
ABI for the ARM Architecture (Base Standard)

Application Binary Interface for
the ARM® Architecture

The Base Standard

Document number: ARM IHI 0036B, current through ABI release 2.08
Date of Issue: 10th October 2008, reissued 28th October 2009

Abstract
This document describes the structure of the Application Binary Interface (ABI) for the ARM architecture, and
links to the documents that define the base standard for the ABI for the ARM Architecture. The base standard
governs inter-operation between independently generated binary files and sets standards common to ARM-
based execution environments.

Keywords
ABI for the ARM architecture, ABI base standard, embedded ABI

How to find the latest release of this specification or report a defect in it
Please check the ARM Information Center (http://infocenter.arm.com/) for a later release if your copy is more than one year old
(navigate to the Software Development Tools section, Application Binary Interface for the ARM Architecture subsection).

Please report defects in this specification to arm dot eabi at arm dot com.

Licence
THE TERMS OF YOUR ROYALTY FREE LIMITED LICENCE TO USE THIS ABI SPECIFICATION ARE GIVEN IN SECTION
1.4, Your licence to use this specification (ARM contract reference LEC-ELA-00081 V2.0). PLEASE READ THEM
CAREFULLY.

BY DOWNLOADING OR OTHERWISE USING THIS SPECIFICATION, YOU AGREE TO BE BOUND BY ALL OF ITS
TERMS. IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR USE THIS SPECIFICATION.

THIS ABI SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES (SEE SECTION 1.4 FOR DETAILS).

Proprietary notice
ARM, Thumb, RealView, ARM7TDMI and ARM9TDMI are registered trademarks of ARM Limited. The ARM logo
is a trademark of ARM Limited. ARM9, ARM926EJ-S, ARM946E-S, ARM1136J-S ARM1156T2F-S ARM1176JZ-S
Cortex, and Neon are trademarks of ARM Limited. All other products or services mentioned herein may be
trademarks of their respective owners.

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 1 of 15

http://infocenter.arm.com/

ABI for the ARM Architecture (Base Standard)

Contents

1 ABOUT THIS DOCUMENT 3

1.1 Change control 3
1.1.1 Current status and anticipated changes 3
1.1.2 Change history 3

1.2 References 3

1.3 Terms and abbreviations 4

1.4 Your licence to use this specification 4

1.5 Acknowledgements 5

2 SCHEMATIC MAP OF THE ABI FOR THE ARM ARCHITECTURE 6

2.1 Notes about the schematic map 7

3 THE ABI FOR THE ARM ARCHITECTURE (BASE STANDARD) 8

3.1 Overview and documentation map 8

3.2 Procedure call standard for the ARM architecture 9

3.3 C++ ABI for the ARM architecture 9
3.3.1 The Generic C++ ABI 9
3.3.2 The C++ ABI supplement for the ARM architecture 10
3.3.3 The Exception handling ABI for the ARM architecture 10
3.3.4 The exception handling components specimen implementation 10

3.4 ELF for the ARM architecture 11
3.4.1 The generic ELF specification 11
3.4.2 ELF for the ARM architecture (processor supplement) 11

3.5 DWARF for the ARM architecture 12
3.5.1 DWARF 3.0 12
3.5.2 ABI DWARF usage conventions 12

3.6 Run-time ABI for the ARM architecture 12

3.7 The C library ABI for the ARM architecture 13

3.8 The base platform ABI for the ARM architecture 13

3.9 A note about ar format 13

3.10 Addenda to and errata in the ABI for the ARM Architecture 14
3.10.1 Build attributes 14
3.10.2 Thread local storage 15

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 2 of 15

ABI for the ARM Architecture (Base Standard)

1 ABOUT THIS DOCUMENT

1.1 Change control

1.1.1 Current status and anticipated changes
This document has been released publicly. Anticipated changes to this document include typographical
corrections and clarifications.

1.1.2 Change history
Issue Date By Change

1.0 30th October 2003 LS First public release.

2.0 /
 A

24th March 2005
24th October 2007

LS Second public release.
Document renumbered (formerly GENC-003535 v2.0).

B 10th October 2008 LS §3.9 fixed a typo and updated the reference to ar format.

1.2 References
This document refers to the following documents.

Ref External URL Title

AADWARF DWARF for the ARM Architecture

AAELF ELF for the ARM Architecture

AAPCS Procedure Call Standard for the ARM Architecture

ADDENDA Addenda to, and errata in, the ABI for the ARM Architecture

BPABI Base Platform ABI for the ARM Architecture

BSABI This document ABI for the ARM Architecture (Base Standard)

CLIBABI C Library ABI for the ARM Architecture

CPPABI C++ ABI for the ARM Architecture

EHABI Exception Handling ABI for the ARM Architecture

EHEGI Exception handling components, example
implementations

GC++ABI http://www.codesourcery.com/cxx-abi/abi.html Generic C++ ABI

GDWARF http://dwarf.freestandards.org/Dwarf3Std.php DWARF 3.0, the generic debug format.

GABI http://www.sco.com/developers/gabi/ … Generic ELF, 17th December 2003 draft.

GLSB http://www.linuxbase.org/spec/refspecs/ … gLSB v1.2 Linux Standard Base

Open BSD http://www.openbsd.org/ Open BSD standard

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 3 of 15

http://www.codesourcery.com/cxx-abi/abi.html
http://dwarf.freestandards.org/Dwarf3Std.php
http://www.sco.com/developers/gabi/
http://www.linuxbase.org/spec/refspecs/.html
http://www.linuxbase.org/spec/refspecs/LSB_1.2.0/gLSB/book1.html
http://www.openbsd.org/

ABI for the ARM Architecture (Base Standard)

Ref External URL Title

RTABI Run-time ABI for the ARM Architecture

1.3 Terms and abbreviations
The ABI for the ARM Architecture uses the following terms and abbreviations.

Term Meaning

AAPCS Procedure Call Standard for the ARM Architecture

ABI Application Binary Interface:

1. The specifications to which an executable must conform in order to execute in a specific
execution environment. For example, the Linux ABI for the ARM Architecture.

2. A particular aspect of the specifications to which independently produced relocatable
files must conform in order to be statically linkable and executable. For example, the
C++ ABI for the ARM Architecture, the Run-time ABI for the ARM Architecture, the C
Library ABI for the ARM Architecture.

AEABI (Embedded) ABI for the ARM architecture (this ABI…)

ARM-based … based on the ARM architecture …

core registers The general purpose registers visible in the ARM architecture’s programmer’s model,
typically r0-r12, SP, LR, PC, and CPSR.

EABI An ABI suited to the needs of embedded, and deeply embedded (sometimes called free
standing), applications.

Q-o-I Quality of Implementation – a quality, behavior, functionality, or mechanism not required by
this standard, but which might be provided by systems conforming to it. Q-o-I is often used
to describe the tool-chain-specific means by which a standard requirement is met.

VFP The ARM architecture’s Floating Point architecture and instruction set

1.4 Your licence to use this specification
IMPORTANT: THIS IS A LEGAL AGREEMENT (“LICENCE”) BETWEEN YOU (AN INDIVIDUAL OR SINGLE ENTITY WHO IS
RECEIVING THIS DOCUMENT DIRECTLY FROM ARM LIMITED) (“LICENSEE”) AND ARM LIMITED (“ARM”) FOR THE
SPECIFICATION DEFINED IMMEDITATELY BELOW. BY DOWNLOADING OR OTHERWISE USING IT, YOU AGREE TO
BE BOUND BY ALL OF THE TERMS OF THIS LICENCE. IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR
USE THIS SPECIFICATION.

“Specification” means, and is limited to, the version of the specification for the Applications Binary Interface for the
ARM Architecture comprised in this document. Notwithstanding the foregoing, “Specification” shall not include (i)
the implementation of other published specifications referenced in this Specification; (ii) any enabling technologies
that may be necessary to make or use any product or portion thereof that complies with this Specification, but are
not themselves expressly set forth in this Specification (e.g. compiler front ends, code generators, back ends,
libraries or other compiler, assembler or linker technologies; validation or debug software or hardware;
applications, operating system or driver software; RISC architecture; processor microarchitecture); (iii) maskworks
and physical layouts of integrated circuit designs; or (iv) RTL or other high level representations of integrated
circuit designs.

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 4 of 15

ABI for the ARM Architecture (Base Standard)

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 5 of 15

Use, copying or disclosure by the US Government is subject to the restrictions set out in subparagraph (c)(1)(ii) of
the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and
(2) of the Commercial Computer Software – Restricted Rights at 48 C.F.R. 52.227-19, as applicable.

This Specification is owned by ARM or its licensors and is protected by copyright laws and international copyright
treaties as well as other intellectual property laws and treaties. The Specification is licensed not sold.

1. Subject to the provisions of Clauses 2 and 3, ARM hereby grants to LICENSEE, under any intellectual
property that is (i) owned or freely licensable by ARM without payment to unaffiliated third parties and (ii)
either embodied in the Specification or Necessary to copy or implement an applications binary interface
compliant with this Specification, a perpetual, non-exclusive, non-transferable, fully paid, worldwide limited
licence (without the right to sublicense) to use and copy this Specification solely for the purpose of
developing, having developed, manufacturing, having manufactured, offering to sell, selling, supplying or
otherwise distributing products which comply with the Specification.

2. THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES EXPRESS, IMPLIED OR STATUTORY,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF SATISFACTORY QUALITY, MERCHANTABILITY,
NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE. THE SPECIFICATION MAY INCLUDE
ERRORS. ARM RESERVES THE RIGHT TO INCORPORATE MODIFICATIONS TO THE SPECIFICATION IN
LATER REVISIONS OF IT, AND TO MAKE IMPROVEMENTS OR CHANGES IN THE SPECIFICATION OR THE
PRODUCTS OR TECHNOLOGIES DESCRIBED THEREIN AT ANY TIME.

3. This Licence shall immediately terminate and shall be unavailable to LICENSEE if LICENSEE or any party
affiliated to LICENSEE asserts any patents against ARM, ARM affiliates, third parties who have a valid
licence from ARM for the Specification, or any customers or distributors of any of them based upon a
claim that a LICENSEE (or LICENSEE affiliate) patent is Necessary to implement the Specification. In this
Licence; (i) “affiliate” means any entity controlling, controlled by or under common control with a party (in
fact or in law, via voting securities, management control or otherwise) and “affiliated” shall be construed
accordingly; (ii) “assert” means to allege infringement in legal or administrative proceedings, or
proceedings before any other competent trade, arbitral or international authority; (iii) “Necessary” means
with respect to any claims of any patent, those claims which, without the appropriate permission of the
patent owner, will be infringed when implementing the Specification because no alternative, commercially
reasonable, non-infringing way of implementing the Specification is known; and (iv) English law and the
jurisdiction of the English courts shall apply to all aspects of this Licence, its interpretation and
enforcement. The total liability of ARM and any of its suppliers and licensors under or in relation to this
Licence shall be limited to the greater of the amount actually paid by LICENSEE for the Specification or
US$10.00. The limitations, exclusions and disclaimers in this Licence shall apply to the maximum extent
allowed by applicable law.

ARM Contract reference LEC-ELA-00081 V2.0 AB/LS (9 March 2005)

1.5 Acknowledgements
This specification has been developed with the active support of the following organizations. In alphabetical order:
ARM, CodeSourcery, Intel, Metrowerks, Montavista, Nexus Electronics, PalmSource, Symbian, Texas
Instruments, and Wind River.

ABI for the ARM Architecture (Base Standard)

2 SCHEMATIC MAP OF THE ABI FOR THE ARM ARCHITECTURE
Figure 1, A schematic map of the ABI for the ARM Architecture and some related standards

Generic build parameters ↓
I n ter face between ob jec t p roduc ing too ls and s ta t ic execut ion env i ronments (OSes)

Base platform executables (for platform-specific post-linking and ROM generation) ↑

R
el

at
ed

 s
ta

nd
ar

ds

Intel XScale ABI

… and ABIs s for other

CPUs that implement the
ARM architecture …

ARM C/C++
language

extensions

Etc, etc …

Basic ARM
assembly
language

Etc …

DLL-based
platform family

SVr4
platform family

Bare metal
platform family C

on
cr

et
e

pl
at

fo
rm

 s
ta

nd
ar

ds

Palm OS ABI

Application
standards +

build
parameters

…

 QNX

 ARM Linux

ABI
Application
standards +

build
parameters

RTOS … N

 RTOS 2

 RTOS 1

Choice of
AAPCS,

memory map,
etc…

Symbian OS
ABI

Application
standards +

build
parameters

A
B

I f
or

 th
e

A
R

M
 A

rc
hi

te
ct

ur
e

(b
as

e
st

an
da

rd
)

Base Platform ABI

Single address space Multiple virtual address spaces

“Bare metal”

No dynamically loaded
executables. The
RTOS is statically
linked with the
executable in ROM.

DLL-like

A shared library (DLL)
can be threaded by
multiple processes in
one address space.

DLL-like

A DLL can be mapped
at the same address in
multiple virtual address
spaces.

SVr4-like

A DSO can be mapped
at a different address
in each process that
threads it.

AAPCS

Procedure Call
Standard for the
ARM architecture

CPPABI - C++ ABI for the
ARM architecture

EHABI –
Exception
Handling
ABI …

RTABI –
Run-time ABI
for the ARM
architecture The

Generic
C++ ABI

(aka Itanium

C++ ABI)

AAELF – ELF
for the ARM
architecture

The generic
ELF

standard

(SVr4 GABI)

AADWARF –
DWARF for

the ARM
architecture

DWARF 3.0

ar format
Debug ABI for the ARM

architecture

CLIBABI –
ANSI C

library ABI…

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 6 of 15

ABI for the ARM Architecture (Base Standard)

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 7 of 15

2.1 Notes about the schematic map
Pale gray boxes depict the most important components of the base standard for the ABI for the ARM Architecture.

Pastel blue (or darker gray on a gray-scale printed copy) boxes depict the most important external standards we
refer to. We do not show them all – for example, we also refer to the ANSI standards for programming languages
C and C++ and to the IEEE 754 standard for floating-point arithmetic.

The tan (also darker gray on a gray-scale printed copy) annotation boxes label groups of related standards that
might be developed in the future, and a pastel green box (pale gray on a gray-scale printed copy) encloses all
components (direct and referenced) of the ABI for the ARM Architecture (base standard).

The size of each box is unrelated to the size or significance of the component depicted.

Sections depicted with white boxes on a tan background are beyond the scope of this base standard. In each
case the section involves either or both of the following.

 A third party on whom there is no obligation to contribute.

 Future intentions to which there is no current commitment.

The sections depicted with white boxes on a tan background show the position of this base standard in a larger
context. They depict some of the ways in which those affected by this ABI standard might like to grow it, and how
the base standard would relate to other plausible pieces of a larger jigsaw of ARM architecture-related standards.
In no case shall this depiction be interpreted as an intention or commitment by ARM or any third party to create
the component standard depicted.

Section 3, below, describes the base standard in detail and refers to each of its components.

ABI for the ARM Architecture (Base Standard)

3 THE ABI FOR THE ARM ARCHITECTURE (BASE STANDARD)

3.1 Overview and documentation map
The ABI for the ARM Architecture is a collection of standards, some open and some specific to the ARM
architecture, that regulate the inter-operation of binary files and development tools in a spectrum of ARM-based
execution environments from bare metal to major operating systems such as ARM Linux. We expect that ABIs for
specific execution environments will build on, and extend, the slices of this ABI that apply to them.

Standardizing the inter-operation of binary files requires standardizing certain aspects of code generation itself, so
this base standard is aimed principally at the authors and vendors of C and C++ compilers, linkers, and run-time
libraries. In general, there can be no complying executable files until there are complying relocatable files.

Table 1, Documentation map of the ABI for the ARM architecture base standard

Component standard Base standard

The Procedure Call Standard for the ARM Architecture [AAPCS],
is summarized in §3.2.

None.

The C++ ABI for the ARM Architecture [CPPABI] is summarized
in §3.3. It details where the C++ ABI for the ARM architecture
deviates from the base standard.

The Exception Handling ABI for the ARM Architecture [EHABI], is
summarized in §3.3.3. It describes C++-specific and language-
independent exception processing.

The Generic C++ ABI (aka C++ ABI for
Itanium).

http://www.codesourcery.com/cxx-abi/abi.html.

ELF for the ARM Architecture [AAELF] is summarized in §3.4. It
gives processor-specific and platform-specific details not given
in the generic ELF specification.

The generic ELF standard (SVr4 GABI), 17th
December 2003 draft.
http://www.sco.com/developers/gabi/ …

DWARF for the ARM Architecture [AADWARF] is summarized in
§3.5. It describes how DWARF should be used to promote inter-
operation between independent producers and consumers.

DWARF 3.0.

http://dwarf.freestandards.org/Dwarf3Std.php

The Run-time ABI for the ARM Architecture [RTABI] is
summarized in §3.6. It specifies a helper- function ABI to support
C, C++, and arithmetic (floating-point, integer division, and non-
trivial long long arithmetic).

The Unix ar format is the base standard for
libraries of relocatable ELF files (see §3.9).

The C Library ABI for the ARM Architecture [CLIBABI], is
summarized in §3.7 It describes an ANSI C library ABI that can
easily be supported by existing libraries.

ISO/ IEC 9899:1990 Programming languages
– C, with some reference to ISO/ IEC
9899:1999. See also §3.9 re ar format.

The Base Platform ABI for the ARM Architecture [BPABI], is
summarized in §3.8. It specifies executable and shared object
files suited to the execution environments supported by this ABI,
and the static linker functionality required to create them.

The generic ELF standard (SVr4 GABI), 17th
December 2003 draft.
http://www.sco.com/developers/gabi/ …

Linux Standard Base v1.2 specification [GLSB].

Addenda to, and errata in, the ABI for the ARM Architecture
[ADDENDA] contains late additions to this version of the ABI
specification, summarized in §3.10.

None.

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 8 of 15

http://www.codesourcery.com/cxx-abi/abi.html
http://www.caldera.com/developers/gabi/
http://dwarf.freestandards.org/Dwarf3Std.php
http://www.sco.com/developers/gabi/

ABI for the ARM Architecture (Base Standard)

The ABI for the ARM architecture base standard comprises the component standards listed in Table 1. The scope
and purpose of each component is explained in following subsections referred to from the table.

3.2 Procedure call standard for the ARM architecture
The Procedure Call Standard for the ARM architecture [AAPCS] specifies:

 The size, alignment, and layout of C and C++ Plain Old Data (POD) types including

- Primitive data types.

- Structures.

- Enumerated types.

- Bit field types.

 Primitive types specific to C++ (references and pointers to members).

 How to pass control and data between publicly visible functions. A function is publicly visible if its callers are
translated separately from it, and some callers might have no knowledge of how it was translated, other than
that it conforms to the AAPCS.

(When the public visibility of F is made explicit – for example by using a #pragma or annotation such as
__export or __declspec(dllexport) – we also describe F as exported).

 Use of the run-time stack, and the stack invariants that must be preserved.

3.3 C++ ABI for the ARM architecture
The C++ ABI for the ARM architecture comprises four sub-components.

 The generic C++ ABI, summarized in §3.3.1, is the referenced base standard for this component.

 The C++ ABI supplement for the ARM architecture, summarized in §3.3.2, details ARM-specific deviations
from the generic standard and records ARM-specific interpretations of it.

 The separately documented Exception Handling ABI for the ARM Architecture, summarized in §3.3.3,
describes the language-independent and C++-specific aspects of exception handling.

 The specimen implementations of the exception handling components, summarized in §3.3.4, include:

- A language independent unwinder.

- A C++ semantics module.

- ARM-specific C++ personality routines.

3.3.1 The Generic C++ ABI
The generic C++ ABI (originally developed for Itanium, [GC++ABI]) specifies:

 The layout of C++ non-POD class types in terms of the layout of POD types (specified for this ABI by the
Procedure Call Standard for the ARM Architecture, summarized in §3.2).

 How class types requiring copy construction are passed as parameters and results.

 The content of run-time type information (RTTI).

 Necessary APIs for object construction and destruction.

 How names with linkage are represented as ELF symbols (name mangling).

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 9 of 15

ABI for the ARM Architecture (Base Standard)

The generic C++ ABI refers to a separate Itanium-specific specification of exception handling. When the generic
C++ ABI is used as a component of this ABI, corresponding reference must be made to the Exception Handling
ABI for the ARM Architecture (§3.3.3).

3.3.2 The C++ ABI supplement for the ARM architecture
The ARM C++ ABI supplement is a major section in the document C++ ABI for the ARM Architecture [CPPABI].

The ARM C++ ABI supplement describes where the C++ ABI for the ARM architecture necessarily diverges from
the generic C++ ABI, because Itanium-specifics that cannot work (efficiently) for the ARM architecture show
through an otherwise generic specification. For example, the generic encoding of a pointer to member function
uses the least significant bit of a word to distinguish a code address from a v-table offset. The ARM architecture
uses the same bit to distinguish ARM-code from Thumb-code, so the ARM ABI must deviate.

3.3.3 The Exception handling ABI for the ARM architecture
In common with the Itanium exception handling ABI, the Exception Handling ABI for the ARM architecture [EHABI]
specifies table-based stack unwinding that separates language-independent unwinding from language specific
concerns. The ARM specification describes:

 The base class understood by the language-independent exception handling system, and its representation in
object files. The language-independent exception handler only uses fields from this base class.

 A derived class used by ARM tools that efficiently encodes stack-unwinding instructions and compactly
represents the data tables needed for handling C++ exceptions.

 The interface between the language-independent exception handling system and the personality routines
specific to a particular implementation for a particular language. Personality routines interpret the language
specific, derived class tables. Conceptually (though not literally, for reasons of implementation convenience
and run-time efficiency), personality routines are member functions of the derived class.

 The interfaces between the (C++) language exception handling semantics module and

- The language independent exception handling system.

- The personality routines.

- The (C++) application code (effectively the interface underlying throw).

The Exception Handling ABI for the ARM Architecture contains a significant amount of commentary to aid and
support independent implementation of:

 Personality routines.

 The language-specific exception handling semantics module.

 Language independent exception handling.

This commentary does not provide, and is not intended to provide, a complete guide to independent
implementation, but it does give a rationale for the interfaces to, and among, these components.

3.3.4 The exception handling components specimen implementation

Licence to use the exception handling components specimen implementation

The licence to use the specimen implementation of the exception handling components is included in the zip file
containing them (as the file LICENCE.txt) and referred to from each source file. It is broadly similar in scope and
intent to the licence to use this specification displayed in §1.4 of this document.

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 10 of 15

ABI for the ARM Architecture (Base Standard)

Contents of the exception handling components example implementation

The exception handling components example implementation [EHEGI] comprises the following files.

 cppsemantics.cpp is a module that implements the semantics of C++ exception handling. It uses the
language-independent unwinder (unwinder.c), and is used by the ARM-specific personality routines
(unwind_pr.[ch]).

 cxxabi.h describes the generic C++ ABI (§3.3.1).

 LICENCE.txt contains your licence to use, copy, modify, and sublicense the specimen implementation.

 unwind_env.h is a header that describes the build and execution environments of the exception handling
components. This header must be edited if the exception handling components are to be built with non-ARM
compilers. This header #includes cxxabi.h.

 unwind_pr.c implements the three ARM-specific personality routines described in the Exception Handling ABI
for the ARM Architecture.

 unwinder.c is an implementation of the language-independent unwinder.

 unwinder.h describes the interface to the language-independent unwinder, as described in the Exception
Handling ABI for the ARM Architecture.

3.4 ELF for the ARM architecture
ELF for the ARM architecture comprises two components.

 The generic ELF specification, summarized in §3.4.1.

 The ELF processor supplement for the ARM architecture, summarized in §3.4.2.

3.4.1 The generic ELF specification
The generic Executable and Linking Format specification was originally developed for Unix System V by AT&T.
The latest version and the most recent stable drafts are published by The SCO Group at [GABI]. They specify:

 The format and meaning of statically linkable object files.

 The format and meaning of executable and shared-object files.

In each case, a supplement specifies processor-specific and platform-specific aspects.

 The enumeration of relocation directives is specific to a processor. Often, this is the only processor-specific
facet of statically linkable (relocatable) ELF files.

 For executable files a platform-specific supplement specifies the interface to loading and dynamic linking.

3.4.2 ELF for the ARM architecture (processor supplement)
ELF for the ARM Architecture [AAELF] describes the following.

 The representation in ELF and generation of cross-platform executable file information required by the Base
Platform ABI for the ARM Architecture (§3.8 and [BPABI]).

- Symbol versioning information.

- Symbol pre-emption information.

- Procedure linkage table (PLT) entries, also known to users of the ARM architecture as intra-call veneers.

 The enumeration of static and dynamic relocation directives.

 Processor-specific flags and conventions (for example, the Mapping symbols described in §4.5 of [AAELF],
used to accommodate the use of the ARM and Thumb instruction sets in the same code section).

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 11 of 15

ABI for the ARM Architecture (Base Standard)

 Two kinds of big-endian executable file (corresponding to the two flavors of big-endian code defined by ARM
architecture v6 – in a BE8 big-endian executable file, code is nonetheless encoded little-endian).

 Miscellaneous ARM-specific executable and shared-object flags and section types used by the ABI for the
ARM Architecture.

The Base Platform ABI for the ARM Architecture (§3.8 and [BPABI]) specifies how ELF is used to support the
executable file organizations and execution environments depicted in Figure 1.

3.5 DWARF for the ARM architecture
DWARF for the ARM architecture comprises two components.

 The generic DWARF specification, DWARF 3.0, summarized in §3.5.1.

 The ARM DWARF usage conventions, summarized in §3.5.2.

3.5.1 DWARF 3.0
DWARF 3.0 [GDWARF] makes precise many ambiguous and ill-defined aspects of the DWARF 2.0 specification,
and extends that specification with:

 Additional constructs for describing optimized code and stack unwinding.

 Additional constructs for describing C++, Java, and Fortran 90.

3.5.2 ABI DWARF usage conventions
The ABI DWARF usage conventions are described in section 3 of the document DWARF for the ARM Architecture
[AADWARF]. This section defines:

 An ARM-specific allocation of DWARF register numbers (in .debug_frame unwind descriptions).

 How ARM-state and Thumb-state are encoded in DWARF line number tables.

 How to describe data known to be in the other byte order (ARM architecture v6 access to other-endian data).

 The Canonical Frame Address (CFA).

 The default interpretation of debug frame Common Information Entries (CIEs).

3.6 Run-time ABI for the ARM architecture
The run-time helper-function ABI is described in the document Run-time ABI for the ARM Architecture [RTABI].

The run-time helper-function ABI specifies how relocatable files produced by one tool chain must inter-operate
with the run-time library from a different tool chain or execution environment. It gives a simple model of what a
producer may assume of its output’s eventual static linking and execution environments. It defines the following.

 A minimum model of floating-point arithmetic, based on the IEEE 754 floating-point arithmetic standard:

- To which producers of relocatable files must conform.

- Which producers of relocatable files can assume of the eventual execution environment.

(The model sets a minimum standard. Implementers may implement the full IEEE 754 specification).

 The type signatures, meaning, and allowable names of the helper functions that all conforming static linking
environments must support. The set of helper functions is divided into those required by C and assembly
language, and those required only by C++.

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 12 of 15

ABI for the ARM Architecture (Base Standard)

 The provision, as part of the relocatable object itself or in separately delivered libraries, of all other helper
functions used by a translation unit.

Libraries of relocatable ELF files must be formatted as Unix-style ar format linkable libraries (see §3.9, below).

3.7 The C library ABI for the ARM architecture
The C library ABI is described in the document C Library ABI for the ARM Architecture [CLIBABI].

The C library ABI specifies:

 A binary interface to the C89 run-time library that allows a C-library-using function built by one tool chain to
use the C library implementation provided by another.

 Constraints on language library headers necessary to allow tool chain X to use its own headers, or tool chain
Y’s headers, when building an object that must interface to tool chain Y's run-time library.

Compliance with this specification is a header-by-header quality of implementation issue. Compliance is not
required in order to claim compliance to this base standard ABI for the ARM architecture.

Libraries of relocatable ELF files must be formatted as Unix-style ar format linkable libraries (see §3.9, below).

3.8 The base platform ABI for the ARM architecture
The base platform ABI is described in the document Base Platform ABI for the ARM Architecture [BPABI].

The base platform ABI specifies:

 The content and format of ELF-based executable files suitable for post-processing to platform-specific binary
formats appropriate to the families of execution environment supported by this ABI (Figure 1).

 The division of responsibility between static linkers generating fully symbolic executable ELF files and post-
linkers generating less symbolic, platform-specific executable files.

 The static linking functionality needed to generate a generic executable file – the functionality needed to
encompass the platform families supported by this ABI.

In most cases, some platform-specific post-processing is required to produce a platform executable file, but the
complexity of the post processor is limited.

 For the SVr4 platform family, the required post-processing is a tiny increment on the static linking needed to
generate a BPABI executable file. We expect most static linkers will offer an option to directly generate an
executable file for Linux.

 For the DLL-based platform families platform-specific post-linking is significant, but little more complicated
than an off-line version of SVr4 dynamic linking followed by a file format conversion.

 The bare metal platform family may demand additional static linking functionality to manage separate load and
execution addresses and multiple image segments. Extracting such segments from an ELF executable file to
drive ROM generating tools is trivial in comparison with the above tasks.

We expect post linking to be used primary in support of DLL-based platforms and specialized execution
environments that feature dynamically loaded executable files.

3.9 A note about ar format
This ABI specifies that libraries of relocatable ELF files must be formatted as Unix-style ar format linkable libraries.
This section specifies the ar variant used by ARM tools.

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 13 of 15

ABI for the ARM Architecture (Base Standard)

Unfortunately, ar format is not well standardized, and good public references to the format are hard to find. The ar
command is deprecated from the Linux base standard [GLSB] which states that it is “… expected to disappear
from a future version of the LSB”.

A good general introduction to ar format, including a brief history and a warning about the incompatibility of its
variants, is given in the Manuals section of [Open BSD]. Search there for ar in section 5 – File Formats. However,
please be aware of the following concerning the name field in archive headers.

 Different ar variants manage long file names (> 14 characters), and file names containing spaces, differently.

 RealView tools from ARM do not use the BSD file name conventions described at [Open BSD].

Recently, we have found a Wikipedia article about ar format [http://en.wikipedia.org/wiki/Ar_(Unix)]. The GNU
variant it describes is similar to the RealView variant summarized immediately below with this difference.

 As of early October 2008, this Wikipedia article claims that the 32-bit binary integers in the symbol table
member (called ‘/’) are encoded big endian.

 ARM targeted GNU tools and RealView tools always encode binary data using the byte order of the target
system – little endian for little endian targets and big endian for big endian targets.

ar format conventions used by RealView tools and ARM-targeted GNU tools

File names recorded in archive member headers are terminated with a ‘/’. This allows short (≤ 14 characters)
names to contain spaces.

The symbol table member (always present if an archive contains relocatable files) has the header name ‘/’. The
symbol table member contains, in order:

 A 32-bit count of the number of symbols in the table. The byte order is that of the target system.

 For each symbol, the 32-bit offset within the archive of the header of the member defining it. The byte order is
that of the target system.

 The NUL-terminated name of each symbol, listed in the same order as the offsets.

There is always a file names member with the header name ‘//’. It contains the names of all the files in the archive.
Each name is terminated by ‘/’ followed by ‘\n’ (so the member contains only printable text).

If the file name of an archive member is longer than 14 characters, its header name is ‘/’ followed by the decimal
offset of its name in the file names member. Otherwise the header name is the file name of the member.

Ordinary members follow the symbol table member and the file names member.

3.10 Addenda to and errata in the ABI for the ARM Architecture
Addenda to, and errata in, the ABI for the ARM Architecture [ADDENDA] contains late additions to version 2.0 (this
version) and will contain any significant additions made during future maintenance of v2.0.

As of the publication of v2.0 of the ABI for the ARM Architecture (date shown on page 1 of this document), there
are two addenda, Build Attributes and Thread Local Storage.

As of this publication date (shown on page 1 of this document) there are no errata.

3.10.1 Build attributes
Build attributes record:

 The use of architectural features and ABI variants by the code and data in a relocatable file.

 To a limited extent, the intentions of the builder of the file.

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 14 of 15

http://en.wikipedia.org/wiki/Ar_(Unix)

ABI for the ARM Architecture (Base Standard)

ARM IHI 0036B Copyright © 2003-2005, 2007, 2008 ARM Limited. All rights reserved. Page 15 of 15

Attributes allow linkers to determine whether separately built relocatable files are inter-operable or incompatible,
and to select the variant of a required library member that best matches the intentions of their builders.

3.10.2 Thread local storage
Thread Local Storage (TLS) is a class of own data (static storage) that – like the stack – is instanced once for
each thread of execution.

This addendum defines the thread local storage (TLS) model for Linux for the ARM architecture. It covers:

 An introduction to the ABI issues raised by thread local storage.

 An introduction to addressing thread local variables.

 How Linux for the ARM architecture addresses thread local variables.

- How thread local variables must be addressed from dynamically loadable DSOs.

- How thread local variables may be addressed more efficiently from applications and DSOs loaded only
when a process is created.

The Linux-specific TLS relocations are described in [AAELF] (§3.4).

	1 ABOUT THIS DOCUMENT
	1.1 Change control
	1.1.1 Current status and anticipated changes
	1.1.2 Change history

	1.2 References
	1.3 Terms and abbreviations
	Your licence to use this specification
	Acknowledgements

	2 SCHEMATIC MAP OF THE ABI FOR THE ARM ARCHITECTURE
	2.1 Notes about the schematic map

	3 THE ABI FOR THE ARM ARCHITECTURE (BASE STANDARD)
	3.1 Overview and documentation map
	3.2 Procedure call standard for the ARM architecture
	3.3 C++ ABI for the ARM architecture
	3.3.1 The Generic C++ ABI
	3.3.2 The C++ ABI supplement for the ARM architecture
	3.3.3 The Exception handling ABI for the ARM architecture
	3.3.4 The exception handling components specimen implementation

	3.4 ELF for the ARM architecture
	3.4.1 The generic ELF specification
	3.4.2 ELF for the ARM architecture (processor supplement)

	3.5 DWARF for the ARM architecture
	3.5.1 DWARF 3.0
	3.5.2 ABI DWARF usage conventions

	3.6 Run-time ABI for the ARM architecture
	3.7 The C library ABI for the ARM architecture
	3.8 The base platform ABI for the ARM architecture
	3.9 A note about ar format
	3.10 Addenda to and errata in the ABI for the ARM Architecture
	3.10.1 Build attributes
	3.10.2 Thread local storage

