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1. Vertex Coordinates
An Icosahedron has 12 vertices, 30 edges and 20 triangles. The vertices 1 and 12 are at the

poles, the vertices 2 to 11 are on two pentagons. The only unknown angle is the latitude θ. As

a result of some basic geometry we find θ = 26.565° . The vertices are easily found in sphere

coordinates.

dps:=2*pi/5;

sps:=2*Sqr(sic(dps/2));

Quadglei(sps,-1,1-sps,r1,r2,i1,i2,flag);

sth:=r2; { smaller root sin(theta) }

cth:=Sqrt(1-Sqr(sth)); { cos(theta) }

psi:=0;

For k:=2 to 6 Do

 Begin

 With xr[k] Do

  Begin

  x:=cth*coc(psi); y:=cth*sic(psi); z:=sth;

  End;

 psi:=psi+dps;

 End;

sth:=-sth;

psi:=0.5*dps;

For k:=7 to 11 Do

 Begin

 With xr[k] Do

  Begin

  x:=cth*coc(psi); y:=cth*sic(psi); z:=sth;

  End;

 psi:=psi+dps;

 End;

With xr[ 1] Do Begin x:=0; y:=0; z:=+1; End;

With xr[12] Do Begin x:=0; y:=0; z:=-1; End;



32. Edge Subdivision
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Procedure SubDivi(x1,x2: XYZ; Var x3: XYZ);

Var r: Single;

Begin

With x3 Do

 Begin

  x:=x1.x+x2.x; y:=x1.y+x2.y; z:=x1.z+x2.z;

  r:=1/RootSqr(x,y,z);

  x:=r*x; y:=r*y; z:=r*z;

 End;

End;

An edge is divided by the normalized sum of two vertex vectors, new point on the sphere with

radius 1.

Some important variables

XYZ is a coordinate record x,y,z

PQE is a pixel and z-buffer record p,q,e

PC is a color record

Type Xtr=Record

t1,t2,t3: XYZ; End;

Type Ptr=Record

pa1,pb1,pa2,pb2,pa3,pb3: Single;

End;

Const ntr=20*4*4*4;

Var lev,lex,tri: Integer;

Ra,hue     : Single;

x1,x2,x3,n : XYZ;

p1,p2,p3   : PQE;

c0,c1,c2,c3: PC;

Pbody,Psoft,Pgrid: Integer;

xr : Array[1.. 12] Of XYZ;

Lt1,Lt2 : Array[1..ntr] Of ^Xtr;

Par : Array[1..ntr] Of ^Ptr;
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3. Triangle Subdivision
A triangle 1-2-3 delivers by edge division four triangles 1-4-6, 4-2-5, 6-5-3 and 4-5-6.

The vertex numbers are local in this example. Two triangle lists are used, Lt1 and Lt2.

Set 1-2-3 is stored in Lt1, then copied to Lt2.

The subdivided set is stored in Lt1. This is much simpler than true recursive programming.

Procedure IcoRecu;

{ Recursive Subdivision

  Old 1-2-3

  New 1-4-6, 4-5-6, 4-2-5, 6-5-3

         3

      6     5

    1    4    2      }

Var x1,x2,x3,x4,x5,x6: XYZ;

    k: Integer;

Begin

For i:=1 to tri Do Lt2[i]^:=Lt1[i]^;

k:=0;

For i:=1 to tri Do

Begin

With Lt2[i]^Do

 Begin

 x1:=t1; x2:=t2; x3:=t3;

 End;

 SubDivi(x1,x2,x4);

 SubDivi(x2,x3,x5);

 SubDivi(x3,x1,x6);

With Lt1[k]^ Do

  Begin t1:=x1; t2:=x4; t3:=x6;

  End;

 Inc(k);

 With Lt1[k]^ Do

  Begin t1:=x4; t2:=x5; t3:=x6;

  End;

 Inc(k);

 With Lt1[k]^ Do

  Begin t1:=x4; t2:=x2; t3:=x5;

  End;

 Inc(k);

 With Lt1[k]^ Do

  Begin t1:=x6; t2:=x5; t3:=x3;

  End;

 End;

 tri:=k;

End;
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4. Edge Lengths
An original triangle 1-2-3 (subdivision level 0) delivers by subdivision four triangles 1-4-6,4-2-5,

6-5-3 and 4-5-6. This is subdivision level 1. The vertex numbers are local in this example.

a

a
b

e

Subdivision level 0 , 20 triangles:

e = 1.051462

α = 60°

Subdivision level 1 , 80 triangels:

a = 0.546533

b = 0.618034

α = 68.862°

β = 55.569°

γ = 60.000°

Subdivision level 2 , 320 triangels:

a = 0.275905

b = 0.321244

c = 0.312869

d = 0.285473

e = 0.324920

α = 54.397° ... 71.206°  (8 angles)

α

β

β

a

a
b

e

a

d c

a

c

c
d

e

e

3 angles

   γ= 60°

For architecture it would be interesting to use the same edgelengths with a minor deviation

from the true sphere shape. This is not possible. Equal edgelenghts can be achieved only by a

flat subdivision of the original triangles. Any projection towards the sphere surface creates

different edgelengths.



65. Normal Vectors
Because the Icosahedron is embedded into a sphere, each vertex vector is also the normal

vector at this position. For Gouraud shading the normal vector is assigned directly to the vertex.

For facetted shading it is necessary to take the mean value of three vertices for the triangle.

Procedure IcoShow;

Var i,sel: Integer;

Begin

 sel:=1;

 For i:=1 to tri Do

  Begin

  With Lt1[i]^ Do

Begin

x1:=t1; x2:=t2; x3:=t3;

End;

 x1.x:=Ra*x1.x; x1.y:=Ra*x1.y; x1.z:=Ra*x1.z;

 x2.x:=Ra*x2.x; x2.y:=Ra*x2.y; x2.z:=Ra*x2.z;

 x3.x:=Ra*x3.x; x3.y:=Ra*x3.y; x3.z:=Ra*x3.z;

ObjTra3D(x1,x1); { Rotate object }

ObjTra3D(x2,x2);

ObjTra3D(x3,x3);

Abbild3R(x1,p1,sel); { Map to Raster }

Abbild3R(x2,p2,sel);

Abbild3R(x3,p3,sel);

If Psoft=1 Then

Begin { Gouraud }

LicMod(x1,x1,c1,sel); { Luminance }

LicMod(x2,x2,c2,sel);

LicMod(x3,x3,c3,sel);

End Else

Begin { Facetted }

n.x:=x1.x+x2.x+x3.x;

n.y:=x1.y+x2.y+x3.y;

n.z:=x1.z+x2.z+x3.z;

LicMod(x1,n,c1,sel);

c2:=c1; c3:=c1;

End;

If Pbody=1 Then

FillTriS(p1,p2,p3,c1,c2,c3,sel);

If Pgrid=1 Then

DrawSTria(p1,p2,p3,c0,c0,c0,sel);

  End;

End;



76. Subdivided Icosahedrons
Left side facetted shading, right side Gouraud shading. Grids are Z-buffered

  Level 1 80 triangles

  Level 2     320 triangles

  Level 3  1280 triangles

  Level 4    5120 triangles (p.9)



87. Texture Mapping Principles
A part of an image is mapped as a texture onto a part of the body. The relevant part of the

texture image is described by a t,u-frame. The mapping area on the body is defined by a

parameter plane a,b-frame.

The Icosahedron doesn´t have a parameter plane a,b so far. This has to be generated additionally.

The parameter plane is either a set of sphere coordinates or a set of cylinder coordinates,

which is calculated for each vertex. An alternative would be a set of Mercator cylinder coordinates.

Procedure IcoPara;

{ Assign Parameters to vertices    }

{ a =     -pi..    +pi

b = -0.5*pi..+0.5*pi or -1..+1 }

Var i,flag  : Integer;

a1,a2,a3,b1,b2,b3,r1,r2,r3 : Single;

Begin

For i:=1 to tri Do

Begin

With Lt1[i]^Do

 Begin

 atangens(t1.y,t1.x,a1,flag);

 atangens(t2.y,t2.x,a2,flag);

 atangens(t3.y,t3.x,a3,flag);

 Use here one of the sets (right side)

 End;

 With Par[i]^Do

 Begin

 pa1:=a1; pa2:=a2; pa3:=a3;

 pb1:=b1; pb2:=b2; pb3:=b3;

 End;

End;

End;

A. Set of sphere coordinates

 r1:=Sqrt(Sqr(t1.x)+Sqr(t1.y));

 r2:=Sqrt(Sqr(t2.x)+Sqr(t2.y));

 r3:=Sqrt(Sqr(t3.x)+Sqr(t3.y));

 atangens(t1.z,r1,b1,flag);

 atangens(t2.z,r2,b2,flag);

 atangens(t3.z,r3,b3,flag);

B. Set of cylinder coordinates

 b1:=t1.z;

 b2:=t2.z;

 b3:=t3.z;

Note:

atangens is the same as atan2 in C



98. Texture Mapping Examples
The upper image shows a level 4 subdivision -  5120 triangles. The sphere is rotated by yaw

and pitch. Rotation is provided because the texture is mapped to the body in body fixed

coordinates. The lower sphere is not rotated, the unavoidable singularity at the poles is not

visible.



109. Résumé

The level 3 Icosahedron subdivision results in 1280 triangles. The originally five segments are

subdivided three times by two, which results in 40 angle steps of 9° .

Though we have approximately the same number of triangles, the resolution is not considerably

better.

This is a surprising result, because the shrinking size of the trapezoids near to the poles in

sphere coordinates lead to the assumption, that much calculation time is wasted.

Opposed to Icosahedron tessellation, the sphere coordinate tessellation can be done without

storing huge coordinate tables. Furtheron, the texture mapping is much simpler in sphere

coordinates.

But here we have one exception: if the texture is mapped per triangle, a structure like a golf ball,

or equally distributed noise, then the Icosahedron tessellation is probably better.

In this example we have mapped one texture image to four triangles, which is slightly more

complex than mapping each image to one triangle. The image itself has a special rotational

symmetry.

Is it worth to use subdivided Icosahedrons instead of ordinary sphere coordinates?

A sphere may be divided in 10° steps in sphere coordinates. For the latitude from -90° to +90°

and the longitude from 0° to 360° we get a mesh with 648 trapezoids or 1296 triangles.
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