class of Servlet Engine which is
ServletEngineRunner. Now you can debug your servlet just like your
applications.
Chapter 9. Testing and debugging the Web application 257

Figure 164. Debugging the HiHttpServlet

Working with servlet threads
In the All Program/Threads window pane of the debugger, you can see that
there are multiple threads of execution. Many of these threads have to do
with the running of the ServletEngineRunner class. In addition, you will see a
Thread for each servlet that is running. In the example below, we have
triggered HiHttpServlet from two browser windows. We can see that both
threads are running, and have stopped at the breakpoint (Figure 165).
258 Programming with VisualAge for Java Version 3.5

Figure 165. ServletEngineRunner threads

This is a useful technique to show thread interaction among servlets.

JSP Execution Monitor
The JSP Execution Monitor enables you to monitor the execution of JSP
source, the JSP-generated Java source, and the HTML output. With the JSP
Execution Monitor, you can efficiently monitor JSP run-time errors. The JSP
Execution Monitor displays the mapping between the JSP and its associated
Java source code, and enables you to insert breakpoints in the JSP source.

If you find an error in a JSP page, you can also modify the JSP source in a
text editor, and then run the JSP source in the JSP Execution Monitor. To load
the updated version of the JSP source into the JSP Execution Monitor, you
simply have to refresh from the Web browser.

The JSP Execution Monitor highlights the location of syntax errors in both the
JSP and JSP-generated Java source.

Launching the JSP Execution Monitor
To launch the JSP Execution Monitor, perform these steps:

 • From the WebSphere Test Environment Control Center, select JSP
Execution Monitor Options. The JSP Execution Monitor Option opens
(Figure 166). (The default internal port number for the use of the JSP
Execution Monitor is 8082. If port number 8082 is already in use, change
the port number in the JSP Execution Monitor internal port number field.)
Chapter 9. Testing and debugging the Web application 259

Figure 166. JSP Execution Monitor options

 • By default, the JSP Execution Monitor mode is disabled. You must select
Enable monitoring JSP Execution to activate monitoring when a JSP file
gets loaded.

 • By default, the Load generated servlet externally option is disabled.
Selecting this option from Servlet Engine (Figure 156 on page 250)
enables you to load a generated servlet, so that the servlet does not get
imported into the IDE. We usually recommend leaving this unchecked
because you do not get the class path options that were configured in the
WebSphere Test Environment, and your JSPs might not load properly.

Stepping through the JSP
Follow these steps to run the Very Simple JSP example, and test its result:

 • Start the Servlet Engine.

 • Enable the JSP Execution Monitor.

 • Enter the following browser command:
http://127.0.0.1:8080/very_simple.jsp

The JSP Execution Monitor window appears and displays the current status
of the JSP (Figure 167).
260 Programming with VisualAge for Java Version 3.5

Figure 167. JSP Execution Monitor window

Similar to the debugger window for our servlets, you can step through this
code, or run to completion. We can also fast-forward and terminate. Using the
JSP source and Java source panes, you can see the JSP that was invoked,
and the corresponding Java source file that was compiled, and walk through
them simultaneously. The HTML output pane shows the JSP response that is
generated.

Debugging JSP generated source code
We mentioned earlier that the compiled .java files for JSPs are stored in the
file system (WebSphere Test Environment\temp). These files are also
imported into the workspace, in the project JSP Page Compile Generated
Code, and a package named after the \web subdirectory.

JSP compilation occurs when a JSP is invoked the first time (each time after
starting the WebSphere Test Environment), or when the underlying JSP file is
changed.
Chapter 9. Testing and debugging the Web application 261

Because these servlets exist in the workspace, they are candidates for
interactive debugging. You can set breakpoints in the JSP generated source
servlets, and debug these servlets in the same way as you debugged the
servlet. You can also step through the code using the JSP Execution Monitor,
but this does not give you the ability to interactively change the variable
values, or inspect the call stack or threads.

Debugging JSP without importing
As we mentioned, you can debug JSPs without importing the source code.
You can select the option (Figure 168) that the debugger starts when the
JSP's service method is invoked. You can also debug the JSP from its source
code, instead of the generated Java source code.Debugging from the file
system without import keeps the repository free from all the versions of JSPs.

Figure 168. JSP settings

Persistent Name Server

The Persistent Name Server used to be associated with the application which
uses JDBC 2.0 data source function. As we mentioned, one of the features of
JDBC 2.0 is the ability to use a DataSource object to get a connection. A
DataSource is an alias to a database. Using the DataSource object allows the
Java program to request a connection to a database using the alias. To
configure the DataSource definitions, select Persistent Name Server from
WebSphere Test Environment Control Center (Figure 169).
262 Programming with VisualAge for Java Version 3.5

Figure 169. Persistence Name Server settings

The Persistent Name Server can store definitions in the InstantDB or in a
relational database (DB2, Oracle, Sybase). To test your ATM Servlet which
uses the datasource, you must start Persistent Name Server with URL
jdbc:db2:ATM (ATM is database name, as we mentioned in the database
chapter). Click the Start Name Server button and wait for the blue status
indicator. Also look at the console window to see what is going on
(Figure 170).

Figure 170. Persistence Name Server console
Chapter 9. Testing and debugging the Web application 263

Specifying your data source
You need to configure your data source to use with your Web application.
Once you configured your data source, the persistent name server handles
the lookup request from the application and returns the DataSource object.

// Use JNDI to lookup the Data Source named “SampleDB”
Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/ATM");

// Retrieve an open connection from the DataSource object.
Connection con = ds.getConnection("db2admin", "db2admin");

Context is the reference to Persistent Name Server. And lookup method is the
request to retrieve the data source. Once you received the data source
object, you can get the connection through the data source.

Figure 171. DataSource configuration

To configure the DataSource, the Persistent Name Server must be running.
Click Data Source Configuration. You can see the current DataSource
Configurations. To add a new configuration, click the Add button and set up
the DataSource name to use with the lookup method, driver type, and actual
URL (Figure 171).This facility allows testing of Web applications using the
same code as is used in WebSphere Application Server. You cannot start the
Persistent Name Server on port 900 if WebSphere Application Server is
running on the same machine.
264 Programming with VisualAge for Java Version 3.5

WebSphere Test Environment — advanced configuration

In the VisualAge for Java WebSphere Test Environment, all servlets and
JSPs, by default, belong to the same default Web application. Thus, they
share a common ServletContext, and can share resources even if we have
defined them in different VisualAge projects.

In this section, we describe the WTE default configuration, as well as how
and where to locate, build, and/or change servlet resources that your Web
application might need. Being part of the same Web application, all servlets
and JSPs that are launched through WTE share this same configuration.
Keep this in mind when configuring the test environment.

Later, in “Configuring multiple Web applications” on page 271, we describe
how to set up additional Web application environments in VisualAge for Java.

Types of resources
Servlets may require additional resources as part of a Web application.
These could include active server resources, such as other servlets and
JSPs, or passive resources, such as HTML files. Additionally, servlets may
require access to servlet configuration files.

Resource locations
In this section, we use <IBMVJava> to describe the root path where VisualAge
for Java is installed on your system, and <IBMVJavaWTE> for the resource
directory of the IBM WebSphere Test Environment, for example:

<IBMVJava>: d:\IBMVJava
<IBMVJavaWTE>: d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment

WebSphere Test Environment root locations
These describe the default root locations for the server process:

 • Server root: <IBMVJava>\ide\project_resources\IBM WebSphere Test
Environment: This is the server root from which all paths are derived.

 • Default file root: <IBMVJava>\ide\project_resources\IBM Servlet IDE Utility
class libraries\filename. When running servlets that perform I/O and you
do not specify a path, files will be created here, for example,
SaveStats.ser, for a serialized file.
Chapter 9. Testing and debugging the Web application 265

WebSphere Test Environment default application locations
By default, the WTE uses the following directory locations:

 • Document root: <IBMVJavaWTE>\hosts\default_host\default_app\web, is the
root directory for HTML and JSP files. For example, index.html and
very_simple.jsp are found here, and are invoked through
http://localhost:8080/very_simple.jsp.

 • Document root folders: You can create additional folders under the
document root for specific configurations, for example, itsoservjsp.

The URL path for a JSP in this folder would be:
http://localhost:8080/itsoservjsp/myjsp.jsp.

 • Compiled JSP: <IBMVJavaWTE>\temp\Jsp1_0\default_app\filename. (For JSP
0.91 the directory is \temp\default_app\pagecompile\filename.) This is useful
if you want to see the compiled JSP’s servlet code.

 • Class path for servlets: <IBMVJavaWTE>\hosts\default_host\default_app
\servlets. This is where the default_app.webapp configuration file can be
found.

Configuring project resources
If a servlet requires a configuration file (for example,
impleInitServlet.servlet, which is an XML servlet configuration file), or a
property file, you can place this file anywhere in the class path. However, we
suggest using the following conventions in order to keep your various project
resources separate:

 • Build project specific resource directory root: <IBMVJava>\ide
\project_resources\ITSO, is the ITSO VisualAge for Java 3.5 Redbook
project resources root. This assumes that the ITSO Project has been
added to the ServletEngine class path.

 • Build package directories: You have to create fully qualified directories
that match the servlet’s package name.

Keep in mind that you can also manage your resource files in the workspace.

The key configuration files
The following three files are the primary files used to configure the
WebSphere Test Environment. The configuration matches very closely the
configuration in the WebSphere Application Server environment.

Servlet Engine
Location: <IBMVJavaWTE>\properties\default.servlet_engine
266 Programming with VisualAge for Java Version 3.5

The default.servlet_engine file contains the definitions of Web applications
and mime-types. By default, only one Web application, the default_app, is
configured. We will see later how to configure additional Web applications.

<?xml version="1.0"?>
<websphere-servlet-engine name="servletEngine">

<active-transport>http</active-transport>
<transport>

<name>http</name>
<code>com.ibm.servlet.engine.http_transport.HttpTransport</code>
<arg name="port" value="8080"/>
<arg name="maxConcurrency" value="50"/>
<arg name="server_root" value="$server_root$"/>

</transport>

<websphere-servlet-host name="default_host">
<websphere-webgroup name="default_app">

<description>Default WebGroup</description>
<document-root>$approot$/web</document-root>
<classpath>$approot$/servlets$psep$$server_root$/servlets</classpath>
<root-uri>/</root-uri>
<auto-reload enabled="true" polling-interval="3000"/>
<shared-context>false</shared-context>

</websphere-webgroup>
<mime></mime>
</websphere-servlet-host>
<hostname-binding hostname="localhost:8080" servlethost="default_host"/>
<hostname-binding hostname="127.0.0.1:8080" servlethost="default_host"/>

</websphere-servlet-engine>

This is an XML formatted file. It is the main configuration file for the servlet
engine. The key parameters are:

 • Virtual host: <websphere-servlet-host name="default_host">. This tag
defines the virtual host in the servlet engine.

 • webgroup tag: <websphere-webgroup name="default_app">. This tag defines
the Web application deployment bindings within the servlet engine.

 • Hostname bindings: <hostname-binding hostname="localhost" servlethost=
"default_host">. This tag is for binding a DNS name to a virtual host.

 • MIME types: This tag defines a mime type mapping for the virtual host.

default_app.webapp
Location: <IBMVJavaWTE>\hosts\default_host\default_app\servlets\
default_app.webapp

The default_app.webapp file contains the specifications of the default Web
application. This file is in the hosts\default_host\default_app\servlets
subdirectory.

It is configured with 4 utility servlets:
Chapter 9. Testing and debugging the Web application 267

<?xml version="1.0"?>
<webapp>

<name>default</name>
<description>default application</description>
<error-page>/ErrorReporter</error-page>

<servlet>
<name>ErrorReporter</name>
<description>Default error reporter servlet</description>
<code>com.ibm.servlet.engine.webapp.DefaultErrorReporter</code>
<servlet-path>/ErrorReporter</servlet-path>
<autostart>true</autostart>

</servlet>

<servlet>
<name>invoker</name>
<description>Auto-registration servlet</description>
<code>com.ibm.servlet.engine.webapp.InvokerServlet</code>
<servlet-path>/servlet</servlet-path>
<autostart>true</autostart>

</servlet>

<servlet>
<name>jsp</name>
<description>JSP support servlet</description>

<!--
<code>com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet</code>
-->
<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>

<init-parameter>
<name>workingDir</name>
<value>$server_root$/temp/default_app</value>

</init-parameter>
<init-parameter>

<name>jspemEnabled</name>
<value>true</value>

</init-parameter>
<init-parameter>

<name>scratchdir</name>
<value>$server_root$/temp/JSP1_0/default_app</value>

</init-parameter>
<init-parameter>

<name>keepgenerated</name>
<value>true</value>

</init-parameter>
<autostart>true</autostart>
<servlet-path>*.jsp</servlet-path>

</servlet>

<servlet>
<name>file</name>
<description>File serving servlet</description>
<code>com.ibm.servlet.engine.webapp.SimpleFileServlet</code>
<servlet-path>/</servlet-path>
<init-parameter>

<name></name>
<value></value>

</init-parameter>
<autostart>true</autostart>

</servlet>
</webapp>
268 Programming with VisualAge for Java Version 3.5

The key parameters are:

 • Error page: <error-page>/ErrorReporter/</error-page>, the URI page that is
called in response to an error during the processing of a servlet; it can be
a customized servlet, JSP, or HTML file.

 • Servlet properties: <servlet> <name>myser</name> <code>MyServlet</code>
<init-parameter> <name>key</name> <value>123</value>
<servlet-path>/servlet</servlet-path> <autostart>true</autostart> ...
</servlet>, defines a servlet within a Web application. There can be many
servlets defined in this file. A user defined servlet in our application does
not have to be defined here (by default, it will be invoked by its class
name), but we can use this to specify some additional servlet properties,
such as the name (alias) that we use in the browser, and configuration
parameters. This defintion is necessary for call by short name and for
servlet chaining.

 • Invoker servlet: <servlet> <name>invoker</name> <servlet-path>/servlet
</servlet-path> ... </servlet>, is a special servlet that allows us to load a
class by name. The servlet-path value of /servlet specifies the URL prefix
used to invoke servlets in the browser.

 • JSP: <servlet> <name>jsp</name> <code>...</code> </servlet>, is a special
servlet that is used to compile JSPs. The init parameter of jspemEnable
allows us to enable or disable JSP Execution Monitor support. The class
specified in the <code> tag specifies the level of JSP support:

 - com.ibm.ivj.jsp.runtime.JspDebugServlet (JSP 1.0)
 - com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet (JSP 0.91)

By default JSP 1.0 is enabled and you have to change the class name
of the servlet to use JSP 0.91. This is the configuration file for the
default Web application.

 • Error Reporter: <servlet> <name>ErrorReporter</name> ...< /servlet>, is a
special servlet that handles the error reporting in our application.

session.xml
Location: <IBMVJavaWTE>\properties\session.xml

This controls the WebSphere Session Management functions in the servlet
engine.

<?xml version="1.0" ?>
- <session>
<sessions-enabled>true</sessions-enabled>
<session-manager-name>Session Manager</session-manager-name>

- <session-data>
<url-rewriting-enabled>false</url-rewriting-enabled>
<protocol-switch-rewrite-enabled>false</protocol-switch-rewrite-enabled>
Chapter 9. Testing and debugging the Web application 269

- <cookie-data>
<enabled>true</enabled>
<name>sesessionid</name>
<comment>WebSphere Session Support</comment>
<domain />
<maximum />
<path>/</path>
<secure>false</secure>
</cookie-data>
<timeout>1800</timeout>
<size>1000</size>
<enable-overflow>true</enable-overflow>
<enable-measurements>true</enable-measurements>
</session-data>

- <session-store>
<persistent-store>false</persistent-store>
<persistence-type>directodb</persistence-type>
<persistence-database>db2</persistence-database>
<persistence-multirowschema>false</persistence-multirowschema>
<persistence-cache>true</persistence-cache>
<persistence-asyncupdate>false</persistence-asyncupdate>
<persistence-connectionsize>50</persistence-connectionsize>
<persistence-datasource-name>jdbc/db2/sample</persistence-datasource-name>
</session-store>

- <db2-info>
<driver>COM.ibm.db2.jdbc.app.DB2Driver</driver>
<tablename>sessions</tablename>
<url>jdbc:db2:was</url>
<owner />
<userid />
<password />
<native-access>false</native-access>
</db2-info>

- <oracle-info>
<driver>oracle.jdbc.driver.OracleDriver</driver>
<tablename>sessions</tablename>
<url>jdbc:oracle:oci8:@</url>
<owner>scott</owner>
<userid>scott</userid>
<password>tiger</password>
</oracle-info>

- <mssql-info>
<driver>COM.ibm.db2.jdbc.app.DB2Driver</driver>
<tablename>sessions</tablename>
<url>jdbc:db2:sessions</url>
<owner>none</owner>
<userid>none</userid>
<password>none</password>
</mssql-info>
</session>

The session.xml file controls if sessions and URL rewriting are enabled.

WebSphere Test Environment — multiple Web applications

The WebSphere Test Environment can be configured to have multiple Web
applications. Web applications are specified in the default.servlet_engine file,
where you can add additional <websphere-webgroup> tags. For each Web
application you have to create the directory structure:
270 Programming with VisualAge for Java Version 3.5

<IBMVJavaWTE>\hosts\default_host\..webapp..\servlet
<IBMVJavaWTE>\hosts\default_host\..webapp..\web

This configuration gives you the following control over your Web application
environment:

 • You can run multiple Web applications with their own document root
configurations

 • You can set the servlet class path individually for each Web application

 • You can define individual Web application servlet contexts

The following section describes how to configure the environment for a
tailored Web application, in addition to the default application.

Configuring multiple Web applications
In this section, we build a new Web application, itso, to run our examples.
The following sections walk us through the steps to configure the
ServletEngine for two Web applications.

Create new directories
Create the following directories under the WTE root directory
<IBMVJava>\ide\project_resources\IBM WebSphere Test Environment:

 • \hosts\default_host\itso\servlet — class path for servlets, and location of
the .webapp file

 • \hosts\default_host\itso\web — document root (for testing, we suggest
you include an index.html document in this directory)

 • \temp\JSP1_0\itso — scratch directory for compiled JSPs

You have to create these three directories for each Web application that you
define.

Modify default.servlet_engine
Edit the <IBMVJavaWTE>\default.servlet_engine file to set up the itsoservjsp
Web application. We suggest that you back up this file first prior to making
any changes. Add a <websphere-webgroup> for itso below the
websphere-servlet-host:

<websphere-servlet-host name="default_host">
<websphere-webgroup name="itso">

<description>ITSO Redbook</description>
<document-root>$approot$/web</document-root>
Chapter 9. Testing and debugging the Web application 271

<classpath>$approot$/servlets$psep$$server_root$/servlets</classpath>
<root-uri>/itso</root-uri>
<auto-reload enabled="true" polling-interval="3000"/>
<shared-context>false</shared-context>

</websphere-webgroup>

In this definition, we set the <root-uri> to /itso, so that servlets are
invoked with http://localhost:8080/itso/servletname.

With this configuration, we should be able to call HTML files, servlets, and
JSP for the itsoservjsp Web application as:

http://localhost:8080/itso/index.html
http://localhost:8080/itso/myPackage.myServletClass
http://localhost:8080/itso/myJSP.jsp

Create a new itso.webapp file
We use the default_app.webapp file as our initial template. Copy the file into the
new servlets directory (<IBMVJavaWTE>\hosts\itso\servlets) and rename it as
itso.webapp. This provides us with some basic support, such as the
ErrorReporter, Invoker, and JSP servlets.

Customize the itso.webapp file as follows:

 • Provide a tailored name and a description for the application:

<webapp>
<name>itso</name>
<description>ITSO Redbook</description>

 • Change the JSP servlet to use JSP 1.0 and point to the correct directories
for compiled JSPs:

<servlet>
<name>jsp</name><description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>
<init-parameter> <name>workingDir</name>

<value>$server_root$/temp/itso</value> </init-parameter>
...

<init-parameter> <name>scratchdir</name>
<value>$server_root$/temp/JSP1_0/itso</value> </init...>

...
</servlet>
272 Programming with VisualAge for Java Version 3.5

 • Configure one servlet for this application to demonstrate how to specify
specific servlet parameters and an alias:

<servlet>
<name>HiHttpServlet</name>
<description>Hi Http Servlet</description>
<code>com.ibm.itso.sg245264.HiHttpServlet</code>
<servlet-path>/simple</servlet-path>
<init-parameter>

<name>xxxxxxxx</name> <value>yyyyyyyy</value>
</init-parameter>
<autostart>true</autostart>

</servlet>

You can later configure additional servlets.

Using the ServletEngineConfigDumper servlet
The ServletEngineConfigDumper servlet is a servlet provided in IBM JSP
Samples project.

com.ibm.ivj.wte.samples.servletconfig.ServletEngineConfigDumper

Running the servlet
To run this servlet, enter the following URL:

http://localhost:8080/servlet/com.ibm.ivj.wte.samples.servletconfig.ServletEngineConfigDum
per

You need add IBM JSP Samples project to the class path before run.
Figure 172 shows a partial display of the servlet output that is generated.
Chapter 9. Testing and debugging the Web application 273

Figure 172. Servlet engine configuration
274 Programming with VisualAge for Java Version 3.5

Chapter 10. Using relational databases

Java can be used to access relational databases without using
vendor-specific or platform-specific APIs. Two standard techniques exist for
accessing relational databases in Java, JDBC, and SQLJ. In addition, Visual
Age for Java offers Data Access Beans. The JDBC API is a dynamic SQL API
for Java. It can be used to build dynamic queries, perform updates, call
stored procedures, and create tables.

The JDBC API is the most common way to access the database from Java.
SQLJ is an ANSI standard for embedding static SQL statements in Java and
creating stored procedures. Both SQLJ and JDBC can be used in the same
program. It is possible to query a database using JDBC then process the
results using SQLJ. The reverse is also possible. The data access beans
provided by VisualAge for Java allow us to visually create queries, updates
and call stored procedures, without having to know SQL or write code (see
Table 11).

Table 11. Accessing relational data in Java

JDBC 2.0

JDBC 2.0 is implemented with the packages java.sql and javax.sql. A JDBC
application gets a connection to the database using a JDBC driver. The driver
hides the details of connecting to a particular database. Once the application
has a connection, it can then submit queries, submit updates, call stored
procedures and modify the database. When the application is finished
accessing the database, it closes the connection.

Name Description

JDBC This is a dynamic SQL API for Java, which should be used if explicit
control is needed. The SQL is not validated against the database.

SQLJ This is a way to embed static SQL statements into Java code. SQL
variables can be used. The SQL is validated against the database and
an access path is generated. Can be used if a programmer is more
comfortable with SQL than JDBC.SQLJ code must be translated into
Java code then compiled into a Java class.

Data Access
Beans

This is a set of Java beans that allow database access to be built
visually. This should be used for rapid prototyping or whenever
manual coding is not desired. Knowledge of SQL is not required.
© Copyright IBM Corp. 2001 275

One of the features of JDBC 2.0 is the ability to use a DataSource object to
get a connection. A DataSource is an alias to a database. Using the
DataSource object allows the Java program to request a connection to a
database using the alias. The alias is resolved by JNDI to the real database
URL and JDBC driver. The program does not need to know which JDBC
driver is used, nor the URL to the database. The following code snippet
shows establishing a connection to the DataSource “SampleDB”, running a
query, then closing the connection:

import java.sql.*;
import javax.sql.*;
import javax.naming.*;
public class testJDBCclass
{
// Use JNDI to lookup the Data Source named “SampleDB”

Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/SampleDB");

// Retrieve an open connection from the DataSource object.
Connection con = ds.getConnection("username", "password");

//Create and run a query. The cursor can be moved forward or backward.
PreparedStatement stmt = con.prepareStatement("Select * from SALES",

ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
ResultSet rs = stmt.executeQuery();

// process the result set ‘rs’
//

con.close(); //close the connection
}

In order to use a DataSource in our ATM application, it must be added to the
WebSphere Test Environment for testing and to the WebSphere Application
Server for deployment. Refer to the section “Specifying your data source” on
page 264.

Visual Age for Java also supports the older JDBC 1.1 method of getting a
connection using the DriverManager. To use this method, the programmer
must provide the JDBC driver class name and the URL to the desired
database. These two pieces of information can be externalized using
parameters or a properties file, but typically they end up hard-coded in an
application.
276 Programming with VisualAge for Java Version 3.5

The following code sample shows how to use the DriverManager to get a
connection:

import java.sql.*;

public class testoldJDBCclass
{
//Declare the class name of the JDBC driver.
Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");
//Get an open connection from the DriverManager by supplying the URL
// to the database, the user name, and password.

Connection con = DriverManager.getConnection("jdbc:db2:SAMPLE",
"username", "password");

//Create and run a query.
PreparedStatement stmt = con.prepareStatement("Select * from

OSAMURS2.SALES");
ResultSet rs = stmt.executeQuery();

// process the result set ‘rs’
....
con.close();//close the connection
}

In order for these two Java programs to work, the location of the JDBC driver
must be added to the classpath of both the VisualAge for Java workspace
and the WebSphere Test Environment. Figure 173 demonstrates adding the
DB2 JDBC driver to the workspace classpath. The Options window can be
reached under the Window menu.

Figure 173. Add a JDBC driver to the workspace classpath
Chapter 10. Using relational databases 277

The exact name of the JDBC driver class and the URL are provided by the
driver vendor. The URL for a JDBC database always uses the following
syntax: jdbc:<subprotocol>:<subname> The URL is in the code sample is
“jdbc:db2:SAMPLE” which connects to a DB2 database named SAMPLE:

 • jdbc is the name of the protocol.

 • <subprotocol> is the protocol used within a JDBC driver. This is usually
the name of the driver.

 • <subname> is a mechanism to identify the database. This is usually the
database name.

DataSource versus DriverManager
Using a DataSource object is the recommended method for getting a
connection. This approach allows the application to take advantage of
connection pooling and distributed transactions. Another advantage is that
the connection details can be maintained outside of the application. The only
limitation is that the JDBC driver must support JDBC 2.0 in order to use the
DataSource object. No matter which method is used, the JDBC driver must
be in the classpath.

Queries and result sets

The JDBC package contains several classes that act as containers for
sending SQL statements to the database. The class names are Statement
and PreparedStatement, which is a child of Statement. These classes have
methods for executing queries and retrieving the results of the query. The
result of a query is kept in a class called ResultSet. The result set contains
methods to access all the rows and columns retrieved. It is similar in some
ways to an SQL cursor. The result set methods “previous” and “next” changes
the current row position. The following code snippet shows the execution of a
query and printing each row returned. Note: The con variable refers to an
open database connection.

String name = "GOUNOT";
PreparedStatement stmt = con.prepareStatement("Select * from
OSAMURS2.SALES WHERE SALES_PERSON = '" + name + "'");

ResultSet rs = stmt.executeQuery();
while(rs.next()){

out.println(rs.getString("SALES_PERSON") + " " +
rs.getString("REGION"));
}
stmt.close();
278 Programming with VisualAge for Java Version 3.5

Stored procedures

Most relational database systems support writing and calling stored
procedures. A stored procedure is similar to a static method in Java — it
cannot access any class variables. It does a predefined task based on the
parameters. Typically stored procedures are a collection of SQL statements
written in a database-specific language. Fortunately they can now be written
in Java, using JDBC and SQLJ. One of the advantages of writing a stored
procedure in Java is that it can be called by any language that supports
calling stored procedures. The calling program does not need to know that
the procedure is written in Java. For more information about authoring stored
procedures in Java read “JDBC API Tutorial and Reference, Second Edition”

In this chapter, we will focus on calling an existing stored procedure. The
JDBC class CallableStatement is used to define and call a stored procedure.
The CallableStatement class is a child of the PreparedStatement class.
The following code sample calls an existing stored procedure named
“SALESPROC” which is part of the database schema named “ITSO”. This
procedure accepts two input parameters which are set to the values of “LEE”
and 15.

CallableStatement stmt = con.prepareCall("{call ITSO.SALESPROC(?, ?)}");
stmt.setString(1, "LEE");
stmt.setInt(2, 15);
ResultSet rs = stmt.executeQuery();

In the above code sample, the ? symbol acts as a place-holder for the input
parameters. The setter method used (that is, set String, setFloat, setInt)
depends on what type of parameter the procedure is expecting. The
procedure named “SALESPROC” expects a string and an integer. The
executeQuery method calls the stored procedure and returns a ResultSet
object to the variable, rs. The result set in rs is used to access the results
from the stored procedure, as shown in the section, “Queries and result sets”
on page 278.

Updating the database

JDBC allows us to manipulate the database by inserting, updating, and
deleting tables and rows. The JDBC classes that allow database
modifications are the Statement and PreparedStatement classes, that were
introduced in Chapter , “Queries and result sets” on page 278 The statement
class provides a method named ExecuteUpdate which takes a String as a
parameter. The parameter string is the SQL that will change the database.
Chapter 10. Using relational databases 279

The following code shows the insertion of one row into the “CARDS” table.

String insertstr = "INSERT INTO CARDS (CARD_NUM, OWNER, PIN)" +"VALUES
('124', 'Mitchell Gladstone', '124')";

Statement stmt = con.createStatement();
stmt.executeUpdate(insertstr);
stmt.close();

Using SQLJ inside Visual Age for Java

The SQLJ ANSI X3.135.10-1998 Standard can be found at:

http://www.sqlj.org/

When importing SQLJ into the project, use the “resource” tab in the
workbench for adding SQLJ files. These can handle adding an entire
directory of files at one time.

During translation, the dialog in Figure 174 is displayed:

Figure 174. dialog during translation process.

The following code sample shows output in the Visual Age console:

[Translating 1 files.]
[Reading file CstmrInq]
[Translating file CstmrInq]
C:\Program Files\IBM\VisualAge for
Java\ide\program\..\..\ivjtools\temp\Temp414\CstmrInq.sqlj:50.2-50.93:
Info: [Registered JDBC drivers: COM.ibm.db2.jdbc.app.DB2Driver]
C:\Program Files\IBM\VisualAge for
Java\ide\program\..\..\ivjtools\temp\Temp414\CstmrInq.sqlj:50.2-50.93:
Info: [Connecting to user db2admin at jdbc:db2:SAMPLE]
C:\Program Files\IBM\VisualAge for
Java\ide\program\..\..\ivjtools\temp\Temp414\CstmrInq.sqlj:50.2-50.93:
Info: [Querying database with "select FIRSTNME from OSAMURS2.EMPLOYEE
where (EMPNO = ?) "]
280 Programming with VisualAge for Java Version 3.5

Figure 175 and Figure 176, respectively, show the workspace SQLJ menu
and the SQLJ Properties window.

Figure 175. Workspace SQLJ menu

Figure 176. SQLJ Properties window

Data access beans

Visual Age for Java 3.5 allows us to write JDBC code by hand, as illustrated in
the previous sections. VisualAge for Java also provides Data Access Beans
which will generate the code for us. Before using the Data Access Beans, this
feature must be added to the workspace. To add this feature go to
File->Quick Start. Then choose Feature-> Add Feature->Data Access
Beans 3.5.
Chapter 10. Using relational databases 281

Table 12 summarizes characteristics of the data access beans.

Table 12. Summary of data access beans

To use the Select, Modify, and Procedure Call beans in a Java class, you
need to follow these general steps:

1. Open the Class Browser window and go to the “Visual Composition” tab.

2. Change the pull-down menu in the left portion of the window to “Database”
as shown in Figure 179 on page 287.

3. Click and drag the Select, Modify, or Procedure Call bean onto the
free-form surface as shown in Figure 180 on page 287.

4. Double-click the new bean instance from the free-form surface in order to
view the Properties window. The default name for the new bean is
“<beanname>1”.

Bean name Description Visual or non-visual

Select Used to query a database. Can be
used as a table model

non-visual

Modify Used to insert, change, or delete
records.

non-visual

Procedure Call Used to call an existing stored
procedure. Can be used as a Swing
table model

non-visual

Navigation Used to run or navigate the output of
a Select or Procedure Call bean. It
can also be used to commit or
rollback changes.

visual — This is a
Swing component

CellSelector Provides access to a single cell from
a query or stored procedure call.

non-visual

CellRangeSelector Provides access to a subset of the
results of a query or stored procedure
call.

non-visual

ColumnSelector Provided access to a single column
of data from a query or stored
procedure call.

non-visual

RowSelector Provides access to a single row of
data from a query or stored
procedure call.

non-visual
282 Programming with VisualAge for Java Version 3.5

5. Bring up the Properties window for the bean added in step 4. For a Select
bean change the “query” property. For a Modify bean change the “action”
property. For a ProcedureCall bean change the “procedure” property. This
opens up the Query SmartGuide window. The Properties window for a
Select bean is shown in Figure 181 on page 288.

6. Use the Query SmartGuide to specify a database access class and
connection to use. You can use an existing database access class or
create a new one. In addition you can use an existing connection or create
a new one. In a simple query application that only accesses one database,
only a single database access class and a single connection is needed. At
runtime, each connection corresponds to one physical connection to the
database.

7. Click on the SQL tab to name and specify the SQL. You can specify the
SQL manually or use the SQL Smart Assist Guide. The SQL Smart Assist
Guide will allow the SQL to be built visually. It will also test the SQL
against the database.

8. After clicking OK on the Query SmartGuide window, the Properties
window should show “sql name:connection name” for the property that
was set.

9. If you need to modify the generated code in the database access class,
then look in the workbench for the database access class. It show part of
the project and package selected when the bean was created. The data
access bean will contain one static method for each connection and for
each SQL statement created in the Query SmartGuide.

Refer to Figure 177 for an illustration of the relationship between the data
access bean, queries, connections, and select beans.
Chapter 10. Using relational databases 283

Figure 177. Relationship between the select and modify objects

When creating a new data access bean, it can be placed in any package. If a
different package than the current package is used, then one of the following
steps must be done:

a. The package containing the data access bean is added to the current
project.

OR

b. The package containing the data access bean is added to the
classpath.

connection 1 connection 2

SQL query 1

SQL query 3 SQL insert 1

Select 1

Query property:
SQL Query 1:connection 1

Employee class Order class

Customer class

Modify 1

Action property:
SQL insert 1:connection 2

Select 2

Query property:
SQL Query 2:connection 1

Data Access Bean 1
284 Programming with VisualAge for Java Version 3.5

Making the ATM persistent

In Chapter 4, “Beginning the ATM project” on page 73, many classes were
developed, but none are persistent. Whenever the applications shut down, all
data is lost. To make our ATM application more robust, we would like to store
all cards issued, all accounts, the relationship of particular cards with
particular accounts, and transactions that have been completed. For our ATM
application, we are going to store all this information in a relational database
named ATM. In this chapter we will make the Card class persistent. In the
sample code included with this book, the account class and transaction class
are also persistent. They were made persistent with the same technique that
is shown here for the card class.

Prerequisites
To complete this example and to run the complete ATM application, you will
need a relational database and a JDBC 2.0 driver for the database. You will
also need to create a database named “ATM” The ATM application we
develop uses DB2 Universal Database 7.0 running on Windows NT. This
chapter also assumes that DB2 and TCP/IP are successfully running on your
machine. Since we are using the data access beans, the jar containing these
beans will need to be in the classpath for deployment. The jar can be found
root\eab\runtime30\ivjdab.jar where root is the directory where Visual Age for
Java is installed. Also, the database access beans feature must be added to
the workspace.
Chapter 10. Using relational databases 285

Creating tables
Before you create the sample programs, you will need to run the
com.ibm.itso.sg245264.atm.CreateTables class (Figure 178). This creates
the tables and adds some sample data they require to run the sample
programs. To run this class, you need to create ATM database, because the
create database function is not supported by any JDBC APIs.

Figure 178. CreateTable class
286 Programming with VisualAge for Java Version 3.5

Making the card class persistent

The first step in making the card class persistent is to open the class browser
Visual Composition tab. Then change the bean palette to Database as shown
in Figure 179. Then add the Select bean to the free form surface as shown in
Figure 180.

Figure 179. Change the VCE palette to the data access beans

Figure 180. Choose the Select data access bean
Chapter 10. Using relational databases 287

Creating the Select beans

Now we will create three Select beans:

 • CardSelect bean

Return a card class related to specified card number.

 • CardSelectAll bean

Return all card classes.

 • CardAcctSelect bean

Return an account number related to specified card number.

Card Select bean
Now we would like to define an unique card selection method in Card class.
First of all, we create a new database access class which contains a
database connection and each SQL statement that requires in card class.

Creating a new database access class
Open the property dialog of the Select bean and open the query definition
dialog by clicking a button located on the right of the query field (Figure 181).

Figure 181. Properties window for the Select bean
288 Programming with VisualAge for Java Version 3.5

We need to have a new class to access the ATM database. Click the New
button on the Query dialog and name it to CardDAB, then click OK to close
(Figure 182).

Figure 182. New database access class

Connection Alias Definition
We need to have a connection to the ATM database. Click add... button on
the Query dialog and define the database connection. Set conn1 as the
connection name. This will be a method of CardDAB class and returns
database connection handle for Data Access Bean. Select Driver Manager
instead of Data Source at this time and set URL as jdbc:db2:ATM. We used
type 2 driver COM.ibm.db2.app.DB2Driver to access to DB2 because we do
not assume this class will be used at remote location such as an applet.

Auto commit is the default in the JDBC environment and we leave it as the
default, but we suggest not to use auto commit in a real complex transaction
environment. The application should have responsibility to commit after all
update/inserts has done well. Set a userid and password which can access to
your database ATM. If you do not set them, default windows userid/password
will be used. Or click Prompt for logon ID and password before
connecting to ask user to input those.
Chapter 10. Using relational databases 289

Figure 183 shows a sample connection definition.

Figure 183. Connection Alias Definition

Once you have defined your connection, click the Test Connection button to
test that your definition is correct. You will see a message “The connection is
successful”, if your definition has no problem. Click the Finish button to save
your definition. You can see the code that was generated by the Connection
Alias Definition. To see the code, go to the Workbench and see the conn1
method on com.ibm.itso.sg245264.atm.database.CardDAB class:

public static com.ibm.db.DatabaseConnection conn1() throws java.lang.Throwable,
com.ibm.db.DataException {
com.ibm.db.DatabaseConnection connection = null;
try{
connection = new com.ibm.db.DatabaseConnection();
connection.setConnectionAlias("com.ibm.itso.sg245264.atm.database.CardDAB.conn1");
connection.setDriverName("COM.ibm.db2.jdbc.app.DB2Driver");
connection.setDataSourceName("jdbc:db2:atm");
connection.setUserID("db2admin");
connection.setPromptUID(false);
connection.setAutoCommit(true);
connection.setPassword("acedg0574g0864623261646d696e", true);

}
catch(com.ibm.db.DataException e){throw e;}
catch(java.lang.Throwable e){throw e;}
return connection;

}

290 Programming with VisualAge for Java Version 3.5

Create a new SQL specification
Now we will define an SQL statement that select a unique card record by card
number from the card database. Click the SQL tab to show the SQL view (the
SQL tab is not selectable unless you define the database connection. Use the
CardDAB class as the container of our SQLs and then click the Add button to
create a new SQL statement using SQL Assist SmartGuide. Type
CardSelectSQL as the name of SQL, then click OK (Figure 184).

Figure 184. New SQL Specification
Chapter 10. Using relational databases 291

Define an SQL specification
You can construct your SQL using the SQL Assist SmartGuide.
To create an SQL statement to get a unique card-by-card number, select
DB2ADMIN.CARDS as the select table and choose Select Unique as the
statement type (Figure 185).

Figure 185. SQL Assist SmartGuide — Tables
292 Programming with VisualAge for Java Version 3.5

Specifying a "where" statement
To select an unique card, you must have a "where" statement. Click
condition1 tab to specify a condition (Figure 186). Select CARD_NUM as
table columns and select is exactly equal to as operator. Then type
:CARDNUM as values. These selection represents the statement “WHERE
CARD_NUM = :CARDNUM”.

Figure 186. SQL Assist SmartGuide — Condition 1
Chapter 10. Using relational databases 293

Column selection
Now you need to specify which columns are required to your SQL. Click Next
button or Columns tab, then select columns and click Add>> button to add to
your SQL statement. In this case, we select all columns by clicking SelectAll
and Add>> button (Figure 187). This means “SELECT CARDS.CARD_NUM,
CARDS.OWNER, CARDS.PIN” or “SELECT *”.

Figure 187. SQL Assist SmartGuide — Columns
294 Programming with VisualAge for Java Version 3.5

Testing your SQL
Now, you are almost done creating your SQL. Click the SQL tab and see your
generated SQL statement (Figure 188). Click Schema qualified names to
remove the schema names from your SQL to keep the portability of your SQL.
If the statement does not match your requirements, you can go back to each
tab at any time. If it seems satisfactory to you, click the Run SQL... button to
test it. Then you need to specify a parameter on the next dialog to test your
SQL, because your SQL has a "where" statement (Figure 189). Type “123” as
the card number and click Run SQL... button again. Then you will see the
window which contains the result set of your SQL (Figure 190).

Figure 188. SQL Assist SmartGuide — SQL
Chapter 10. Using relational databases 295

Figure 189. Specify Parameter Values

Figure 190. SQL Execution Result Set
296 Programming with VisualAge for Java Version 3.5

Generate your SQL
If you are satisfied with your SQL, close the Result set window and click
Finish to generate. The SmartGuide generates the ivjCardSelect field, the
private getCardSelect method which returns the Select class in the Card
class, and the cardSelectSQL method which returns the SQLMetaData class
in the CardDAB class. This method contains Java code and binary data which
used by SQL Assist SmartGuide.

You will see the select SQLs that related to your data access class on your
Query Dialog. Figure 191 shows all SQLs that are used in our Card class.
Click each SQL to see the actual SQL statement.

public static com.ibm.db.StatementMetaData CardSelectSQL() throws java.lang.Throwable {
String name = "com.ibm.itso.sg245264.atm.database.CardDAB.CardSelectSQL";
String statement = "SELECT DISTINCT CARDS.CARD_NUM, CARDS.OWNER, CARDS.PIN FROM CARDS

WHERE ((CARDS.CARD_NUM = :CARDNUM))";

StatementMetaData aSpec = null;
try{
aSpec = new com.ibm.db.StatementMetaData();
aSpec.setName(name);
aSpec.setSQL(statement);
aSpec.addTable("CARDS");
aSpec.addColumn("CARDS.CARD_NUM", 12,12);
aSpec.addColumn("CARDS.OWNER", 12,12);
aSpec.addColumn("CARDS.PIN", 12,12);
aSpec.addParameter("CARDNUM", 12, 12);
// user code begin {1}
// user code end {1}

}
catch(java.lang.Throwable e){
// user code begin {2}
// user code end {2}
throw e;

}
return aSpec;

/*V2.0
start of SQL Assist data
504b030414g08g08g7c80572agggggggggggg0cggg6275696c64657220646174615bf39681b5b48841
243ada272bb12c512f27312f5d2fb8a428332fdddac897736d8bd193702606868a0206060629a0426
da1da68ea98481d9c8c0b08481d1b0b490a18e810922c66a6c60146f54c220e4e264e4e8e2ebe9a7e
a10ca859044d997fb89f6b1086428312067134852032de2fd417592dbb918145bc0148359a9b0c0d8c
b00429614d4bcc294e459331051b6980264ac848664b70e818238b319a01b12a8a8869090327cc106b
103604097063081b8004f8501c618ce90866430323f420028a6146a5918119c88f4c46e85e37010973
8a4a53d1e2c61c12371c56208d68fa982d40f663097d4b6038035dcb646884216c885dd8g2c0cg504b
ggf302gg504b010214g14g08g08g7c80572af5c95d012a01ggf302gg0cggggggggggggggg
gg6275696c6465722064617461504b0506gggg01g01g3aggg6401gggg
end of SQL Assist data/
}

Chapter 10. Using relational databases 297

Figure 191. Created SQLs

Other options
While you are working with the SQL Assist SmartGuide, you can join several
tables using Join tab or sort the result set by specific order. Mapping can be
used when you would like to map manually database data types to Java data
types (usually each data type is mapped automatically, and you should not
specify them).
298 Programming with VisualAge for Java Version 3.5

Card Select All bean
We created the Card Select All bean to return all cards. Add the Select Bean
and create a new SQL definition from the property dialog. You do not have to
create a Data Access class and Connection. Reuse those classes and
methods created in the Card Select bean. In this case, you do not specify this
in the Condition 1 tab. Figure 192 shows result of SelectAllSQL.

Figure 192. SelectAllSQL Result

CardAcctSelect
CardAcctSelect is a select bean which return Card Account. It is similar to
CardSelect but this returns Account number from Card number. Add a Select
Bean and create a new SQL using same CardDAB class and conn1
connection. This generates “SELECT * FROM CARDACCT WHERE
CARDACCT.CARD_NUM = :CARDNUM” (Figure 193).
Chapter 10. Using relational databases 299

Figure 193. CardAcctSelectSQL

Modify beans

The next step in making the card class persistent is to add Modify beans to
the free form surface. Modify Beans allow you to Insert/Update/Delete an
operation to your database. We created 5 Modify beans to manipulate CARD
and CARDACCT tables.

 • Card Insert

Add a new card.

 • Card Delete

Delete an existed card.

 • Card Update

Update an existed card.

 • Card Associated Account

Add a new associated account.

 • Card Delete Attached

Delete an existed associate account.
300 Programming with VisualAge for Java Version 3.5

Card Insert
Add a Modify bean and name it to CardInsert. Open an Action dialog from the
Properties window of Modify bean to define an SQL statement by clicking the
square button next to the Action property (Figure 194).

Click the Add button to create new SQL from the SQL view. Then select
insert as statement type and DB2ADMIN.CARD as table (Figure 195).

Figure 194. Modify Bean

Figure 195. SQL Assist SmartGuide — Insert
Chapter 10. Using relational databases 301

Insert values are passed as parameters. Set each value to start with :(colon).
See Figure 196.

Figure 196. SQL Assist SmartGuide — Insert Value

Check and test your SQL in SQL view (Figure 197).

Figure 197. Insert
302 Programming with VisualAge for Java Version 3.5

Card Delete
The Card Delete bean is also a Modify bean. Select Delete as statement type
and set :CARDNUM as a parameter (Figure 198).

Figure 198. SQL Assist SmartGuide — Delete
Chapter 10. Using relational databases 303

Card Update
Card Update is a bean to update a row of card table. Open the update tab
and set values as parameters :CARDNUM, :OWNER, :PIN (Figure 199). But
Card num must exist before it can be updated, so use condition 1 to set the
"where" statement. Figure 200 shows the actual update statement.

Figure 199. SQL Assist SmartGuide — Update Values
304 Programming with VisualAge for Java Version 3.5

Figure 200. SQL Assist SmartGuide — Update Statement
Chapter 10. Using relational databases 305

Card Visual Composition Editor View
After adding all of the Data Access Beans, your VCE looks like Figure 201.

Figure 201. Card Visual Composition Editor

Modifying related methods
Now we need to modify several methods to use with our database. These
methods are search, delete or update cards and card accounts.

Find Card method
To find a card, use the CardSelect Select bean. Get an instance of
CardSelect bean and set a card number as a parameter using
Select.setParameter method. The Select.execute method executes a query
and the Select.getRowCount returns a number of results. The
findWithCardPK methods execute a query with a specific card number and
return all of the card information as an instance of Card class.
306 Programming with VisualAge for Java Version 3.5

public static Card findWithCardPK(CardPK anId) throws PersistenceException{
try{

Card tempCard=new Card();
com.ibm.ivj.db.uibeans.Select select = tempCard.getCardSelect();
select.setParameter("CARDNUM", anId.getIdAsString());
select.execute();
if(select.getRowCount() <= 0){

throw new CardNotFoundException("The card with primary key " +
anId.getIdAsString() + " was not found.");

}
select.firstRow();
String tmpcardnum = (String)select.getColumnValue("CARDS.CARD_NUM");
String tmpcardowner = (String)select.getColumnValue("CARDS.OWNER");
String tmpPIN = (String)select.getColumnValue("CARDS.PIN");
tempCard = new Card((new Card$CardPK(tmpcardnum)),tmpcardowner, tmpPIN);
return tempCard;

}
catch(Exception exp){

throw new PersistenceException(exp.toString());
}

}

List Card method
The getListOfAllCards methods return all card instances as a vector. This
method uses CardSelectAll Select Bean to get all of the card rows.

public static Vector getListOfAllCards() throws PersistenceException,
InvalidPINException{

try{
Vector allcards = new Vector(0);
Card tempCard = new Card();
com.ibm.ivj.db.uibeans.Select select = tempCard.getCardSelectAll();

select.execute();
int numrecs = select.getNumRows();
if (numrecs <= 0){

throw new CardNotFoundException("No cards were found.");
}

select.firstRow();
for(int i=0; i< numrecs; i++){

String tmpcardnum = (String)select.getColumnValue("CARDS.CARD_NUM");
String tmpcardowner = (String)select.getColumnValue("CARDS.OWNER");
String tmpPIN = (String)select.getColumnValue("CARDS.PIN");
tempCard = new Card((new Card$CardPK(tmpcardnum)),tmpcardowner, tmpPIN);

// add the new acct to the vector holding all accounts associated with
// this card.
allcards.addElement(tempCard);
select.nextRow();

}
return allcards;
}
catch(com.ibm.db.DataException exp){

throw new PersistenceException(exp.toString());
}

}

Chapter 10. Using relational databases 307

Store method
The Store method is used to update a card row.

private void store() throws PersistenceException, InvalidPINException {
com.ibm.ivj.db.uibeans.Modify modify=null;

try{
if (exists()){

modify = getCardUpdate();
modify.setParameter("CARD_NUM",this.getId().getIdAsString());

}
else{

//record doesn't exist.
modify = getCardInsert();

}

modify.setParameter("CARDNUM",this.getId().getIdAsString());
modify.setParameter("PIN",rtPIN());
modify.setParameter("OWNER",rtOwner());
modify.execute();
load();

}
catch(com.ibm.db.DataException exp){

throw new PersistenceException(exp.toString());
}

}

PersistenceException class
Now each method which uses database access throws a
PersistenceException. This Exception is inherited from Exception and we
allocated it to Database specific exception.

package com.ibm.itso.sg245264.atm.database;

/**
* An instance of this gets thrown whenever there is an issue with persisting an object.
*/
public class PersistenceException extends Exception {
/**
* Constructor taking a description as argument.
*
* @param aDescriptionStr java.lang.String
*/
PersistenceException(String aDescriptionStr) {

super(aDescriptionStr);
}
}

308 Programming with VisualAge for Java Version 3.5

Data Access Beans with an application

If you are planning to use the Data Access bean with an application or an
applet, this will be much easier. You can use the Visual Composition Editor to
use the select bean and show the results.

Select bean contains a model class for JTable. To show a result set of Select
bean, connect Select bean this property to JTable model property. To execute
query, put a button and connect actionperformed event to execute method of
Select bean. If your Select bean need a parameter, put an entry field and
connect text property to Param_NAME property of Select bean.

Here are the sample steps to create CardQuery applet (see Figure 202) to
query a card using CardSelect bean that we created in this chapter.

1. Use SmartGuide to create VCE version of CardQuery Class.

2. Put JTable bean.

3. Put JTextField bean.

4. Put JButton bean.

5. Put Select bean has same setting as CardSelect (See, “Card Select bean”
on page 288).

6. Connect actionPerformed event of JButton to execute() method of Select
bean.

7. Connect this property of Select bean to model property of JTable bean.

8. Connect text property of JtextField bean to param_CARDNUM property of
Select bean.

9. Save and execute.

10.Enter Card number and click button.

11.You will see the result.
Chapter 10. Using relational databases 309

Figure 202. CardQuery Applet — Visual Composition Editor
310 Programming with VisualAge for Java Version 3.5

Chapter 11. Internationalization

With the expansion of the Internet, the whole world can have access to your
applet or servlet, and you may want to deploy applications anywhere in the
world. Thus, it is important that you provide internationalization support for
your programs. By making your Java program international, people all over
the world can use it in their own language and with the correct format of
specific data such as date, currency, and time.

Programs that support different languages and conventions are usually called
National Language Support (NLS) enabled or international applications.

In this chapter you will learn what the JDK provides to help you write
international Java programs, and how international support is integrated into
VisualAge for Java.

This chapter explains how you can make your Java programs international.
This is not the same as using the international edition of VisualAge for Java
that supports developers working in their native languages, including French,
German, Spanish, Chinese, Japanese, Korean, Italian, and Portuguese.

Java Internationalization Framework

To simplify the support of international applications, the JDK provides the
Internationalization framework. This framework was originally developed in
C++ by Taligent, a former IBM company, and has since been ported to the
Java environment. Sun adopted this framework without major modifications
and made it part of the official JDK since Version 1.1.

The main components of the Internationalization framework are locales and
resource bundles.

Locales
Java uses the term locale to identify a geographic or political region for which
spoken language and format conventions are specific. The
Internationalization framework defines the java.util.Locale class to support
this framework. Locale objects contain information about supported
geographic or political regions.
© Copyright IBM Corp. 2001 311

Classes that provide support for different locales are known as
locale-sensitive classes. These classes use either a default or a specific
locale to determine which locale to support. The approach is very flexible. If
the particular locale is not supported, the locale hierarchy is traversed until a
supported locale is found or the default locale is reached.

To create a Locale object, you specify a language, and optionally a country
and variant. For example, to create a Locale object for British English, you
would use the following statement:

Locale myLocale = new Locale (“en”, “UK”, ““);

All locales list sample
The classes in both the java.text and the java.util.Calendar packages
provide the getAvailableLocales method that returns an array of all locales
that are supported by the class. This list of locales can be used to list different
languages associated with the locales.

Follow these steps to create an applet that lists the different languages
supported by the NumberFormat class:

1. Create a JApplet named AllLocaleList in a new package named
com.ibm.itso.sg245264.nls in the ITSO project and open it in the Visual
Composition Editor.

Drop a JScrollPane on the middle of the applet and drop a JList in the
JScrollPane.

2. Drop a DefaultListModel bean and a DefaultListSelectionModel bean
on the free-form surface and name them DefaultListModel and
DefaultListSelectionModel, respectively.

3. Connect the model of the JList to the this of DefaultListModel
(Figure 203).

4. Connect the selectionModel of the JList to the this of the
DefaultListSelectionModel (Figure 203).
312 Programming with VisualAge for Java Version 3.5

Figure 203. AllLocaleList connections

5. Save the bean.

6. Switch to the Members page and select the init method. Modify it to look
like this:

public void init()
{

try {
setName("AllLocaleList");
setSize(426, 240);
setContentPane(getJAppletContentPane());
initConnections();

// user code begin {1}
java.util.Locale[] allLocales =

java.text.NumberFormat.getAvailableLocales();
java.util.Locale locale = java.util.Locale.getDefault();
for (int i = 0; i < allLocales.length; i++) {
/* Check if it’s a valid country */

if (allLocales[i].getDisplayCountry().length() > 0) {
/* get name of the current Locale, add it to the list */

getDefaultListModel().
addElement(allLocales[i].getDisplayName());

/* if it’s the current setting, select it */
if (allLocales[i].getDisplayName().

equals(locale.getDisplayName())) {

getDefaultListSelectionModel().addSelectionInterval(i,i);
}

Chapter 11. Internationalization 313

}
}

// user code end
}

catch (java.lang.Throwable ivjExc) {
// user code begin {2}
// user code end
handleException(ivjExc);

}
}

7. Change the applet width in the Properties dialog to 500 and run the applet
(Figure 204).

Figure 204. AllLocaleList applet

Resource bundle
Java provides resource bundle classes that store and retrieve information,
using identifiers or keys. Resource bundle classes (derived directly or
indirectly from java.util.ResourceBundle) are collections of resources
designed to aggregate the resources needed for a specific language. Thus
you can separate the program code from the locale-specific data (for
example, separate the label of a button from the code that creates it).

A naming convention is used to identify specific resource bundle classes
according to their locale, so that the resource bundle methods know which
resource bundle classes to select on the basis of the current locale. By using
inheritance among locale resources, you can minimize resource duplication
across countries and achieve graceful degradation if he exact locale does not
have localized resources. For example, your program could use resources
from Standard French if there is no explicit support for Canadian French.
314 Programming with VisualAge for Java Version 3.5

Because a locale can be set on a per-object basis, in addition to a default,
system-wide basis, it is possible to deal with more than one locale at a time in
the same program.

Because java.util.ResourceBundle is an abstract class, you must create
your own classes that derive from it or one of the abstract subclasses
discussed below.

Accessing resource values
The resource bundle classes provide several methods to access resource
values:

getContents Return the set of resource key-value pairs.

getKeys Return all the keys.

getObject Return a resource value given the key. You must cast the
value to the correct type.

getString Return a resource value given the key. This is a
convenience method for string values.

getStringArray Return a resource value given the key. This is a
convenience method for string array values.

The two types of resource bundles are List and Property. A
ListResourceBundle stores the key-value pairs in an array of objects, while
the PropertyResourceBundle stores the key-value pairs in property files.
You may see better performance with a ListResourceBundle than a
PropertyResourceBundle because use of the PropertyResourceBundle
implies a file access for each bundle. However when you use the
ListResourceBundle, application code is being modified during translation
work, which is not always desirable.

List resource bundles
The java.util.ListResourceBundle class is an abstract class that derives
from ResourceBundle. It stores the localized data in an array of Object types.
Therefore the localized data can be of any type, for example, Image.

When localizing your program, you subclass ListResourceBundle with your
own classes, that must override the getContents method and provide an
array, where each item in the array is a pair of objects. The first element of
each pair is a String key, and the second is the value associated with that
key.
Chapter 11. Internationalization 315

A sample ListResourceBundle class might look like this:

import java.util.*;
public class MyResources extends ListResourceBundle
{
public Object[][] getContents()
{
return contents;
}
static final Object[][] contents = {
{“GreetingLabel”, “Hello World!”},
{“AddButton”, “Add”},
};
}

Property resource bundles
The PropertyResourceBundle class is an abstract subclass of ResourceBundle
that manages resources for a locale through a set of strings loaded from a
property file. Property files must have a .properties extension. They contain
keys and their corresponding values. You can use those keys in your source
code to call ResourceBundle.getString in order to retrieve the associated
values.

Unlike ListResourceBundle, PropertyResourceBundle can be used to store
strings only, not other objects.

Internationalization in VisualAge for Java

VisualAge for Java supports internationalization through the Externalize
String function. Given a string property (in the Visual Composition Editor) or a
class containing strings, VisualAge for Java can generate code that
references the string indirectly through a resource bundle (property or list)
and create the bundle for you. Note that strings that VisualAge for Java
generates in user code blocks will not be externalized, and you should move
them into separate methods.

VisualAge for Java adds an entry (composed of the key and value) in the
array or property file at each point in your code where a string was directly
referenced, for example:

JTextField1.setText(“A string”);

The string parameter will be replaced by a call to the resource bundle:

JTextField1.setText(getResourceBundle1(getString(“AStringLabel”)).);
316 Programming with VisualAge for Java Version 3.5

Externalizing all strings in a class
The steps to externalize all the strings in a class at one time are:

1. From the Projects page of the Workbench, select the class whose strings
you want to externalize.

2. Select Selected→Externalize Strings. Or, click mouse button 2 and
select Externalize Strings from the pop-up menu.

The Externalizing dialog box appears, with a list of hard coded strings found
in the class (Figure 205). As you can see in the figure, not all strings need to
be externalized; for example, the “Center” string is a parameter to a call
adding the component to a BorderLayout and should not be externalized.

If the same value appears more than once, VisualAge for Java will associate
the same key with the value.

Figure 205. Externalizing strings
Chapter 11. Internationalization 317

3. Specify the type of resource bundle by selecting one of the following radio
buttons:

 - List resource bundle
 - Property resource file

4. Specify the name of the resource bundle:
Use the Browse button to choose an existing resource bundle, or use the
New button to create a new bundle.

5. Under Strings to be separated, you can mark an item by clicking the
iconic checkbox to the left of the column. By default all strings are marked
for externalization so no action is required to externalize the string.

 - For strings that are never to be externalized, click once and a red X
appears (Figure 205). The string will be removed from the Strings to be
separated list.

 - To leave the string hard coded for now, click twice and a ? should
appear. The string will not be removed from the Strings to be
separated list.

If you are not sure of a string, review it in the Context field. Then click OK
to proceed with the externalization.

Removing the externalization information
VisualAge marks each item that you have chosen to externalize or never to
externalize with a special comment. To make a string appear in the
externalization list once again, find the accessor for the string resource or the
string itself in the code and delete the comment at the end of the line:
//$NON-NLS-1$. Then perform the steps 1 through 5 again.

Externalizing a string property
If you need more control over the externalization of individual strings, you can
externalize each string property separately. The steps to externalize a string
property are:

1. In the Visual Composition Editor, open the Property sheet for the bean
that contains the string property you want to externalize. Select the value
field to the right of the property name. A small button with three dots
appears to the right of the text field.

2. Select the button. The Text dialog box appears (Figure 206).
318 Programming with VisualAge for Java Version 3.5

Figure 206. String externalization editor

3. Select the appropriate radio button:

 - Do not externalize string

 - Externalize string

4. If you select Do not externalize string, you are finished. Just click OK to
close the window. Use this selection if the string value is long or runs over
multiple lines. You must use the Text dialog to enter the string but you do
not have to externalize the string.

5. If you select Externalize string, specify the type of resource bundle by
selecting one of the following radio buttons:

 - List resource bundle

 - Property resource file

6. Specify the name of the resource bundle:

 - Use the Browse button or the drop-down list to choose an existing
resource bundle, or use the New button to create a new bundle.

 - The name of the bundle appears in the bundle list.

7. To define a new resource, type its name in the Key field. The existing
resources can be accessed through the pull-down list on the key field. The
Value: text area contains the current value of the string property. If a key is
selected, the text area contains the current value of the selected key. Click
OK to close the window.
Chapter 11. Internationalization 319

The next time you save the class, VisualAge for Java modifies the generated
get methods for the beans so that the text property is set from the resource
bundle.

Building a language panel

In this section you build a LanguagePanel that changes the display on the
basis of user input.

First add the three .gif files (frflag.gif, itflag.gif and usflag.gif) from the
examples directory into the ITSO project using resources view. You will use
the .gif files to display the country flags of the different locales by adding an
icon to a JLabel.

LanguagePanel view
1. In the com.ibm.itso.sg245264.nls package create a LanguagePanel class

that inherits from javax.swing.JFrame. Make sure you select the
Compose the class visually checkbox to open the Visual Composition
Editor.

2. Add a JLabel to the center of the panel and a JComboBox to the bottom of
the panel and change the bean names to SelectLanguageLabel and
LanguageChoice.

3. Change the text property of SelectLanguageLabel to Select Your
Language of Preference. Change the foreground color to Black and
ensure that verticalAlignment and verticalTextPosition are set to CENTER,
horizontalAlignment to LEFT, and horizontalTextPosition to RIGHT.

4. Click the field to the right of the SelectLanguageLabel icon property and
then click the button that appears in the right of the field. Select the file
radio button and click Browse. Select ITSO\usflag.gif and click OK.

5. Resize the frame and the textfield to see the complete text and image
(Figure 207).
320 Programming with VisualAge for Java Version 3.5

Figure 207. The LanguagePanel in the Visual Composition Editor

Creating the resource bundles
1. Externalize the text property of the SelectLanguageLabel (see

Figure 208):

a. Select the List resource bundle radio button.

a. Enter com.ibm.itso.sg245264.nls for the Package name and
LanguageResources for the Class Name.

a. Enter SelectLanguageLabel in the Key field.

a. The Value field should already be filled in with Select Your Language
of Preference.
Chapter 11. Internationalization 321

Figure 208. Externalizing the SelectLanguageLabel

You created the alternate resource bundles by copying the created class. You
can also use VisualAge for Java to produce the different bundles.

2. Externalize the text property of the SelectLanguageLabel again. This time
choose itso.nls for the Package and LanguageResources_fr for the Class
name.

a. Enter SelectLanguageLabel in the Key field.

a. Enter Choisissez une Langue de Préférence in the Value field.

To create an international character, hold down the ALT key and input the
ASCII code for the character, using the number pad on the right-hand side
of your keyboard, then release ALT. For this example you only need the é
symbol: 0233.

3. Repeat the externalization one more time, using
itso.nls.LanguageResources_it for Italian:

a. Enter SelectLanguageLabel in the Key field.

b. Enter Selezionare un Linguaggio dello Preferenza in the Value field.

c. Save the bean. The free-form surface shows the text field with an
American flag and Italian text. Don’t worry, you will fix that when the
application starts.

You now have three resource bundle classes in your itso.nls package:
LanguageResources, LanguageResources_fr, and LanguageResources_it. To
use the generic resource bundle, LanguageResources, to support the default
locale, English, and all the other locales that are not French or Italian,
322 Programming with VisualAge for Java Version 3.5

subclass the French and Italian resource bundles from LanguageResources
instead of from java.util.ListResourceBundle. Add the icon for the
American flag to the default language resources so the LanguageResources
class looks like these:

public class LanguageResources extends java.util.ListResourceBundle {
static final Object[][] contents = {

{"SelectLanguageLabel", "Select your language of preference"},
{"Icon",new javax.swing.java.swing.ImageIcon("usflag.gif")}

};
}

Modify the two subclasses to match the following code:

public class LanguageResources_fr extends LanguageResources {
static final Object[][] contents = {

{"SelectLanguageLabel", "Choisissez une Langue de Préférence"},
{"Icon",new javax.swing.ImageIcon("frflag.gif")}};

}

public class LanguageResources_it extends LanguageResources {
static final Object[][] contents = {

{"SelectLanguageLabel", "Selezionare un Linguaggio dello
Preferenza"},

{"Icon",new javax.swing.ImageIcon("itflag.gif")}
};

}

Dynamically changing the locale

In “Building a language panel” on page 320, the resource bundle for the
default locale was loaded automatically when the program started. To
dynamically change the locale, you have to add code to change the
locale-specific components.

Loading resource bundles
To load a resource bundle you use the static method, getBundle, from the
ResourceBundle with the name of the resource bundle base class (including
package information if not in the same package as the calling application)
and the preferred locale. For example:

ResourceBundle myBundle = ResourceBundle.getBundle(“MyResources”, aLocale);

where aLocale is your Locale object, and MyResources is the name of your
resource bundle.
Chapter 11. Internationalization 323

In the LanguagePanel applet, you will use only one resource bundle hierarchy.
If the current locale is set to French Canadian, the getBundle method first
looks for a class called MyResources_fr_CA. If it does not find the class, it
looks for Standard French (MyResources_fr). If that search fails, the method
loads the generic class MyResources. If the method cannot find MyResources, it
throws a MissingResourceException.

Number of resource bundles
In complex applications, you typically define many resource bundle
hierarchies; for example, one for each window or one for labels, one for
numbers, one for pictures, and one for sounds.

Retrieving resources from resource bundles
Once your resource bundle class is loaded, you can use the keys to access
the stored objects. The getObject method returns an element of the static
array of resources. As the resource is always returned as a
java.lang.Object, you have to cast it to the correct type of your object. As
you learned in “Accessing resource values” on page 315, a getString
method is provided for convenience. For example, if you want to set a JLabel
to the “HelloWorld” resource, you use:

myJLabel.setText(myBundle.getString(“HelloWorld”));

When you use the ListResourceBundle class, you can also store objects
other than strings. For example, you could use myBundle to retrieve the
“BigNumber” resource into a variable:

Integer myBigNumber = (Integer)myBundle.getObject(“BigNumber”));

Finishing the LanguagePanel
To make LanguagePanel a multilingual panel, create two methods:

1. The changeLanguage() method is called whenever a user selects a new
language from LanguageChoice. This method translates the language
selected into a supported locale and calls the setLocale method by
passing the new locale as a parameter.

 • The updateGui(java.util.Locale) method retrieves a resource bundle
instance and updates the GUI components according to the locale passed
as a parameter.

To create the updateGui method:
324 Programming with VisualAge for Java Version 3.5

1. Select LanguagePanel and Selected→Add→Method. Type in void
updateGui(java.util.Locale aLocale) as the method name and choose
private as the access modifier. Click Finish to create the method.

2. Select the method and modify its code:

private void updateGui(java.util.Locale aLocale)
{

java.util.ResourceBundle aResourceBundle=null;
try {
aResourceBundle=

java.util.ResourceBundle.getBundle("itso.nls.LanguageResources",
aLocale);

}
catch (Exception e) {

System.out.println(e);
}
getSelectLanguageLabel().

setText(aResourceBundle.getString("SelectLanguageLabel"));
getSelectLanguageLabel().setIcon((javax.swing.ImageIcon)

aResourceBundle.getObject("Icon"));
}

At the beginning of the method, a local variable is created to hold the
resource bundle object. Then the resource bundle instance is retrieved, using
the current locale. Once the resource bundle instance has been retrieved, it is
used to get the resources for each label.

To create the changeLanguage method:

1. In the Workbench, select the LanguagePanel class and
Selected→Add→Method or click the M icon on the toolbar.

2. Enter void changeLanguage() as the method name and select private as
the access modifier. Click Finish to create the method.

3. Select the method and modify its code:

private void changeLanguage()
{

if(getLanguageChoice().getSelectedItem().equals(
java.util.Locale.FRANCE.getDisplayLanguage())) {

updateGui(java.util.Locale.FRANCE);
}

else if(getLanguageChoice().getSelectedItem().equals(
java.util.Locale.U.S..getDisplayLanguage())) {

updateGui(java.util.Locale.U.S.);
}
else if (getLanguageChoice().getSelectedItem().equals(
Chapter 11. Internationalization 325

java.util.Locale.ITALY.getDisplayLanguage())) {
updateGui(java.util.Locale.ITALY);

}
}

To change the GUI when the user selects another language, just add an
event-to-code connection from the itemStateChanged event of the
LanguageChoice to the changeLanguage method (Figure 209). Now save the
bean.

Finally, you need to populate the list of languages for the Select language
drop-down list and set the GUI to the default locale on initialization. Change
the initialize method to look like this:

private void initialize() {
// user code begin {1}
// user code end
setName("LanguagePanel");

setDefaultCloseOperation(javax.swing.WindowConstants.DISPOSE_ON_CLOSE);
setSize(528, 299);
setContentPane(getJFrameContentPane());
initConnections();
// user code begin {2}

getLanguageChoice().addItem(java.util.Locale.U.S..getDisplayLanguage())
;

getLanguageChoice().addItem(java.util.Locale.FRANCE.getDisplayLanguage(
));

getLanguageChoice().addItem(java.util.Locale.ITALY.getDisplayLanguage()
);

updateGui(java.util.Locale.getDefault());
// user code end

}

Save and run the LanguagePanel (Figure 210).

Length of translated strings
One problem encountered when translating user interface elements is the
relative length of strings. A translated string can be much longer or shorter
than the original string. When you design your user interfaces keep this in
mind and use layouts and constraints that will adjust to changing string
lengths.
326 Programming with VisualAge for Java Version 3.5

Figure 209. LanguagePanel connection
Chapter 11. Internationalization 327

Figure 210. Running LanguagePanel

Formatting dates and times
The DateFormat class and its subclasses are used to handle the formatting of
date and time information. You have to use the getDateTimeInstance method
to get the date and time formatter or getDateInstance to get only the date
formatter. The following code shows you how to use getDateInstance for a
given locale attribute:

Date myDate = new Date(“31 December 2000”);
DateFormat df = DateFormat.getDateInstance(DateFormat.DEFAULT, locale);
String formattedDate = df.format(myDate);

The first parameter in the getDateInstance method call is used to specify the
format of the date or time to be used. Refer to the Java2 SDK documentation
for all possible formats.

Adding dates to the LanguagePanel
Follow these steps to update the Language Panel with international dates and
times:
328 Programming with VisualAge for Java Version 3.5

1. Open your LanguagePanel class and add four JLabels and rename them:
TimeLabel, Time, DateLabel, and Date. Set the text properties to Time:,
TimeValue, Date:, and DateValue (place them as shown in Figure 211).

2. Save the bean.

Figure 211. LanguagePanel View2

3. Externalize the TimeLabel and the DateLabel strings through their
property sheets to update their appropriate values in the correct resource
bundles:

LanguageResources:

Key Value

TimeLabel Time:

DateLabel Date:
Chapter 11. Internationalization 329

LanguageResources_fr:

LanguageResources_it:

4. Modify the updateGui(Locale) method in LanguagePanel:

private void updateGui(java.util.Locale aLocale) {
java.util.ResourceBundle aResourceBundle=null;
try {

aResourceBundle=java.util.ResourceBundle.
getBundle("itso.nls.LanguageResources",aLocale);

}
catch (Exception e) {

System.out.println(e);
}
getSelectLanguageLabel().setText(aResourceBundle.
getString("SelectLanguageLabel"));

getSelectLanguageLabel().setIcon((javax.swing.ImageIcon)
aResourceBundle.getObject("Icon"));

getTimeLabel().setText(aResourceBundle.getString("TimeLabel"));
getDateLabel().setText(aResourceBundle.getString("DateLabel"));
java.text.DateFormat dFormat, tFormat;
dFormat = java.text.DateFormat.getDateInstance(

java.text.DateFormat.DEFAULT, aLocale);
tFormat = java.text.DateFormat.getTimeInstance(

java.text.DateFormat.DEFAULT, aLocale);
java.lang.String timeString = tFormat.format(new java.util.Date());
java.lang.String timeZone = tFormat.getTimeZone().getID();
getTime().setText(timeString + " " + timeZone);
java.lang.String dateString = dFormat.format(new java.util.Date());
getDate().setText(dateString);

}

5. Save and test your work. Figure 212 shows the output.

Key Value

TimeLabel Heure:

DateLabel Date:

Key Value

TimeLabel Ora:

DateLabel Data:
330 Programming with VisualAge for Java Version 3.5

Figure 212. LanguagePanel Output with dates and times

Other internationalization considerations

This section covers resources other than strings and dates that you must
consider when internationalizing your Java programs.

Using predefined formats
The JDK supplies the NumberFormat class and its subclasses, ChoiceFormat
and DecimalFormat, for the different locale number formats. By invoking the
methods provided by the NumberFormat class, you can format numbers,
Chapter 11. Internationalization 331

currencies, and percentages according to locale. However, there is a catch:
NumberFormat may not support the locale you specify. To find out which locale
definitions NumberFormat supports, invoke the getAvailableLocales method:

Locale[] locales = NumberFormat.getAvailableLocales();

Custom number formats
If NumberFormat does not support a locale that you need, you can create your
own formats. You can use the DecimalFormat class to format decimal
numbers into locale-specific strings. With this class you can control the
display of leading and trailing zeros, prefixes and suffixes, grouping
(thousands) separators, and the decimal separator. If you want to change
formatting symbols such as the decimal separator, you can use the
DecimalFormatSymbols class in conjunction with the DecimalFormat class.
These classes offer a great deal of flexibility in the formatting of numbers, but
they can make your code more complex. For more details refer to the JDK
documentation.

Numbers
You can use the NumberFormat factory methods to format primitives, such as
double, and their corresponding wrapper objects, such as Double.

This code example formats a Double according to locale. Invoking the
getNumberInstance method returns a locale-specific instance of
NumberFormat. The format method accepts the Double as an argument and
returns the formatted number in a String.

Double amount = new Double(123456.789);
NumberFormat numberFormatter;
String amountOut;
numberFormatter = NumberFormat.getNumberInstance(currentLocale);
amountOut = numberFormatter.format(amount);
System.out.println(amountOut + " " + currentLocale.toString());

The output from this example shows how the format of the same number
varies with locale:

123 456,789 fr_FR
123.456,789 de_DE
123,456,789 en_U.S.

Currencies
You format currencies the same way you format numbers, except with
currencies you call getCurrencyInstance to create a formatter. When you
invoke the format method, it returns a String that includes the formatted
number and the appropriate currency sign.
332 Programming with VisualAge for Java Version 3.5

The following code example shows how to format currency in a
locale-specific manner:

Double currency = new Double(1234567.89);
NumberFormat currencyFormatter;
String currencyOut;
currencyFormatter = NumberFormat.getCurrencyInstance(currentLocale);
currencyOut = currencyFormatter.format(currency);
System.out.println(currencyOut + " " + currentLocale.toString());

Here is the output generated by the preceding lines of code:

1 234 567,89 F fr_FR
1.234.567,89 DM de_DE
$1,234,567.89 en_U.S.

Converting currencies
At first glance this output may look wrong because all of the numeric values
are the same. Of course, 1 234 567,89 F is not equivalent to 1.234.567,89
DM. However, bear in mind that the NumberFormat class is unaware of
exchange rates. The methods belonging to the NumberFormat class format
currencies but do not convert them.

Percentages
You can also use the methods of the NumberFormat class to format
percentages. To get the locale-specific formatter, invoke the
getPercentInstance method. With this formatter, a fraction such as 0.75 is
displayed as 75%. The following code sample shows how to format a
percentage:

Double percent = new Double(0.75);
NumberFormat percentFormatter;
String percentOut;
percentFormatter = NumberFormat.getPercentInstance(currentLocale);
percentOut = percentFormatter.format(percent);

Messages
Programs often need to build messages from sequences of strings, numbers,
and other data. To produce the “The disk ‘MyDisk’ contains 3 files.” message,
you would use the following code:

int numFiles = 3;
String diskName = “MyDisk”;
String message = “The disk” + diskName + “ contains”+ numFiles + “files.”;
Chapter 11. Internationalization 333

The above code, although easy to understand, is extremely difficult to localize
because it hard codes both the strings that make up the message and the
order in which they are put together. Note, for example, that the French
translation of the message, “Il y a 3 fichiers sur le disque ‘MyDisk’.”, reverses
the strings.

The MessageFormat class provides a way to build messages in a
language-neutral way. It is constructed from a pattern string. The pattern
string describes the structure of the message and the substitution order for
the parameters. When you use a MessageFormat, the code used to create
“The disk ‘MyDisk’ contains 3 files.” would look like this:

Object[] arguments = new Object[2];
arguments[0] = new Integer(3);
arguments[1] = "MyDisk";
StringBuffer message = new StringBuffer();
MessageFormat fmt= new MessageFormat("Disk {0} contains {1} files.");
fmt.format(arguments, message, null);
fmt = new MessageFormat("Il y a {1} fichiers sur le disque {0} ");
fmt.format(arguments, message, null);

The format method formats the given arguments and substitutes the result
into the pattern string to form the final message. The MessageFormat tries to
format the given arguments in several ways. An array of Format objects can
be passed to the MessageFormat. If the array is present, parameter n will be
formatted using the nth entry of the format array. If an explicit format array
has not been passed as a parameter, a default Format will be obtained. If the
parameter to be formatted is a number, NumberFormat.getDefault is called.
Otherwise, the parameter's toString method is called.

An additional type of Format, ChoiceFormat, is available for use in formatting
the parameters of a message. A ChoiceFormat allows text to be associated
with a number or range of numbers.

Collations
Applications that search or sort through text perform frequent string
comparisons. A report generator performs string comparisons when sorting a
list of strings in alphabetical order. However, the order of certain characters in
the alphabets of different locales may be significantly different.

If your application audience is limited to people who speak English, you can
probably perform string comparisons with the String.compareTo method. This
method performs a binary comparison of the Unicode characters within the
strings. For many languages, you cannot rely on this binary comparison to
334 Programming with VisualAge for Java Version 3.5

sort strings, because the Unicode values do not correspond to the relative
order of the characters.

Fortunately, the Collator class allows your application to perform string
comparisons for different languages. You use the Collator class to perform
locale-independent comparisons. The Collator class is locale-sensitive.

To see which locales the Collator class supports, invoke the
getAvailableLocales method:

Locale[] locales = Collator.getAvailableLocales();

When you instantiate the Collator class, you invoke the getInstance method
and specify the locale:

Collator myCollator = Collator.getInstance(new Locale("en", "U.S."));

The getInstance method actually returns a RuleBasedCollator, which is a
concrete subclass of Collator. The RuleBasedCollator class contains a set
of rules that determine the sort order of strings for the locale you specify.
These rules are predefined for each locale. Because the rules are
encapsulated within the RuleBasedCollator, your program does not need
special routines to deal with the way collation rules vary with language.

You invoke the Collator.compare method to perform a locale-independent
string comparison. The method returns an integer less than, equal to, or
greater than zero when the first string argument is less than, equal to, or
greater than the second string argument. For example:

myCollator.compare(“abc”, “xyz”); // returns -1: “abc” is less than “xyz”
myCollator.compare(“abc”, “abc”); // returns 0: the two strings are equal
myCollator.compare(“xyz”, “abc”); // returns 1: “xyz” is greater than “abc”

You can use the Collator compare method when performing sort operations.
The sample program (taken from the JDK Demo package) presented below
uses the compare method to sort an array of English and French words. It
shows what can happen when you sort the same list of words with two
different collators.

Collator fr_FRCollator = Collator.getInstance(new Locale("fr","FR"));
Collator en_U.S.Collator = Collator.getInstance(new Locale("en","U.S."));

The method for sorting, called sortStrings, can be used with any Collator.
Notice that the sortStrings method invokes the compare method:

public static void sortStrings(Collator collator, String[] words)
{

String tmp;
Chapter 11. Internationalization 335

for (int i = 0; i < words.length; i++) {
for (int j = i + 1; j < words.length; j++) {

// Compare elements of the array two at a time.
if (collator.compare(words[i], words[j]) > 0) {
// Swap words[i] and words[j]
tmp = words[i];
words[i] = words[j];
words[j] = tmp;
}

}
}

}

The English Collator sorts the words like this:

peach
pêche
péché
sin

According to the collation rules of the French language, the preceding list is in
the wrong order. In French, "pêche" should follow "péché" in a sorted list.
Therefore the French Collator sorts the array of words like this:

peach
péché
pêche
sin

Sample section.

Internationalization in the Web environment

For the Web application, Java VM converts its unicode string to Web server
specific code page. This conversion will be done automatically in each
conversation. Java VM has various codepage conversion tables, and a
particular table is selected based on the locale of the running environment.
But even for one language, there are several conversion tables, and Java VM
select the default table. However, some default tables are not suitable for the
customer, because some characters are not converted correctly, due to the
default table. Usually this problem occurs in the DBCS environment, because
those languages have so many characters rather than SBCS, and some
tables are not large enough to convert special characters.
336 Programming with VisualAge for Java Version 3.5

To specify the conversion table in Java, use codepage parameter:

String st = new String(“ABC”, [specific encorder]);

Encorder is also string. To specify to use eoncorder MS942:

String st942 = new String(“ABC”, “MS942”);

Note that converter is used by the String constructor to set codepage specific
character to unicode.

On the other hand, if your text file is not unicode and would like to read into
Java environment through specific converter, you can use following
statements.

FileInputStream fis = new FileInputStream([file name]);
InputStreamReader isr = new InputStreamReader(fis, [specific encorder]);

To change the default converter, you can specify “file.encoding=” parameter
in the property tab of your program.

Character codes on the Web

To build up your Web server environment, you need to consider the
character-to-code mapping. Because your server contains multiple products,
there are several code conversions that can occur between products, and
there could be misconversions by an unsuitable converter.

Web Browser
Typical conversions will occur between the Web browser and the Web server,
because the user may be using a different language. Usually the servlet
engine converts the character automatically based on the header information
of the Accept-Language and the Accept-Charset tags.
Chapter 11. Internationalization 337

To specify the converter to use with specific language, set command line
argument as -Ddefault.client.encoding=CP1252 on the WebSphere Admin
panel (see Figure 213).

Figure 213. setting up converter manually
338 Programming with VisualAge for Java Version 3.5

You can confirm the setting by ShowConfig servlet. Restart your server and
got through with http://[host_name]/webapp/examples/ShowCfg (Figure 214).

Figure 214. Show Config Servlet

Character conversion in JSP
You can specify the encoder as the parameter of the JSP page compiler if you
are using JSP version 0.91. For the JSP version 1.0, you have to specify the
encorder as the parameter of the Application Server as above.

Character conversion in servlet
You can specify the encoder when you compile your servlet as follows.

javac -encoding [encorder] *.java

To compile with a specific converter, you have to compile outside of
VisualAge for Java 3.5.
Chapter 11. Internationalization 339

340 Programming with VisualAge for Java Version 3.5

Chapter 12. Deploying the Web application

Traditionally, you develop an application for a specific platform, test it on that
platform, and create a platform-specific installation utility to deploy the
application. Deploying a Java program is different; the program could be an
applet, an application, or a servlet, all with different deployment techniques.
In addition, the program is expected to run wherever there is a JVM.

This chapter shows you how to deploy a Java program, whether it is an
applet, servlet, or application, to the runtime, or target environment.

Deploying a Java program is usually quite simple. However, because Java is
"write once, run anywhere," deployment is not always trivial. The level of
JDK, especially when deploying applets, can present problems as can the
correct settings for CLASSPATH, and the configuration of the Web server, in
the case of servlets.

It is important to test your Java programs on as many JVMs as possible.
There are differences in virtual machine implementations, especially in
scheduling and time-critical programs.

Deployment can become quite difficult if the Java program contains calls to
non Java code or uses nonstandard Java extensions. Writing pure Java code
is necessary to ensure trouble-free deployment.

Before you start

To complete the exercises in this chapter, you must set up the correct runtime
environments for your Java programs. The requirements for the Java
programs are:

Requirements for Servlets
1. IBM HTTP Server 1.3.12

HTTP server comes with WebSphere Application Server CD.

A full version of IBM HTTP Server can be download from:

http://www.ibm.com

2. WebSphere Application Server Standard Edition

http://www.ibm.com/software/webservers/appserv/download.html
This trial version includes IBM HTTP Server and IBM DK1.2.2

3. IBM Developer Kit Java2 Technology Edition 1.2.2
© Copyright IBM Corp. 2001 341

A complete version of IBM DK1.2.2 can be downloaded from:

Requirements for applications
1. Java2 SE 1.2.2 Standard Edition or IBM DK1.2.2 above

The IBM DK1.2.2 can be downloaded from:

http://www.ibm.com/

Applets
1. A Web browser that supports Java2 SE (1.2.2 above).

We do not recommend to deploy your Java2 Applet on the Internet. Many
of Web browser only supports JDK1.1.x.

For the intranet environment, you can choose to use Java Plug-in with
enables your Java2SE on your favorite Web browser. But you have to
install Java2 SE and plug-in on to each client.

You can download Netscape 6.0.1 which support Java2 SE (as plug-in)
from:

http://home.netscape.com/download

If you wish to use the JavaSoft Java Plug-In you need to download and
install it from

http://java.sun.com/j2se

The JDK, can be downloaded from:

http://java.sun.com/j2se

2. A Web server

You can use the IBM HTTP server. However, almost any Web server is
adequate.

All of the examples in this chapter assume that you are deploying the Java
programs on the machine where VisualAge for Java is installed. If you are
deploying the programs on another machine, you must transfer the files to the
target machine after you export them from VisualAge for Java.

Using WebSphere Application Server

WebSphere Application Server (WAS) allows you to extend the functionality
of a standard Web server by enabling Web transactions and interactions with
a robust deployment environment for e-business applications. It provides a
portable, Java-based Web application deployment platform to support and
execute servlets, JavaBeans, and Java Server Pages (JSP) files.
342 Programming with VisualAge for Java Version 3.5

In particular, the Standard Edition, for Web site builders, provides:

 • Support for Java Server Pages, including:

 - Support for specifications 0.91 and 1.0
 - Extended tagging support for queries and connection management
 - An Extended Markup Language (XML)-compliant DTD for JSPs

 • Support for the Java Servlet API 2.1 specification, including automatic
user session and user state management

 • High speed pooled database access using JDBC for DB2 Universal
Database, Oracle and Microsoft SQLServer

 • XML server tools, including a parser and data transformation tools

 • A Web site analysis tool for developing traffic measurements to help
improve the performance and effectiveness of your Web sites

 • Machine translation for dynamic language translation of Web page content

 • Tivoli-ready modules

 • Additional integration with IBM VisualAge for Java to help reduce
development time by allowing developers to remotely test and debug
Web-based applications

For more information on WebSphere Application Server, see the product
documentation and visit the Web site:

http://www.ibm.com/software/webservers/appserv/

Deploying a Web application
To deploy your Web application, you need to create your Web Application
(folder) and export your codes then register into the folder.

Creating a Web application
A Web application is a folder which contains your Web applications. Now we
will create a Web Application which contain our ATM applications. To create a
Web Application, click Create a Web Application from the Wizards menu on
the WebSphere Standard Administrative Console. Set Web Application name
as ITSO (Figure 215), be sure JSP 1.0 is selected, then click Next.
Chapter 12. Deploying the Web application 343

http://www.ibm.com/software/webservers/appserv/

Figure 215. Web Application name

Select Default Servlet Engine as parent Servlet Engine (Figure 216), then
click Next.

Figure 216. Parent Servlet Engine
344 Programming with VisualAge for Java Version 3.5

Confirm your Web Application name, virtual host, and Web Application Path
that are generated, then click Finish to create the Web Application. You can
click Next to see your document root or application class path. The default
document root is <WAS ROOT>\hosts\<Virtual Host>\<Web Application
Name>\web and default application class path will be <WAS
ROOT>\hosts\<Virtual Host>\<Web Application Name>\servlets.

Deploying a servlet
Servlets are typically deployed inside a jar file. The jar file needs to be placed
in the root of the servlet path for the Web application. Each Web application
defined on a server can have a different servlet path. If the servlets are not
placed in a jar, then the .class files need to be placed in a directory structure
that is identical to the package name of the class. Placing the classes in a jar
file is much simpler to manage. If the classes need to be moved in the file
system, it is easier to move 1 or 2 jar files, than a huge amount of directories,
subdirectories and class files.

To create a jar file using Visual Age for Java, we use the menu File →
Export. In the Select export destination step, choose Jar file.

In the WebSphere Application Serve 3.5 running under Windows, the servlet
root of the Web application named “itso” is:

C:\WebSphere\AppServer\hosts\default_host\itso\servlets

You have to create the ITSO folder under the default_host directory manually.
Web Application Wizard does not create that folder for you.

Defining a servlet
We set up the Web application in such a way that servlets can be invoked by
class name. WAS also enables us to invoke servlets by an alias name, and
this is the preferred technique.

We deploy the ShowATMServlet servlet to
WebSphere\AppServer\hosts\default_host\itso\servlet into the subdirectory
com\ibm\itso\sg245364\atm\servlets.

We define the servlet in WAS by selecting the itso Web application in the
Topologies pane and selecting Create -> Servlet from the context menu.
Answer YES to the question ‘Do you want to select an existing Servlet jar file
or Directory that contains Servlet classes?’ and click Next. Select ITSO Web
Application to add into the ITSO Web Application (Figure 217).
Chapter 12. Deploying the Web application 345

Figure 217. Add a Servlet -— Select the ITSO Web Application

Click the Browse button and select ATM.jar (Figure 218). Click Next and
keep the ‘Create User Defined Servlet’ that is selected. The other options are
for WebSphere inner servlets.

Figure 218. Select ATM.jar
346 Programming with VisualAge for Java Version 3.5

We enter ATM as the servlet name, itso as the Web application
(preselected), a short description, and finally the class name, which is
com.ibm.itso.sg245264.atm.servlets.ShowATMservlet (Figure 219).

Click Add and enter webapp/itso/ATM (webapp/itso is pre-typed and
un-editable) as the servlet Web path (this is the alias to be used in the
browser). Click Finish to define the servlet. This action adds the servlet to the
list of servlets under the itso Web application.

Figure 219. Specify the Servlet class

Start the Web application
If the application server is already running, you can start the new Web
application from the console. Right-click on the Web application and select
Restart Web App. The Web application is also started when the application
server is started or restarted (Figure 220).
Chapter 12. Deploying the Web application 347

Figure 220. WebSphere Standard Administrative Console

Test the servlet by alias
Open a browser and enter the following URL:

http://localhost/webapp/itso/ATM

Planning for multiple Web applications
It is important to understand that each Web application has is own servlet
root. If there are multiple Web applications on the same server, there are two
ways to deploy.

1. Place the jar containing the servlet classes in every Web application
servlet path. This is preferred if each Web application is using different
servlet classes, or different versions of the servlet classes.

2. Place the jar in a directory of your choice, then add that directory to the
classpath of all the Web applications. This is preferred if all Web
applications are using the same version of the servlet classes.

So the ATM.jar and ATMServlets.jar files are placed in that location.
348 Programming with VisualAge for Java Version 3.5

Deploying a JSP
Deploy JSPs to the directory <WAS ROOT>\hosts\<Virtual Host>\<Web
Application Name>\web. For the ATM, the actual directory will be
\websphere\appserver\hosts\default_host\itso\web. Select Add JSP file or
Web Resource from the Wizard menu on WebSphere Standard
Administrative Console. Then select ITSO WebApplication. Select your JSP
or other HTML file, then click Finish when done.

Deploying an application

A Java application is a Java program that is started from a main method. A
Java object that is to be run as an application must implement a main
method.

Applications have full access to the host environment. They can start
programs and read and write files, and they have the same permissions as
native applications. Java applications can be run on any platform that
supports a JVM at the correct level.

To deploy a Java application from VisualAge for Java you have to export the
Java code:

1. Choose the export type: class files or JAR file.

2. Choose that classes to include in the export:

 - Include referenced types

 - Exclude design time classes

3. Choose whether to include Debug information in the classes. Choose this
option only if you are going to debug the application remotely.

Once you have exported the application, you should be able to run it on the
target platform provided:

 • The target platform has the same or a compatible level of the JDK
installed.

 • All classes that your application references are either packaged with your
application or in the lib directory on the target machine. If you have
exported a JAR file, place your jar file into lib\ext folder. Instead of old
JDK, you rarely need a CLASSPATH environment at all.
Chapter 12. Deploying the Web application 349

Follow these steps to deploy the ATM Test Application():

1. Install Java2SE on your target machine and add the bin directory to your
PATH statement as directed in the installation instructions.

2. Export the com.ibm.itso.sg245264.atm and
com.ibm.itso.sg245264.atm.database packages as a JAR file, Atm.jar
to your lib\ext directory. We used Java2SE Runtime Edition
included in WebSphere Application Server (Figure 221). Click the
Deselect BeanInfo and Property Editor button.

3. Copy your jdbc driver file and data access Bean to lib\ext directory. DB2
JDBC driver is located on D:\sqllib\java\DB2JAVA.ZIP and Data Access
Bean is located on IBMVJAVA\eab\runtime30\ivjdab.jar. Or you can
specify the classpath when you run the Application.

Start the application (Figure 222) by entering java
com.ibm.itso.sg245264.atm.TestATMApplication. Note that the package and
class names are case-sensitive. If you receive an error, check all of your jar
files and DB2 is started.

You can specify jdbc driver and Data Access Bean by java -classpath
d:sqllib\java\db2java.zip;d:ibmvjava\eab\runtime30\ivjdab.jar
com.ibm.itso.sg24564.atm.TestAtmApplication.

Include Referenced Types
Be careful if you select Include Referenced Types. VisualAge for Java adds
all the types that your class references to the JAR file or directory export,
which may include the complete Data Access Beans or JDBC hierarchies if
you use those classes. You may not want to include the classes in your
export.
350 Programming with VisualAge for Java Version 3.5

Figure 221. Exporting the ATM to a jar File

Figure 222. Testing the ATM Application
Chapter 12. Deploying the Web application 351

Deploying an applet

You have probably invoked some applets as you have surfed the Web,
whether you were aware of it or not. Applets are Java programs that execute
within a Web browser. By default they run in a "sandbox," or protected
environment. Also by default, they cannot access files on your machine, and
they cannot connect to other machines on the network except to the Web
server from which they were accessed.

In Chapter 7, “Creating GUI applications” you created the ATMApplication
applet and ran it in VisualAge for Java. VisualAge for Java provides an Applet
Viewer to run and test applets within the VisualAge for Java environment.
Although the Applet Viewer is good for initial testing of applets, you have to
test with Web browsers to see how the applet integrates with HTML pages
and whether there are any differences in the way the Web browsers display
components or interact with the user.

Deploying an applet consists of two separate tasks:

1. Installing the applet on the Web server, where it can be served to a Web
browser.

2. Ensuring that the correct JDK and classes are either supported by the
target browsers or available from the Web server.

Web browsers
VisualAge for Java produces Java2SE 1.2.2 code. Your Web browser must
be Java enabled and must support Java2 to run the code.

Although there are many Web browsers, the vast majority of users run either
Netscape or Microsoft Internet Explorer. Netscape 6 is the only browser that
supports Java2 and to use the other browser, you must install Java Plug-in.

CLASSPATH or CODEBASE
A Web server that serves an applet does not need to know anything about
Java and therefore does not use the CLASSPATH. When you deploy your
applet, you can specify the location of classes through the CODEBASE tag;
otherwise the Web server, by default, searches for the classes or JAR files in
the same directory as the HTML file that contains the applet. The classes are
searched for in a directory relative to the codebase (or current directory)
according to the package name of the class.
352 Programming with VisualAge for Java Version 3.5

For example, if you deploy an applet in an HTML page in the /atm directory
and the applet class is com.ibm.itso.sg245264.atm.applet.ATMapplication,
the Web server attempts to serve the class from the
/atm/com/ibm/itso/sg245264/atm/applet directory unless you specify a JAR
file through the ARCHIVE tag.

Applet Tags
VisualAge for Java can create a simple .html file for your applet to run in a
browser on the Internet when you export your applet. This file simply contains
the applet tag and a title. For example:

<HTML>
<HEAD>
<TITLE>TestEventQCheck</TITLE>
</HEAD>
<BODY>
<H1>AppletName</H1>
<APPLET CODE=pkgname.Appletname.class WIDTH=250 HEIGHT=300>
</APPLET>
</BODY>
</HTML>

The complete syntax for the applet tag ([] means optional and the spacing is
for readability) is:

<APPLET
[CODEBASE = codebaseURL]
CODE = appletFile[ALT = alternateText]
[NAME = appletInstanceName]
WIDTH = pixels
HEIGHT = pixels
[ALIGN = alignment]
[VSPACE = pixels] [HSPACE = pixels]
[ARCHIVE = JARFile1, JARFile2 ...]

>
[< PARAM NAME = appletAttribute1 VALUE = value >]
[< PARAM NAME = appletAttribute2 VALUE = value >]
. . .
[alternate HTML]

</APPLET>

where:

 • CODEBASE = codebaseURL is an optional attribute that specifies the
base URL of the server directory that contains the applet’s code. If this
attribute is not specified, the document’s URL is used.
Chapter 12. Deploying the Web application 353

 • CODE = appletFile is a mandatory attribute that gives the name of the file
that contains the applet’s compiled Applet subclass. This file is relative to
the base URL of the applet. It cannot be absolute.

 • ALT = alternateText is an optional attribute that specifies any text that
should be displayed if the browser understands the APPLET tag but
cannot run Java applets.

 • NAME = appletInstanceName is an optional attribute that specifies a
name for the applet instance, that makes it possible for applets on the
same page to find (and communicate with) each other.

 • WIDTH = pixels and HEIGHT = pixels are mandatory attributes that give
the initial width and height (in pixels) of the applet display area, not
counting any windows or dialogs that the applet brings up.

 • ALIGN = alignment is an optional attribute that specifies the alignment of
the applet. The possible values of this attribute are the same as those of
the IMG tag: left, right, top, texttop, middle, absmiddle, baseline, bottom,
and absbottom.

 • VSPACE = pixels and HSPACE = pixels are optional attributes that
specify the number of pixels above and below the applet (VSPACE) and
on each side of the applet (HSPACE). They are treated in the same way
as the VSPACE and HSPACE attributes of the IMG tag.

 • ARCHIVE = JARFile1, JARFile2 ... is an optional attribute that specifies
one or several archive files to load.

You can also use .cab or cabinet files to transfer your class files when
using Microsoft Internet Explorer.

 • <PARAM NAME = appletAttribute1 VALUE = value> ... is a tag that
specifies an applet-specific attribute. Applets access their attributes with
the getParameter method.

A Java-enabled browser that understands the <APPLET> tag ignores the
[Alternate HTML] part, whereas a browser that does not support Java ignores
everything until [Alternate HTML]. Thus Web pages can be created that make
sense for both types of browsers.

To specify that the archive file is not in the same directory as the HTML page
containing the <APPLET> tag, use the CODEBASE attribute.

Whenever a browser has to load a file needed by an applet, it looks in the
directories or archives specified in the CLASSPATH of the browser first. Then
it checks the applet's JAR files specified in the ARCHIVE parameter. If the
browser fails to find the class file in a JAR file, it looks in the applet's
354 Programming with VisualAge for Java Version 3.5

codebase directory hierarchy. Any combination of JAR files and exported
.class files can be used.

Deploying the ATMApplication applet
In this section you export the ATMApplication applet as a JAR file and
accompanying HTML file and access it from a Web browser.

Follow these steps to deploy the ATMApplication applet:

1. Select the com.ibm.itso.sg245264.atm,
com.ibm.itso.sg245264.atm.memory acom.ibm.itso.sg245264.atm.applet
packages and select File→Export. In the Export to a jar file SmartGuide.
Be sure you do not select the com.ibm.itso.sg245264.atm.database
package. If you would like to use database from applet, you have to
change the JDBC driver to DB2 NET driver instead of DB2 APP driver due
to security reason (APP Driver uses DB2 Client and this access path
violate the Java security unless you use the signed applet).

a. Click the Jar File radio button and then click Next> to continue.

b. Select the root directory of the Web server that you have installed. For
example, if you installed the IBM HTTP Server into C:\IBM HTTP
Server, select C:\IBM HTTP Server\htdocs. If you are using or are
going to use the Web server for production purposes, you may want to
configure the Web server for a different directory.

c. Name the JAR file: ATMApplet.jar.

d. Click the Deselect BeanInfo and Property Editor button.

e. Select the Do you want to create a .html files to launch applets and
the Compress the contents of the jar file checkboxes.

f. Click Finish.

2. Start the Web browser. Enter the URL
(http://hostname/ATMApplication.html) in the location field and press
Enter.

Deploying supporting code
Quite often you have to supply code with your Java programs that you did not
create. Typically these are packaged in JAR files. If you are deploying an
applet, you can use the ARCHIVE tag to specify these other JAR files. If you
are developing servlets or applications, you must place the JAR file in the
proper directory of the application server. Deploying a program that uses the
Data Access beans in VisualAge for Java is a good example.
Chapter 12. Deploying the Web application 355

To deploy a program that uses the Data Access beans, you must package the
required JAR files with the program or make them available to the program.
Programs using the Data Access beans and DB2 need access to:

 • ivjdab.jar Data Access beans JAR file (found in
IBMVJava\eab\runtime30)

 • db2java.zip (found in SQLLIB\java)

For example, an applet using the Data Access beans might have an APPLET
tag like this:

<APPLET CODE=MyDBAccessApplet.class WIDTH=250 HEIGHT=300 ARCHIVE=ivjdab.jar,
db2java.zip>

In the above APPLET tag the applet class and the two JAR files would exist in
the same directory as the HTML file.
356 Programming with VisualAge for Java Version 3.5

Appendix A. JSP tag syntax

In this appendix we review the JSP tag syntax.

JSP tag syntax summary

See Table 13 for a summary of the all tags available in JSP 1.0.

Table 13. Summary of JSP tag syntax

Tag Description Syntax

Output
Comment

Generates a comment
that is sent to the
client in the viewable
page source

<!- - comment [<%= expression %>] -->

Hidden
Comment

Documents the JSP
page, but is not sent to
the client

<%- - comment --%>

Declaration Declares variables or
methods valid in the
page scripting
language

<%! declarations %>

Expression Contains an
expression valid in the
page scripting
language

<%= expression %>

Scriptlet Contains a code
fragment valid in the
page scripting
language

<% code fragment %>

Include Directive Includes a file of text
or code in the JSP
source file

<%@ include file="relativeURL" %>
© Copyright IBM Corp. 2001 357

Page Directive Defines attributes that
apply to an entire JSP
page

<%@ page [language="java"]
[extends="package.class"]
[import= "{ package.class |

package.*} , ..."]
[session="true | false"]
[buffer="none | 8kb | size kb"]
[autoFlush="true | false"]
[isThreadSafe="true | false"]
[info="text"]
[errorPage="relativeURL"]
[contentType="mimeType

[; charset=characterSet]" |
"text/html; charset=ISO-8859-1"]

[isErrorPage="true | false"] %>

Taglib Directive Defines a tag library
and prefix for the
custom tags used in
the JSP page

<%@ taglib uri="URIToTagLibrary"
prefix="tagPrefix" %>

custom tag:
< tagPrefix:name attribute="value"

+ ... />
< tagPrefix:name attribute="value"

+ ... > other tags
</ tagPrefix:name >

jsp:forward Forwards a client
request to an HTML
file, JSP file or servlet
for processing

<jsp:forward
page="{ relativeURL |

<%= expression %> }" />

jsp:getProperty Gets the value of a
Bean property so that
you can display it in a
JSP page

<jsp:getProperty
name="beanInstanceName"
property="propertyName" />

jsp:setProperty Sets a property value
or values in a bean

<jsp:setProperty
name="beanInstanceName"
{ property="*" |

property="propertyName"
[param="parameterName"] |

property="propertyName"
value="{string |

<%= expression %> }"}/>

jsp:include Includes data in a JSP
page from another file,
without parsing the
data

<jsp:include
page="{ relativeURL |

<%= expression %> }"
flush="true" />

Tag Description Syntax
358 Programming with VisualAge for Java Version 3.5

WebSphere specific tags
WebSphere Application Server offers a number of tags in addition to the
standard tags in the JSP 1.0 specification

jsp:plugin Downloads a Java
plugin to the client
Web browser to
execute an applet or
Bean

<jsp:plugin type="bean | applet"
code="classFileName"
codebase="classFileDirName "
[name="instanceName"]
[archive="URIToArchive, ... "]
[align="bottom | top | middle |

left | right"]
[height="displayPixels"]
[width="displayPixels"]
[hspace="leftRightPixels"]
[vspace="topBottomPixels"]
[jreversion="JREVersion | 1.1"]
[nspluginurl="URLToPlugin"]
[iepluginurl="URLToPlugin"] >

[<jsp:params>
[<jsp:param name="parameterName"

value="parameterValue" />]
</jsp:params>]

[<jsp:fallback> text message for
user </jsp:fallback>]

</jsp:plugin>

jsp:useBean Locates or instantiates
a Bean with a specific
name and scope.

<jsp:useBean id="beanInstanceName"
scope="page | request | session |

application"
{ class="package.class" |

type="package.class " |
class="pkg.cls" type="pkg.cls" |
beanName=" { package.class |

<%= expression %> } "
type="package.class "}

{ /> | > other tags </jsp:useBean> }

Tag Description Syntax
Appendix A. JSP tag syntax 359

Table 14 describes WebSphere specific extensions to the JSP 1.0 syntax.

Table 14. IBM extensions to JSP for variable data

Tag Description Syntax

tsx:getProperty The IBM extension
implements all of the
<jsp:getProperty>
function and adds the
ability to introspect a
database bean that was
created using the IBM
extension <tsx:dbquery>
or <tsx:dbmodify>.

<tsx:getProperty name="bean_name"
 property="property_name" />

tsx:repeat Use the <tsx:repeat>
syntax to iterate over a
database query results
set or a repeating property
in a JavaBean.

<tsx:repeat index=name
start=starting_index
end=ending_index>

</tsx:repeat>

tsx:dbconnect Use the <tsx:dbconnect>
syntax to specify
information needed to
make a connection to a
JDBC or an ODBC
database. The
<tsx:dbconnect> syntax
does not establish the
connection. Instead, the
<tsx:dbquery> and
<tsx:dbmodify> syntax
are used to reference a
<tsx:dbconnect> in the
same JSP file and
establish the connection.

<tsx:dbconnect
id="connection_id"
userid="db_user"
passwd="user_password"
url="jdbc:protocol:database"
driver="database_driver_name"

</tsx:dbconnect>
360 Programming with VisualAge for Java Version 3.5

WebSphere Application Server also extends three JSP 1.0 tags by adding the
"language" attribute as shown in Table 15. This enables you to use different
scripting syntax for different elements of your JSP.

Table 15. WebSphere scripting language extensions (XML format only)

tsx:userid and
tsx:passwd

Instead of hardcoding the
user ID and password in
the <tsx:dbconnect>, you
can use <tsx:userid> and
<tsx:passwd> to accept
user input for the values
and then add that data to
the request object where it
can be accessed by a JSP
that requests the
database connection.

<tsx:dbconnect
id="connection_id"
<userid>

<%= request.
getParameter("userid") %>

</userid>
<passwd>

<%= request.
getParameter("passwd") %>

</passwd>
url="jdbc:protocol:database"
driver="database_driver_name"

</tsx:dbconnect>

tsx:dbquery Use the <tsx:dbquery>
syntax to establish a
connection to a database,
submit database queries,
and return the results set.

<tsx:dbquery id="query_id"
connection="connection_id"
limit="value" >

</tsx:dbquery>

tsx:dbmodify Use the <tsx:dbmodify>
syntax to establish a
connection to a database
and then add records to a
database table.

<tsx:dbmodify
connection="connection_id" >

</tsx:dbmodify>

Syntax

<jsp:scriptlet language="language_name">

<jsp:expr language="language_name">

<jsp:declaration language="language_name">

Tag Description Syntax
Appendix A. JSP tag syntax 361

362 Programming with VisualAge for Java Version 3.5

Appendix B. Using the additional material

This redbook also contains additional material in CD-ROM format, and Web
material. See the appropriate section below for instructions on using or
downloading each type of material.

Locating the additional material on the Internet

The CD-ROM, diskette, or Web material associated with this redbook is also
available in softcopy on the Internet from the IBM Redbooks Web server.
Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG245264/

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number.

Using the Web material

The additional Web material that accompanies this redbook includes the
following:

File name Description
5264samp.zip Sample code.
readme.txt Description and latest info.

System requirements for downloading the Web material

The following system configuration is recommended for downloading the
additional Web material.

Hard disk space: 20MB
Operating System: Windows NT or 2000
Processor: 366MHz above
Memory: 256MB Recommended
© Copyright IBM Corp. 2001 363

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

How to use the Web material

Create a subdirectory (folder) on your workstation and copy the contents of
the Web material into this folder.

Unzip the 5264samp.zip file onto a hard drive. This creates the directory
structure:

 • ATM Model Document

ATM Model Usecase Diagrams. Open root.html to see the documentation
(see. Figure 223). This document is generated using Rational Rose and
requires JVM enabled Browser.

 • ATM Application JavaDoc

JavaDoc Documents. Open index.html in this directory to see the
documentation (See. Figure 224).

 • Repository File

Import SG245264.dat file as a repository. All related resources are
included in SG245264.dat.pr directory will be imported automatically.
364 Programming with VisualAge for Java Version 3.5

 • Sample Code

All Java Source code, binaries, JSPs and HTMLs are extracted in this
directory.

Figure 223. Class diagram
Appendix B. Using the additional material 365

Figure 224. JavaDoc
366 Programming with VisualAge for Java Version 3.5

Appendix C. Special notices

This publication is intended to help VisualAge for Java developers build Java
and Web applications using applets, servlets, and JSPs. The information in
this publication is not intended as the specification of any programming
interfaces that are provided by WebSphere Application Server or WebSphere
Studio. See the PUBLICATIONS section of the IBM Programming
Announcement for WebSphere Application Server, WebSphere Studio and
VisualAge for Java for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
© Copyright IBM Corp. 2001 367

that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

Rational Rose, and the Rational logo are trademarks of Rational Corporation
in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

e (logo)®
IBM ®
DB2
WebSphere
VisualAge
Wizard
IMS
MVS/ESA

Redbooks
Redbooks Logo
DB2 Universal Database
AIX
OS/2
CICS
MQSeries
TXSeries
368 Programming with VisualAge for Java Version 3.5

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix C. Special notices 369

370 Programming with VisualAge for Java Version 3.5

Appendix D. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 373.

 • How about Version 3.5? VisualAge for Java and WebSphere Studio
Provide Great New Function, SG24-6131

 • VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets -
CICS Connector, SG24-5265

 • Servlet and JSP Programming with IBM WebSphere Studio and Visual
Age for Java, SG24-5755

 • VisualAge for Java Version 3: Persistence Builder with GUIs, Servlets, and
Java, SG24-5426

IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Redbooks Data Management Collection SK2T-8038
IBM Redbooks Lotus Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM iSeries AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Redbooks Application and Integration Middleware Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2001 371

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Other resources

These publications are also relevant as further information sources:

 • Ackerley, Li. and Parlavecchia, Programming with VisualAge for Java,
Version 2, ISBN:0130212989

 • Hunter, Java Servlet Programming, ISBN:156592391X

 • White, Fisher, Cattell, Hamilton, and Hapner, JDBC API Tutorial and
Reference, Second Edition, ISBN:0201433281

 • Eckel, Thinking in Java, ISBN:0130273635

 • Oaks, Wong, Java Threads, 2nd Edition, ISBN:1565924185

Referenced Web sites

These Web sites are also relevant as further information sources:

 • http://java.sun.com/j2ee/docs.html Sun’s Web site with the complete
specification on Java 2 Enterprise Edition, which includes JDBC, servlets,
Java Server Pages, and more.

 • http://java.sun.com/j2se Sun’s Web site with the complete specification
on Java 2 Standard Edition.

 • http://www.ibm.com/software/vadd IBM’s VisualAge Developer Domain.
FAQs, tutorials and more.

 • http://www.ibm.com/software/webservers IBM’s WebSphere related
information site.

 • http://www.rational.com/support/downloadcenter/upgrades/rose.jsp
Rational’s Rose upgrade information site.

 • http://www.sqlj.org SQLJ organization main site.

 • http://home.netscape.com/download Netscape’s download information
site.
372 Programming with VisualAge for Java Version 3.5

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2001 373

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
374 Programming with VisualAge for Java Version 3.5

Glossary

This glossary defines terms and abbreviations
that are used in this book.

This glossary includes terms and definitions
from the American National Standard Dictionary
for Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018.

A
abstract class. A class that provides common
behavior across a set of subclasses but is not
itself designed to have instances. An abstract
class represents a concept; classes derived from
it represent implementations of the concept. See
also base class.

access modifier: A keyword that controls access
to a class, method, or attribute. The access modifi-
ers in Java are public, private, protected, and
package, the default.

accessor methods. Methods that an object pro-
vides to define the interface to its instance vari-
ables. The accessor method to return the value of
an instance variable is called a get method or get-
ter method, and the mutator method to assign a
value to an instance variable is called a set
method or setter method.

applet. A Java program designed to run within a
Web browser. Contrast with application.

application. In Java programming, a self-con-
tained, stand-alone Java program that includes a
main() method. Contrast with applet.

application programming interface (API). A
software interface that enables applications to
communicate with each other. An API is the set of
programming language constructs or statements
that can be coded in an application program to
obtain the specific functions and services provided
by an underlying operating system or service pro-
gram.
© Copyright IBM Corp. 2001
argument. A data element, or value, included as a
parameter in a method call. Arguments provide
additional information that the called method can
use to perform the requested operation.

attribute. A specification of an element of a class.
For example, a customer bean could have a name
attribute and an address attribute.

B
base class. A class from which other classes or
beans are derived. A base class may itself be
derived from another base class. See also
abstract class.

bean. A definition or instance of a JavaBeans
component. See also JavaBeans.

BeanInfo. (1) A companion class for a bean that
defines a set of methods that can be accessed to
retrieve information on the bean’s properties,
events, and methods. (2) In the VisualAge for
Java IDE, a page in the Class Browser that pro-
vides bean information.

beans palette. In the Visual Composition Editor, a
pane that contains beans that you can select and
manipulate to create programs. You can add your
own categories and beans to the beans palette.

break point. A point in a computer program where
the execution will be halted.

browser. (1) In VisualAge for Java, a window that
provides information about program elements.
There are browsers for projects, packages,
classes, methods, and interfaces. (2) An Inter-
net-based tool that lets user browse Web sites.

C
category. In the Visual Composition Editor, a
selectable grouping of beans on the palette.
Selecting a category displays the beans belonging
to that category. See also beans palette.
 375

class. A template that defines properties, opera-
tions, and behavior for all instances of that tem-
plate.

class hierarchy. The relationships among classes
that share a single inheritance. All Java classes
inherit from the Object class.

class library. A collection of classes.

class method. See method.

CLASSPATH. (1) In VisualAge for Java the lists of
pathnames which will be searched for dynamically
loaded classes, BeanInfo information and external
source for debugging. (2) In your deployment envi-
ronment, the environment variable that specifies the
directories in which to look for class and resource
files.

client/server. The model of interaction in distrib-
uted data processing where a program at one loca-
tion sends a request to a program at another
location and awaits a response. The requesting
program is called a client, and the answering pro-
gram is called a server.

Class Browser. In the VisualAge for Java IDE, a
tool used to browse the classes loaded in the work-
space.

component model. An architecture and an API
that allows developers to define reusable segments
of code that can be combined to create a program.
VisualAge for Java uses the JavaBeans component
model.

composite bean. A bean that is composed of other
beans. A composite bean can contain visual beans,
nonvisual beans, or both. See also bean, nonvisual
bean, and visual bean.

concrete class. A non-abstract subclass of an
abstract class that is a specialization of the abstract
class.

connection. In the Visual Composition Editor, a
visual link between two components that represents
the relationship between the components. Each
connection has a source, a target, and other prop-
erties. See also event-to-method connection,
parameter connections, and property-to-property
connection.

console. In VisualAge for Java, the window that
acts as the standard input (System.in) and standard
output (System.out) device for programs running in
the VisualAge for Java IDE.

construction from parts. A software development
technology in which applications are assembled
from existing and reusable software components,
known as parts. In VisualAge for Java, parts are
called beans.

constructor. A special class method that has the
same name as the class and is used to construct
and possibly initialize objects of its class type.

container. A component that can hold other com-
ponents. In Java, examples of containers include
Applets, Frames, and Dialogs. In the Visual Com-
position Editor, containers can be graphically repre-
sented and generated.

current edition. The edition of a program element
that is currently in the workspace. See also open
edition.

D
demarshal. To deconstruct an object so that it can
be written as a stream of bytes. Synonym for flatten
and serialize.

deserialize. To construct an object from a de-mar-
shaled state. Synonym for marshal and resurrect.

double-byte character set (DBCS). A set of char-
acters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require dou-
ble-byte character sets. Compare with single-byte
character set.

E
edition. A specific “cut” of a program element. Visu-
alAge for Java supports multiple editions of pro-
gram elements. See also current edition, open
edition, and versioned edition.
376 Programming with VisualAge for Java Version 3.5

encapsulation. The hiding of a software object’s
internal representation. The object provides an
interface that queries and manipulates the data
without exposing its underlying structure.

event. An action by a user program, or a specifica-
tion of a notification that may trigger specific behav-
ior. In JDK 1.1, events notify the relevant listener
classes to take appropriate actions.

event-to-method connection. A connection from
an event generated by a bean to a method of a
bean. When the connected event occurs, the
method is executed. See also connection.

F
factory. A nonvisual bean capable of dynamically
creating new instances of a specified bean.

feature. (1) A component of VisualAge for Java that
is installed separately using the QuickStart. (2) A
method, field, or event that is available from a
bean’s interface and to which other beans can con-
nect.

field. See attribute

flatten. Synonymous with demarshal.

free-form surface. The open area of the Visual
Composition Editor where you can work with visual
and nonvisual beans. You add, remove, and con-
nect beans on the free-form surface.

G
graphical user interface (GUI). A type of interface
that enables users to communicate with a program
by manipulating graphical features, rather than by
entering commands. Typically, a GUI includes a
combination of graphics, pointing devices, menu
bars and other menus, overlapping windows, and
icons.

H
Hypertext Markup Language (HTML). The basic
language that is used to build hypertext documents
on the World Wide Web. It is used in basic, plain
ASCII-text documents, but when those documents

are interpreted, or rendered, by a Web browser
such as Netscape, the document can display for-
matted text, color, a variety of fonts, graphical
images, special effects, hypertext jumps to other
Internet locations, and information forms.

Hypertext Transfer Protocol (HTTP). The protocol
for moving hypertext files across the Internet.
Requires an HTTP client program on one end, and
an HTTP server program on the other end. HTTP is
the most important protocol used in the World Wide
Web.

I
IDE. See Integrated Development Environment.

inheritance. (1) A mechanism by which an object
class can use the attributes, relationships, and
methods defined in classes related to it (its base
classes). (2) An object-oriented programming tech-
nique that allows you to use existing classes as
bases for creating other classes.

instance. Synonym for object, a particular instanti-
ation of a data type.

integrated development environment (IDE). In
VisualAge for Java, the set of windows that provide
the user with access to development tools. The pri-
mary windows are Workbench, Class Browser, Log,
Console, Debugger, and Repository Explorer.

interface. A named set of method declarations that
is implemented by a class. The Interface page in
the Workbench lists all interfaces in the workspace.

Internet. The collection of interconnected networks
that use TCP/IP and evolved from the ARPANET of
the late 1960s and early 1970s.

intranet. A private network, inside a company or
organization, that uses the same kinds of software
that you would find on the public Internet. Many of
the tools used on the Internet are being used in pri-
vate networks; for example, many companies have
Web servers that are available only to employees.

Internet Protocol (IP). The protocol that provides
basic Internet functions.
 377

IP number. An Internet address that is a unique
number consisting of four parts separated by dots,
sometimes called a dotted quad (for example:
198.204.112.1). Every Internet computer has an IP
number, and most computers also have one or
more domain names that are mappings for the dot-
ted quad.

J
JDBC. The specification that defines an API that
enables programs to access databases that comply
with this standard.

Java. A programming language invented by Sun
Microsystems that is specifically designed for writ-
ing programs that can be safely downloaded to your
computer through the Internet and immediately run
without fear of viruses or other harm to your com-
puter or files.

Java archive (JAR). A platform-independent file
format that groups many files into one. JAR files are
used for compression, reduced download time, and
security.

JavaBeans. The specification that defines the plat-
form-neutral component model used to represent
parts. Instances of JavaBeans (often called beans)
may have methods, properties, and events.

K
keyword. A predefined word reserved for Java, for
example, return, that may not be used as an identi-
fier.

L
listener. A class that receives and handles events.

local area network (LAN). A computer network
located on a user’s establishment within a limited
geographical area. A LAN typically consists of one
or more server machines providing services to a
number of client workstations.

log. In VisualAge for Java, the window that displays
messages and warnings during development.

M
marshal. Synonymous with deserialize.

message. A communication from one object to
another that requests the receiving object to exe-
cute a method. A method call consists of a method
name that indicates the requested method and the
arguments to be used in executing the method. The
method call always returns some object to the
requesting object as the result of performing the
method. Synonym for method call.

method. A fragment of Java code within a class
that can be invoked and passed a set of parameters
to perform a specific task.

method call. Synonymous with message.

model. A nonvisual bean that represents the state
and behavior of an object, such as a customer or an
account. Contrast with view.

mutator methods. Methods that an object provides
to define the interface to its instance variables. The
accessor method to return the value of an instance
variable is called a get method or getter method,
and the mutator method to assign a value to an
instance variable is called a set method or setter
method.

N
named package. In the VisualAge for Java IDE, a
package that has been explicitly named and cre-
ated.

nonvisual bean. In the Visual Composition Editor,
a bean that has no visual representation at run
time. A nonvisual bean typically represents some
real-world object that exists in the business environ-
ment. Compare with model. Contrast with view and
visual bean.

O
object. (1) A computer representation of something
that a user can work with to perform a task. An
object can appear as text or an icon. (2) A collection
of data and methods that operate on that data,
which together represent a logical entity in the sys-
378 Programming with VisualAge for Java Version 3.5

tem. In object-oriented programming, objects are
grouped into classes that share common data defi-
nitions and methods. Each object in the class is
said to be an instance of the class. (3) An instance
of an object class consisting of attributes, a data
structure, and operational methods. It can represent
a person, place, thing, event, or concept. Each
instance has the same properties, attributes, and
methods as other instances of the object class,
although it has unique values assigned to its
attributes.

object class. A template for defining the attributes
and methods of an object. An object class can con-
tain other object classes. An individual representa-
tion of an object class is called an object.

object-oriented programming (OOP). A program-
ming approach based on the concepts of data
abstraction and inheritance. Unlike procedural pro-
gramming techniques, object-oriented program-
ming concentrates on those data objects that
constitute the problem and how they are manipu-
lated, not on how something is accomplished.

ODBC driver. An ODBC driver is a dynamic link
library that implements ODBC function calls and
interacts with a data source.

Open Database Connectivity (ODBC). A
Microsoft-developed C database API that allows
access to database management systems calling
callable SQL, which does not require the use of an
SQL preprocessor. In addition, ODBC provides an
architecture that allows users to add modules (data-
base drivers) that link the application to their choice
of database management systems at run time.
Applications no longer need to be directly linked to
the modules of all the database management sys-
tems that are supported.

open edition. An edition of a program element that
can still be modified; that is, the edition has not
been versioned. An open edition may reside in the
workspace as well as in the repository.

operation. A method or service that can be
requested of an object.

P
package. A program element that contains related
classes and interfaces.

palette. See beans palette.

parameter connection. A connection that satisfies
a parameter of an action or method by supplying
either a property’s value or the return value of an
action, method, or script. The parameter is always
the source of the connection. See also connection.

parent class. The class from which another bean
or class inherits data, methods, or both.

part. An existing, reusable software component. In
VisualAge for Java, all parts created with the Visual
Composition Editor conform to the JavaBeans com-
ponent model and are referred to as beans. See
also nonvisual bean and visual bean.

primitive bean. A basic building block of other
beans. A primitive bean can be relatively complex in
terms of the function it provides.

private. In Java, an access modifier associated
with a class member. It allows only the class itself to
access the member.

process. A collection of code, data, and other sys-
tem resources, including at least one thread of exe-
cution, that performs a data processing task.

program. In VisualAge for Java, a term that refers
to both Java applets and applications.

program element. In VisualAge for Java, a term
referring to any of the entities under source control.
Program elements are projects, packages, classes,
interfaces, or methods.

project. In VisualAge for Java, the topmost kind of
program element. A project contains Java pack-
ages.

promotion. Within a JavaBean, to make features of
a contained bean available to be used for making
connections. For example, a bean consisting of
three push buttons on a panel. If this bean is placed
in a frame, the features of the push buttons would
have to be promoted to make them available from
within the frame.

property. An initial setting or characteristic of a
bean; for example, a name, font, text, or positional
characteristic.
 379

property sheet. In the Visual Composition Editor, a
set of name-value pairs that specify the initial
appearance and other bean characteristics.

property-to-property connection. A connection
from a property of one bean to a property of another
bean. See also connection.

protected. In Java, an access modifier associated
with a class member. It allows the class itself, sub-
classes, and all classes in the same package to
access the member.

protocol. (1) The set of all messages to which an
object will respond. (2) Specification of the structure
and meaning (the semantics) of messages that are
exchanged between a client and a server. (3) Com-
puter rules that provide uniform specifications so
that computer hardware and operating systems can
communicate.

prototype. A method declaration or definition that
includes the name of the method, the return type
and the types of its arguments. Contrast with signa-
ture.

R
Remote Method Invocation (RMI). The API that
enables you to write distributed Java programs,
allowing methods of remote Java objects to be
accessed from other Java virtual machines.

repository. In VisualAge for Java, the storage area,
separate from the workspace, that contains all edi-
tions (both open and versioned) of all program ele-
ments that have ever been in the workspace,
including the current editions that are in the work-
space. You can add editions of program elements
to the workspace from the repository.

Repository Explorer. In VisualAge for Java, the
window from which you can view and compare edi-
tions of program elements that are in the repository.

Repository file. A file that you can export from
VisualAge for Java that contains information about
selected projects or packages. This file can then be
imported into any VisualAge for Java session.

resource file. A file that is referred to from your
Java program. Examples include graphics and
audio files.

resurrect. Synonymous with deserialize.

RMI compiler. The compiler that generates stub
and skeleton files that facilitate RMI communica-
tion. This compiler can be automatically invoked
from the Tools menu item.

RMI registry. A server program that allows remote
clients to get a reference to a server bean.

S
Scrapbook. In VisualAge for Java, the window
from which you can write and test fragments of
code, without having to define an encompassing
class or method.

serialize. Synonymous with demarshal.

signature. The part of a method declaration con-
sisting of the name of the method and the number
and types of its arguments. Contrast with prototype.

single-byte character set. A set of characters in
which each character is represented by a 1- byte
code.

SmartGuide. In IBM software products, an inter-
face that guides you through performing common
tasks.

sticky. In the Visual Composition Editor, the mode
that enables an application developer to add multi-
ple beans of the same class (for example, three
push buttons) without going back and forth between
the beans palette and the free-form surface.

superclass. See abstract class and base class.

T
tear-off property. A property that a developer has
exposed as a variable to work with as though it
were a stand-alone bean.

thread. A unit of execution within a process.

type. In VisualAge for Java, a generic term for a
class or interface.
380 Programming with VisualAge for Java Version 3.5

U
Unicode. A character coding system designed to
support the interchange, processing, and display of
the written texts of the diverse languages of the
modern world. Unicode characters are typically
encoded using 16-bit integral unsigned numbers.

uniform resource locator (URL). A standard iden-
tifier for a resource on the World Wide Web, used
by Web browsers to initiate a connection. The URL
includes the communications protocol to use, the
name of the server, and path information identifying
the objects to be retrieved on the server. A URL
looks like this:

http://www.matisse.net/seminars.html

or telnet://well.sf.ca.us.br

or news:new.newusers.question.br

user interface (UI). (1) The hardware, or software,
or both that enables a user to interact with a com-
puter. (2) The term user interface typically refers to
the visual presentation and its underlying software
with which a user interacts.

V
variable. (1) A storage place within an object for a
data feature. The data feature is an object, such as
number or date, stored as an attribute of the con-
taining object. (2) A bean that receives an identity at
run time. A variable by itself contains no data or
program logic; it must be connected such that it
receives run-time identity from a bean elsewhere in
the application.

versioned edition. An edition that has been ver-
sioned and can no longer be modified.

versioning. The act of making an open edition a
versioned edition; that is, making the edition
read-only.

view. (1) A visual bean, such as a window, push
button, or entry field. (2) A visual representation that
can display and change the underlying model
objects of an application. Views are both the end

result of developing an application and the basic
unit of composition of user interfaces. Compare
with visual bean. Contrast with model.

visual bean. In the Visual Composition Editor, a
bean that is visible to the end user in the graphical
user interface. Compare with view. Contrast with
nonvisual bean.

visual programming tool. A tool that provides a
means for specifying programs graphically. Applica-
tion programmers write applications by manipulat-
ing graphical representations of components.

Visual Composition Editor. In VisualAge for Java,
the tool where you can create graphical user inter-
faces from prefabricated beans and define relation-
ships (connections) between both visual and
nonvisual beans. The Visual Composition Editor is
a page in the class browser.

W
Workbench. In VisualAge for Java, the main win-
dow from which you can manage the workspace,
create and modify code, and open browsers and
other tools.

workspace. The work area that contains all the
code you are currently working on (that is, current
editions). The workspace also contains the stan-
dard Java class libraries and other class libraries.
 381

382 Programming with VisualAge for Java Version 3.5

Abbreviations and acronyms

API application
programming interface

CGI Common Gateway
Interface

DBMS database management
system

DLL dynamic link library

EJB Enterprise JavaBeans

GUI graphical user interface

HTML Hypertext Markup
Language

HTTP Hypertext Transfer
Protocol

IBM International Business
Machines Corporation

IDE integrated development
environment

ITSO International Technical
Support Organization

JAR Java archive

JDBC Java Database
Connectivity

JDK Java Developer’s Kit

JFC Java Foundation
Classes

JRE Jara Runtime
Environemt

JSDK Java Servlet
Development Kit

JSP JavaServer Pages

JVM Java Virtual Machine

LDAP Lightweight Directory
Access Protocol

MVC model-view-controller

NLS National Language
Support
© Copyright IBM Corp. 2001
RAD rapid application
development

RDBMS relational database
management system

RMI Remote Method
Invocation

SCC software configuration
control

SCM software configuration
management

SQL structured query
language

SSL secure socket layer

TCP/IP Transmission Control
Protocol/Internet
Protocol

UCM Unified Change
Management

UDB Universal Database

UML Unified Modeling
Language

USS UNIX System Services

URL uniform resource
locator

VCE visual composition
editor

WAS WebSphere Application
Server

WTE WebSphere Test
Environment

WWW World Wide Web

XML eXtensible Markup
Language
383

384 Programming with VisualAge for Java Version 3.5

Index

Symbols
.cab files 354
.properties files 316

A
Abstract Windowing Toolkit (AWT) 143, 233
Add

Class 49
Package 32, 44, 49, 160, 167
package 164
Project 44
Type 160, 164

All Problems 52, 54, 68
Appearance 30
applet 6, 9, 14, 15, 16, 232
applet tags

ALIGN 354
ALT 354
ARCHIVE 354
CODE 354
CODEBASE 353
generated 353
HEIGHT 354
HSPACE 354
NAME 354
PARAM NAME 354
VSPACE 354
WIDTH 354

Applet Viewer 13, 17, 21, 352
application 17, 232
ATM 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85,
89, 92, 94, 99, 106, 107, 109, 114, 119, 143, 156,
276, 285, 347
ATM servlets 116
Attribute 6, 49
Automatic Code Completion 26

B
Backup

repository 189
workspace 187

Bean
AppletContentPane 171
Button 146
CellRangeSelector 282
© Copyright IBM Corp. 2001
CellSelector 282
ColumnSelector 282
JButton 146
JDialog 173
JList 146, 172
List 146
Modify 282, 300
Navigation 282
Procedure Call 282
RowSelector 282
Select 282

BeanInfo 62, 69, 161, 350
Breakpoints 236
breakpoints 237, 239
busy 27
bytecode 190

C
cabinet files 354
Cache 29
call stack 234
CGI 110, 112
checking 74
CICS 4
classes 2, 6, 50

Calendar 312
ChoiceFormat 331, 334
Collator 335
Format 334
JLabel 320
LanguagePanel 320
ListResourceBundle 315
Locale 311
MessageFormat 334
NumberFormat 312, 331
Object 315
PropertyResourceBundle 315
ResourceBundle 314
RuleBasedCollator 335
String 248, 334
StringBuffer 248

CLASSPATH 16, 38, 42, 341, 352
clone 46
Code Assist 26, 56
CODEBASE 352
com.ibm.uvm.* 42
Compact 226
385

comparison tool 204
configure 266
Connections

Code 176, 178
Code (script) 175
Connectable Features 179, 180
Event 178
Event-to-method 175, 176, 177, 178, 179, 180
Parameter 175, 176, 178
properties 177
Property-to-property 175, 177, 179

Console 19, 253
Constructors 19, 98
Control Center 251, 262
Cookie 115
Create

Applet 44, 169
Application 44
Class 44, 164, 167
Field 44
Interface 44
Method 44
new method feature 165
Property Feature 162
Servlet 44

D
DAT file. See interchange files
Data Access Beans 275, 281, 309
DataSource 263, 264, 276, 278
DB2 263, 277, 285, 343, 350
Debugger 44, 231

Breakpoints page 235
caught exceptions 241
class trace 245
conditional breakpoints 239
Debug page 231
external debug 243

Debugging 30
adding breakpoints 237
disabling breakpoints 239
JSP 261
removing breakpoints 239
removing external breakpoints 245
servlets and JSPs 257

debugging 27
declaration 141
default package 48

default.servlet_engine 271
default_app.webapp 267, 272
Deploy 57, 63, 343

applet 352
application 349
JSP 349
servlet 345
supporting code 355

Design Time 64
diagram 89
DriverManager 276, 278

E
EAB 4
Edition 44, 191

Another 213
Previous 213

edition tab 201
Packages 210
Projects 211
Types 209

EJB 4
Elements 21
English 322
Enterprise Access Builder 4
Enterprise JavaBean 130
errors

in your code 55
Evaluation 235
event

mouseClicked 180
exception 88
execution stack. See call stack.
Export 57, 60, 217, 218
expression

JSP 142, 357
externalize string 316

F
Factory 155
features 42
fields 6, 199
Filter 53
Fix/Migrate 65, 68
Flip Orientation 45, 51
form

action 132
Formatter 30
386 Programming with VisualAge for Java Version 3.5

formatting
collations 334
currencies 332
dates and times 328
messages 333
numbers 332
percentages 333

forward
JSP 133

free-form surface 144
French 314, 323
Full source code edit 55

G
garbage collection 112
GridBagLayout 171

H
Hierarchy 50
HTML 41, 62, 77, 91, 93, 109, 114, 122, 129, 138,
261

page 131
HTTP 31, 78, 93, 94, 109, 115

GET 116
POST 116, 123, 125
request 124

I
IBM Data Access libraries 69
IBM Extension 65
IBM HTTP Server 341
IBM Java Implementation 42
IDE 2, 12, 95, 183, 189, 197, 241
IDL 5
Import 57, 217, 221
Import and export with repository files 218
IMS 4
include

JSP 132
inner class 3, 103, 199
Inspect 236
Inspectors 26, 102

changing field values 247
concepts 245
navigating 247
windows 246

InstantDB 263

interchange 58
Interface 6, 52
internationalization

predefined formats 331
Invoker servlet 269
IP 190
Italian 323
itsoservjsp.webapp 272

J
JApplet 6, 169
JAR 60, 62, 64
JAR files

importing and exporting 58
Java 2 Platform Enterprise Edition 114
Java 2 SDK 3, 65, 68, 69
Java class files

importing and exporting 58
Java Class Libraries 42
Java code

importing 57
Java Foundation Classes 143
Java Server Pages 93
Java source code

importing and exporting 57
java.* 42
JavaBean 93, 130, 131, 144, 145, 342
Javadoc 30, 99, 100, 197
JavaScript 91, 130
javax.* 42
javax.servlet 33, 114
javax.servlet.http 33, 114
JDBC 95, 262, 275, 276, 277, 279, 289, 343, 350
JDK 47, 65
JSDK 65, 70
JSP 41, 50, 70, 71, 88, 93, 109, 120, 129, 130,
138, 254, 255, 256, 257, 269, 342

.91 specification 70, 133
1.0 specification 70, 133, 140
call servlet 132
comment 357
declaration 141, 357, 361
directive 141
Execution Monitor 259
expr 361
expression 142, 357
flow 130
forward 133, 358
 387

getProperty 358
include 132, 357, 358
life-cycle 131
overview 129
page 358
plugin 359
root 140
scriptlet 142, 357, 361
setProperty 358
stepping 260
tag syntax 357
taglib 358
URL 132
useBean 140, 359
WebSphere Test Environment 254

JSP 0.91 71
JSP 1.0 71
JVM 22, 110, 241

L
Layout 47
life-cycle 114
Load Left 206
Load Right 206
locale sensitive 312
locales

concepts 311
dynamically changing 323

M
mapping tools 4
Maximize 46
Members 194
meta data 64
methods

compare 335
compareTo 334
doGet 34, 114, 118, 122
doPost 114, 118, 123
getAvailableLocales 312, 332, 335
getBundle 323
getContents 315
getCurrencyInstance 332
getDateInstance 328
getDateTimeInstance 328
getDefault 334
getObject 324
getParameter 354

handleException 243
init 131, 178, 252
performTask 35, 123, 138
service 131
toString 334

MissingResourceException 324
model 75
Model-View-Controller 134
MQSeries 4

N
National Language Support. See internationaliza-
tion
NLS. See internationalization

O
Object 6
open edition 192, 193, 194, 197, 198, 199, 202,
209, 213, 214, 217, 226, 227, 230
Options 28
ORB 5
Orientation 47

P
package 48
Packages 194
packages 6, 41, 42, 46, 96

creating 47
default 48
java.text 312
java.util 311, 314

page
JSP 141, 358

Palette 28
path

Servlet root 253
Web host 253

Pattern 33
Persistent Name Server 262, 263, 264
Printer 30
problems 53
projects 41, 54, 96, 194

concepts 41
default 42
resources 47

Properties 16, 151
Property Editor 62, 350
388 Programming with VisualAge for Java Version 3.5

purge 225

Q
Queries 278
Quick Start 8, 31

R
RAD 1
Rational Rose 95
Redbooks 1
References 52
Repository 2, 62
repository 50, 57, 190
Repository Explorer 183, 222
request 31, 35, 110, 115
resource 41, 50, 57, 199
resource bundles

accessing values 315
concepts 314
loading 323
retrieving resources 324

response 31, 35, 110, 114
Restore 46

repository 189
workspace 187

restore 225
result sets 278
RMI 31
Root Minus One 48, 51
Run 13, 44

S
savings 74
SCM 217
Scrapbook 22, 25, 26, 27, 232
scriptlet 142
Search 44, 52
server-side include 134
servlet 6, 31, 35, 70, 93, 109, 112, 113, 130, 342

debugging 257
ServletEngineConfigDumper 273

Servlet Engine 37, 38, 39, 251, 252, 256, 344
Servlet properties 269
ServletContext 115
session 113
session.xml 269
SmartGuide 3, 8, 9, 18, 19, 31, 34, 58, 65, 66, 98,

101, 158, 283
SQL Assist 291, 297

Solutions 60, 225, 229, 230
Source View 21, 26, 34, 55, 56
SQLJ 50, 275, 279, 280
stateless 78, 111
Stored procedures 279
strings

externalization information 318
length of translated 326

Sun Class Libraries PM Win32 42
sun.* 42
super class 9, 19, 69, 98
Swing 3, 6, 65, 66, 143

T
tag

FORM 132
SCRIPT 134

Taligent 311
thread 27, 258
thread-safe 112
Tool Integration Framework 28
Transaction 103
transaction 74, 83
tsx

dbconnect 360
dbmodify 361
dbquery 361
getProperty 360
passwd 361
repeat 360
userid 361

Types 194

U
UML 78
URL 110, 116, 122, 252, 256, 276
Use cases 76

V
VADD 1, 4, 5
Variable 155, 234
Version 44, 183, 191, 195

Automatic 196
Name Each 196
One Name 196
 389

Show edition names 197
virtual machine 341
Visual Builder 64
Visual Composition Editor 64, 68, 69, 92, 143,
144, 145, 171, 232, 306

Alignment 149
Beans List 170
Browse Connections 153
Change Bean Name 153
Change Type 152
Choose Bean 147, 173
Choose bean 150
Connect 153, 178
Connectable Features 178
Connections 175
Delete 153
Event to Code 152
Factory 152, 155
free-form surface 149, 154, 174
Layout 153
Modify Palette 147
Morph Into 153
Nonvisual beans 146
Promote Bean Feature 152
Quick Form 152
Quick Form Layout window 154
Quick Form window 154
Refresh Interface 153
Reorder Connections From 153
Save Bean 175
Save Quick Form window 154
Selection 147
Show expert features 151, 171
Show Properties 151
Sticky 151
Tear-Off Property 153
The Beans Palette 146
Variable 152
variable 155
Visual Beans 146

VisualAge 58
VisualAge Developer Domain 1, 4, 5
VisualAge for Java

importing 58
internationalization 316
projects 41

W
Warning 53, 54
Watches 234
Web 109
Web application 92, 343
Web application server 109, 113
Web browser 17, 31, 39, 110, 111, 113, 122, 342,
352
Web server 109
WebSphere Application Server 1, 2, 31, 70, 341,
342

Standard Edition 343
WebSphere Test Environment 4, 31, 37, 249, 250,
265, 277

configuration 266
Control Center 37

wizards 4
Workbench 12, 19, 28, 34, 42, 43, 68, 95

All Problems page 52
Classes page 43, 50
Interfaces page 43, 52
Packages page 43, 46
Projects page 43
Source pane 43
toolbar 43
Unresolved Problems page 43

Working Set 53
workspace 2, 47, 189
WTE 37

X
XMI Toolkit 5
XML 140, 343
390 Programming with VisualAge for Java Version 3.5

© Copyright IBM Corp. 2001 391

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

 • Use the online Contact us review redbook form found at ibm.com/redbooks
 • Fax this form to: USA International Access Code + 1 845 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5264-01
Programming with VisualAge for Java Version 3.5

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

(0.5” spine)
0.475”<->0.875”

250 <-> 459 pages

Program
m

ing w
ith VisualAge for Java Version 3.5

®

SG24-5264-01 ISBN 0738419621

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Programming with
VisualAge for Java
Version 3.5

Teach yourself
VisualAge for Java
the easy way

Use relational
databases and the
WebSphere Test
Environment

Develop
applications, applets
and servlets

This IBM Redbook provides you with sufficient information to
effectively use the VisualAge for Java Professional Edition
Version 3.5 environments to create, manage, and deploy
Web-based applications using methodologies centered
around servlets, applets, Java Server Pages, and JavaBean
architectures.

This book is intended to be read by anyone who requires both
introductory and detailed information on software
development in the Java and Web-based application
environment using applets, servlets, and Java Server Pages.
We assume that you have a good understanding of Java and
some knowledge of HTML.

We describe the Java development though the VisualAge for
Java product. Following this, we cover Java applications,
Java applets, servlets, and JSP programming, and 3-tier
application design concepts. Using the knowledge developed
in these chapters, we then provide detailed information on the
development environments offered by VisualAge for Java.
These chapters will assist you in using the features offered by
these tools, such as integrated debugging, the WebSphere
Test Environment, and publishing of Web site resources.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction to the environment
	VisualAge for Java product family
	VisualAge for Java Professional Edition
	VisualAge for Java Entry Professional Edition
	VisualAge for Java Enterprise Edition
	VisualAge for Java Entry Enterprise Edition
	Updates to VisualAge Java

	Building your first applet
	Let’s get started!
	SmartGuide
	The Workbench
	Modifying your applet
	Creating an animated applet
	Changing the properties of the applet

	Building your first application
	Running a program as an applet and application
	The VisualAge for Java Source View window

	The VisualAge for Java Scrapbook
	Using the Scrapbook
	Scrapbook context
	Correcting errors in the Scrapbook
	If your Scrapbook page remains busy

	Customizing VisualAge for Java
	Workbench Options

	Building your first servlet

	Chapter 2. Organizing your code
	Projects in VisualAge for Java
	Adding features

	Packages in VisualAge for Java
	The Workbench
	The Workbench Projects page
	The Workbench Packages view

	Using types from other packages
	The Workbench Resources page
	The Workbench Classes page
	The Workbench Interfaces page
	The Workbench All Problems page

	Full source code edit
	Code Assists
	Importing and exporting with VisualAge for Java
	Importing into VisualAge for Java
	Exporting from VisualAge for Java

	Chapter 3. Migrating to Java2
	The Fix/Migrate SmartGuide
	The repair process
	Migrating your servlet and JSPs

	Chapter 4. Beginning the ATM project
	Problem domain
	Building the ATM model
	Use cases
	ATM state diagrams
	Analysis class diagram
	Design class diagrams
	Interaction diagram

	Overall architecture
	The big picture
	GUI client
	Browser client
	Database access

	Example implementation
	Detailed steps implementing the first class
	Reusing existing method to create a new method
	PrimaryKey class hierarchy
	Creating an inner class
	Persistency based on HashMaps
	Finder methods
	Implementations of the state diagram
	Test application

	Chapter 5. Creating servlets
	Overview of Java servlets
	The Java Servlet API
	Building the ATM application servlets

	Chapter 6. Creating JSPs
	Java Server Pages
	How Java Server Pages work
	JSP interactions
	Invoking a JSP by URL
	Calling a servlet from a JSP

	JSP 0.91 and 1.0
	Designing the JSP model
	Model-View-Controller (MVC)
	Servlet based modeling

	Building the ATM application
	JSP tags

	Chapter 7. Creating GUI applications
	Abstract Windowing Toolkit and Java Foundation Classes refresher
	Visual Composition Editor
	The Beans Palette
	Modification of the Beans Palette
	Visual Composition Editor toolbar
	The free-form surface

	Working with beans in the Visual Composition Editor
	Adding beans
	Customizing Beans
	Naming beans
	Beans List
	Factory and variable

	Visual Programming in action
	The ATM classes created
	Building the CardBean class
	Building the CardBeanHome class
	Building the BankAccountBean class
	Building the ATM application
	Connections
	Connection properties
	Creating connections

	Chapter 8. Versioning your code
	introduction to versioning
	Program elements

	Workspace versus repository
	The workspace is only a cache
	Backup or restore the workspace
	Clean workspace copy
	Multiple workspaces on one repository
	Backup or restore the repository
	Workspace versus repository continued

	Version control
	Editions and versions
	Consequences of versioning
	How to version elements with VisualAge for Java
	Apply this to the ATM application
	Methods, a special case
	Importance of versioning your code regularly
	Fields and inner classes
	Versioning resource files

	Using editions
	Method edition tab
	Comparison result window
	Merging compared elements
	Types edition tab
	Packages edition tab
	Projects edition tab
	Replacing current edition
	External versioning systems

	Import and export effects
	Import and export with Java files
	Import and export with repository files

	Repository Explorer
	Purging and restoring elements
	Compacting a repository
	Go To tools
	Solutions

	Chapter 9. Testing and debugging the Web application
	VAJ Debugger
	The debugger
	The Debug Page
	The Breakpoints Page
	The Exceptions Page
	External Debug
	Generating a Class Trace
	Performance and the Class Trace option
	Inspectors
	The Inspector window

	WebSphere Test Environment (WTE)
	Start the WebSphere Test Environment

	Testing JSPs under WebSphere Test Environment
	VisualAge for Java configuration for JSPs
	Running a simple JSP

	Debugging servlets and JSPs
	Debugging a servlet
	JSP Execution Monitor
	Debugging JSP generated source code
	Debugging JSP without importing

	Persistent Name Server
	WebSphere Test Environment — advanced configuration
	Types of resources
	Resource locations
	The key configuration files

	WebSphere Test Environment — multiple Web applications
	Configuring multiple Web applications
	Using the ServletEngineConfigDumper servlet

	Chapter 10. Using relational databases
	JDBC 2.0
	DataSource versus DriverManager

	Queries and result sets
	Stored procedures
	Updating the database
	Using SQLJ inside Visual Age for Java
	Data access beans
	Making the ATM persistent
	Prerequisites
	Creating tables

	Making the card class persistent
	Creating the Select beans
	Card Select bean
	Card Select All bean
	CardAcctSelect

	Modify beans
	Card Insert
	Card Delete
	Card Update
	Card Visual Composition Editor View
	Modifying related methods

	Data Access Beans with an application

	Chapter 11. Internationalization
	Java Internationalization Framework
	Locales
	Resource bundle

	Internationalization in VisualAge for Java
	Building a language panel
	LanguagePanel view
	Creating the resource bundles

	Dynamically changing the locale
	Loading resource bundles
	Retrieving resources from resource bundles
	Finishing the LanguagePanel
	Formatting dates and times

	Other internationalization considerations
	Using predefined formats

	Internationalization in the Web environment
	Character codes on the Web

	Chapter 12. Deploying the Web application
	Before you start
	Using WebSphere Application Server
	Deploying a Web application
	Planning for multiple Web applications
	Deploying a JSP

	Deploying an application
	Include Referenced Types

	Deploying an applet
	Web browsers
	CLASSPATH or CODEBASE
	Applet Tags
	Deploying the ATMApplication applet
	Deploying supporting code

	Appendix A. JSP tag syntax
	JSP tag syntax summary
	WebSphere specific tags

	Appendix B. Using the additional material
	Locating the additional material on the Internet
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Appendix C. Special notices
	Appendix D. Related publications
	IBM Redbooks
	IBM Redbooks collections
	Other resources
	Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Abbreviations and acronyms
	Index
	IBM Redbooks review

