
Articles

 Preface 2

 Foreword 3

 Hyper-Threading Technology Architecture and Microarchitecture 4

 Pre-Silicon Validation of Hyper-Threading Technology 16

 Speculative Precomputation:

 Exploring the Use of Multithreading for Latency Tools 22

 Intel® OpenMP C++/Fortran Compiler for Hyper-Threading Technology:

 Implementation and Performance 36

 Media Applications on Hyper-Threading Technology 47

 Hyper-Threading Technology: Impact on Compute-Intensive Workloads 58

Intel Technology Journal

Hyper-Threading Technology
Table of Contents

Volume 06 Issue 01 Published February 14, 2002 ISSN 1535766X

Preface q1. 2002

By Lin Chao, Publisher Intel Technology Journal

This February 2002 issue of the Intel Technology Journal (ITJ) is full of new things. First, there

is a new look and design. This is the first big redesign since the inception of the ITJ on the Web

in 1997. The new design, together with inclusion of the ISSN (International Standard Serial

Number), makes it easier to index articles into technical indexes and search engines. There are

new “subscribe,” search ITJ, and “e-mail to a colleague” features in the left navigation tool bar.

Readers are encouraged to subscribe to the ITJ. The benefit is subscribers are notified by e-mail

when a new issue is published.

The focus of this issue is Hyper-Threading Technology, a new microprocessor architecture

technology. It makes a single processor look like two processors to the operating system. Intel's

Hyper-Threading Technology delivers two logical processors that can execute different tasks

simultaneously using shared hardware resources. Hyper-Threading Technology effectively looks

like two processors on a chip. A chip with this technology will not equal the computing power of

two processors; however, it will seem like two, as the performance boost is substantial. Chips

enabled with Hyper-Threading Technology will also be cheaper than dual-processor computers:

one heat sink, one fan, one cooling solution, and one chip are what are necessary.

The six papers in this issue of the Intel Technology Journal discuss this new technology. The

papers cover a broad view of Hyper-Threading Technology including the architecture,

microarchitecture, pre-silicon validation and performance impact on media and compute-

intensive applications. Also included is an intriguing paper on speculative precomputation, a

technique that improves the latency of single -threaded applications by utilizing idle

multithreading hardware resources to perform long-range data prefetches.

ITJ Foreword Q1, 2002

Intel Hyper-Threading Technology

By Robert L. Cross

Multithreading Technologies Manager

Performance–affordable performance, relevant performance, and pervasively available performance–

continues to be a key concern for end users. Enterprise and technical computing users have a never-ending

need for increased performance and capacity. Moreover, industry analysts continue to observe that

complex games and rich entertainment for consumers, plus a wide range of new business uses, software,

and components, will necessitate growth in computing power.

Processor resources, however, are often underutilized and the growing gap between core processor

frequency and memory speed causes memory latency to become an increasing performance challenge.

Intel’s Hyper-Threading Technology brings Simultaneous Multi-Threading to the Intel Architecture and

makes a single physical processor appear as two logical processors with duplicated architecture state, but

with shared physical execution resources. This allows two tasks (two threads from a single application or

two separate applications) to execute in parallel, increasing processor utilization and reducing the

performance impact of memory latency by overlapping the memory latency of one task with the execution

of another. Hyper-Threading Technology-capable processors offer significant performance improvements

for multi-threaded and multi-tasking workloads without sacrificing compatibility with existing software or

single-threaded performance. Remarkably, Hyper-Threading Technology implements these improvements

at a very low cost in power and processor die size.

The papers in this issue of the Intel Technology Journal discuss the design, challenges, and performance

opportunities of Intel’s first implementation of Hyper-Threading Technology in the Intel® Xeon processor

family. Hyper-Threading Technology is a key feature of Intel’s enterprise product line and will be

integrated into a wide variety of products. It marks the beginning of a new era: the transition from

instruction-level parallelism to thread-level parallelism, and it lays the foundation for a new level of

computing industry innovation and end-user benefits.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other

countries.

Xeon is a trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Hyper-Threading Technology Architecture and Microarchitecture 4

Hyper-Threading Technology Architecture and
Microarchitecture

Deborah T. Marr, Desktop Products Group, Intel Corp.
Frank Binns, Desktop ProductsGroup, Intel Corp.

David L. Hill, Desktop Products Group, Intel Corp.
Glenn Hinton, Desktop Products Group, Intel Corp.

David A. Koufaty, Desktop Products Group, Intel Corp.
J. Alan Miller, Desktop Products Group, Intel Corp.

Michael Upton, CPU Architecture, Desktop Products Group, Intel Corp.

Index words: architecture, microarchitecture, Hyper-Threading Technology, simultaneous multi-
threading, multiprocessor

ABSTRACT

Intel’s Hyper-Threading Technology brings the concept
of simultaneous multi-threading to the Intel
Architecture. Hyper-Threading Technology makes a
single physical processor appear as two logical
processors; the physical execution resources are shared
and the architecture state is duplicated for the two
logical processors. From a software or architecture
perspective, this means operating systems and user
programs can schedule processes or threads to logical
processors as they would on multiple physical
processors. From a microarchitecture perspective, this
means that instructions from both logical processors
will persist and execute simultaneously on shared
execution resources.

This paper describes the Hyper-Threading Technology
architecture, and discusses the microarchitecture details
of Intel's first implementation on the Intel Xeon
processor family. Hyper-Threading Technology is an
important addition to Intel’s enterprise product line and
will be integrated into a wide variety of products.

Intel is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

INTRODUCTION
The amazing growth of the Internet and
telecommunications is powered by ever-faster systems
demanding increasingly higher levels of processor
performance. To keep up with this demand we cannot
rely entirely on traditional approaches to processor
design. Microarchitecture techniques used to achieve
past processor performance improvement–super-
pipelining, branch prediction, super-scalar execution,
out-of-order execution, caches–have made
microprocessors increasingly more complex, have more
transistors, and consume more power. In fact, transistor
counts and power are increasing at rates greater than
processor performance. Processor architects are
therefore looking for ways to improve performance at a
greater rate than transistor counts and power
dissipation. Intel’s Hyper-Threading Technology is one
solution.

Processor Microarchitecture
Traditional approaches to processor design have
focused on higher clock speeds, instruction-level
parallelism (ILP), and caches. Techniques to achieve
higher clock speeds involve pipelining the
microarchitecture to finer granularities, also called
super-pipelining. Higher clock frequencies can greatly
improve performance by increasing the number of
instructions that can be executed each second. Because
there will be far more instructions in-flight in a super-
pipelined microarchitecture, handling of events that
disrupt the pipeline, e.g., cache misses, interrupts and
branch mispredictions, can be costly.

Intel Technology Journal Q1, 2002

Hyper-Threading Technology Architecture and Microarchitecture 5

ILP refers to techniques to increase the number of
instructions executed each clock cycle. For example, a
super-scalar processor has multiple parallel execution
units that can process instructions simultaneously. With
super-scalar execution, several instructions can be
executed each clock cycle. However, with simple in-
order execution, it is not enough to simply have multiple
execution units. The challenge is to find enough
instructions to execute. One technique is out-of-order
execution where a large window of instructions is
simultaneously evaluated and sent to execution units,
based on instruction dependencies rather than program
order.

Accesses to DRAM memory are slow compared to
execution speeds of the processor. One technique to
reduce this latency is to add fast caches close to the
processor. Caches can provide fast memory access to
frequently accessed data or instructions. However,
caches can only be fast when they are small. For this
reason, processors often are designed with a cache
hierarchy in which fast, small caches are located and
operated at access latencies very close to that of the
processor core, and progressively larger caches, which
handle less frequently accessed data or instructions, are
implemented with longer access latencies. However,
there will always be times when the data needed will not
be in any processor cache. Handling such cache misses
requires accessing memory, and the processor is likely
to quickly run out of instructions to execute before
stalling on the cache miss.

The vast majority of techniques to improve processor
performance from one generation to the next is complex
and often adds significant die-size and power costs.
These techniques increase performance but not with
100% efficiency; i.e., doubling the number of execution
units in a processor does not double the performance of
the processor, due to limited parallelism in instruction
flows. Similarly, simply doubling the clock rate does
not double the performance due to the number of
processor cycles lost to branch mispredictions.

0

5

10

15

20

25

i486 Pentium(TM)
Processor

Pentium(TM) 3
Processor

Pentium(TM) 4
Processor

Power

Die Size

SPECInt Perf

Figure 1: Single-stream performance vs. cost

Figure 1 shows the relative increase in performance and
the costs, such as die size and power, over the last ten
years on Intel processors1. In order to isolate the
microarchitecture impact, this comparison assumes that
the four generations of processors are on the same
silicon process technology and that the speed-ups are
normalized to the performance of an Intel486
processor. Although we use Intel’s processor history in
this example, other high-performance processor
manufacturers during this time period would have
similar trends. Intel’s processor performance, due to
microarchitecture advances alone, has improved integer
performance five- or six-fold1. Most integer
applications have limited ILP and the instruction flow
can be hard to predict.

Over the same period, the relative die size has gone up
fifteen-fold, a three-times-higher rate than the gains in
integer performance. Fortunately, advances in silicon
process technology allow more transistors to be packed
into a given amount of die area so that the actual
measured die size of each generation microarchitecture
has not increased significantly.

The relative power increased almost eighteen-fold
during this period1. Fortunately, there exist a number of
known techniques to significantly reduce power
consumption on processors and there is much on-going
research in this area. However, current processor power
dissipation is at the limit of what can be easily dealt
with in desktop platforms and we must put greater
emphasis on improving performance in conjunction with
new technology, specifically to control power.

1 These data are approximate and are intended only to show
trends, not actual performance.

 Intel486 is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002

Hyper-Threading Technology Architecture and Microarchitecture 6

Thread-Level Parallelism

A look at today’s software trends reveals that server
applications consist of multiple threads or processes that
can be executed in parallel. On-line transaction
processing and Web services have an abundance of
software threads that can be executed simultaneously
for faster performance. Even desktop applications are
becoming increasingly parallel. Intel architects have
been trying to leverage this so-called thread-level
parallelism (TLP) to gain a better performance vs.
transistor count and power ratio.

In both the high-end and mid-range server markets,
multiprocessors have been commonly used to get more
performance from the system. By adding more
processors, applications potentially get substantial
performance improvement by executing multiple
threads on multiple processors at the same time. These
threads might be from the same application, from
different applications running simultaneously, from
operating system services, or from operating system
threads doing background maintenance. Multiprocessor
systems have been used for many years, and high-end
programmers are familiar with the techniques to exploit
multiprocessors for higher performance levels.

In recent years a number of other techniques to further
exploit TLP have been discussed and some products
have been announced. One of these techniques is chip
multiprocessing (CMP), where two processors are put
on a single die. The two processors each have a full set
of execution and architectural resources. The
processors may or may not share a large on-chip cache.
CMP is largely orthogonal to conventional
multiprocessor systems, as you can have multiple CMP
processors in a multiprocessor configuration. Recently
announced processors incorporate two processors on
each die. However, a CMP chip is significantly larger
than the size of a single-core chip and therefore more
expensive to manufacture; moreover, it does not begin
to address the die size and power considerations.

Another approach is to allow a single processor to
execute multiple threads by switching between them.
Time-slice multithreading is where the processor
switches between software threads after a fixed time
period. Time-slice multithreading can result in wasted
execution slots but can effectively minimize the effects
of long latencies to memory. Switch-on-event multi-
threading would switch threads on long latency events
such as cache misses. This approach can work well for
server applications that have large numbers of cache
misses and where the two threads are executing similar
tasks. However, both the time-slice and the switch-on-

event multi-threading techniques do not achieve optimal
overlap of many sources of inefficient resource usage,
such as branch mispredictions, instruction
dependencies, etc.

Finally, there is simultaneous multi-threading, where
multiple threads can execute on a single processor
without switching. The threads execute simultaneously
and make much better use of the resources. This
approach makes the most effective use of processor
resources: it maximizes the performance vs. transistor
count and power consumption.

Hyper-Threading Technology brings the simultaneous
multi-threading approach to the Intel architecture. In
this paper we discuss the architecture and the first
implementation of Hyper-Threading Technology on the
Intel Xeon processor family.

HYPER-THREADING TECHNOLOGY
ARCHITECTURE
Hyper-Threading Technology makes a single physical
processor appear as multiple logical processors [11, 12].
To do this, there is one copy of the architecture state for
each logical processor, and the logical processors share
a single set of physical execution resources. From a
software or architecture perspective, this means
operating systems and user programs can schedule
processes or threads to logical processors as they would
on conventional physical processors in a multi-
processor system. From a microarchitecture
perspective, this means that instructions from logical
processors will persist and execute simultaneously on
shared execution resources.

Figure 2: Processors without Hyper-Threading Tech

Intel is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Processor Execution
Resources

Arch StateArch State

Processor Execution
Resources

Intel Technology Journal Q1, 2002

Hyper-Threading Technology Architecture and Microarchitecture 7

As an example, Figure 2 shows a multiprocessor system
with two physical processors that are not Hyper-
Threading Technology-capable. Figure 3 shows a
multiprocessor system with two physical processors that
are Hyper-Threading Technology-capable. With two
copies of the architectural state on each physical
processor, the system appears to have four logical
processors.

Figure 3: Processors with Hyper-Threading
Technology

The first implementation of Hyper-Threading
Technology is being made available on the Intel
Xeon processor family for dual and multiprocessor
servers, with two logical processors per physical
processor. By more efficiently using existing processor
resources, the Intel Xeon processor family can
significantly improve performance at virtually the same
system cost. This implementation of Hyper-Threading
Technology added less than 5% to the relative chip size
and maximum power requirements, but can provide
performance benefits much greater than that.

Each logical processor maintains a complete set of the
architecture state. The architecture state consists of
registers including the general-purpose registers, the
control registers, the advanced programmable interrupt
controller (APIC) registers, and some machine state
registers. From a software perspective, once the
architecture state is duplicated, the processor appears to
be two processors. The number of transistors to store
the architecture state is an extremely small fraction of
the total. Logical processors share nearly all other
resources on the physical processor, such as caches,

 Intel is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
 Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

execution units, branch predictors, control logic, and
buses.

Each logical processor has its own interrupt controller
or APIC. Interrupts sent to a specific logical processor
are handled only by that logical processor.

FIRST IMPLEMENTATION ON THE
INTEL XEON PROCESSOR FAMILY
Several goals were at the heart of the microarchitecture
design choices made for the Intel Xeon processor MP
implementation of Hyper-Threading Technology. One
goal was to minimize the die area cost of implementing
Hyper-Threading Technology. Since the logical
processors share the vast majority of microarchitecture
resources and only a few small structures were
replicated, the die area cost of the first implementation
was less than 5% of the total die area.

A second goal was to ensure that when one logical
processor is stalled the other logical processor could
continue to make forward progress. A logical processor
may be temporarily stalled for a variety of reasons,
including servicing cache misses, handling branch
mispredictions, or waiting for the results of previous
instructions. Independent forward progress was ensured
by managing buffering queues such that no logical
processor can use all the entries when two active
software threads2 were executing. This is accomplished
by either partitioning or limiting the number of active
entries each thread can have.

A third goal was to allow a processor running only one
active software thread to run at the same speed on a
processor with Hyper-Threading Technology as on a
processor without this capability. This means that
partitioned resources should be recombined when only
one software thread is active. A high-level view of the
microarchitecture pipeline is shown in Figure 4. As
shown, buffering queues separate major pipeline logic
blocks. The buffering queues are either partitioned or
duplicated to ensure independent forward progress
through each logic block.

Intel is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
 Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
2 Active software threads include the operating system
idle loop because it runs a sequence of code that
continuously checks the work queue(s). The operating
system idle loop can consume considerable execution
resources.

Processor Execution
Resources

Arch State Arch State

Processor Execution
Resources

Arch State Arch State

Intel Technology Journal Q1, 2002

Hyper-Threading Technology Architecture and Microarchitecture 8

T
C

 /
M

S-
R

O
M

R
en

am
e/

A
llo

ca
te

Q
ue

ue

O
ut

-o
f-

or
de

r
Sc

he
du

le
 /

E
xe

cu
te

D
ec

od
e

Q
ue

ue

Q
ue

ue

R
et

ir
em

en
t

Q
ue

ue
Q

ue
ue

Q
ue

ue

Phys
Regs

Arch
State

Arch
State

Q
ue

ue

APIC

APIC

Fe
tc

h

Arch
State

Arch
State

Figure 4 Intel® Xeon™ processor pipeline

In the following sections we will walk through the
pipeline, discuss the implementation of major functions,
and detail several ways resources are shared or
replicated.

FRONT END
The front end of the pipeline is responsible for
delivering instructions to the later pipe stages. As
shown in Figure 5a, instructions generally come from
the Execution Trace Cache (TC), which is the primary
or Level 1 (L1) instruction cache. Figure 5b shows that
only when there is a TC miss does the machine fetch
and decode instructions from the integrated Level 2 (L2)
cache. Near the TC is the Microcode ROM, which
stores decoded instructions for the longer and more
complex IA-32 instructions.

Cache
Fill

Trace
Cache

Uop
Queue

IP

Queue
L2

Access

Decode

Queue

ITLBITLB

Decode

L2 Access

I-Fetch

Trace
Cache

Uop
Queue

IP

(a)

(b)
Figure 5: Front-end detailed pipeline (a) Trace Cache Hit (b) Trace Cache Miss

Intel Technology Journal Q1, 2002

Hyper-Threading Technology Architecture and Microarchitecture 9

Execution Trace Cache (TC)
The TC stores decoded instructions, called micro-
operations or “uops.” Most instructions in a program
are fetched and executed from the TC. Two sets of
next-instruction-pointers independently track the
progress of the two software threads executing. The
two logical processors arbitrate access to the TC every
clock cycle. If both logical processors want access to
the TC at the same time, access is granted to one then
the other in alternating clock cycles. For example, if
one cycle is used to fetch a line for one logical
processor, the next cycle would be used to fetch a line
for the other logical processor, provided that both
logical processors requested access to the trace cache. If
one logical processor is stalled or is unable to use the
TC, the other logical processor can use the full
bandwidth of the trace cache, every cycle.

The TC entries are tagged with thread information and
are dynamically allocated as needed. The TC is 8-way
set associative, and entries are replaced based on a least-
recently-used (LRU) algorithm that is based on the full
8 ways. The shared nature of the TC allows one logical
processor to have more entries than the other if needed.

Microcode ROM
When a complex instruction is encountered, the TC
sends a microcode-instruction pointer to the Microcode
ROM. The Microcode ROM controller then fetches the
uops needed and returns control to the TC. Two
microcode instruction pointers are used to control the
flows independently if both logical processors are
executing complex IA-32 instructions.

Both logical processors share the Microcode ROM
entries. Access to the Microcode ROM alternates
between logical processors just as in the TC.

ITLB and Branch Prediction
If there is a TC miss, then instruction bytes need to be
fetched from the L2 cache and decoded into uops to be
placed in the TC. The Instruction Translation
Lookaside Buffer (ITLB) receives the request from the
TC to deliver new instructions, and it translates the
next-instruction pointer address to a physical address.
A request is sent to the L2 cache, and instruction bytes
are returned. These bytes are placed into streaming
buffers, which hold the bytes until they can be decoded.

The ITLBs are duplicated. Each logical processor has
its own ITLB and its own set of instruction pointers to
track the progress of instruction fetch for the two logical
processors. The instruction fetch logic in charge of
sending requests to the L2 cache arbitrates on a first-

come first-served basis, while always reserving at least
one request slot for each logical processor. In this way,
both logical processors can have fetches pending
simultaneously.

Each logical processor has its own set of two 64-byte
streaming buffers to hold instruction bytes in
preparation for the instruction decode stage. The ITLBs
and the streaming buffers are small structures, so the die
size cost of duplicating these structures is very low.

The branch prediction structures are either duplicated or
shared. The return stack buffer, which predicts the
target of return instructions, is duplicated because it is a
very small structure and the call/return pairs are better
predicted for software threads independently. The
branch history buffer used to look up the global history
array is also tracked independently for each logical
processor. However, the large global history array is a
shared structure with entries that are tagged with a
logical processor ID.

IA-32 Instruction Decode
IA-32 instructions are cumbersome to decode because
the instructions have a variable number of bytes and
have many different options. A significant amount of
logic and intermediate state is needed to decode these
instructions. Fortunately, the TC provides most of the
uops, and decoding is only needed for instructions that
miss the TC.

The decode logic takes instruction bytes from the
streaming buffers and decodes them into uops. When
both threads are decoding instructions simultaneously,
the streaming buffers alternate between threads so that
both threads share the same decoder logic. The decode
logic has to keep two copies of all the state needed to
decode IA-32 instructions for the two logical processors
even though it only decodes instructions for one logical
processor at a time. In general, several instructions are
decoded for one logical processor before switching to
the other logical processor. The decision to do a coarser
level of granularity in switching between logical
processors was made in the interest of die size and to
reduce complexity. Of course, if only one logical
processor needs the decode logic, the full decode
bandwidth is dedicated to that logical processor. The
decoded instructions are written into the TC and
forwarded to the uop queue.

Uop Queue
After uops are fetched from the trace cache or the
Microcode ROM, or forwarded from the instruction
decode logic, they are placed in a “uop queue.” This
queue decouples the Front End from the Out-of-order

Intel Technology Journal Q1, 2002

Hyper-Threading Technology Architecture and Microarchitecture 10

Execution Engine in the pipeline flow. The uop queue
is partitioned such that each logical processor has half
the entries. This partitioning allows both logical
processors to make independent forward progress
regardless of front-end stalls (e.g., TC miss) or
execution stalls.

OUT-OF-ORDER EXECUTION ENGINE
The out-of-order execution engine consists of the
allocation, register renaming, scheduling, and execution
functions, as shown in Figure 6. This part of the
machine re-orders instructions and executes them as

quickly as their inputs are ready, without regard to the
original program order.

Allocator
The out-of-order execution engine has several buffers to
perform its re-ordering, tracing, and sequencing
operations. The allocator logic takes uops from the uop
queue and allocates many of the key machine buffers
needed to execute each uop, including the 126 re-order
buffer entries, 128 integer and 128 floating-point
physical registers, 48 load and 24 store buffer entries.
Some of these key buffers are partitioned such that each
logical processor can use at most half the entries.

Rename Queue
Register

Read Execute L1 Cache
Register

Write Retire

Registers

Sched
Uop

Queue

Register
Rename
Register
Rename

Registers
Re-Order

Buffer

Store
Buffer

L1 D-Cache

AllocateAllocate

Figure 6: Out-of-order execution engine detailed pipeline

Specifically, each logical processor can use up to a
maximum of 63 re-order buffer entries, 24 load buffers,
and 12 store buffer entries.

If there are uops for both logical processors in the uop
queue, the allocator will alternate selecting uops from
the logical processors every clock cycle to assign
resources. If a logical processor has used its limit of a
needed resource, such as store buffer entries, the
allocator will signal “stall” for that logical processor and
continue to assign resources for the other logical
processor. In addition, if the uop queue only contains
uops for one logical processor, the allocator will try to
assign resources for that logical processor every cycle to
optimize allocation bandwidth, though the resource
limits would still be enforced.

By limiting the maximum resource usage of key buffers,
the machine helps enforce fairness and prevents
deadlocks.

Register Rename
The register rename logic renames the architectural IA-
32 registers onto the machine’s physical registers. This
allows the 8 general-use IA-32 integer registers to be
dynamically expanded to use the available 128 physical
registers. The renaming logic uses a Register Alias
Table (RAT) to track the latest version of each
architectural register to tell the next instruction(s) where
to get its input operands.

Since each logical processor must maintain and track its
own complete architecture state, there are two RATs,
one for each logical processor. The register renaming
process is done in parallel to the allocator logic
described above, so the register rename logic works on
the same uops to which the allocator is assigning
resources.

Once uops have completed the allocation and register
rename processes, they are placed into two sets of

Intel Technology Journal Q1, 2002

Hyper-Threading Technology Architecture and Microarchitecture 11

queues, one for memory operations (loads and stores)
and another for all other operations. The two sets of
queues are called the memory instruction queue and the
general instruction queue, respectively. The two sets of
queues are also partitioned such that uops from each
logical processor can use at most half the entries.

Instruction Scheduling
The schedulers are at the heart of the out-of-order
execution engine. Five uop schedulers are used to
schedule different types of uops for the various
execution units. Collectively, they can dispatch up to
six uops each clock cycle. The schedulers determine
when uops are ready to execute based on the readiness
of their dependent input register operands and the
availability of the execution unit resources.

The memory instruction queue and general instruction
queues send uops to the five scheduler queues as fast as
they can, alternating between uops for the two logical
processors every clock cycle, as needed.

Each scheduler has its own scheduler queue of eight to
twelve entries from which it selects uops to send to the
execution units. The schedulers choose uops regardless
of whether they belong to one logical processor or the
other. The schedulers are effectively oblivious to
logical processor distinctions. The uops are simply
evaluated based on dependent inputs and availability of
execution resources. For example, the schedulers could
dispatch two uops from one logical processor and two
uops from the other logical processor in the same clock
cycle. To avoid deadlock and ensure fairness, there is a
limit on the number of active entries that a logical
processor can have in each scheduler’s queue. This
limit is dependent on the size of the scheduler queue.

Execution Units
The execution core and memory hierarchy are also
largely oblivious to logical processors. Since the source
and destination registers were renamed earlier to
physical registers in a shared physical register pool,
uops merely access the physical register file to get their
destinations, and they write results back to the physical
register file. Comparing physical register numbers
enables the forwarding logic to forward results to other
executing uops without having to understand logical
processors.

After execution, the uops are placed in the re-order
buffer. The re-order buffer decouples the execution
stage from the retirement stage. The re-order buffer is
partitioned such that each logical processor can use half
the entries.

Retirement
Uop retirement logic commits the architecture state in
program order. The retirement logic tracks when uops
from the two logical processors are ready to be retired,
then retires the uops in program order for each logical
processor by alternating between the two logical
processors. Retirement logic will retire uops for one
logical processor, then the other, alternating back and
forth. If one logical processor is not ready to retire any
uops then all retirement bandwidth is dedicated to the
other logical processor.

Once stores have retired, the store data needs to be
written into the level-one data cache. Selection logic
alternates between the two logical processors to commit
store data to the cache.

MEMORY SUBSYSTEM
The memory subsystem includes the DTLB, the low-
latency Level 1 (L1) data cache, the Level 2 (L2) unified
cache, and the Level 3 unified cache (the Level 3 cache
is only available on the Intel Xeon processor MP).
Access to the memory subsystem is also largely
oblivious to logical processors. The schedulers send
load or store uops without regard to logical processors
and the memory subsystem handles them as they come.

DTLB
The DTLB translates addresses to physical addresses. It
has 64 fully associative entries; each entry can map
either a 4K or a 4MB page. Although the DTLB is a
shared structure between the two logical processors,
each entry includes a logical processor ID tag. Each
logical processor also has a reservation register to
ensure fairness and forward progress in processing
DTLB misses.

L1 Data Cache, L2 Cache, L3 Cache
The L1 data cache is 4-way set associative with 64-byte
lines. It is a write-through cache, meaning that writes
are always copied to the L2 cache. The L1 data cache is
virtually addressed and physically tagged.

The L2 and L3 caches are 8-way set associative with
128-byte lines. The L2 and L3 caches are physically
addressed. Both logical processors, without regard to
which logical processor’s uops may have initially

Intel is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002

Hyper-Threading Technology Architecture and Microarchitecture 12

brought the data into the cache, can share all entries in
all three levels of cache.

Because logical processors can share data in the cache,
there is the potential for cache conflicts, which can
result in lower observed performance. However, there
is also the possibility for sharing data in the cache. For
example, one logical processor may prefetch
instructions or data, needed by the other, into the cache;
this is common in server application code. In a
producer-consumer usage model, one logical processor
may produce data that the other logical processor wants
to use. In such cases, there is the potential for good
performance benefits.

BUS
Logical processor memory requests not satisfied by the
cache hierarchy are serviced by the bus logic. The bus
logic includes the local APIC interrupt controller, as
well as off-chip system memory and I/O space. Bus
logic also deals with cacheable address coherency
(snooping) of requests originated by other external bus
agents, plus incoming interrupt request delivery via the
local APICs.

From a service perspective, requests from the logical
processors are treated on a first-come basis, with queue
and buffering space appearing shared. Priority is not
given to one logical processor above the other.

Distinctions between requests from the logical
processors are reliably maintained in the bus queues
nonetheless. Requests to the local APIC and interrupt
delivery resources are unique and separate per logical
processor. Bus logic also carries out portions of barrier
fence and memory ordering operations, which are
applied to the bus request queues on a per logical
processor basis.

For debug purposes, and as an aid to forward progress
mechanisms in clustered multiprocessor
implementations, the logical processor ID is visibly sent
onto the processor external bus in the request phase
portion of a transaction. Other bus transactions, such as
cache line eviction or prefetch transactions, inherit the
logical processor ID of the request that generated the
transaction.

SINGLE-TASK AND MULTI-TASK
MODES
To optimize performance when there is one software
thread to execute, there are two modes of operation
referred to as single-task (ST) or multi-task (MT). In
MT-mode, there are two active logical processors and
some of the resources are partitioned as described

earlier. There are two flavors of ST-mode: single-task
logical processor 0 (ST0) and single-task logical
processor 1 (ST1). In ST0- or ST1-mode, only one
logical processor is active, and resources that were
partitioned in MT-mode are re-combined to give the
single active logical processor use of all of the
resources. The IA-32 Intel Architecture has an
instruction called HALT that stops processor execution
and normally allows the processor to go into a lower-
power mode. HALT is a privileged instruction, meaning
that only the operating system or other ring-0 processes
may execute this instruction. User-level applications
cannot execute HALT.

On a processor with Hyper-Threading Technology,
executing HALT transitions the processor from MT-
mode to ST0- or ST1-mode, depending on which logical
processor executed the HALT. For example, if logical
processor 0 executes HALT, only logical processor 1
would be active; the physical processor would be in
ST1-mode and partitioned resources would be
recombined giving logical processor 1 full use of all
processor resources. If the remaining active logical
processor also executes HALT, the physical processor
would then be able to go to a lower-power mode.

In ST0- or ST1-modes, an interrupt sent to the HALTed
processor would cause a transition to MT-mode. The
operating system is responsible for managing MT-mode
transitions (described in the next section).

Figure 7: Resource allocation

Figure 7 summarizes this discussion. On a processor
with Hyper-Threading Technology, resources are
allocated to a single logical processor if the processor is
in ST0- or ST1-mode. On the MT-mode, resources are
shared between the two logical processors.

OPERATING SYSTEM AND
APPLICATIONS
A system with processors that use Hyper-Threading
Technology appears to the operating system and
application software as having twice the number of
processors than it physically has. Operating systems
manage logical processors as they do physical

Processor Execution
Resources

Arch State Arch State �������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

Processor Execution
Resources

Arch State Arch State

Processor Execution
Resources

Arch State Arch State

(a) ST0-Mode (b) MT-Mode (c) ST1- Mode

Intel Technology Journal Q1, 2002

Hyper-Threading Technology Architecture and Microarchitecture 13

processors, scheduling runnable tasks or threads to
logical processors. However, for best performance, the
operating system should implement two optimizations.

The first is to use the HALT instruction if one logical
processor is active and the other is not. HALT will
allow the processor to transition to either the ST0- or
ST1-mode. An operating system that does not use this
optimization would execute on the idle logical processor
a sequence of instructions that repeatedly checks for
work to do. This so-called “idle loop” can consume
significant execution resources that could otherwise be
used to make faster progress on the other active logical
processor.

The second optimization is in scheduling software
threads to logical processors. In general, for best
performance, the operating system should schedule
threads to logical processors on different physical
processors before scheduling multiple threads to the
same physical processor. This optimization allows
software threads to use different physical execution
resources when possible.

PERFORMANCE
The Intel Xeon processor family delivers the highest
server system performance of any IA-32 Intel
architecture processor introduced to date. Initial
benchmark tests show up to a 65% performance
increase on high-end server applications when
compared to the previous-generation Pentium® III
Xeon™ processor on 4-way server platforms. A
significant portion of those gains can be attributed to
Hyper-Threading Technology.

Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.
Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

0

0.5

1

1.5

2

2.5

3

1 Processor 2 Processors 4 Processors

No-Hyper-Threading Hyper-Threading Enabled

Figure 8: Performance increases from Hyper-
Threading Technology on an OLTP workload

Figure 8 shows the online transaction processing
performance, scaling from a single-processor
configuration through to a 4-processor system with
Hyper-Threading Technology enabled. This graph is
normalized to the performance of the single-processor
system. It can be seen that there is a significant overall
performance gain attributable to Hyper-Threading
Technology, 21% in the cases of the single and dual-
processor systems.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Webserver
Workload (1)

Webserver
Workload (2)

Server-side Java
workload

No Hyper-Threading Hyper-Threading Enabled

Figure 9: Web server benchmark performance

Figure 9 shows the benefit of Hyper-Threading
Technology when executing other server-centric
benchmarks. The workloads chosen were two different
benchmarks that are designed to exercise data and Web
server characteristics and a workload that focuses on
exercising a server-side Java environment. In these
cases the performance benefit ranged from 16 to 28%.

Intel Technology Journal Q1, 2002

Hyper-Threading Technology Architecture and Microarchitecture 14

All the performance results quoted above are
normalized to ensure that readers focus on the relative
performance and not the absolute performance.

Performance tests and ratings are measured using
specific computer systems and/or components and
reflect the approximate performance of Intel products as
measured by those tests. Any difference in system
hardware or software design or configuration may affect
actual performance. Buyers should consult other
sources of information to evaluate the performance of
systems or components they are considering purchasing.
For more information on performance tests and on the
performance of Intel products, refer to
wwwwww..iinntteell..ccoomm//pprrooccss//ppeerrff//lliimmiittss..hhttmm or call (U.S.) 1-
800-628-8686 or 1-916-356-3104

CONCLUSION
Intel’s Hyper-Threading Technology brings the concept
of simultaneous multi-threading to the Intel
Architecture. This is a significant new technology
direction for Intel’s future processors. It will become
increasingly important going forward as it adds a new
technique for obtaining additional performance for
lower transistor and power costs.

The first implementation of Hyper-Threading
Technology was done on the Intel Xeon processor
MP. In this implementation there are two logical
processors on each physical processor. The logical
processors have their own independent architecture
state, but they share nearly all the physical execution
and hardware resources of the processor. The goal was
to implement the technology at minimum cost while
ensuring forward progress on logical processors, even if
the other is stalled, and to deliver full performance even
when there is only one active logical processor. These
goals were achieved through efficient logical processor
selection algorithms and the creative partitioning and
recombining algorithms of many key resources.

Measured performance on the Intel Xeon processor MP
with Hyper-Threading Technology shows performance
gains of up to 30% on common server application
benchmarks for this technology.

The potential for Hyper-Threading Technology is
tremendous; our current implementation has only just

 Intel is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

begun to tap into this potential. Hyper-Threading
Technology is expected to be viable from mobile
processors to servers; its introduction into market
segments other than servers is only gated by the
availability and prevalence of threaded applications and
workloads in those markets.

ACKNOWLEDGMENTS
Making Hyper-Threading Technology a reality was the
result of enormous dedication, planning, and sheer hard
work from a large number of designers, validators,
architects, and others. There was incredible teamwork
from the operating system developers, BIOS writers,
and software developers who helped with innovations
and provided support for many decisions that were
made during the definition process of Hyper-Threading
Technology. Many dedicated engineers are continuing
to work with our ISV partners to analyze application
performance for this technology. Their contributions
and hard work have already made and will continue to
make a real difference to our customers.

REFERENCES
A. Agarwal, B.H. Lim, D. Kranz and J. Kubiatowicz, “APRIL:

A processor Architecture for Multiprocessing,” in
Proceedings of the 17th Annual International Symposium
on Computer Architectures, pages 104-114, May 1990.

R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A.
Porter, and B. Smith, “The TERA Computer System,” in
International Conference on Supercomputing, Pages 1 - 6,
June 1990.

L. A. Barroso et. al., “Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing,” in Proceedings of the
27th Annual International Symposium on Computer
Architecture, Pages 282 - 293, June 2000.

M. Fillo, S. Keckler, W. Dally, N. Carter, A. Chang, Y.
Gurevich, and W. Lee, “The M-Machine Multicomputer,”
in 28th Annual International Symposium on
Microarchitecture, Nov. 1995.

L. Hammond, B. Nayfeh, and K. Olukotun, “A Single-Chip
Multiprocessor,” Computer, 30(9), 79 - 85, September
1997.

D. J. C. Johnson, “HP's Mako Processor,” Microprocessor
Forum, October 2001,
http://www.cpus.hp.com/technical_references/mpf_2001.pd
f

B.J. Smith, “Architecture and Applications of the HEP
Multiprocessor Computer System,” in SPIE Real Time
Signal Processing IV, Pages 2 241 - 248, 1981.

J. M. Tendler, S. Dodson, and S. Fields, “POWER4 System
Microarchitecture,” Technical White Paper. IBM Server
Group, October 2001.

Intel Technology Journal Q1, 2002

Hyper-Threading Technology Architecture and Microarchitecture 15

D. Tullsen, S. Eggers, and H. Levy, “Simultaneous
Multithreading: Maximizing On-chip Parallelism,” in 22nd
Annual International Symposium on Computer
Architecture, June 1995.

D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm,
“Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor,” in
23rd Annual International Symposium on Computer
Architecture, May 1996.

Intel Corporation. “IA-32 Intel Architecture Software
Developer’s Manual, Volume 1: Basic Architecture,” Order
number 245472, 2001
http://developer.intel.com/design/Pentium4/manuals

Intel Corporation. “IA-32 Intel Architecture Software
Developer’s Manual, Volume 3: System Programming
Guide,” Order number 245472, 2001
http://developer.intel.com/design/Pentium4/manuals

AUTHORS’ BIOGRAPHIES
Deborah T. Marr is the CPU architect responsible for
Hyper-Threading Technology in the Desktop Products
Group. Deborah has been at Intel for over ten years.
She first joined Intel in 1988 and made significant
contributions to the Intel 386SX processor, the P6
processor microarchitecture, and the Intel® Pentium® 4
Processor microarchitecture. Her interests are in high-
performance microarchitecture and performance
analysis. Deborah received her B.S. degree in EECS
from the University of California at Berkeley in 1988,
and her M.S. degree in ECE from Cornell University in
1992. Her e-mail address is debbie.marr@intel.com.

Frank Binns obtained a B.S. degree in electrical
engineering from Salford University, England. He
joined Intel in 1984 after holding research engineering
positions with Marconi Research Laboratories and the
Diamond Trading Company Research Laboratory, both
of the U.K. Frank has spent the last 16 years with Intel,
initially holding technical management positions in the
Development Tool, Multibus Systems and PC Systems
divisions. Frank’s last eight years have been spent in the
Desktop Processor Group in Technical Marketing and
Processor Architecture roles. His e-mail is
frank.binns@intel.com.

Dave L. Hill joined Intel in 1993 and was the quad
pumped bus logic architect for the Pentium® 4
processor. Dave has 20 years industry experience
primarily in high-performance memory system
microarchitecture, logic design, and system debug. His
e-mail address is david.l.hill@intel.com.

Glenn Hinton is an Intel Fellow, Desktop Platforms
Group and Director of IA-32 Microarchitecture
Development. He is responsible for the

microarchitecture development for the next-generation
IA-32 design. He was appointed Intel Fellow in January
1999. He received bachelor’s and master’s degrees in
Electrical Engineering from Brigham Young University
in 1982 and 1983, respectively. His e-mail address is
glenn.hinton@intel.com.

David A. Koufaty received B.S. and M.S. degrees from
the Simon Bolivar University, Venezuela in 1988 and
1991, respectively. He then received a Ph.D. degree in
Computer Science from the University of Illinois at
Urbana-Champaign in 1997. For the last three years he
has worked for the DPG CPU Architecture organization.
His main interests are in multiprocessor architecture and
software, performance, and compilation. His e-mail
address is david.a.koufaty@intel.com.

John (Alan) Miller has worked at Intel for over five
years. During that time, he worked on design and
architecture for the Pentium® 4 processor and
proliferation projects. Alan obtained his M.S. degree in
Electrical and Computer Engineering from Carnegie-
Mellon University. His e-mail is alan.miller@intel.com.

Michael Upton is a Principal Engineer/Architect in
Intel’s Desktop Platforms Group, and is one of the
architects of the Intel Pentium® 4 processor. He
completed B.S. and M.S. degrees in Electrical
Engineering from the University of Washington in 1985
and 1990. After a number of years in IC design and
CAD tool development, he entered the University of
Michigan to study computer architecture. Upon
completion of his Ph.D. degree in 1994, he joined Intel
to work on the Pentium® Pro and Pentium 4 processors.
His e-mail address is mike.upton@intel.com.

Copyright © Intel Corporation 2002.
Other names and brands may be claimed as the property
of others.

This publication was downloaded from
http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/corporate/tradmarx.htm.

Pre-Silicon Validation of Hyper-Threading Technology 16

Pre-Silicon Validation of Hyper-Threading Technology

David Burns, Desktop Platforms Group, Intel Corp.

Index words: microprocessor, validation, bugs, verification

ABSTRACT

Hyper-Threading Technology delivers significantly
improved architectural performance at a lower-than-
traditional power consumption and die size cost. However,
increased logic complexity is one of the trade-offs of this
technology. Hyper-Threading Technology exponentially
increases the micro-architectural state space, decreases
validation controllability, and creates a number of new and
interesting micro-architectural boundary conditions. On
the Intel Xeon processor family, which implements two
logical processors per physical processor, there are
multiple, independent logical processor selection points
that use several algorithms to determine logical processor
selection. Four types of resources: Duplicated, Fully
Shared, Entry Tagged, and Partitioned, are used to
support the technology. This complexity adds to the pre-
silicon validation challenge.

Not only is the architectural state space much larger (see
“Hyper-Threading Technology Architecture and
Microarchitecture” in this issue of the Intel Technology
Journal), but also a temporal factor is involved. Testing
an architectural state may not be effective if one logical
processor is halted before the other logical processor is
halted. The multiple, independent, logical processor
selection points and interference from simultaneously
executing instructions reduce controllability. This in turn
increases the difficulty of setting up precise boundary
conditions to test. Supporting four resource types creates
new validation conditions such as cross-logical processor
corruption of the architectural state. Moreover, Hyper-
Threading Technology provides support for inter- and
intra-logical processor store to load forwarding, greatly
increasing the challenge of memory ordering and memory
coherency validation.

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

This paper describes how Hyper-Threading Technology
impacts pre-silicon validation, the new validation
challenges created by this technology, and our strategy
for pre-silicon validation. Bug data are then presented and
used to demonstrate the effectiveness of our pre-silicon
Hyper-Threading Technology validation.

INTRODUCTION
Intel IA-32 processors that feature the Intel NetBurst
microarchitecture can also support Hyper-Threading
Technology or simultaneous multi-threading (SMT). Pre-
silicon validation of Hyper-Threading Technology was
successfully accomplished in parallel with the Pentium® 4
processor pre-silicon validation, and it leveraged the
Pentium 4 processor pre-silicon validation techniques of
Formal Verification (FV), Cluster Test Environments
(CTEs), Architecture Validation (AV), and Coverage-
Based Validation.

THE CHALLENGES OF PRE-SILICON
HYPER-THREADING TECHNOLOGY
VALIDATION
The main validation challenge presented by Hyper-
Threading Technology is an increase in complexity that
manifested itself in these major ways:

• Project management issues

• An increase in the number of operating modes: MT-
mode, ST0-mode, and ST1-mode, each described in
“Hyper-Threading Technology Architecture and
Microarchitecture” in this issue of the Intel
Technology Journal.

 Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.
 NetBurst is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Pre-Silicon Validation of Hyper-Threading Technology 17

• Hyper-Threading Technology squared the
architectural state space.

• A decrease in controllability.

• An increase in the number and complexity of
microarchitectural boundary conditions.

• New validation concerns for logical processor
starvation and fairness.

Microprocessor validation already was an exercise in the
intractable engineering problem of ensuring the correct
functionality of an immensely complex design with a
limited budget and on a tight schedule. Hyper-Threading
Technology made it even more intractable. Hyper-
Threading Technology did not demand entirely new
validation methods and it did fit within the already
planned Pentium 4 processor validation framework of
formal verification, cluster testing, architectural validation,
and coverage-based microarchitectural validation. What
Hyper-Threading Technology did require, however, was
an increase in validation staffing and a significant increase
in computing capacity.

Project Management

The major pre-silicon validation project management
decision was where to use the additional staff. Was a
single team, which focused exclusively on Hyper-
Threading Technology validation, needed? Should all the
current functional validation teams focus on Hyper-
Threading Technology validation? The answer, driven by
the pervasiveness, complexity, and implementation of the
technology, was both. All of the existing pre-silicon
validation teams assumed responsibility for portions of
the validation, and a new small team of experienced
engineers was formed to focus exclusively on Hyper-
Threading Technology validation. The task was divided
as follows:

• Coverage-based validation [1] teams employed
coverage validation at the microcode, cluster, and full-
chip levels. Approximately thirty percent of the
coded conditions were related to Hyper-Threading
Technology. As discussed later in this paper, the use
of cluster test environments was essential for
overcoming the controllability issues posed by the
technology.

• The Architecture Validation (AV) [1] team fully
explored the IA-32 Instruction Set Architecture space.
The tests were primarily single-threaded tests

 Pentium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

(meaning the test has only a single thread of
execution and therefore each test runs on one logical
processor) and were run on each logical processor to
ensure symmetry.

• The Formal Verification (FV) team proved high-risk
logical processor-related properties. Nearly one-third
of the FV proofs were for Hyper-Threading
Technology [1].

• The MT Validation (MTV) team validated specific
issues raised in the Hyper-Threading Technology
architecture specification and any related validation
area not covered by other teams. Special attention
was paid to the cross product of the architectural
state space, logical processor data sharing, logical
processor forward progress, atomic operations and
self-modifying code.

Operating Modes
Hyper-Threading Technology led to the creation of the
three operating modes, MT, ST0, and ST1, and four
general types of resources used to implement Hyper-
Threading Technology. These resources can be
categorized as follows:

• Duplicated. This is where the resources required to
maintain the unique architectural state of each logical
processor are replicated.

• Partitioned. This is where a structure is divided in
half between the logical processors in MT-mode and
fully utilized by the active logical processor in ST0- or
ST1-mode.

• Entry Tagged. This is where the overall structure is
competitively shared, but the individual entries are
owned by a logical processor and identified with a
logical processor ID.

• Fully Shared. This is where logical processors
compete on an equal basis for the same resource.

Examples of each type of resource can be found in
“Hyper-Threading Technology Architecture and
Microarchitecture” in this issue of the Intel Technology
Journal. Consider the operating modes state diagram
shown in Figure 1.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Pre-Silicon Validation of Hyper-Threading Technology 18

Power
Down

ST0-
mode

MT-
mode

ST1-
mode

Reset
State

Figure 1: Operating Mode State Diagram

It can be used to illustrate test cases involving the three
operating modes and how they affect the four types of
resources. At the start of test, both logical processors are
reset. After reset, the logical processors vie to become
the boot serial processor. Assume logical processor 0
wins and the operating mode is now ST0. All non-
duplicated resources are fully devoted to logical
processor 0. Next, logical processor 1 is activated and
MT-mode is entered. To make the transition from ST0- or
ST1-mode to MT-mode, the partitioned structures, which
are now fully devoted to only one logical processor, must
be drained and divided between the logical processors.
In MT-mode, accidental architectural state corruption
becomes an issue, especially for the entry-tagged and
shared resources. When a logical processor runs the hlt
instruction, it is halted, and one of the ST-modes is
entered. If logical processor 0 is halted, then the
transition is made from MT-mode to ST1-mode. During
this transition, the partitioned structures must again be
drained and then recombined and fully devoted to logical
processor 1. MT-mode can be re-entered if, for example,
an interrupt or non-maskable interrupt (NMI) is sent to
logical processor 0. The Power Down state is entered
whenever the STP_CLK pin is asserted or if both logical
processors are halted.

Now contrast this to a non-Hyper-Threading Technology-
capable processor like the Intel Pentium 4 processor. For
the Pentium 4 processor, there are only three states: Reset,
Power Down, and Active, and four state transitions to
validate. In addition, there is no need to validate the

 Pentium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

transitioning of partitioned resources from divided to and
from combined.

Architectural State Space
The creation of three operating modes has a material
impact on the amount of architectural state space that
must be validated. As mentioned earlier, the AV team
develops single-threaded tests that fully explore the IA-32
Instruction Set Architecture and architectural space. A
single-threaded test has just one thread of execution,
meaning that it can run on only one logical processor. A
multi-threaded test has two or more threads of execution,
meaning that it can run and use two or more logical
processors simultaneously.

To validate both ST0-mode and ST1-mode, all AV tests
need to be run on both logical processors. A possible
solution to validating the micro-architectural state space
might be to take all AV tests and simulate all combinations
of them in MT-mode. This proved to be impractical and
insufficient because one AV test might be much shorter
than the other test so a logical processor is halted and an
ST-mode is entered before the MT-mode architectural
state is achieved. The practical problem is that while
simulating all AV tests in one of the ST modes can be
done regularly, simulating the cross-product of all AV
tests was calculated to take nearly one thousand years [3]!

The solution was to analyze the IA-32 architectural state
space for the essential combinations that must be
validated in MT-mode.

A three-pronged attack was used to tackle the challenge
of Hyper-Threading Technology micro-architectural state
space:

• All AV tests would be run at least once in both ST0-
and ST1-mode. This wasn’t necessarily a doubling of
the required simulation time, since the AV tests are
normally run more than once during a project anyway.
There was just the additional overhead of tracking
which tests had been simulated in both ST modes.

• A tool, Mtmerge, was developed that allowed single-
threaded tests to be merged and simulated in MT-
mode. Care was taken to adjust code and data spaces
to ensure the tests did not modify each other’s data
and to preserve the original intentions of the single-
threaded tests.

• The MTV team created directed-random tests to
address the MT-mode architectural space. Among the
random variables were the instruction stream types:
integer, floating-point, MMX, SSE, SSE2, the
instructions within the stream, memory types,
exceptions, and random pin events such as INIT,

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Pre-Silicon Validation of Hyper-Threading Technology 19

SMI, STP_CLK and SLP. The directed variables that
were systematically tested against each other
included programming modes, paging modes,
interrupts, and NMI.

CONTROLLABILITY
The implementation of Hyper-Threading Technology used
multiple logical processor selection points at various
pipeline stages. There was no requirement that all
selection points picked the same logical processor in
unison. The first critical selection point is at the trace
cache, which sends decoded micro-operations to the out-

of-order execution engine. This selection point uses an
algorithm that considers factors such as trace cache
misses and queue full stalls. Hence, controllability can be
lost even before reaching the out-of-order execution
engine. In addition to the logical processor selection
points, controllability is lost because uops from both
logical processors are simultaneously active in the
pipeline and competing for the same resources. The same
test run twice on the same logical processor, but with
different tests on the other logical processor used during
both simulations, can have vastly different performance
characteristics.

R e g i s t e rR e g i s t e r
R e n a m e rR e n a m e r

R e g i s t e r sR e g i s t e r sR e g i s t e r sR e g i s t e r s L 1 DL 1 D -- C a c h eC a c h e

T r a c eT r a c e
C a c h eC a c h e

I PI P

II -- F e t c hF e t c h R e n a m eR e n a m e Q u e u eQ u e u e
R e g i s t e r R e g i s t e r

R e a dR e a d E x e c u t eE x e c u t e L 1 C a c h eL 1 C a c h e
R e g i s t e r R e g i s t e r

W r i t eW r i t e R e t i r eR e t i r eS c h e dS c h e dQ u e u eQ u e u e

R eR e -- O r d e r O r d e r
B u f f e rB u f f e r

S t o r e S t o r e
B u f f e rB u f f e r

Figure 2: Logical processor selection point

Figure 2 shows some of the critical logical processor
selection points and provides a glimpse into how
interacting logical processors can affect their performance
characteristics. The independent selection points coupled
with the out-of-order, speculative execution, and
speculative data nature of the microarchitecture obviously
resulted in low controllability at the full-chip level. The
solution to the low controllability was the use of the
Cluster Test Environment [1] coupled with coverage-
based validation at the CTE and full-chip levels.

The Cluster Test Environments allow direct access to the
inputs of a cluster that helps alleviate controllability
issues, especially in the backend memory and bus
clusters. However, logical processor selection points and
other complex logic are buried deep within the clusters.
This meant that coverage-based validation coupled with
directed-random testing was needed to ensure all

interesting boundary conditions had been validated.
Naturally, cluster interactions can be validated only at the
full-chip level and again coverage-based validation and
directed-random testing were used extensively.

Boundary Conditions

Hyper-Threading Technology created boundary
conditions that were difficult to validate and had a large
impact on our validation tool suite. Memory ordering
validation was made more difficult since data sharing
between logical processors could occur entirely within the
same processor. Tools that looked only at bus traffic to
determine correct memory ordering between logical
processors were insufficient. Instead, internal RTL
information needed to be conveyed to architectural state
checking tools such as Archsim-MP, an internal tool
provided by Intel Design Technology.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Pre-Silicon Validation of Hyper-Threading Technology 20

While ALU bypassing is a common feature, it becomes
more risky when uops from different logical processors are
executing together. Validation tested that cross-logical-
processor ALU forwarding never occurred to avoid
corruption of each logical processor’s architectural state.

New Validation Concerns

Hyper-Threading Technology adds two new issues that
need to be addressed: logical processor starvation and
logical processor fairness. Starvation occurs when
activity on one logical processor prevents the other from
fetching instructions. Similar to starvation are issues of
logical processor fairness. Both logical processors may
want to use the same shared resource. One logical
processor must not be allowed to permanently block the
other from using a resource. The validation team had to
study and test for all such scenarios.

BUG ANALYSIS
The first silicon with Hyper-Threading Technology
successfully booted multi-processor-capable operating
systems and ran applications in MT-mode. The systems
ranged from a single physical processor with two logical
processors, to four-way systems running eight logical
processors. Still, there is always room for improvement in
validation. An analysis was done to review the sources of
pre-silicon and post-silicon bugs, and to identify areas for
improving pre-silicon Hyper-Threading Technology
validation.

To conduct the analysis of Hyper-Threading Technology
bugs, it was necessary to define what such a bug is. A
Hyper-Threading Technology bug is a bug that broke
MT-mode functionality. While a seemingly obvious
definition, such tests were found to be very good at
finding ST-mode bugs. The bugs causing most MT-mode
test failures were actually bugs that would break both ST-
mode and MT-mode functionality. They just happened to
be found first by multi-threaded tests. Every bug found
from MT-mode testing was studied to understand if it
would also cause ST-mode failures. The bugs of interest
for this analysis were those that affected only MT-mode
functionality. The bug review revealed the following:

• Eight percent of all pre-silicon SRTL bugs were MT-
mode bugs.

• Pre-silicon MT-mode bugs were found in every
cluster and microcode.

• Fifteen percent of all post-silicon SRTL bugs were
MT-mode bugs.

• Two clusters [2] did not have any MT-mode post-
silicon SRTL bugs.

MT AV
35%

Locks
20%

ULD
15%

SMC
15%

Other
10%

Metal Only
5%

Figure 3: Breakdown of post-silicon MT-Mode bugs

Figure 3 categorizes the post-silicon MT-mode bugs into
the functionality that they affected [2, 3]. Multi-Threading
Architectural Validation (MT AV) bugs occurred where a
particular combination of the huge cross product of IA-32
architectural state space did not function properly. Locks
are those bugs that broke the functionality of atomic
operations in MT-mode. ULD represents bugs involving
logical processor forward progress performance
degradation. Self-Modifying Code (SMC) bugs were bugs
that broke the functionality of self or cross-logical
processor modifying code. Other is the category of other
tricky micro-architectural boundary conditions. Metal
Only is an interesting grouping. We found that post-
silicon MT-mode bugs were difficult to fix in metal only
steppings and often required full layer tapeouts to fix
successfully. Metal Only are the bugs caused by
attempting to fix known bugs in Metal Only tapeouts.

IMPROVING MULTI-THREADING
VALIDATION
Clearly, with MT-mode bugs constituting nearly twice the
number of post-silicon bugs, 15% versus 8% of the pre-
silicon bugs, coupled with the high cost of fixing post-
silicon MT bugs (full layer versus metal tapeouts), there is
an opportunity for improving pre-silicon validation of
future MT-capable processors. Driven by the analysis of
pre- and post-silicon MT-mode bugs [2, 3], we are
improving pre-silicon validation by doing the following:

• Enhancing the Cluster Test Environments to improve
MT-mode functionality checking.

• Increasing the focus on microarchitecture validation
of multi-cluster protocols such as SMC, atomic
operations, and forward progress mechanisms.

• Increasing the use of coverage-based validation
techniques to address hardware/microcode
interactions in the MT AV validation space.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Pre-Silicon Validation of Hyper-Threading Technology 21

• Increasing the use of coverage-based validation
techniques at the full-chip level to track resource
utilization.

Done mainly in the spirit of continuous improvement,
enhancing the CTEs to more completely model adjacent
clusters and improve checking will increase the
controllability benefits of CTE testing and improve both
ST- and MT-mode validation. Much of the full-chip
microarchitecture validation (uAV) had focused on
testing of cluster boundaries to complement CTE testing.
While this continues, additional resources have been
allocated to the multi-cluster protocols mentioned
previously.

The MTV team is, for the first time, using coverage-based
validation to track architectural state coverage. For
example, the plan is to go beyond testing of interrupts on
both logical processors by skewing a window of interrupt
occurrence on both logical processors at the full-chip
level. In addition, this will guarantee that both logical
processors are simultaneously in a given architectural
state.

The MTV team is also increasing its use of coverage to
track resource consumption. One case would be the
filling of a fully shared structure, by one logical
processor, that the other logical processor needs to use.
The goal is to use coverage to ensure that the desired
traffic patterns have been created.

Nevertheless, these changes represent fine-tuning of the
original strategy developed for Hyper-Threading
Technology validation. The use of CTEs proved
essential for overcoming decreased controllability, and
the division of MT-mode validation work among the
existing functional validation teams proved an effective
and efficient way of tackling this large challenge. The
targeted microarchitecture boundary conditions, resource
structures, and areas identified as new validation
concerns were all highly functional at initial tapeout.
Many of the bugs that escaped pre-silicon validation
could have been caught with existing pre-silicon tests if
those tests could have been run for hundreds of millions
of clock cycles or involved unintended consequences
from rare interactions between protocols.

CONCLUSION
The first Intel microprocessor with Hyper-Threading
Technology was highly functional on A-0 silicon. The
initial pre-silicon validation strategy using the trinity of
coverage-based validation, CTE testing, and sharing the

Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

validation work was successful in overcoming the
complexities and new challenges posed by this
technology. Driven by bug data, refinements of the
original validation process will help ensure that Intel
Corporation can successfully deploy new processors with
Hyper-Threading Technology and reap the benefits of
improved performance at lower die size and power cost.

ACKNOWLEDGMENTS
The work described in this paper is due to the efforts of
many people over an extended time, all of whom deserve
credit for the successful validation of Hyper-Threading
Technology.

REFERENCES
[1] Bentley, B. and Gray, R., “Validating The Intel Pentium

4 Processor,” Intel Technology Journal Q1, 2001at
http://developer.intel.com/technology/itj/q12001/article
s/art_3.htm.

[2] Burns, D., “Pre-Silicon Validation of the Pentium 4’s
SMT Capabilities,” Intel Design and Test Technology
Conference, 2001, Intel internal document.

[3] Burns, D., “MT Pre-Silicon Validation,`” IAG Winter
2001 Validation Summit, Intel internal document.

AUTHOR’S BIOGRAPHY
David Burns is the Pre-Silicon Hyper-Threading
Technology Validation Manager for the DPG CPU Design
organization in Oregon. He has more than 10 years of
experience with microprocessors, including processor
design, validation, and testing in both pre- and post-
silicon environments. He has a B.S. degree in Electrical
Engineering from Northeastern University. His e-mail
address is david.w.burns@intel.com.

Copyright © Intel Corporation 2002. Other names and
brands may be claimed as the property of others.

This publication was downloaded from
http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/corporate/tradmarx.htm.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 22

Speculative Precomputation:
Exploring the Use of Multithreading for Latency

Hong Wang, Microprocessor Research, Intel Labs
Perry H. Wang, Microprocessor Research, Intel Labs

Ross Dave Weldon, Logic Technology Development Group, Intel Corporation
Scott M. Ettinger, Microprocessor Research, Intel Labs

Hideki Saito, Software Solution Group, Intel Corporation
Milind Girkar, Software Solution Group, Intel Corporation
Steve Shih-wei Liao, Microprocessor Research, Intel Labs

John P. Shen, Microprocessor Research, Intel Labs

Index words: cache misses, memory prefetch, precomputation, multithreading, microarchitecture

ABSTRACT
Speculative Precomputation (SP) is a technique to improve
the latency of single-threaded applications by utilizing idle
multithreading hardware resources to perform aggressive
long-range data prefetches. Instead of trying to explicitly
parallelize a single-threaded application, SP does the
following:

• Targets only a small set of static load instructions,
called delinquent loads, which incur the most
performance degrading cache miss penalties.

• Identifies the dependent instruction slice leading to
each delinquent load.

• Dynamically spawns the slice on a spare hardware
thread to speculatively precompute the load address
and perform data prefetch.

Consequently, a significant amount of cache misses can
be overlapped with useful work, thus hiding the memory
latency from the critical path in the original program.

Fundamentally, contrary to conventional wisdom that
multithreading microarchitecture techniques can be used
to only improve the throughput of multitasking workloads
or the performance of multithreaded programs , SP
demonstrates the potential to leverage multithreading
hardware resources to exploit a form of implicit thread-
level parallelism and significantly speed up single-
threaded applications. Most desktop applications in the

traditional PC environment are not otherwise easily
parallelized to take advantage of multithreading resources.

This paper chronicles the milestones and key lessons from
Intel’s research on SP, including an initial simulation-
based evaluation of SP for both in-order and out-of-order
multithreaded microarchitectures. We also look at recent
experiments in applying software-based SP (SSP) to
significantly speed up a set of pointer-intensive
applications on a pre-production version of Intel Xeon
processors with Hyper-Threading Technology.

INTRODUCTION
Memory latency has become the critical bottleneck to
achieving high performance on modern processors. Many
large applications today are memory intensive, because
their memory access patterns are difficult to predict and
their working sets are becoming quite large. Despite
continued advances in cache design and new
developments in prefetching techniques, the memory
bottleneck problem still persists. This problem worsens
when executing pointer-intensive applications, which tend
to defy conventional stride-based prefetching techniques.

Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 23

One solution is to overlap memory stalls in one program
with the execution of useful instructions from another
program, thus effectively improving system performance
in terms of overall throughput. Improving throughput of
multitasking workloads on a single processor has been the
primary motivation behind the emerging simultaneous
multithreading (SMT) techniques [1][2][3]. An SMT
processor can issue instructions from multiple hardware
contexts, or logical processors (sometimes also called
hardware threads), to the functional units of a super-
scalar processor in the same cycle. SMT achieves higher
overall throughput by increasing overall instruction-level
parallelism available to the architecture via the exploitation
of the natural parallelism between independent threads
during each cycle.

However, this traditional use of SMT does not directly
improve performance in terms of latency when only a
single thread is executing. Since the majority of desktop
applications in the traditional PC environment are single-
threaded code, it is important to investigate if and how
SMT techniques can be used to enhance single-threaded
code performance by reducing latency.

At Intel Labs, extensive microarchitecture research efforts
have been dedicated to discover and evaluate innovative
hardware and software techniques to leverage
multithreaded hardware resources to speed up single-
threaded applications. One of the techniques is called
Speculative Precomputation (SP), a novel thread-based
cache prefetching mechanism. The key idea behind SP is
to utilize otherwise idle hardware thread contexts to
execute speculative threads on behalf of the main (non-
speculative) thread. These speculative threads attempt to
trigger future cache-miss events far enough in advance of
access by the non-speculative thread that the memory
miss latency can be masked. SP can be thought of as a
special prefetch mechanism that effectively targets load
instructions that exhibit unpredictable irregular or data-
dependent access patterns. Traditionally, these loads
have been difficult to handle via either hardware
prefetchers [5][6][7] or software prefetchers [8].

In this paper, we chronicle several milestones we have
reached including initial simulation-based evaluations of
SP for both in-order and out-of-order multithreaded
research processors [9][10][11][12][13][14], and highlight
recent experiments in successfully applying software-
based SP (SSP) to significantly speed up a set of pointer-
intensive benchmarks on a pre-production version of

Intel Xeon processors with the Hyper-Threading
Technology.

We first recount the motivation for SP, and we introduce
the basic algorithmic ingredients and key optimizations,
such as chaining triggers, which ensure the effectiveness
of SP. We then compare SP with out-of-order execution,
the traditional latency tolerance technique, and shed light
on the effectiveness of combining both techniques. We
follow with a discussion of the trade-offs for hardware-
based SP and software-based SP (SSP), and in particular,
highlight an automated post-pass binary adaptation tool
for SSP. This tool can achieve performance gains
comparable to that of implementing SSP using hand
optimization. We then describe recent experiments where
SSP is applied to speed up a set of applications on a pre-
production version of Intel Xeon processors with the
Hyper-Threading Technology. Finally, we review related
work.

SPECULATIVE PRECOMPUTATION: KEY
IDEAS
Chronologically, the key ideas for Speculative
Precomputation (SP) were developed prior to the arrival of
silicon for the Intel® Xeon™ processors with Hyper-
Threading Technology. Our initial research work on SP
was conducted on a simulation infrastructure modeling a
range of research Itanium™ processors that support
Simultaneous Multithreading (SMT) with a pipeline
configurable to be either in-order or out-of-order. Before
we discuss the trade-offs for hardware- vs. software-based
implementations of SP, our discussion will assume the
research processor model described below in

Table 1. We use a set of benchmarks selected from
SPEC2000 and the Olden suite, including art, equake,
gzip, mcf, health and mst.

Table 1: Details of the research Itanium processor
models

Pipeline
Structure

In-order: 8-12-stage pipeline.
Out-of-order: 12-16-stage pipeline.

Fetch 2 bundles from 1 thread, or
1 bundle from each of 2 threads.

Branch pred 2K-entry GSHARE. 256 entry 4-way
associative BTB.

Intel is registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
Xeon and Itanium are trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 24

Expansion Private, per-thread, in-order 8 bundle
expansion queue

Register Files Private, per-thread register files.
128 integer registers, 128 FP registers, 64
predicate registers, 128 application
registers

Execute
Bandwidth

In-order: 6 instructions from one thread or
3 instructions from each of 2 threads
Out-of-order: 18-instruction schedule
window

Cache
Structure

L1 (separate I and D): 16K 4-way, 8-way
banked, 1-2-cycle
L2 (shared): 256K 4-way, 8-way banked, 7-
14-cycle
L3 (shared): 3072K 12-way, 1-way banked,
15-30-cycle
Fill buffer (MSHR): 16 entries. All caches:
64-byte lines

Memory 115-230 cycle latency, TLB Miss Penalty
30 cycles.

Delinquent Loads
For most programs, only a small number of static loads are
responsible for the vast majority of cache misses [15].
Figure 1 shows the cumulative contributions to L1 data
cache misses by the top 50 static loads for the processor
models in

Table 1 running benchmarks to completion. It is evident
that a few poorly behaved static loads dominate cache
misses in these programs. We call these loads delinquent
loads.

Miss Contribution of Delinquent Loads

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

mst gzip health mcf art equake

P
e

r
c

e
n

t
a

g
e

o
f

a
l

l

c
a

c
h

e

m
i

s
s

e
s

Number of delinquent loads in ranked order

Delinquent Loads

Figure 1: Cumulative L1 data cache misses due to
delinquent loads

In order to gauge the impact of these loads on
performance, Figure 2 compares the performance of a
perfect memory subsystem, where all loads hit in the L1, to
that of a memory subsystem that assumes the worst 10

delinquent loads always hitting in the L1 cache. In most
cases, eliminating performance losses from only the top
delinquent loads yields most of the speed-up achievable
by the ideal memory. These data suggest that significant
improvements can be achieved by just focusing latency-
reduction techniques on the delinquent loads.

Performance Impact of D-Loads
Potential Speedup from Targeting Delinquent Loads

32.64 27.90

1

2

3

4

5

6

7

8

Perfect Memory 3.30 6.28 1.14 4.79 32.64 5.79

Perfect Delinquent Loads 1.41 2.76 1.04 2.47 27.90 4.46

art equake gzip mcf health mst

Po
ten

tia
l s

pe
ed

up
Figure 2: Speed-up when 10 delinquent loads are

assumed to always hit in cache

SP Overview
To perform effective prefetch for delinquent loads, SP
requires the construction of the precomputation slices, or
p-slices, which consist of dependent instructions that
compute the addresses accessed by delinquent loads.
When an event triggers the invocation of a p-slice, a
speculative thread is spawned to execute the p-slice. The
speculatively executed p-slice then prefetches for the
delinquent load that will be executed later by the main
thread. Speculative threads can be spawned under one of
two conditions: when encountering a basic trigger, which
occurs when a designated instruction in the non-
speculative thread is retired, or when encountering a
chaining trigger, which occurs when a speculative thread
explicitly spawns another.

Spawning a speculative thread entails allocating a
hardware thread context, copying necessary live-in values
into its register file, and providing the thread context with
the address of the first instruction of the p-slice. If a free
hardware context is not available, the spawn request is
ignored.

Necessary live-in values are always copied into the thread
context when a speculative thread is spawned. This
eliminates the possibility of inter-thread hazards, where a

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 25

register is overwritten in one thread before a child thread
has read it. Fortunately, as shown in Table 2, the number
of live-in values that must be copied is very small.

Table 2: Slice statistics

Benchmark
Slices

(#)
Average size

(#inst)

Average #

live-in

art 2 4 3.5

equake 8 12.5 4.5

gzip 9 9.5 6.0

mcf 6 5.8 2.5

health 8 9.1 5.3

mst 8 26 4.7

When spawned, a speculative thread occupies a hardware
thread context until the speculative thread completes
execution of all instructions in the p-slice. Speculative
threads are not allowed to update the architectural state.
In particular, stores in a p-slice are not allowed to update
any memory state. For the benchmarks studied in this
research, however, none of the p-slices include any store
instructions.

SP Tasks
Several steps are necessary to employ SP: identification of
the set of delinquent loads, construction of p-slices for
these loads, and the establishment of triggers. In addition,
upon dynamic execution with SP, proper control is
necessary to ensure that the precomputation can generate
timely and accurate prefetches. These steps can be
performed by a variety of approaches including compiler
assistance, hardware support , and a hybrid of both
software and hardware approaches. These steps can be
applied to any processor supporting SMT, regardless of
differences in instruction set architectures (ISA) or
pipeline organization. Different manifestations of SP are
further discussed later in the paper.

Identify Delinquent Loads
The set of delinquent loads that contribute the majority of
cache misses is determined through memory access
profiling, performed either by the compiler or a memory
access simulator [15], or by dedicated profiling tools for

real silicon, such as the VTune Performance Analyzer
[16]. From such profile analysis, the loads that have the
largest impact on performance (i.e., incurring long
latencies) are selected as delinquent loads. The total
number of L1 cache misses can be used as the criterion to
select delinquent loads, while other filters (e.g., L2 or L3
misses or total memory latency) could also be used. For
example, in our simulation-based study, we use the L1
cache misses to identify the delinquent loads, while for
our experiment on a pre-production version of the Intel
Xeon processor with the Hyper-Threading Technology,
we use L2 cache miss profiling from the VTune analyzer
instead.

Construct and Optimize P-Slices
In this phase, a p-slice is created for each delinquent load.
Depending upon the environment, the p-slice can be
constructed by hand, via a simulator [11][13], by a
compiler [14], or directly by hardware [12]. For example, a
p-slice with a basic trigger can be captured via traditional
backward slicing [17] within a window of dynamic
instruction traces. By eliminating instructions that
delinquent loads do not depend on, the resulting p-slices
are typically of very small sizes, typically 5 to 15
instructions per p-slice. For p-slices with chaining
triggers, a more elaborate construction process is required.

P-slices containing chaining triggers typically have three
parts–a prologue, a spawn instruction for spawning
another copy of the p-slice, and an epilogue. The
prologue consists of instructions that compute values
associated with a loop-carried dependency, i.e., those
values produced in one loop iteration and used in the next
loop iteration, such as updates to a loop induction
variable. The epilogue consists of instructions that
produce the address for the targeted delinquent load. The
goal behind chaining trigger construction is for the
prologue to be executed as quickly as possible, so that
additional speculative threads can be spawned as quickly
as possible.

To add chaining triggers to p-slices targeting delinquent
loads within loops, the algorithm for capturing p-slices
using basic triggers can be augmented to track the
distance between different instances of a delinquent load.
If two instances of the same p-slice are consistently
spawned within a fixed-sized window of instructions, we
create a new p-slice that includes a chaining trigger that
targets the same delinquent load. Instructions from one

 VTune is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries .

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 26

slice that modify values used in the next p-slice are added
to the prologue. Instructions that are necessary to
produce the address loaded by the delinquent load are
added to the epilogue. Between the prologue and
epilogue, a spawn instruction is inserted to spawn another
copy of this same p-slice.

Condition Precomputation
To be effective, SP-based prefetches must be accurate
and timely. By accuracy, we mean a p-slice upon
spawning should use mostly valid live-in values to
produce a correct prefetch address. By timeliness, we
mean the speculative threads performing the SP prefetch
thread should run neither behind nor too far ahead of the
main non-speculative thread.

For accuracy, if spawning of the speculative thread is
done only after its corresponding trigger reaches the
commit stage of the processor pipeline, then the live-in
values of the associated p-slice are usually guaranteed to
be architecturally correct, thus ensuring precomputation
will produce the correct prefetch address. An alternative
policy might attempt to spawn as soon as the trigger
instruction is detected at the decode stage of the pipeline.
The drawback of such an early spawning scheme is that
both the trigger and the live-in values are speculative and
prefetching from the wrong address can occur.

For timeliness, basic trigger by definition is more sensitive
to how far it is between the trigger and the target
delinquent load and how long the p-slice is, since the
thread spawning is tightly coupled to progress made by
the main thread. Any overhead associated with thread
spawning will not only reduce the headroom for prefetch
but also incur additional latency on the main thread.

The use of chaining, while decoupling thread spawning
from progress made by the main thread, could potentially
be overly aggressive in getting too far ahead and evicting
useful data from the cache before the main thread has
accessed them. To condition the run-ahead distance
between the main thread and the SP threads, a structure
called an Outstanding Slice Counter (OSC), is introduced
to track, for a subset of distinct delinquent loads, the
number of speculative threads that have been spawned
relative to the number of instances of a delinquent load
that have not yet been retired by the non-speculative
thread. Each entry in the OSC tracking structure contains
a counter, the instruction pointer (IP) of a delinquent load
and the address of the first instruction in a p-slice, which
identifies the p-slice. This counter is decremented when
the non-speculative thread retires the corresponding
delinquent load, and is incremented when the
corresponding p-slice is spawned. When a speculative
thread is spawned for which the entry in the OSC is

negative, the resulting speculative thread is forced to wait
in the pending state until the counter becomes positive,
during which time it is not considered for assignment to a
hardware thread context.

As we will see later, the controlling mechanism can also be
implemented entirely in software as part of the speculative
thread.

SP Trade-offs
One of the key findings in our SP research is that the
chaining trigger, assuming fairly conservative hardware
support but with a proper conditioning mechanism, can be
much more effective than the basic trigger even assuming
ideal hardware support. The trade-offs between the basic
trigger and the chaining trigger can be summarized as
follows.

Basic Trigger With Ideal Hardware Assumption
Figure 3 shows the performance gains achieved through
two rather ideal SP configurations. One is more
aggressive in that speculative threads are spawned from
the non-speculative thread at the rename stage, but only
by an instruction on the correct control flow path using
oracle knowledge. The other is a less aggressive one, in
that speculative threads are spawned only at the commit
stage, when the instruction is guaranteed to be on the
correct path. In both cases, we assume aggressive and
ideal hardware support for directly copying live-in values
from the non-speculative parent thread’s context to its
child thread’s context, i.e., one-cycle flash-copy of live-in
values. This allows the speculative thread to begin
execution of a p-slice just one cycle after it is spawned.

For each benchmark, results are grouped into three pairs,
corresponding to, from left to right, 2, 4, and 8 total
hardware thread contexts. Within each pair, the
configuration on the left corresponds to spawning
speculative threads in the rename stage, while the
configuration on the right corresponds to spawning in the
commit stage as described above.

Basic Trigger Without Ideal Hardware Assumption
We propose a more realistic implementation of SP, which
performs thread spawning after the trigger instruction is
retired and assumes overhead, such as potential pipeline
flush and multiple-cycle transfer of live-in values across
threads via memory. This approach differs from the
idealized hardware approach in two ways. First, spawning
a thread is no longer instantaneous. It will slow down the
non-speculative thread, due to the need to invoke and
execute the handler code to check hardware thread
availability and copy out live-in values to memory to
prepare for cross-thread transfer. At the very minimum,
invoking this handler requires a pipeline flush. The

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 27

second difference is that p-slices must be modified with a
prologue to first load their live-in values from the transfer
memory buffer, thus delaying the beginning of
precomputation.

Potential Speed-up (Basic Triggers)
Ideal Speedup from Speculative Precomputation

Using Basic Triggers

0.8

0.9

1

1.1

1.2

1.3

1.4

art equake gzip mcf health mst Average

Spawn Rename, 2 Context Spawn Commit, 2 Context
Spawn Rename, 4 Context Spawn Commit, 4 Context
Spawn Rename, 8 Context Spawn Commit, 8 Context

Sp
ee

d
-u

p

Benchmarks

Figure 3: SP speed-up with basic trigger and ideal
hardware assumptions

Realistic Speedup from Speculative Precomputation
Using Basic Triggers

0

0.2

0.4

0.6

0.8

1

1.2

1.4

art equake gzip mcf health mst Average

No Spawn Cost Pipe flush Pipe flush+8 cycles Pipe flush+16 cycles

Sp
ee

d
-u

p

Benchmarks

Figure 4: SP speed-up with basic trigger and realistic
hardware

Figure 4 shows the performance speed-ups achieved when
this more realistic hardware is assumed for a processor
with eight hardware thread contexts. Four processor
configurations are shown, each corresponding to differing
thread-spawning costs. The leftmost configuration is
given for reference, in which speculative threads are
spawned with no penalty for the non-speculative thread,
but must still perform a sequence of load instructions to
read their live-in values from the memory transfer buffer.
This configuration yields the highest possible
performance because the main thread is still instantaneous
in spawning a speculative thread. In the other three

configurations, spawning a speculative thread causes the
non-speculative thread’s instructions following the trigger
to be flushed from the pipeline. In the configuration
second from the left, this pipeline flush is the only penalty,
while in the third and fourth configurations, an additional
penalty of 8 and 16 cycles, respectively, is assumed for the
cost of executing the handler code to perform the live-in
transfer.

Comparing these results to the performance of SP with
ideal hardware (see Figure 3), the results for realistic SP in
Figure 4 are rather disappointing. The primary reason that
this performance falls short of that in the ideal case is the
overhead incurred when the non-speculative thread
spawns speculative threads. Specifically, the penalty of
pipeline flush and the cost of performing live-in spill
instructions in the handler both negatively affect the
performance of the non-speculative thread.

Chaining Trigger
Figure 5 shows the speed-up achieved from realistic SP
using chaining triggers as the number of thread contexts is
varied. We assume that a thread spawning incurs a
pipeline flush and an additional penalty of 16 cycles.
Chaining triggers make effective use of available thread
contexts when sufficient memory parallelism exists,
resulting in impressive average performance gains of 51%
with four threads and 76% with eight threads.

Speedup from Speculative Precomputation Using
Chaining Triggers

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

art equake gzip mcf health mst Average

Sp
ee

du
p

ov
er

 B
as

el
in

e

2 Total Thread Contexts 4 Total Thread Contexts 8 Total Thread Contexts

Figure 5: SP speed-up with chaining trigger and
realistic hardware

Most noticeable is health. Though it does not benefit
significantly from basic triggers (as shown in Figure 4) the
speed-up is boosted to 169%, when using chaining
triggers.

Figure 6 shows which level of the memory hierarchy is
accessed by delinquent loads under three processor
configurations: the baseline processor without use of SP,
a processor with 8 thread contexts that uses basic triggers,

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 28

and a processor with 8 thread contexts that uses both
basic and chaining triggers.

Sources of Speed-up

0

0.2

0.4

0.6

0.8

1

art equake gzip health m c f mst

P
e

rc
e

n
ta

g
e

 D
e

li
n

q
u

e
n

t

L
o

a
d

 A
c

c
e

s
s

e
s

Mem Hit Mem Hit Partial
L3 Hit L3 Hit Partial
L2 Hit L2 Hit Partial

C
h

a
in

in
g

 T
ri

g
g

e
rs

N
o

 S
P

B
a

si
c

T
ri

g
g

e
rs

Figure 6: Reduction of cache misses in the memory
hierarchy via SP-based prefetching

In general, basic triggers provide high accuracy but fail to
significantly impact the number of loads that require
access to the main memory. Even though basic triggers
can be effective in targeting delinquent loads with
relatively low latency, such as L1 misses, they are not
likely to significantly help prefetch cache misses to main
memory in a timely manner.

Chaining triggers, however, can achieve higher coverage
and prefetch data in a much more timely manner, even for
data that require access to the main memory. This is due
to the chaining trigger’s ability to effectively target
delinquent loads and perform prefetches significantly far
ahead of the non-speculative thread.

MEMORY LATENCY TOLERANCE: SP VS.
OOO
Before the advent of thread-based prefetch techniques like
SP, out-of-order (OOO) execution [18][19][20] has been the
primary microarchitecture technique to tolerate cache miss
latency. With the register renamer and reservation
stations, an OOO processor is able to dynamically
schedule the in-flight instructions, and execute those
instructions independent of the missing loads, while the
misses are being served.

Fundamentally, both OOO and SP aim to hide memory
latency by overlapping instruction execution with the
service to outstanding cache misses. OOO tries to overlap
the outstanding cache-miss cycles by finding independent
instructions after the missing load and executing them as
early as possible, while SP prefetches for the delinquent
loads far ahead of the non-speculative thread, thus

overlapping future cache misses with the current
execution of the non-speculative thread.

While both SP and OOO can reduce the data cache miss
penalty incurred on the program’s critical path, they differ
in the targeted memory access instructions and the
effectiveness for different levels of the cache hierarchy.
On the one hand, while OOO can potentially hide the miss
penalty for all load and store instructions to all layers of
the cache hierarchy, it is most effective in tolerating L1
miss penalties. But for misses on L2 or L3, OOO may have
difficulty in finding sufficient independent instructions to
execute and overlap the much longer cache-miss latency.
On the other hand, SP by design targets only a small set of
delinquent loads that incur cache misses all the way to the
memory.

To quantify the difference between SP and OOO, using
the research processor models in Table 1, we evaluate two
sets of benchmarks, one representing CPU-intensive
workloads, including gap, gzip and parser, from
SPEC2000Int, and the other representing memory-access-
intensive workloads, including equake from SPEC2000fp,
mcf from SPEC2000int, and health from the Olden suite.

C y c l e A c c o u n t i n g

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

g
a

p
g z i p

p
a

r s
e

r

A
v e (

C
I)

e
q

u
a

k
e

h e a l t
h

m
c

f

A
v e (

M
I)

B e n c h m a r k

N
o

r
m

a
li

z
e

d
 C

y
c

le
s

L 3 L 2 L 1 C a c h e E x e c u t e E x e c u t e O t h e r

Figure 7: Characteristics of CPU-intensive vs. memory-
intensive workloads on an in-order machine

Figure 7 depicts the cycle breakdown of these benchmarks
on the in-order baseline processor. A cycle is assigned to
L1, L2, and L3 when the memory system is busy servicing
the miss at the respective layer of cache hierarchy.
Execute indicates that the processor issues an instruction
for execution while the memory system is idle. Finally,
CacheExecute shows the overlapping of cache misses
with instruction execution. Clearly, the compute-intensive
benchmarks spend most of their time in Execute while the
memory-intensive benchmarks spend their time in waiting
for cache misses.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 29

Figure 8 shows speed-ups over the baseline model
achieved by each of the two memory-tolerance techniques
and by a combination of the two. The OOO processor
model has four additional pipe stages to account for the
increased complexity. Furthermore, SP assumes the use of
chaining triggers and support for conditional
precomputation.

Performance improvement over in-order Itaniumtm processor model

0.6

1

1.4

1.8

2.2

2.6

3

gap gzip parser Ave (CI) equake health mcf Ave (MI)

benchmark

sp
ee

du
p

IO+SP OOO OOO+SP

Figure 8: Speed-ups of in-order+SP, OOO, OOO+SP
over in-order

Figure 9 further shows the cycle breakdown normalized to
the in-order execution. This allows us to dissect where the
speed-ups come from in terms of contributions leading to
latency reduction.

Cycle accounting of memory tolerance approaches

0%

20%

40%

60%

80%

100%

IO
+S

P

O
O

O

O
O

O
+S

P

IO
+S

P

O
O

O

O
O

O
+S

P

IO
+S

P

O
O

O

O
O

O
+S

P

IO
+S

P

O
O

O

O
O

O
+S

P

IO
+S

P

O
O

O

O
O

O
+S

P

IO
+S

P

O
O

O

O
O

O
+S

P

gap gzip parser equake health mcf

benchmark

N
or

m
al

iz
ed

 c
yc

le
s

to
 in

-o
rd

er
 m

od
el Other

Execute

CacheExecute

L1

L2

L3

Figure 9: Cycle breakdown of in-order+SP, OOO and
OOO+SP relative to in-order (100%)

The key findings can be summarized as follows.

OOO vs. SP
As shown in Figure 8, for memory-intensive workloads,
the SP-enabled in-order SMT processor, albeit targeting
only up to the top ten most delinquent loads that miss
frequently in the L2 or L3 caches, can achieve slightly

better speed-up than OOO. As shown in Figure 9, the
speed-up is due to the reduction of the miss penalty at
different levels of the cache hierarchy. For example, for
health, OOO reduces the L3 cycle count from 62% in the
baseline in-order to 28%, while SP achieves an even bigger
reduction, down to 9%.

However, for compute-intensive benchmarks, SP can
actually degrade performance. This is because for these
benchmarks, almost all the delinquent loads that miss L1
hit in L2 and leave little headroom for the SP threads to run
ahead and produce timely prefetches. In addition,
spawning threads increase resource contention with the
main thread and potentially can induce slowdowns in the
main thread as well.

However, OOO is able to tolerate cache misses at all levels
of the cache hierarchy and tolerate long latency
executions on functional units. For instance, for parser,
OOO can achieve a 10% reduction in the L1 cache stall
cycles, and an even larger reduction of 12% in the
execution cycles accounted by Execute. Furthermore,
CacheExecute, the portion accounting for overlapping
between cache servicing and execution, also increases by
9%.

Combination of OOO and SP
As shown in Figure 8, for compute-intensive benchmarks,
SP does not bring about any speed-up beyond using OOO
alone.

For memory-intensive benchmarks, however, the
effectiveness of combining SP with OOO depends on the
benchmarks. For health, if used individually, the OOO
and SP approaches can achieve about a 131% and 90%
speed-up, respectively. Together the two approaches
achieve a near additive speed-up of 198%, demonstrating
a potential complementary effect between the two
approaches. Data in Figure 9 further shed light on the
cause behind this effect. For health, SP alone can reduce
L3 cycles to 9% without improving L1, and OOO alone
can reduce L1 to 11% with a relatively smaller reduction in
L3. By attacking both L1 and L3 cache misses, SP and
OOO used in combination can achieve an overall
reduction for both L1 and L3. This is the root of the
complementary effect between OOO and SP, where each
covers cache misses at relatively disjointed levels of the
cache hierarchy. Another interesting observation is that
on the SP-enabled OOO processor, almost all instruction
executions are overlapped with memory accesses, a
desired effect of memory tolerance techniques.

For mcf, comparing the SP-enabled in-order execution
(a.k.a. in-order+SP) with OOO in Figure 9, a relatively
smaller difference exists between cycle counts in each

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 30

corresponding category. This is a clear indication of
overlapping, whose root cause is the fact that SP and
OOO redundantly cover the delinquent loads in the loop
body.

A key to effectively utilizing SP on an OOO processor is to
avoid overlapping the efforts of these two approaches. In
particular, in typical memory-intensive loops, lengthy loop
control that contains pointer chasing usually is on the
critical path for the OOO processor. Loop control consists
of instructions that resolve loop-carried dependencies and
compute the induction variables for the next loop iteration.
Once such a computation in the loop control is completed,
independent instructions across multiple iterations can be
effectively executed to tolerate cache misses incurred in
the loop body of a particular iteration. A good
combination of SP and OOO is to judiciously apply SP to
perform prefetches for the critical loads in the loop control
while letting OOO handle delinquent loads in the loop
body. Then complementary benefits can be achieved, as
shown in the case of health.

HARDWARE-ONLY SPECULATIVE
PRECOMPUTATION VS. SOFTWARE-
ONLY SPECULATIVE PRECOMPUTATION
The basic steps and algorithmic ingredients for
Speculative Precomputation (SP) can be implemented in a
gamut of techniques ranging from a hardware-only [12]
approach to a software-only approach [14], in addition to
the hybrid approaches originally studied in [11][13].

At one end of the spectrum, in close collaboration with
Professor Dean Tullsen’s research team at the University
of California at San Diego, we investigated the hardware-
only approach, called Dynamic Speculative
Precomputation (DSP), a run-time technique that employs
hardware mechanisms to identify a program’s delinquent
loads and generate precomputation slices to prefetch
them. Like thread-based prefetching, the prefetch code is
decoupled from the main program, allowing much more
flexibility than traditional software prefetching. Like
hardware prefetching, DSP works on legacy code and
does not sacrifice software compatibility with future
architectures and can operate on dynamic information
rather than static to initiate prefetching and to evaluate the
effectiveness of a prefetch. But unlike the software
approaches, speculative threads on DSP are constructed,
spawned, enhanced, and possibly removed by hardware.
Both basic trigger- and chaining trigger-based p-slices can
be efficiently constructed using a back-end structure off
the critical path. Even with minimal p-slice optimization, a
speed-up of 14% can be achieved on a set of various
memory-limited benchmarks. More aggressive p-slice
optimizations yield an average speed-up of 33%.

Interestingly, even in a multiprogramming environment
where multiple non-speculative threads execute, if SP is
applied to the worst behaving loads in the machine,
regardless of which thread they belong to, the overall
throughput can actually be improved, even if only one of
the threads benefits directly from SP. In other words,
though SP is originally intended to reduce the latency of a
single-threaded application, it can also contribute to
throughput improvement in a multiprogramming
environment.

At the other end of the spectrum, we developed a post-
pass compilation tool [14] that facilitates the automatic
adaptation of existing single-threaded binaries for SSP on
a multithreaded target processor without requiring any
additional hardware mechanisms . This tool has been
implemented in Intel’s IPF production compiler
infrastructure and is able to accomplish the following
tasks:

1) Analyze an existing single-thread binary to generate
prefetch threads.

2) Identify and embed triggering points in the original
binary code.

3) Produce a new binary that has the prefetch threads
attached, which can be spawned at run time.

The execution of the new binary spawns the prefetch
threads, which are executed concurrently with the main
thread. Initial results indicate that the prefetching
performed by the speculative threads can achieve
significant speed-ups on an in-order processor, ranging
from 16% to 104%, on pointer-intensive benchmarks.
Furthermore, the speed-ups achieved using the automated
binary-adaptation tool loses at most 18% of the speed-up
relative to that produced by hand-generated SSP code on
the same processor.

To our knowledge, this is the first time that such an
automated binary-adaptation tool has been implemented
and shown to be effective in accomplishing the entire
process of extracting dependent instructions leading to
target operation, identifying proper spawning points, and
managing inter-thread communication to ensure timely
pre-execution leading to effective prefetches .

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 31

SPECULATIVE PRECOMPUTATION ON
THE INTEL XEON PROCESSOR WITH
HYPER-THREADING TECHNOLOGY
With the arrival of silicon for the Intel Xeon processor
with Hyper-Threading Technology, it is of great interest to
try out our Speculative Precomputation (SP) ideas on a
real physical computer, since, thus far, our techniques
have been primarily developed on simulation-based
research processor models. Within just a few weeks of
getting a system with a pre-production version of the Intel
Xeon processor with Hyper-Threading Technology, we
were able to come up with a crucial set of insights and
innovative techniques to successfully apply software-
only SP (SSP) to a small set of pointer-intensive
benchmarks via hand adaptation of the original code. As
shown in Table 3, significant performance boosts were
achieved. The range of speed-ups per benchmark is due
to the use of different inputs. This result was first
disclosed in the 2001 Microprocessor Forum [2] where the
details of Intel’s Hyper-Threading Technology were
originally introduced.

Benchmark Description Speed-up

Synthetic Graph traversal in large
random graph simulating
large database retrieval

22% - 45%

MST

(Olden)

Minimal Spanning Tree
algorithm used for data

clustering

23% - 40%

Health

(Olden)

Hierarchical database
modeling health care

system

11% - 24%

MCF
(SPEC2000int)

Integer programming
algorithm used for bus

scheduling

7.08 %

Table 3: Initial performance data: SP on a pre-production
version of an Intel® Xeon™ processor with Hyper-

Threading Technology

Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.
Xeon and VTune are trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

The silicon used in our experiment is the first generation
implementation of Hyper-Threading Technology. The
chip provides two hardware thread contexts and runs
under Microsoft’s Windows ∗ XP Operating System
optimized for Hyper-Threading Technology. The two
hardware contexts are exposed to the user as two
symmetric multiprocessing logical processors. The on-
chip cache hierarchy has the same configuration as the
commercially available Intel Pentium® 4 processor in the
2001 timeframe. The entire on-chip cache hierarchy is
shared between two hardware threads. There is no special
hardware support for SP on this chip. In the following
subsections, we use a pseudo-code of the synthetic
benchmark in Table 3 as an example to highlight the
methodology of applying SSP.

Figure 10 shows the pseudo-code for this
microbenchmark. Figure 11 and Figure 12 illustrate the
pseudo-code for both the main thread and the SP prefetch
worker thread.

1 main()

 {

2 2 n = NodeArray[0]

3 while(n and remaining)

 {

4 work()
5 n->i = n->next->j + n->next->k + n->next->l
6 n = n->next

7 remaining--

 }

 }

Line 4: 49.47% of total execution time
Line 5: 49.46% of total execution time
Line 5: 99.95% of total L2 misses

Figure 10: Pseudo-code for single-thread code and the
delinquent load profile

Like the general SP tasks described earlier, our experiment
consists of methodologies for identification of delinquent
loads, construction of SP threads, embedding of SP
triggers, and a mechanism enabling live-in state transfer
between the main thread and the speculative thread.

The identification of delinquent loads can be performed
with the help of Intel’s VTune™ Performance Analyzer 6.0
[16]. For instance, as shown in Figure 10, the pointer de-
referencing loads originated at Line 5 are identified as
delinquent with regard to L2 misses, and they incur
significant latency.

∗Other brands may be claimed as the property of others.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 32

Without explicit hardware support for thread spawning,
for inter-thread communication and state transfer, we use
standard Win32∗ thread APIs. CreateThread()is used
to create the SP thread at initialization, SetEvent() is
used to embed a basic trigger inside the main thread, and
WaitForSingleObject() is used in the SP prefetch
thread to implement the event-driven activation inside the
corresponding speculative thread. In addition, we use
global variables as a medium to explicitly implement inter-
thread state transfer, where the main thread is responsible
for copying out the live-in values before signaling a
trigger event (using SetEvent()). The SP prefetch
thread is responsible for copying in the live-in values prior
to performing pointer-chasing prefetches.

 1 main()
 {
2 CreateThread(T

) 3 WaitForSingleObject
()

4 n = NodeArray[0
] 5 while(n and

remaining) {
6 work()
7 n->i = n->next->j + n->next->k + n-
>next->l 8n = n-
>next 9remaining-
- 10 Every stride
times 11 global_n =
n 12 global_r =
remaining 13 SetEvent(
) }

 }

Line 11-12: Live-in’s for
cross thread transfer
Line 13: Trigger to activate
SP thread

SP: Main Thread

Figure 11: SP main thread pseudo-code

 1 T()
 {
2 Do Stride times
3 n->i = n->next->j + n->next->k + n->next->l
4 n = n->next
5 remaining--
6
 SetEvent

 ()
7 while(n and remaining)
 {
8 Do Stride times
9 n->i = n->next->j + n->next->k + n->next->l
10 n = n->next
11 remaining--

12

WaitForSingleObject ()
13 if (remaining < global_r)
14 remaining = global_r
15 n = global_n
 }
 }

Line 9 : Responsible for Most
effective prefetch due to run-ahead
Line 13 : Detect run-behind, adjust
by jumping ahead

SP: Worker Thread

Figure 12: SP Prefetch worker thread–pseudo-code

Furthermore, as shown in Figure 12, a simple yet extremely
important mechanism is used to implement SP
conditioning inside the SP prefetch worker thread. This
mechanism effectively ensures the SP prefetch worker
thread performs the following two essential steps.

∗ Other brands may be claimed as the property of others.

1. Upon each activation, it always runs a set of “stride”
iterations of pointer chasing independent from the
main thread.

It is important to note that the pointer chasing loop
bounded by “stride” effectively realizes a chaining
trigger mechanism, since the progress can be made
across multiple iterations independent of the main
thread’s progress.

2. After completing each set of “stride” iterations, it
always monitors the progress made by the main
thread to determine whether it is behind.

If running behind, the SP thread will try to catch up
with the main thread by synchronizing the global
pointer.

In addition, conditioning code can be introduced to
detect if the SP thread is running too far ahead. The
thread local variables “remaining” within both the
main thread and the SP worker thread, are essentially
trip counts recording their respective progress.

It is interesting to note that the SP worker thread uses
only a regular load instruction and achieves effective
prefetch for the main thread without actually using any
literal prefetch instruction.

To do a fair comparison of performance, we use the Win32
API routine timeGetTime() to measure and compare the
absolute wall clock execution time of the original code and
the SSP-enabled code, both built for maximum speed
optimizations using the Intel IA-32 C/C++ compiler [35].
For the example microbenchmark, Figure 13 summarizes the
reason why SSP-enabled code runs faster, using profiling
information from the VTune Performance Analyzer 6.0 [16].
In short, the SP thread is able to prefetch successfully
most cache misses for the identified delinquent loads.
This optimization brings about a 22% – 45% speed-up for
a range of input sizes.

 Main Thread :
• Line 7 corresponds to Line 5 of single thread code
o Execution time:
19% vs 49.46% in single-thread code
o L2 miss:
0.61% vs 99.95% in single-thread code
SP worker thread :
• Line 9 :
o Execution time:
26.21%
o L2 miss:
97.61%

SP successful in shouldering most L2 cache misses

Figure 13: Why SSP-enabled code runs faster

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 33

This successful experiment not only serves to corroborate
insights and benefits of SP learned from our earlier
studies , which were based on simulation, but also
convincingly demonstrates an alternative way to
effectively use multithreading processor resources, i.e.,
exploit a pseudo form of “thread-level parallelism” within
the single-threaded application, and use multithreading
hardware to reduce its latency.

RELATED WORK
Earlier ideas exploring speculative threads to achieve
benefits of cache prefetches include Chappel et al.,
Simultaneous Subordinate Microthreading (SSMT) [27];
Sundaramoorthy et al., Slipstream Processors [28]; and
Song et al., Assisted Execution [29].

Along with our research on SP [9][10][11][12][13][14],
several thread-based prefetch paradigms have recently
been proposed, including Zilles and Sohi’s Speculative
Slices [21], Roth and Sohi’s Data Driven Multithreading
[22], Luk’s Software Controlled Pre-Execution [23],
Annavaram et al., Data Graph Precomputation [24], and
Moshovos et al., Slice-Processors [25]. Most of these
techniques are equivalent to the basic trigger SP
mechanism.

As pointed out by Roth et al. in [30], these thread-based
prefetching approaches are in effect performing a logical
form of access execute decoupling as originally
envisioned by Smith in [31] and further studied in
[32][33][34]. Instead of assuming a dedicated decoupled
memory access engine, the access function is carried out
by the prefetching SP threads. Using the post-pass SSP
tool, special “access” threads are attached to the original
code. “Access” and “Execute” threads are performed and
overlapped (“pipelining”) on distinct hardware thread
contexts in a general-purpose SMT or CMP processor.

What distinguishes our research from other research in
this area includes the discovery of the chaining trigger
mechanism; in-depth analysis of trade-offs between
different memory tolerance techniques, especially SP and
OOO; a fully automated post-pass compilation tool for
binary adaptation to enable SSP; and the physical
experiment successfully demonstrating that using SSP on
real hardware enabled with Hyper-Threading Technology
can bring about significant speed-up for single-threaded
benchmarks.

CONCLUSION
In this paper we examine key milestones from Intel’s
research on Speculative Precomputation (SP), a technique
that allows a multithreaded processor to use spare
hardware contexts to spawn speculative threads to

prefetch data well in advance of the main thread.
Fundamentally, our research demonstrates Simultaneous
Multithreading (SMT) processor resources can be used
effectively to reduce the latency and enhance the
performance of single-threaded applications.

Instead of relying on the existence of a multitasking or
multiprogramming workload environment in which many
threads run simultaneously on SMT processors to achieve
better throughput, SP is geared towards latency reduction
by extracting assist threads out of the targeted single-
threaded application itself. One insight about SP is that
the potential performance gain is dictated by the reduction
of cache miss latency (which is likely to get worse as clock
frequency increases) and not by the increased instruction
execution throughput in an SMT processor. Executing a
small number of instructions of an SP thread can result in
latency reduction far greater than the latency required to
execute the SP thread. In traditional multithreading of an
application, the potential speed-up is bounded by the
number of instructions that can be executed in the
additional thread context.

As explained in [2], the arrival of Intel’s Hyper-Threading
Technology on the Intel Xeon processor marks the
beginning of a new era: the transition from instruction-
level parallelism (ILP) to thread-level parallelism (TLP).
Multithreading techniques can help both power and
complexity efficiency in future microarchitecture designs.
It is of great interest to us to continue to look for alternate
(and potentially better) use of multithreading resources.
To summarize: Speculative Precomputation (SP) in effect
leverages resources intended for thread-level parallelism
(TLP) to achieve greater memory-level parallelism (MLP).
This in turn significantly improves the effective
instruction-level parallelism (ILP) of traditional single-
threaded applications.

ACKNOWLEDGMENTS
The Speculative Precomputation research team has
received tremendous support from Justin Rattner, Intel
Fellow and Director of Microprocessor Research in Intel
Labs (formerly MRL), and Richard Wirt, Intel Fellow and
general manager, Software Solution Group (SSG).
Individuals from various organizations who have provided
critical support include Kevin J. Smith, David Sehr, Wilfred

Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 34

Pinfold, Jesse Fang, George K. Chen, Gerolf Hoflehner,
Dan Lavery, Wei Li, Xinmin Tian, Sanjiv Shah, Ernesto Su,
Paul Grey, Ralph Kling, Jim Dundas, Wen-hann Wang,
Yong-fong Lee, Ed Grochowski, Gadi Ziv, Shalom
Goldenberg, Shai Satt, Ido Shamir, Per Hammarlund,
Debbie Marr, John Pieper, Bo Huang, Young Wang, Rob
Portman, Pete Andrews, Tony Martinez, Oren Gershon,
Jonathan Beimel, Ady Tal, Yigal Zemach, and Leonid
Baraz.

Professor Dean M. Tullsen, and his research team at UC
San Diego, have been our closest collaborators
throughout our research into Speculative Precomputation.
In particular, Mr. Jamison D Collins, a Ph.D. candidate of
Professor Tullsen’s, has made significant contributions.

Finally, we thank the referees of this paper for their useful
suggestions. We are grateful to Lin Chao, Judith
Anthony and Marian Lacey for their extremely careful
editing.

REFERENCES
[1] J. Emer, “Simultaneous Multithreading: Multiplying

Alpha’s Performance,” Microprocessor Forum, Oct
1999.

[2] G. Hinton and J. Shen, “Intel’s Multi-Threading
Technology,” Microprocessor Forum, October 2001.

[3] D. M. Tullsen, S. J. Eggers, and H. M. Levy,
“Simultaneous Multithreading: Maximizing On-Chip
Parallelism,” in 22nd ISCA, June 1995.

[4] D. M. Tullsen and J. A. Brown, “Handling Long-
Latency Loads in a Simultaneous Multithreading
Processor,” in Micro-34, Dec. 2001, pp. 318-327.

[5] T. Chen, “An Effective Programmable Prefetch Engine
for On-chip Caches,” In Micro-28, pp 237-242, Dec.
1995.

[6] N. Jouppi, “Improving Direct-mapped Cache
Performance by the Addition of a Small Fully
associative Cache and Prefetch Buffers,” in ISCA-17,
pp. 364-373, May 1990.

[7] D. Joseph and D. Grunwald, “Prefetching using
Markov Predictors,” in ISCA-24, pp. 252-263, June
1997.

[8] T. Mowry and A. Gupta, “Tolerating Latency through
Software-controlled Prefetching in Shared-memory
Multiprocessors,” in Journal of Parallel and
Distributed Computing, pp. 87-106, June 1991.

[9] H. Wang, et al., “A Conjugate Flow Processor,” in
Docket No. 884.225US1, Patent Pending, May 2000.

[10] H. Wang, et al., “Software-based Speculative
Precomputation and Multithreading,” in Docket No.
042390.P10811, Patent Pending, March 2001.

[11] J. Collins, H. Wang, D. Tullsen, C, Hughes, Y-F Lee,
D. Lavery, J. Shen. Speculative Precomputation:

Long-range Prefetching of Delinquent Loads,” in 28th
ISCA, July 2001.

[12] J. Collins, D. Tullsen, H. Wang, J. Shen, “Dynamic
Speculative Precomputation,” in Micro-34, pp. 306-
317, December 2001.

[13] P. Wang, H. Wang, J. Collins, E. Grochowski, R. Kling,
J. Shen, “Memory latency-tolerance approaches for
Itanium processors: out-of-order execution vs.
speculative precomputation,” in Proceedings of the
8th IEEE HPCA, Feb 2002.

[14] S. S. W. Liao, P. Wang, H. Wang, G. Hoflehner, D.
Lavery, and J. P. Shen, “Post-pass Binary Adaptation
for Software-based Speculative Precomputation,”
Accepted for publication at PLDI’02.

[15] S. G. Abraham and B. R. Rau, “Predicting Load
Latencies using Cache Profiling,” in HP Lab
Technical Report HPL-94-110, Dec 1994.

[16] Intel Corp. VTune Performance Analyzer.
http://developer.intel.com/software/products/VTune/i
ndex.htm

[17] C. Zilles and G. Sohi, “Understanding the backward
slices of performance degrading instructions,” in 27th
ISCA, pp. 172-181, June 2000.

[18] D. P. Bhandarkar, Alpha Implementations and
Architecture, Digital Press, Newton, MA, 1996.

[19] J. Heinrich, MIPS R10000 Microprocessor User’s
Manual, MIPS Technologies Inc., Sept 1996.

[20] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker and P. Roussel, “The Microarchitecture of
the Pentium 4 Processor,” Intel Technology Journal.
Q1, 2001.

[21] C. Zilles and G. Sohi, “Execution-based prediction
using speculative slices, in 28th ISCA, July 2001.

[22] A. Roth and G. Sohi, “Speculative Data-Driven
Multithreading,” in 7th HPCA, Jan 2001.

[23] C. K. Luk, “Tolerating Memory Latency through
Software-Controlled Pre-Execution in Simultaneous
Multithreading Processors,” in 28th ISCA, June 2001.

[24] M. Annavaram, J. Patel, and E. Davidson, “Data
Prefetching by Dependence Graph Precomputation,”
in ISCA-28, pp 52-61, July 2001.

[25] A. Moshovos, D. Pnevmatikatos, A. Baniasadi, “Slice
processors: an implementation of operation-based
prediction, in International Conference on
Supercomputing, June 2001.

[26] A. Roth, A. Moshovos, and G. Sohi, “Dependence-
based prefetching for linked data structures,” in
ASPLOS-98, pp. 115-126, Oct. 1998.

[27] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt,
“Simultaneous Subordinate Microthreading (SSMT),”
in 26th International Symposium on Computer
Architecture, May 1999.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Speculative Precomputation: Exploring the Use of Multithreading for Latency 35

[28] K. Sundaramoorthy, Z. Purser, and E. Rotenberg,
“Slipstream Processors: Improving both Performance
and Fault Tolerance,” in 9th ASPLOS, Nov. 2000.

[29] Y. Song and M. Dubois, Assisted Execution.
Technical Report #CENG 98-25, Department of EE-
Systems, University of Southern California, Oct. 1998.

[30] A. Roth, C. B. Zilles, G. S. Sohi, “Microarchitectural
Miss/Execute Decoupling,” in MEDEA Workshop,
Oct. 2000.

[31] J. E. Smith. “Decoupled Access/Execute Computer
Architecture,” in 9th ISCA, July 1982.

[32] M. K. Farrens, P. Ng, and P. Nico, “A Comparison of
Superscalar and Decoupled Access/Execute
Architectures,” in 26th Micro , Nov. 1993.

[33] G. P. Jones and N. P. Topham, “A Limitation Study
into Access Decoupling,” in 3rd Euro-Par
Conference, Aug. 1997.

[34] J. M. Parcerisa and A. Gonzalez, “The Synergy of
Multithreading and Access/Execute Decoupling,” in
5th HPCA, Jan. 1999.

[35] A. Bik, M. Girkar, P. Grey and X. Tian, “Efficient
Exploitation of Parallelism on Pentium III and Pentium
4 Processor-Based Systems,” in Intel Technology
Journal, Q1, 2001.
http://www.intel.com/technology/itj/q12001/articles/ar
t_6.htm

AUTHORS’ BIOGRAPHIES
Hong Wang is a senior staff engineer in Microprocessor
Research in Intel Labs. His current interests are in
discovering unorthodox ideas and applying them to future
Intel processor designs. Hong joined Intel in 1995 and
earned a Ph.D. degree in electrical engineering from the
University of Rhode Island in 1996. His e-mail is
hong.wang@intel.com.

Perry H. Wang joined Intel in 1995. He is with the
Microprocessor Research Group in Intel Labs. His
technical interests are in advanced microarchitectures and
compiler optimizations. He received a B.S. degree in
engineering physics and an M.S. degree in computer
science from the University of Michigan in Ann Arbor.
His e-mail is perry.wang@intel.com

R. David Weldon joined Intel in 2000. He currently works
in the Logic Technology Development group, designing
future IA-32 processors. David has a BSEE degree from
the University of Washington and a Masters degree from
Cornell University. His technical interests include
processor microarchitecture and hardware/software co-
design. His e-mail is ross.d.weldon@intel.com

Scott M. Ettinger joined Intel in 2001. His technical
interests are in computer architecture and multimedia

signal processing. He received a B.S. and an M.S. degree
in electrical engineering from the University of Florida.
His e-mail is scott.m.ettinger@intel.com

Hideki Saito received a B.E. degree in Information Science
in 1993 from Kyoto University, Japan, and a M.S. degree in
Computer Science in 1998 from University of Illinois at
Urbana-Champaign, where he is currently a Ph.D.
candidate. He joined Intel Corporation in June 2000 and
has been working on multithreading and performance
analysis. He is a member of the OpenMP Parallelization
group. His e-mail is hideki.saito@intel.com

Milind Girkar received a B.Tech. degree from the Indian
Institute of Technology, Mumbai, an M.S. degree from
Vanderbilt University, and a Ph.D. degree from the
University of Illinois at Urbana-Champaign, all in computer
science. Currently, he manages the IA-32 compiler
development team in Intel's Software Solution Group.
Before joining Intel, he worked on a compiler for the
UltraSPARC platform at Sun Microsystems. His e-mail is
milind.girkar@intel.com.

Steve Shih-wei Liao received a B.S. degree in computer
science from National Taiwan University, and M.S. and
Ph.D. degrees in electrical engineering from Stanford
University. His research interests are in program analyses
and optimizations, computer architectures, and
programming environments. He currently works in the
Microprocessor Research Group at Intel Labs. His e-mail
is shih-wei.liao@intel.com.

John P. Shen currently directs Microarchitecture Research
in Intel Labs. Prior to joining Intel in 2000, he was on the
faculty of the Electrical and Computer Engineering
Department of Carnegie Mellon University for over 18
years. He is an IEEE Fellow and is currently writing a
textbook on “Fundamentals of Superscalar Processor
Design” which will be published by McGraw-Hill in 2002.
His e-mail is john.shen@intel.com.

Copyright © Intel Corporation 2002. This publication was
downloaded from http://developer.intel.com/ .

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm.

Intel OpenMP C++/Fortran Compiler for Hyper-Threading Technology 36

Intel OpenMP C++/Fortran Compiler for Hyper-Threading
Technology: Implementation and Performance

Xinmin Tian, Software Solutions Group, Intel Corporation
Aart Bik, Software Solutions Group, Intel Corporation

Milind Girkar, Software Solutions Group, Intel Corporation
Paul Grey, Software Solutions Group, Intel Corporation

Hideki Saito, Software Solutions Group, Intel Corporation
Ernesto Su, Software Solutions Group, Intel Corporation

Index words: Hyper-Threading Technology, OpenMP, Optimization, Parallelization, Vectorization

ABSTRACT
In the never-ending quest for higher performance, CPUs
become faster and faster. Processor resources, however,
are generally underutilized by many applications. Intel’s
Hyper-Threading Technology is developed to resolve this
issue. This new technology allows a single processor to
manage data as if it were two processors by executing data
instructions from different threads in parallel rather than
serially. Processors enabled with Hyper-Threading
Technology can greatly imp rove the performance of
applications with a high degree of parallelism. However,
the potential gain is only obtained if an application is
multithreaded, by either manual, automatic, or semi-
automatic parallelization techniques. This paper presents
the compiler techniques of OpenMP pragma- and
directive-guided parallelization developed for the high-
performance Intel C++/Fortran compiler. We also present
a performance evaluation of a set of benchmarks and
applications.

INTRODUCTION

Intel processors have a rich set of performance-enabling
features such as the Streaming-SIMD-Extensions (SSE and
SSE2) in the IA-32 architecture [11], large register files,
predication, and control and data speculation in the
Itanium-based architecture [8]. These features allow the
compiler to exploit parallelism at various levels. Intel’s

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

newest Hyper-Threading Technology [14], a simultaneous
multithreading design, allows one physical processor to
manage data as if it were two logical processors by
handling data instructions in parallel rather than serially.
The Hyper-Threading Technology-enabled processors
can significantly increase the performance of application
programs with a high degree of parallelism. These
potential performance gains are only obtained, however, if
an application is efficiently multithreaded, either manually
or by automatic or semi-automatic parallelization
techniques. The Intel C++/Fortran high-performance
compiler supports several such techniques. One of those
techniques, automatic loop parallelization, was presented
in [3]. In addition to automatic loop level parallelization,
Intel compilers support OpenMP directive- and pragma-
guided parallelization as well, which significantly increase
the domain of various applications amenable to effective
parallelism. For example, users can use OpenMP parallel
sections to develop an application where section-1 calls
an integer-intensive routine and where section-2 calls a
floating-point intensive routine. Higher performance is
obtained by scheduling section-1 and section-2 onto two
different logical processors that share the same physical
processor to fully utilize processor resources based on the
Hyper-Threading Technology. The OpenMP standard API
[12, 13] supports a multi-platform, shared-memory, parallel
programming paradigm in C++/C/Fortran95 on all Intel
architectures and popular operating systems such as

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Intel OpenMP C++/Fortran Compiler for Hyper-Threading Technology 37

Windows NT∗, Linux*, and Unix*. OpenMP directives and
pragmas have emerged as the de facto standard of
expressing parallelism in various applications as they
substantially simplify the notoriously complex task of
writing multithreaded programs.

The Intel compilers support the OpenMP pragmas and
directives in the languages C++/C/Fortran95, on
Windows* and Linux platforms and on IA-32 and IPF
architectures. The Intel OpenMP implementation in the
compiler strives to (i) generate multithreaded code which
gains a speed-up due to Hyper-Threading Technology
over optimized uniprocessor code, (ii) integrate
parallelization tightly with advanced scalar and loop
optimizations such as intra-register vectorization [4] and
memory optimizations [1, 10] to achieve better cache
locality and efficiently exploit multi-level parallelism, and
(iii) minimize the overhead of data-sharing among threads.

This paper focuses on the design and implementation of
OpenMP pragma- and directive-guided parallelization in
the Intel® C++/Fortran compilers. We also present
performance results of a number of applications (Micro-
benchmark, Image processing library functions, OpenMP
benchmarks from [2]) that exhibit performance gains due to
Hyper-Threading Technology when such programs are
multithreaded through the OpenMP directives or pragmas
and compiled with Intel C++/Fortran compilers.

The remainder of this paper is organized as follows. We
first give a high-level overview of the architecture of the
Intel C++/Fortran compiler with OpenMP support. We
then present the Multi-Entry Threading (MET) technique
that is the key technique developed for multithreaded
code generation in the Intel compilers. We go on to
describe the local static data-sharing and privatization
methods for minimizing overhead of data sharing among
threads. We briefly explain how OpenMP parallelization
interacts with advanced optimizations such as constant
propagation, interprocedural optimization, and partial
redundancy elimination. We also briefly describe how
multi-level parallelism is exploited by combining
parallelization with intra-register vectorization to take
advantage of the Intel Pentium 4 processor SIMD-
Streaming-Extensions (SSE and SSE2). Finally, we show
the performance results of several OpenMP benchmarks
and applications when such programs are multithreaded
by the Intel OpenMP C++/Fortran compilers.

∗Other brands and names may be claimed as the property
of others.

 Pentium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

HIGH-LEVEL COMPILER OVERVIEW

A high-level overview of the Intel® OpenMP C++/Fortran
compiler is shown in Figure 1. The compiler incorporates
many well-known and advanced optimization techniques
that are designed and extended to fully leverage Intel
processor features for higher performance. The Intel
compiler has a common intermediate representation for
C++, C and Fortran95 languages, so that the OpenMP
directive- or pragma-guided parallelization and a majority
of optimization techniques are applicable through a single
high-level code transformation, irrespective of the source
language. Throughout the rest of this paper, we refer to
Intel OpenMP C++ and Fortran compilers for IA-32 and
Itanium processor family architectures collectively as
“the Intel compiler.”

C++/C Front-End Fortran 95 Front-End

OpenMP/Automatic
Parallelization and Vectorization

Code Restructuring and IPO

HLO and Scalar Optimizations

Lower Level Code Generation
and Optimizations

IA-32 (NT & Linux) IA-64 (NT & Linux)

Figure 1: Compiler architecture overview

The code transformations and optimizations in the Intel
compiler can be classified into (i) code restructuring and
interprocedural optimizations (IPO); (ii) OpenMP-based
and automatic parallelization and vectorization; (iii) high-
level optimizations (HLO) and scalar optimizations
including memory optimizations such as loop control and
data transformations, partial redundancy elimination (PRE)
[7], and partial dead store elimination (PDSE); and (iv) low-
level machine code generation and optimizations such as
register allocation and instruction scheduling.

 Itanium is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Intel OpenMP C++/Fortran Compiler for Hyper-Threading Technology 38

Parallelization [3, 4, 10] guided by OpenMP directives or
pragmas or derived by automatic data dependency and
control-flow analysis is a high-level code transformation
that exploits both medium- and coarse-grained parallelism
for Intel processor and multiprocessor systems enabled
with Hyper-Threading Technology to achieve better
performance and higher throughput. The Intel compiler
has a common intermediate code representation (called
IL0) into which C++/C and Fortran95 programs are
translated by the language front-ends. Many optimization
phases in the compiler work on the IL0 representation.
The IL0 has been extended to express the OpenMP
directives and pragmas. Implementing the OpenMP phase
at the IL0 level allows the same implementation to be used
across languages (C++/C, Fortran95) and architectures
(IA-32 and IPF). The Intel compiler-generated code has
references to a high-level multithreaded library API; this
allows the compiler OpenMP transformation phase to be
independent of the underlying operating systems. This
also facilitates our “one-for-all” design philosophy.

A primary goal of the Intel compiler is to have OpenMP
parallelization tightly integrated with advanced compiler
optimizations for generating efficient multithreaded code
that gains a speed-up over optimized uniprocessor code.
Therefore, an effective optimization phase ordering has
been designed in the Intel compiler to make sure that all
optimizations, such as IPO inlining, code restructuring;
Igoto optimizations, and constant propagation, which are
effectively enabled before the OpenMP parallelization,
preserve legal OpenMP program semantics and necessary
information for parallelization. It als o ensures that all
optimizations after the OpenMP parallelization, such as
automatic vectorization, loop transformation, PRE, and
PDSE, can effectively kick in to achieve a better cache
locality and to minimize the number of computations and
the number of references to memory. For example, given a
double-nested OpenMP parallel loop, the parallelization
methods are able to generate multithreaded code for the
outer loop, while maintaining the loop structure, memory
reference behavior, and symbol table information for the
innermost loop. This enables subsequent intra-register
vectorization of the innermost loop to fully leverage the
Hyper-Threading Technology and SIMD Streaming
Extension features of Intel processors. Exploiting multi-
level parallelism is described later in this paper.

OpenMP parallelization in the Intel compiler includes (i) a
pre-pass that transforms OpenMP parallel sections and
worksharing sections into a parallel loop and worksharing
loop, respectively; (ii) a work-region graph builder that
builds a region hierarchical graph based on the OpenMP-
aware control-flow graph; (iii) a loop analysis phase for
building the loop structure that consists of loop control
variable, loop lower-bound, loop upper-bound, loop pre-

header, loop header, and control expression; (iv) a variable
classification phase that performs analysis of shared and
private variables; (v) a multithreaded code generator that
generates multithreaded code at compiler intermediate
code level based on Guide, a multithreaded run-time
library API that is provided by the Intel KAI Software
Laboratory (KSL); (vi) a privatizer that performs
privatization to handle firstprivate, private, lastprivate, and
reduction variables; and (vii) a post-pass that generates
code to cache in thread local storage for handling
threadprivate variables. There are a number of compiler
techniques developed for parallelization in the Intel
compiler. The following sections describe some of these
techniques in detail.

MULTI-ENTRY THREADING

A well-known conventional technology, which was named
outlining [5, 6], has been used by existing parallelizing
compilers for generating multithreaded codes. The basic
idea of outlining is to generate a separate subroutine for a
parallel region or loop. All threads in a team call this
routine with necessary data environment. In contrast to
the outlining technology, we developed and implemented
a new compiler technology called Multi-Entry Threading
(MET). The rationale behind MET is that the compiler
does not create a separate compilation unit (or routine) for
a parallel region or loop. Instead, the compiler generates a
threaded entry and a threaded return for a given parallel
region and loop [3]. Based on this idea, we introduced
three new graph nodes in the Region-based graph, built
on top of the control-flow graph. These graph nodes are
T-entry (threaded entry), T-ret (threaded return), and T-
region (threaded code region). A detailed description of
these graph nodes is given as follows:

• T-entry indicates the entry point of a multithreaded
code region and has a list of firstprivate, lastprivate,
shared and/or reduction variables for communication
among the threads in a team.

• T-ret indicates the exit point of a multithreaded code
region and guides the lower-level target machine code
generator to adjust stack offset properly and give the
control to the caller inside the runtime library. T-
region represents a multithreaded code region that is
attached inside the original user routine.

The main concept of the MET compilation model is to
keep all newly generated multithreaded codes, which are
captured by T-entry, T-region and T-ret nodes, intact or
inlined within the same user-defined routine without
splitting them into independent subroutines. This method
provides later compiler optimizations with more

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Intel OpenMP C++/Fortran Compiler for Hyper-Threading Technology 39

opportunities for performing optimization. Example (E1-I)
is an OpenMP program sample.

Given the parallel program with OpenMP pragmas above,
its region-based hierarchical graph is shown in Figure 2.
As we see, the first T-region represents the OpenMP
parallel sections and the second T-region represents the
OpenMP parallel loop in the routine ‘parfoo.’ Each T-
region contains a T-entry node and a T-ret node. With
OpenMP data attribute clauses, the variables ‘w’ and ‘y’
are marked as shared and the arrays ‘x’ and ‘z’ are marked
as shared as well in the parallel sections clause. For the
parallel loop, the loop control variable ‘m’ is marked as
private, and the variables ‘y’ and ‘w’ and the array ‘z’ are
marked as shared. The guided scheduling type is
specified for the parallel loop. The generated pseudo-
multithreaded code is shown below in (E1-II). As
mentioned previously, the Intel KSL Guide runtime library
API has been adopted for thread creation, synchronization
and scheduling.

R-entry

R-return

T-region

T-region

T-entry/T-ret

Figure 2: Region-based hierarchical graph

(E1-I) An OpenMP Parallel Sections and Loop Example
void parfoo()
{ int m, y, x[5000];
 float w, z[3000];
#pragma omp parallel sections shared(w, z, y, x)
 {
 w = floatpoint_foo(z, 3000);
 #pragma omp section
 y = myinteger_goo(x, 5000) ;
 }
#pragma omp parallel for private(m) shared(y, z, w)
schedule(guided)
 for (m=0; m<3000; m++) {
 z[m] = z[m] * w * y;
 }
}

Essentially, the multithreaded code generator inserts the
thread invocation call __kmpc_fork_call(…) with T-entry
point and data environment (source line information loc,
thread number tid, etc.) for each parallel loop, parallel
sections or parallel region, and transforms a serial loop,
sections, or region to a multithreaded loop, sections, or
region, respectively. In this example, the pre-pass first
converts a parallel section to a parallel loop. Then, the
multithreaded code generator localizes loop lower-bound
and upper-bound, privatizes the section id variable, and
generates runtime initialization and synchronization code
such as the call __kmpc_static_init(…) and the call
__kmpc_static_fini(…) for the T-region marked with
[T_entry, T-ret] nodes. For the parallel loop in the routine
“parfoo” with the scheduling type guided, the OpenMP
parallelization involves (i) generating a runtime dispatch
and initialization routine (__kmpc_dispatch_init) call to
pass necessary information to the runtime system; (ii)
generating an enclosing while loop to dispatch loop-
chunk at runtime through the __kmpc_dispatch_next
routine in the library; (iii) localizing the loop lower-bound,
upper-bound, and privatizing the loop control variable ‘m.’

 (E1-II) Pesudo Multithreaded Code after Parallelization
R-entry void parfoo()
{ int m, y, x[5000];
 float w, z[3000];
 __kmpc_fork_call(loc, 4, T-entry(_parfoo_psection_0),
&w,z,x,&y)
 goto L1:
 T -entry _parfoo_psection_0(loc, tid, *w, z[], *y, x[]) {
 lower_pid = 0;
 upper_pid = 1;
 __kmpc_static_init(loc, tid, STATIC, &lower_pid,
&upper_pid...);
 for (pid=lower_pid, pid<=upper_pid; pid++) {
 if (pid == 0) {
 *w = floatpoint_foo(z, 3000);
 } else if (pid == 1) {
 *y = myinteger_goo(x, 5000);
 }
 }
 __kmpc_static_fini(loc, tid);
 T -ret;
 }
L1:
 __kmpc_fork_call(loc, 3, T-entry(_parfoo_ploop_1), &w, z,
&y);
 goto L2:
 T -entry _parfoo_ploop_1(loc, tid, *w, z[], *y) {
 lower = 0;
 upper = 3000;
 __kmpc_dispatch_init(loc, tid, GUIDED, &lower, &upper,
…);
 while (__kmpc_dispatch_next(loc, tid, &lower, &upper, …))
{
 for (prv_m=lower; prv<upper; prv_m++) {
 z[prv_m] = z[prv_m] * (*w) * (*y);
 }

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Intel OpenMP C++/Fortran Compiler for Hyper-Threading Technology 40

 }
 T -ret;
 }
 L2:
 R-return;
}

There are four well-defined properties of the T-region
graph model of the Multi-Entry Threading technique:

1. T-region is a sub-graph on top of the pragma-aware
control-flow graph, which is identified by the T-entry
and T-ret node for a parallel region, sections, or loop.

2. T-region can be nested to present the hierarchy of
nested parallelism, e.g., T-region(k) = [T-entry(m), T-
region(m), T-ret(m)], where the ‘k’ and ‘m’ are the
unique id of a T-region inside this routine.

3. T-region shares the same local memory locations of all
local static variables of R-entry (Routine entry). In
other words, the local static variables are visible by
every T-region associated with this routine.

4. Multiple T-regions are permitted to represent multiple
parallel constructs at the same nesting level.

With the T-region graph representation of the Multi-Entry
Threading technique, the OpenMP parallelizer and low-
level code generators do not generate a separate routine
(or compilation unit) for a parallel region or parallel loop.
All newly generated multithreaded code blocks (T-
regions) for parallel loops are still kept inlined within the
same compilation unit. The code transformations are done
in a natural way.

From a compiler engineering point of view, the Multi-Entry
Threading technique greatly reduces the complexity of
generating separate routines in the Intel compiler. In
addition, this technique minimizes the impact of OpenMP
parallelization on well supported optimizations in the Intel
compiler such as constant propagation, vectorization,
PRE, PDSE, scalar replacement, loop transformation,
interprocedural optimization, and profile-feedback guided
optimization (PGO). This meets one of the design goals,
namely, to tightly incorporate parallelization with all well-
known and advanced compiler optimizations in the Intel
compiler.

DATA-SHARING AND PRIVATIZATION

When a routine calls another routine, the communication
between them is through global variables and through
arguments of the called routine (or callee). This argument-
passing across the routine boundary introduces some
overhead. The more arguments are passed, the more
overhead is introduced. If the call-by-reference method is
used for associating actual and dummy arguments, the

caller passes to the callee the storage address of the actual
argument, and the reference to the dummy argument in the
callee becomes an indirect reference. Many optimizations
could become disabled by this memory de-referencing.
Given the Guide run-time library API, with the outlining
technology, the parallelizer needs to create a separate
routine for a parallel construct, which means the address
of each local static variable has to be passed to the
outlined routine, since the local static variables in a
routine are not visible to other routines. Thus, there are
three drawbacks with the outlining technique [5, 6]: (i) it
adds extra overhead due to argument-passing to outlined
routine for sharing local static variables among threads;
(ii) it causes less efficient memory access due to memory
de-referencing in the outlined routine; and (iii) it may
disable some optimizations such as Intra-Register
Vectorization and Partial Redundancy Elimination (PRE).

In our implementation of OpenMP parallelization, we are
able to overcome these drawbacks based on our Multi-
Entry Threading technique. The advances of our
technique are: (i) the extra overhead of sharing local static
variables is reduced to zero; (ii) no extra memory de-
referencing is introduced for accessing local static shared
variables; and (iii) later scalar optimizations on local static
variables are preserved. The following (E2-I) example has
local static variables ‘w,’ ‘z,’ ‘y,’ and ‘x’ that are marked as
shared.

(E2-I) An OpenMP Parallel Sections Example
void staticparfoo()
{ int m;
 static int y, x[5000];
 static float w, z[5000];
#pragma omp parallel sections shared(w, z, y, x)
 {
 w = floatpoint_foo(z, 5000);
 #pragma omp section
 y = myinteger_goo(x, 5000) ;
 }
 return;
}

In (E2-II), we show the C-like pseudo-multithreaded code
generated by the parallelizer. As we see, there are no extra
arguments on the T-entry node for sharing local static
variable ‘w,’ ‘z,’ ‘y,’ and ‘x,’ and there is no pointer de-
referencing inside the T-region for sharing those local
static variables among all threads in the team.

(E2-II) Pesudo Multithreaded Code after Parallelization
R-entry void staticfoo()
{ int m;
 static int y, x[5000];
 static float w, z[5000];
 __kmpc_fork_call(loc, 0, T -entry(_staticfoo_psection_0))
 goto L1:
 T -entry _parfoo_psection_0(loc, tid) {
 lower_pid = 0; upper_pid = 1;

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Intel OpenMP C++/Fortran Compiler for Hyper-Threading Technology 41

 __kmpc_static_init(loc, tid, STATIC, &lower_pid,
&upper_pid...);
 for (pid=lower_pid, pid<=upper_pid; pid++) {
 if (pid == 0) {
 w = floatpoint_foo(z, 5000);
 } else if (pid == 1) {
 y = myinteger_goo(x, 5000);
 }
 }
 __kmpc_static_fini(loc, tid);
 T -ret;
 }
L1: R-return;
}

It is well known that the privatization technique can break
cycles in a dependence graph and eliminate loop-carried
dependencies, so parallelization can be enabled
effectively. Actually, privatization removes memory de-
references as well. There are three privatization clauses:
firstprivate, lastprivate and private, defined in the
OpenMP Fortran and C++ standard. Given an OpenMP
Fortran example in (E3-I), we see that variables ‘x’ and ‘y’
are marked as firstprivate. The intermediate code before
parallelization contains memory de-references *(F32 *)x
and *(F32 *)y (where ‘F32’ indicates 32-bit floating-point
data type) for accessing the variables ‘x’ and ‘y’ in terms
of the call-by-reference argument-passing method used in
the Fortran language, as shown in (E3-II).

 (E3-I) An OpenMP Fortran Example
 subroutine privatefoo(x, y)
 real x, y
 real, save :: a(100)
!$omp parallel do firstprivate(x,y) shared(a)
 do k=1, 100
 a(k) = x + y*k
 end do
 return
 end

(E3-II) Pesudo Intermediate Code before Parallelization
R-entry void privatefoo(x, y)
{ … … …
 DIR_OMP_PARALLEL_LOOP FIRSTPRIVATE(x, y)
SHARED(a)
 k = 1;
 L3:
 a[k] = *(F32*)x + *(F32*)y * k;
 k = k + 1;
 if (k <= 100) { goto L3; }
 DIR_OMP_END_PARALLEL_LOOP
 R-return
}
(E3-III) Pesudo Multithreaded Code after Parallelization
R-entry void privatefoo(x, y)
{ … … …
 __kmpc_fork_call(loc, 2, T -entry(_privatefoo_ploop_0), x, y)
 goto L1:
 T -entry _privatefoo_ploop_0(loc, tid, *x, *y) {

 lower = 0;
 upper = 99;
 prv_x = *(F32 *)x;
 prv_y = *(F32 *)y;
 __kmpc_static_init(loc, tid, STATIC, &lower, &upper, ...);
 prv_k = lower;
 L4:
 a[prv_k] = prv_x + prv_y * prv_k;
 prv_k = prv_k + 1
 if (prv_k <= upper) { goto L4: }
 __kmpc_static_fini(loc, tid);
 T -ret;
 }
L1: R-return;
}

As we can see from (E3-III), privatization has eliminated
the memory de-references *x and *y inside the parallel
loop through the pre-load and pre-copy into the local
stack variables ‘prv_x’ and ‘prv_y’ created by the
privatizer. Obviously, this transformation improves the
performance by lifting memory de-references outside the
loop.

ADVANCED OPTIMIZATIONS

In order to fully leverage advanced scalar optimizations
before and after the OpenMP parallelization phase, an
optimization phase ordering is carefully designed and
implemented in the Intel compiler. In this section, we
discuss our design relative to advanced optimizations
such as Inter-Procedural Optimization (IPO) [9] and Partial
Redundancy Elimination (PRE).

The IPO phase is enabled before OpenMP parallelization
at the higher optimization level, so that the Profile-
feedback Guided Optimization (PGO), inlining, partial
inlining, and forward-substitution can use and benefit
from all heuristic and profiling information without any
disturbance from multithreaded code generated by the
OpenMP parallelizer. In this way, the parallelization is
done based on the optimized code. See example E4-I.

(E4-I) An OpenMP Example for Using IPO

float w;
void floatpoint_add(float z[], int n)
{ int k;
#pragma omp for reduction(+: w) private(k)
 for (k =0; k < n; k++) {
 w = w + z[k];
 }
}

void inlinefoo()
{ static float w, z[5000];
#pragma omp parallel shared(w, z)
 {
 floatpoint_add(z, 5000);
 }
}

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Intel OpenMP C++/Fortran Compiler for Hyper-Threading Technology 42

(E4-II) Pesudo intermediate code after IPO
float w;
R-entry void inlinefoo()
{ static float w, z[5000];
#pragma omp parallel shared(w, z)
 { int k;
#pragma omp for reduction(+: w) private(k)
 for (k =0; k < 5000; k++) {
 w = w + z[k];
 }
 }
 R-return;
}

With IPO inlining and forward-substitution optimization,
the subroutine ‘floatpoint_add’ is inlined to the
subroutine ‘inlinefoo,’ the variable ‘n’ is substituted with
the constant 5000. If the IPO is enabled after OpenMP
parallelization, then inlining and forward-substitution may
not be able to kick in due to extensive code transformation
within the ‘floatpoint_add’ and ‘inlinefoo’ by the
parallelization phase, and due to the changes of the
profiling information.

The PRE phase was implemented based on the algorithm
in [7] and runs after OpenMP parallelization. Given the
example E5-I, the expression ‘x+y*k’ is redundant and
only needs to be evaluated once for each iteration, and
‘x*y’ can be lifted outside the parallel loop.

(E5-I) An OpenMP for Using PRE
int b[200], c[200];
void prefoo(int x, int y) /* x=1 and y=2 in caller */
{ int a[100], k;

#pragma omp parallel for private(k) shared(a, b, c, x, y)
 for (k = 0; k < 100; k++) {
 a[k] = b[x + y*k] + c[x+y k] + x*y;
 }
 return;
}

(E5-II) Pesudo Multithreaded Code from Parallelization and PRE
R-entry void prefoo(int x, int y)
{ … … …
 __kmpc_fork_call(loc, 2, T -entry(_prefoo_ploop_0), &x, &y)
 goto L1:
 T -entry _privatefoo_ploop_0(loc, tid, *x, *y) {
 lower = 0;
 upper = 99;
 prv_x = *(SI32 *)x;
 prv_y = *(SI32 *)y;
 t0 = prv_x * prv_y;
 __kmpc_static_init(loc, tid, STATIC, &lower, &upper, ...);
 L3:
 t1 = prv_x + prv_y * prv_k;
 a[prv_k] = b[t1] + c[t1] + t0;
 prv_k = prv_k + 1
 if (prv_k <= upper) {
 goto L3:

 }
 __kmpc_static_fini(loc, tid);
 T -ret;
 }
L1:
 R-return;
}

Redundancy is removed through saving the value of the
redundant expression in a temporary variable and later
reusing that value instead of reevaluating the expression.
However, we must be careful with moving code around
parallel constructs, since it could generate an unsafe
insertion of code for a lifted common expression without
knowing the parallel region or parallel loop boundary. Our
solution is to apply PRE within each T-region after
OpenMP parallelization. This guarantees that the correct
code is generated. In the code example shown above, we
see that ‘t0’ and ‘t1’ are created as register temporary
variables. The ‘t0’ is lifted outside the parallel loop, but it
is inserted within the T-region and only evaluated once
for each thread. The ‘t1’ is only evaluated once for each
loop iteration. In our experience, there is almost no
difference between this and applying PRE optimization to
sequential code. There are many more design and
implementation details related to incorporating advanced
optimizations with parallelization. In the next section, we
discuss how the OpenMP parallelization incorporates
intra-register vectorization to effectively exploit multi-level
parallelism.

MULTI-LEVEL PARALLELISM

The SIMD extensions to the Intel Architecture provide
an alternative way to utilize data parallelism in multi-media
and scientific applications. These extensions let multiple
functional units operate simultaneously on packed data
elements, i.e., relatively short vectors that reside in
memory or registers. The Pentium 4 processor features
the streaming-SIMD-extensions (SSE and SSE2) that
support floating-point operations on 4 packed single-
precision and 2 packed double-precision floating-point
numbers, as well as integer operations on 16 packed bytes,
8 packed words and 4 packed dwords. The Intel compiler
supports the automatic conversion of serial loops into
SIMD form, a transformation that we refer to as intra-
register vectorization [3,4].

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Pentium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Intel OpenMP C++/Fortran Compiler for Hyper-Threading Technology 43

Combining intra-register vectorization with parallelization
for hyper- or multithreading enables the exploitation of
multi-level parallelism, i.e., using the different forms of
parallelism that are present in a code fragment to obtain
high performance. Take, for instance, the code for matrix-
vector multiplication shown in example (E6-I).

(E6-I) An OpenMP-Vector Loop Example
double a[N][N], x[N], y[N];
…
#pragma omp parallel for private(k,j)
 for (k = 0; k < N; k++) { /* parallel loop */
 double d = 0.0;
 for (j = 0; j < N; j++) { /* vector loop */
 d += a[k][j] * y[j];
 }
 x[k] = d;
 }
…

 (E6-II) Pseudo code after Parallelization and Vectorization
 __kmpc_fork_call(loc, 0, T -entry(_ompvec_ploop_0), …)
 goto L1:
 T -entry _ompvec_ploop_0(loc, tid) {
 lower = 0;
 upper = N;
 __kmpc_static_init(loc, tid, STATIC, &lower, &upper, ...);
 prv_k = lower;
L2:
 xorpd xmm0, xmm0 ; reset accumulator
L3:
 movapd xmm1, _a[ecx+edx] ; load 2 DP from a
 mulpd xmm1, _y[edx] ; mult 2 DP from y
 addpd xmm0, xmm1 ; add 2 DP into accumulator
 add edx, 16 ;
 cmp edx, eax ;
 jl L3 ; looping logic

 movapd xmm1, xmm0 ;
 unpckhpd xmm1, xmm1 ;
 addsd xmm0, xmm1 ; compute final sum

 store result in x[prv_k]

 prv_k = prv_k + 1
 if (prv_k <= upper) goto L2;

 __kmpc_static_fini(loc, tid);
 T -ret;
 }
L1: … …

In this example, parallelism appears at multiple levels. The
iterations of the outermost k-loop may execute
independently, as has been made explicit with an OpenMP
pragma. The reduction performed in the innermost j-loop
provides yet another level of parallelism. This loop can be
implemented by accumulating partial sums in SIMD style,
followed by code that constructs the final sum. In (E6-II),
we illustrate how these two levels of parallelism can be

exploited (where we assume that all access patterns in the
vector loop are aligned at a 16-byte boundary).

If the alignment of memory references cannot be
determined at compile-time, the Intel compiler has at its
disposal several alignment optimizations (such as run-time
loop peeling) to avoid performance penalties that are
usually associated with unaligned memory accesses.
Dynamic data dependence testing is used to allow the
compiler to proceed with vectorization in situations where
analysis has failed to prove independence statically.
These advanced techniques (and others) have been
discussed in detail in previous work [4].

PERFORMANCE EVALUATION

The performance study of SPEC OpenMP benchmarks is
carried out on a pre-production 1-CPU Hyper-Threading
Technology-enabled Intel Xeon processor system
running at 1.7GHz, with 512M memory, an 8K L1-Cache,
and a 256K L2-Cache. All benchmarks and applications
studied in this paper are compiled by the Intel OpenMP
C++/Fortran compiler. For the performance study, we
chose a subset of SPEC OMPM2001 benchmarks to
demonstrate the performance effect of Hyper-Threading
Technology. The SPEC OMPM2001 is a benchmark suite
that consists of a set of scientific applications. Those
SPEC OpenMP benchmarks target small and medium scale
(2- to 16-way) SMP multiprocessor systems and the
memory footprint reaches 1.6GB for several very large
application programs.

The performance scaling is derived from serial execution
(SEQ) with Hyper-Threading Technology disabled, and
multithreaded execution under one thread and two threads
with Hyper-Threading Technology disabled and enabled.
In Figure 3, we show the normalized speed-up of the
chosen OpenMP benchmarks compared to the serial
execution with Hyper-Threading Technology disabled.
The OMP1 and OMP2 denote the multithreaded code
generated by the Intel OpenMP C++/Fortran compiler
executing with one thread and two threads, respectively.

As we see, the multithreaded code generated by the Intel
compiler on a Hyper-Threading Technology-enabled Intel
Xeon processor 1-CPU system achieved a performance
improvement of 4% to 34% (OMP2 w/ HT). The
320.equake obtained a 14% performance gain from scalar
optimizations enabled by OpenMP (OMP1 w/o HT).

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Intel OpenMP C++/Fortran Compiler for Hyper-Threading Technology 44

Another 20% performance improvement was achieved by
the second thread running on the second logical
processor, resulting in a 34% performance gain overall
(OMP2 w/ HT). The multithreaded code of the 330.art
does not show OpenMP overhead, and obtained an 8%
speed-up. A 23% slowdown was observed from the
332.ammp due to the overhead of thread creation, forking,
synchronization, scheduling at run-time, and memory
access de-referencing for sharing local stack variables
(OMP1 w/o HT), but the second thread running on the
second logical processor contributed to the overall 4%
performance improvement (OMP2 w/ HT).

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

32
0.

eq
ua

ke

33
0.

ar
t

33
2.

am
m

p

S
p

ee
d

u
p

OMP1 w/o HT

OMP2 w/o HT

SEQ w/o HT

OMP1 w/ HT

OMP2 w/ HT

Figure 3: Performance of OpenMP benchmarks

In Figure 4, we show the performance speed-up of three
image-processing functions taken from the OpenMP
version IPPI library developed by the Intel Performance
Library group. The performance speed-up ranges from
1.26x to 1.41x (image size 720x480) on a pre-production
Hyper-Threading Technology-enabled Intel Xeon
processor 1-CPU system running at 1.8GHz, with 512M of
memory, an 8K L1-Cache and a 256K L2-Cache.

As far as we know, there are around 300 image-processing
and JPEG functions multithreaded by OpenMP directives
in the Intel IPPI performance library. An average speedup
of 1.4x was reported when compared with the serial
execution of those routines on a pre-production Intel
1.8GHz Hyper-Threading Technology -enabled Intel Xeon
Processor 1-CPU system.

0.0

0.5

1.0

1.5

2.0

2.5

ip
pi

H
LS

To
R

G
B

_8
u_

C
3R

ip
pi

Y
U

V
42

2T
oR

G
B

_8
u_

P
3C

3R

ip
pi

Y
U

V
42

0T
oR

G
B

55
5_

8
u1

6u
_P

3C
3R

S
p

ee
d

u
p SEQ

OMP1

OMP2

Figure 4: Performance of image processing functions

In Figure 5, we show some performance results for the
matrix-vector multiplication kernel discussed earlier on a
pre-production Hyper-Threading Technology-enabled
Intel Xeon processor dual-CPU system running at 1.5GHz
with 512MB of memory, an 8K L1-Cache and a 256K L2-
Cache. This graph shows speed-ups (relative to serial
execution) for varying matrix sizes for vector execution
(VEC), multithreaded execution using two threads and four
threads, (OMP2) and (OMP4), respectively, and vector-
multithreaded execution using two and four threads,
(OMP2+VEC) and (OMP4+VEC), respectively.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

32 64 128 200 256

Matrix Order

S
p

ee
d

u
p

VEC
OMP2

OMP2+VEC

OMP4

OMP4+VEC

Figure 5: Performance of Matrix x Vector kernel

Timings were obtained by calling the kernel many times
and dividing the total execution time accordingly, which
implies that for the data sets that completely fit in cache,
the kernel is computationally bound. In these cases, intra-
register vectorization alone obtains a speed-up of up to 2x.
For the larger data sets, where the kernel becomes more
memory bound, the improvements of merely intra-register
vectorization become less evident. As we have seen

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Intel OpenMP C++/Fortran Compiler for Hyper-Threading Technology 45

before, the overhead associated with multithreading
causes a slight slowdown for the matrix size 32x32. For the
larger matrices ranging from 64x64 to 256x256, the relative
overhead introduced by parallelization becomes negligible
and observed speed-up ranges from 1.4x to 5.8x.

The difference between (OMP2) and (OPM4) for matrix
size 200x200 reveals a 1.6x performance gain. For the same
matrix size, the performance gain from the versions that are
optimized with intra-register vectorization, (OMP2+VEC)
and (OMP4+VEC), is 1.2x. The best performance gains are
obtained when all levels of parallelism (SIMD parallelism
and parallelism due to Hyper-Threading Technology and
multithreading) are exploited simultaneously, yielding a
speed-up of up to 5.8x with four threads (OMP4+VEC) and
a speed-up of 5.1x with two threads (OMP2+VEC).

CONCLUSION

With the growing processor-memory performance gap,
memory latency becomes a major bottleneck for achieving
high performance for various applications. There are a
number of multithreading techniques proposed to hide
memory latency. Intel’s Hyper-Threading Technology is a
very promising technology that allows a single processor
to manage data as if it were two processors by executing
data instructions in parallel rather than serially. With this
new technology, the performance of applications can be
greatly improved by exploiting thread-level parallelism.
The potential gains are only obtained, however, if an
application program is multithreaded. The Intel OpenMP
C++/Fortran compiler has been designed to leverage the
rich set of performance enabling features, such as Hyper-
Threading Technology and the Streaming-SIMD-
Extensions (SSE and SSE2), this is achieved by tightly
integrating OpenMP directive- or pragma-guided
parallelization with other well-known and advanced
optimizations to generate efficient multithreaded code for
exploiting parallelism at various levels. The results of
performance measurement show that OpenMP
applications compiled with the Intel C++/Fortran compiler
can achieve great performance gains on Intel single and
multiprocessor systems that are enabled with Hyper-
Threading Technology.

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

ACKNOWLEDGMENTS

The authors thank the other members of the compiler team
for their great work in implementing the Intel high-
performance C++/Fortran compiler. In particular, we thank
Max Domeika for the OpenMP C++/C front-end support,
Michael L. Ross and Bhanu Shankar for the OpenMP
Fortran front-end support, Knud J. Kirkegaard for IPO
support, and Zia Ansari for PCG support. Special thanks
go to Sanjiv Shah and the compiler group at KSL for
providing the Guide runtime library, and to the INNL
library team for providing the Short Vector Mathematical
Library. Both libraries are currently part of the Intel
C++/Fortran compiler. Many thanks go to Boris Sabanin
for providing the performance numbers for Intel IPPI
Image processing functions.

REFERENCES

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,
Compilers–Principles, Techniques and Tools,
Addison-Wesley Publishing Company, Boston,
Massachusetts, 1986.

[2] Vishal Aslot, et .al., “SPEComp: A New Benchmark
Suite for Measuring Parallel Computer Performance,” in
Proceedings of WOMPAT 2001, Workshop on
OpenMP Applications and Tools, Lecture Notes in
Computer Science, 2104, pages 1-10, July 2001.

 [3] Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian,
“Efficient Exploitation of Parallelism on Pentium® III
and Pentium® 4 Processor-Based Systems,” Intel
Technology Journal, Q1 2001,
http://intel.com/technology/itj/q12001/articles/art_6.ht
m.

[4] Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian,
“Automatic Intra-Register Vectorization for the Intel®
Architecture,” accepted by the International Journal
of Parallel Programming, December, 2001.

[5] C. Brunschen and M. Brorsson, “OdinMP/CCp–A
Portable Implementation of OpenMP for C,” in
Proceedings of the First European Workshop on
OpenMP (EWOMP) , September. 1999.

[6] Jyh-Herng Chow, Leonard E. Lyon, and Vivek Sarkar,
“Automatic Parallelization for Symmetric Shared-
Memory Multiprocessors, in Proceedings of
CASCON’96: 76-89, Toronto, ON, November 12-14,
1996.

[7] F. Chow, S. Chan, R. Kennedy, S. Liu, R. Lo, and P. Tu,
“A new algorithm for partial redundancy elimination
based on SSA form,” in Proceedings of the ACM

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Intel OpenMP C++/Fortran Compiler for Hyper-Threading Technology 46

SIGPLAN ‘97 Conference on Programming Language
Design and Implementation, June 1997, pp. 273-286.

[8] Carole Dulong, “The IA-64 Architecture at Work,”
IEEE Computer, July 1998, pp. 24-32.

[9] Mary W. Hall, Saman P. Amarasinghe, Brian R.
Murphy, Shih-Wei Liao, and Monica S. Lam,
“Detecting Coarse-Grain Parallelism Using an
Interprocedural Parallelizing Compiler,” in Proceedings
of Supercomputing, San Diego, California, Dec. 1995.

[10] Michael J. Wolfe, High Performance Compilers for
Parallel Computers, Addison-Wesley Publishing
Company, Redwood City, California, 1996.

[11] Intel Corporation, Intel Architecture Software
Developer’s Manual, Volume 1: Basic Architecture,
Intel Corporation, 2001, http://developer.intel.com/

[12] OpenMP Architecture Review Board, “OpenMP C and
C++ Application Program Interface,” Version 1.0,
October 1998, http://www.openmp.org

[13] OpenMP Architecture Review Board, “OpenMP
Fortran Application Program Interface,” Version 2.0,
November 2000, http://www.openmp.org

[14] Debbie Marr, et al., “Hyper-Threading Technology
Architecture and Microarchitecture,” Intel Technology
Journal, Q1 2002.

AUTHORS’ BIOGRAPHIES
Xinmin Tian is currently working in the vectorization and
parallelization group at Intel Corp. where he works on
compiler parallelization and optimization. He manages the
OpenMP Parallelization group. He holds B.Sc., M.Sc., and
Ph.D. degrees in Computer Science from Tsinghua
University. He was a postdoctoral researcher in the
School of Computer Science at McGill University,
Montreal. Before joining Intel Corp., he worked on a
parallelizing compiler, code generation, and performance
optimization at IBM. His e-mail is xinmin.tian@intel.com

Aart Bik received his M.Sc. degree in Computer Science
from Utrecht University, The Netherlands, in 1992 and his
Ph.D. degree from Leiden University, The Netherlands, in
1996. In 1997, he was a postdoctoral researcher at Indiana
University, Bloomington, Indiana, where he conducted
research in high-performance compilers for Java*. In 1998,
he joined Intel Corporation where he is currently working
in the vectorization and parallelization group. His e-mail is
aart.bik@intel.com

*Other brands and names are the property of their
respective owners.

Milind Girkar received a B.Tech. degree from the Indian
Institute of Technology, Mumbai, an M.Sc. degree from
Vanderbilt University, and a Ph.D. degree in Computer
Science from the University of Illinois at Urbana-
Champaign in Computer Science. Currently, he manages
the IA-32 Compiler Development group. Before joining
Intel Corp., he worked on an optimizing compiler for the
UltraSPARC platform at Sun Microsystems. His e-mail is
milind.girkar@intel.com

Paul Grey did his B.Sc. degree in Applied Physics at the
University of the West Indies and his M.Sc. degree in
Computer Engineering at the University of Southern
California. Currently he is working at Intel Corp. on
compiler optimizations for parallel computing. Before
joining Intel, he worked on parallel compilers, parallel
programming tools, and graphics system software at Kuck
and Associates, Inc., SUN, and SGI. He is interested in
optimizing compilers, advanced microarchitecture, and
parallel computers. His e-mail is paul.grey@intel.com

Hideki Saito received a B.E. degree in Information Science
in 1993 from Kyoto University, Japan, and a M.S. degree in
Computer Science in 1998 from University of Illinois at
Urbana-Champaign, where he is currently a Ph.D.
candidate. He joined Intel Corporation in June 2000 and
has been working on multithreading and performance
analysis. He is a member of the OpenMP Parallelization
group. His e-mail is hideki.saito@intel.com

Ernesto Su received a B.S. degree from Columbia
University, and M.S. and Ph.D degrees from the
University of Illinois at Urbana-Champaign, all in Electrical
Engineering. He joined Intel Corp. in 1997 and is currently
working in the OpenMP Parallelization group. His research
interests include compiler performance optimizations,
parallelizing compilers, and computer architectures. His e-
mail is ernesto.su@intel.com.

Copyright © Intel Corporation 2002. This publication was
downloaded from http://developer.intel.com/ .

Other names and brands may be claimed as the property of
others.

Legal notices at:
:http://www.intel.com/sites/corporate/tradmarx.htm

Media Applications on Hyper-Threading Technology 47

Media Applications on Hyper-Threading Technology

Yen-Kuang Chen, Microprocessor Research, Intel Labs
Matthew Holliman, Microprocessor Research, Intel Labs

Eric Debes, Microprocessor Research, Intel Labs
Sergey Zheltov, Microprocessor Research, Intel Labs

Alexander Knyazev, Microprocessor Research, Intel Labs
Stanislav Bratanov, Microprocessor Research, Intel Labs
Roman Belenov, Microprocessor Research, Intel Labs

Ishmael Santos, Software Solutions Group, Intel Corporation

Index words: Hyper-Threading Technology, multithreading, multimedia, MPEG, performance analysis

ABSTRACT

This paper characterizes selected workloads of multimedia
applications on current superscalar architectures, and then
it characterizes the same workloads on Intel Hyper-
Threading Technology. The workloads, including video
encoding, decoding, and watermark detection, are
optimized for the Intel® Pentium® 4 processor. One of the
workloads is even commercially available and it performs
best on the Pentium 4 processor. Nonetheless, due to the
inherently sequential constitution of the algorithms, most
of the modules in these well-optimized workloads cannot
fully utilize all the execution units available in the
microprocessor. Some of the modules are memory-
bounded, while some are computation-bounded.
Therefore, Hyper-Threading Technology is a promising
architecture feature that allows more CPU resources to be
used at a given moment.

Our goal, in this paper, is to better explain the performance
improvements that are possible in multimedia applications
using Hyper-Threading Technology. Our initial studies
show that there are many unexplored issues in algorithms
and applications for Hyper-Threading Technology. In
particular, there are many techniques to develop better
software for multithreading systems. We demonstrate
different task partition/scheduling schemes and discuss
their trade-offs so that a reader can understand how to

Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.

develop efficient applications on processors with Hyper-
Threading Technology.

INTRODUCTION
To date, computational power has typically increased over
time because of the evolution from simple pipelined
designs to the complex speculation and out-of-order
execution of many of today’s deeply-pipelined superscalar
designs. While processors are now much faster than they
used to be, the rapidly growing complexity of such
designs also makes achieving significant additional gains
more difficult. Consequently, processors/systems that
can run multiple software threads have received increasing
attention as a means of boosting overall performance. In
this paper, we first characterize the workloads of video
decoding, encoding, and watermarking on current
superscalar architectures, and then we characterize the
same workloads using the recently-announced Hyper-
Threading Technology. Our goal is to provide a better
understanding of performance improvements in multimedia
applications on processors with Hyper-Threading
Technology.

Figure 1 shows a high-level view of Hyper-Threading
Technology and compares it to a dual-processor system.
In the first implementation of Hyper-Threading
Technology, one physical processor exposes two logical
processors . Similar to a dual-core or dual-processor
system, a processor with Hyper-Threading Technology
appears to an application as two processors . Two
applications or threads can be executed in parallel. The
major difference between systems that use Hyper-
Threading Technology and dual-processor systems is the

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1

Media Applications on Hyper-Threading Technology 48

different amounts of duplicated resources. In today’s
Hyper-Threading Technology, only a small set of the
microarchitecture state is duplicated1, while the front-end
logic, execution units, out-of-order retirement engine, and
memory hierarchy are shared. Thus, compared to
processors without Hyper-Threading Technology, the die-
size is increased by less than 5% [7]. While sharing some
resources may increase the latency of some single-
threaded applications, the overall throughput is higher for
multi-threaded or multi-process applications.

Cache(s)

ALU’s

Arch states
(registers)

Arch states
(registers)

Main memory

System bus

Logical
processor 1

Logical
processor 2

Cache(s)

ALU’s

Arch states
(registers)

Arch states
(registers)

Main memory

System bus

Logical
processor 1

Logical
processor 2

(a)

Cache(s)

ALU’s

Arch states
(registers)

Main memory

System bus

Physical
processor 1

Physical
processor 2

Cache(s)

ALU’s

Arch states
(registers)

Cache(s)

ALU’s

Arch states
(registers)

Main memory

System bus

Physical
processor 1

Physical
processor 2

Cache(s)

ALU’s

Arch states
(registers)

(b)

Figure 1: High-level diagram of (a) a processor with
Hyper-Threading Technology and (b) a dual-processor

system

This paper is organized as follows. First, we provide a
brief review of the basic principles behind most current
video codecs, describing the overall application behavior
of video decoding/encoding/watermarking and the
implications of the key kernels for current and emerging
architectures. Then, we show the multi-threaded software
architectures of our applications, including data-domain
and functional decomposition. Additionally, we describe
some potential pitfalls when developing software on
processors with Hyper-Threading Technology and our

1 Nearly all the architectural state is duplicated, however.

techniques to avoid them. Finally, we provide some
performance numbers and our observations.

MULTIMEDIA WORKLOADS
This section describes the workload characterization of
selected multimedia applications on current superscalar
architectures. Although the workloads are well optimized
for Pentium® 4 processors, due to the inherent
constitution of the algorithms, most of the modules in
these workloads cannot fully utilize all the execution
resources available in the microprocessor. The particular
workloads we target are video decoding, encoding, and
watermark detection2, which are key components in both
current and many future applications and are
representative of many media workloads.

MPEG Decoder and Encoder
The Moving Pictures Expert Group (MPEG) is a standards
group founded in 1988. Since its inception, the group has
defined a number of popular audio and video compression
standards, including MPEG-1, MPEG-2, and MPEG-4 [3].
The standards incorporate three major compression
techniques: (1) predictive coding; (2) transform-based
coding; and (3) entropy coding. To implement these, the
MPEG encoding pipeline consists of motion estimation,
Discrete Cosine Transform (DCT), quantization, and
variable-length coding. The MPEG decoding pipeline
consists of the counterpart operations of Variable-Length
Decoding (VLD), Inverse Quantization (IQ), Inverse
Discrete Cosine Transform (IDCT), and Motion
Compensation (MC), as shown in Figure 2.

IDCT
VLD &

IQ

Reference
frames

Pictures
Motion
Comp.Bitstream IDCT

VLD &
IQ

Reference
frames

Pictures
Motion
Comp.Bitstream

Figure 2: Block diagram of an MPEG decoder

2 A digital video watermark, which is invisible and hard to
alter by others, is information embedded in the video
content. A watermark can be made by slightly changing
the video content according to a secret pattern. For
example, when just a few out of the millions of pixels in a
picture are adjusted, the change is imperceptible to the
human eye. A decoder can detect and retrieve the
watermark by using the key that was used to create the
watermark.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Media Applications on Hyper-Threading Technology 49

MC
19%

IDCT
30%Block-level VLD

28%

Bitstream I/O
7%

Header parsing
6%

Stream demuxing
7%

PMV
2%

Convert2Pixel
2% Others

1%

MC
19%

IDCT
30%Block-level VLD

28%

Bitstream I/O
7%

Header parsing
6%

Stream demuxing
7%

PMV
2%

Convert2Pixel
2% Others

1%

Figure 3: MPEG-2, 720x480 decoding breakdown by time
on 2GHz Pentium® 4 processors

The behavior of the MPEG decoder can be highly
dependent on the characteristics of the video stream being
decoded. Figure 3 shows an exa mple of the CPU time
breakdown of our MPEG decoder for a typical DVD
resolution video sequence. VLD, IDCT, and MC are the
main components in the process. The decoder used in the
study is part of the Intel Media Processing Library (MPL)3,
which was developed by Intel Labs. The software was
analyzed using the Intel VTune Performance Analyzer on
an Intel® Pentium 4 processor with a 400 MHz system
bus, an 8 KB first-level data cache, a 256 KB second-level

3 More information about the MPL can be found at
http://www.intel.com/research/mrl/research/mpl/.
Additionally, the MPL MPEG-2 decoder is commercially
available as part of the Ligos* GoMotion* SDK.
VTune is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Pentium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

shared instruction/data cache, and 512 MB of main
memory. We run our applications on Windows ∗ XP.

Table 1 shows a high-level analysis of the MPEG-2
decoder. The first stage of the decoding pipeline, VLD/IQ,
is characterized by substantial data dependency, limiting
opportunities for instruction, data, and thread-level
parallelism. The kernel is entirely computation-bound, and
it shows excellent performance scaling over increasing
frequencies on the Pentium 4 processor. The next stage,
IDCT, is also completely computation-bound. The kernel
is dominated by MMX/SSE/SSE2 (Streaming SIMD
Extension) operations, with interspersed register-to-
register moves and stores; e.g., a sequence of movaps,
addps, and subps is a typical recurring theme,
corresponding to the well-known butterfly operation,
surrounded by associated prescaling/multiply operations.
Because 90% of the instructions are executed in the
MMX/SSE/SSE2 unit, the integer execution unit is idle
most of the time in the IDCT module4. The final stage of
the decoding pipeline, MC, is memory intensive compared
to the other modules in the pipeline. The front-side bus is
busy 30% of the time in this module. Although the out-of-
order execution core in the Pentium 4 processor can
tolerate some memory latencies, the module shows an
equal distribution of time between computation and
memory latency because there are too many memory
operations. All these modules are well-optimized, but still
cannot utilize 100% of the execution units available in the
microprocessors. While the Pentium 4 processor can
execute multiple uops in one cycle, the uops retired per
cycle (UPC) is only 0.74 in the MPL decoder.

MPEG encoders, similar to the decoder, consist of some
MMX/SSE/SSE2 intensive modules (e.g., motion
estimation, DCT) and some data-dependent modules (e.g.,
variable-length coding). All these modules are well
optimized, but a UPC of 1.05 again indicates that the

∗Other brands and names may be claimed as the property
of others.
4 See Figure 4 in [4], integer operations and floating-
point/MMX/SSE/SSE2 operations are executed in different
units.

Table 1: MPEG decoding kernel characterization on 2 GHz Pentium® 4 processors (9 Mb/s MPEG-2, 720x480)

Kernel IPC UPC MMX/SSE/SSE-2
per instructions

Cond.
Branch/ instr.

Mispred.
Cond./ Instr.

Mispred.
Cond./ Clock

L1 misses/
Instr.

FSB
activity

VLD 0.76 0.99 0.074 1/9 1/120 1/158 1/92 11.1%
IDCT 0.59 0.89 0.90 1/141 1/2585 1/4381 1/193 2.4%
MC 0.24 0.40 0.42 1/17 1/142 1/592 1/11 30. 3%

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1

Media Applications on Hyper-Threading Technology 50

encoder cannot fully utilize all the execution units
available in the microprocessor.

Video Watermarking
Another application that we studied is video watermark
detection [1]. Our watermark detector has two basic
stages: video decoding and image-domain watermark
detection. The application is optimized with MPL (as the
video decoder) and the Intel IPL (for the image
manipulations used during watermark detection) [5]. A
UPC of 1.01 also indicates that there is room for
improvement.

(b) Dynamic
scheduling

(a) Static
scheduling

picture
slices

Assigned
slices

Thread 1 Thread 2

Thread 1

Thread 2

(b) Dynamic
scheduling

(a) Static
scheduling

picture
slices

Assigned
slices

Thread 1 Thread 2

Thread 1

Thread 2

Figure 4: Two slice-based task partitioning schemes
between two threads: (a) half-and-half dispatching (static
scheduling); and (b) slice-by-slice scheduling (dynamic

scheduling)

TASK PARTITIONING AND SCHEDULING
In general, multimedia applications, such as video
encoding and decoding, exhibit not only data- and
instruction-level parallelism, but also the possibility for
substantial thread-level parallelism. Such workloads are
good candidates for speed-up on a number of different
multithreading architectures. This section discusses the
trade-offs of different software multithreading methods.

Data-Domain Decomposition–Slice-Based
Dispatching
As shown in Figure 4, a picture in a video bit stream can
be divided into slices of macroblocks. Each slice,
consisting of blocks of pixels, is a unit that can be
decoded independently. Here we compare two methods to
decode the pictures in parallel:

1. Half-and-half (aka static partitioning): In this
method, one thread is statically assigned the first
half of the picture, while another thread is

assigned the other half of the picture (as shown
in Figure 4 (a)). Assuming that the complexity of
the first half and second half is similar, these two
threads will finish the task at roughly the same
time. However, some areas of the picture may be
easier to decode than others . This may lead to
one thread being idle while the other thread is
still busy.

2. Slice-by-slice (aka dynamic partitioning): In this
method, slices are dispatched dynamically. A
new slice is assigned to a thread when the thread
has finished its previously assigned slice. In this
case, we don’t know which slices will be
assigned to which thread. Instead, the
assignment depends on the complexity of the
slices assigned. As a result, one thread may
decode a larger portion of the picture than the
other if its assignments are easier than those of
the other thread. The execution time difference
between two threads, in the worst case, is the
decoding time of the last slice.

In both cases, each thread performs Variable-Length
Decoding (VLD), Inverse Discrete Cosine Transform
(IDCT), and Motion Compensation (MC) in its share of the
pictures, macroblock by macroblock. While one thread is
working on MC (memory intensive), the other thread may
work on VLD or IDCT (less memory intensive). Although
the partitioning does not explicitly interleave
computations and memory references, on average, it better
balances the use of resources.

Functional Decomposition of Video
Watermark Detection
Besides data-domain decomposition, an application can
also be partitioned functionally into multiple threads. For
example, our video watermark detector consists of two
basic stages: video decoding and watermark detection.
Hence, we assign different threads to decode the video
and to detect the watermark, as shown in Figure 5.

One method is to use two threads: one for video decoding
and another for watermark detection, as shown in Figure 5
(b). However, this method does not have very good load
balance. This is because in our video watermark detector,
video decoding takes roughly one-third of the CPU time,
while watermark detection takes two-thirds of the CPU
time.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Media Applications on Hyper-Threading Technology 51

Because watermark detection takes twice as much
computation time as video decoding, we use two threads
for watermark detection for better load balancing, as
shown in Figure 5 (c). While one thread decodes the
video sequence, two threads work on watermark detection.
The lines in the figure indicate the dependency between
functional blocks. We can see that at any moment, there
are at least two threads running in the three-threaded
mode. In contrast to the data-domain video decoding
decomposition described above, threads in this
implementation are assigned to different functions.

IMPLICATIONS OF SOFTWARE DESIGN
FOR HYPER-THREADING TECHNOLOGY
During the implementation of our applications on
processors with Hyper-Threading Technology, we had a
number of observations. In this section, we discuss some
general software techniques to help readers design their

applications better on systems with Hyper-Threading
Technology.

Frame t Frame t+1Frame t Frame t+1

(a)

Frame t Frame t+1

All local
cache hits

Frame t Frame t+1

All local
cache hits

(b)

Frame t Frame t+1

Some local
cache misses

Frame t Frame t+1

Some local
cache misses

(c)

Figure 6: Cache localities, during; (a) motion
compensation, in; (b) static partitioning, and in; (c)

dynamic partitioning

Using Hyper-Threading Technology, performance can be
lost when the loads are not balanced. Because two logical
processors share resources on one physical processor
with Hyper-Threading Technology, each logical processor
does not get all the resources a single processor would
get. When only a single thread of the application is
actively working and the other thread is waiting
(especially, spin-waiting), this portion of the application
could have less than 100% of the resources when
compared to a single processor, and it might run slower on
a processor with simultaneous multithreading capability
than on processors without simultaneous multithreading
capability. Thus, it is important to reduce the portion in
which only one thread is actively working. For better
performance, effective load balancing is crucial.

The foremost advantage of the dynamic scheduling
scheme (see Figure 4) is its good load balance between the
two threads. Because some areas of the picture may be
easier to decode than others, one thread under the static

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

(a) (b)

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2
Decode
Frame 4

Decode
Frame 5

Decode
Frame 3

W.M.
Detect

Frame 3
W.M.
Detect

Frame 4

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2
Decode
Frame 4

Decode
Frame 5

Decode
Frame 3

W.M.
Detect

Frame 3
W.M.
Detect

Frame 4

(c)

Figure 5: Three threading methods for video
watermark detection: (a) single-threaded mode; (b) two-

threaded mode; and (c) three-threaded mode

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1

Media Applications on Hyper-Threading Technology 52

partitioning scheme may be idle while another thread still
has a lot of work to do. In the dynamic partitioning
scheme, we have very good load balance. As we assign a
new slice to a thread only when it has finished its previous
slice, the execution time difference between the two
threads, in the worst case, is the decoding time of a slice.

Because two logical processors share one physical
processor, the effective sizes of the caches for each logical
processor are roughly one half of the original size. Thus,
it is important for multithreaded applications to target one
half of the caches for each application thread. For
example, when considering code size optimization,
excessive loop unrolling should be avoided.

While sharing caches may be a drawback for some
applications running on processors with Hyper-Threading
Technology, it can provide better cache locality between
the two logical processors for other applications. For
example, Wang et al. use one logical processor to prefetch
data into the shared caches to reduce a substantial
amount of the memory latency of the application in the
other logical processors [8]. We now illustrate the
advantage of sharing caches in our application.

On dual-processor systems, each processor has a private
cache. Thus, there may be a drawback to dynamic
partitioning in terms of cache locality. Figure 6 illustrates
the cache locality in multiple frames of video. During
motion compensation, the decoder uses part of the
previous picture, the referenced part of which is roughly
co-located in the previous reference frame, to reconstruct
the current frame. It is faster to decode the picture when
the co-located part of the picture is still in the cache. In
the case of a dual-processor system, each thread is
running on its own processor, each with its own cache. If
the co-located part of the picture in the previous frame is
decoded by the same thread, it is more likely that the local
cache will have the pictures that have just been decoded.
Since we dynamically assign slices to different threads, it
is more likely that the co-located portion of the previous
picture may not be in the local cache when each thread is
running on its own physical processor and cache, as
shown in Figure 6 (c). Thus, dynamic partitioning may
incur more bus transactions5. In contrast, the cache is
shared between logical processors on a processor with

5 On dual-processor systems, an alternative method of
keeping cache locality in dynamic scheduling is to
dispatch slices to one thread from top-down and slices to
the other thread from bottom-up. However, it is hard to
generalize the method for four-way or eight-way multi-
processor systems. In this paper, we did not show the
results of this method.

Hyper-Threading Technology, and thus, cache localities
are preserved. We obtain the best of both worlds with
dynamic scheduling: there is load balancing between the
threads, and there is the same effective cache locality as
for static scheduling on a dual-processor system.

RESULTS
This shows some performance numbers and analysis of
our applications on multithreading architectures. In
general, our results show that Hyper-Threading
Technology offers a cost-effective performance
improvement (7%-18%) for multithreading without
doubling hardware cost (see Figure 7) as in dual-processor
systems.

Our Hyper-Threading Technology system has an
experimental 1.7GHz Intel Pentium 4 processor with
Hyper-Threading Technology capability, which is a pre-
production prototype, running Windows ∗ XP. The
processor has a 512KB second-level cache, but no third-
level cache. To contrast the performance with single-
thread performance on the system experimentally in lab
setting, we disable the support of Hyper-Threading
Technology from the CPU, motherboard, BIOS, and the
operating system. Our dual-processor system has two
1.7GHz Intel Xeon processors, each of which has a
256KB second-level cache and a 1MB third-level cache,
running Windows XP. To measure single-thread
performance on the dual-processor system, we disable one
physical processor and run a single-thread version of the
application. The relative speed between Hyper-Threading
Technology systems and dual-processor systems is not
measured in our experiment.

To measure the performance of the encoder, we use five
720x480 YVU 4:2:0 benchmark sequences. To measure the
performance of the decoder, we use one 640x480, three
704x480, three 720x480, one 1280x720, and two 1920x1080
MPEG-2 sequences. Moreover, three 704x480 MPEG-2
sequences are used to measure the performance of the
video watermark detectors. The speed-ups are sequence
dependent, but within a small variation. We report only
the average numbers in Figure 7.

 Pentium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
∗ Other brands and names may be claimed as the property
of others
Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Media Applications on Hyper-Threading Technology 53

Data-Domain Decomposition
This section describes the performance of the data-domain
decomposition of the video decoding described earlier.

First, Figure 7 (b) shows that it is better to use the
dynamic scheduling method than the static scheduling
method on a processor with Hyper-Threading
Technology, as it is very important to have a balanced
load. Because resources are shared between the logical
processors, the relative performance of each logical
processor can be less than 1.0 compared to an equivalent
processor without simultaneous multithreading capability.
When only one thread is busy, the overall throughput is
less than that of a single processor. To have the best
performance, it is important to have a balanced workload
between threads. Hence, the dynamic scheme is better
than static scheduling.

On the other hand, Figure 7 (b) shows that the static
scheduling method is better than the dynamic scheduling
method on a dual-processor system. It is faster to decode
the picture when the co-located parts of the pictures are
still in the cache. As mentioned earlier, although dynamic
scheduling has better load balance, co-located parts of the
pictures may not be decoded by the same processor when
using dynamic scheduling. This scheduling scheme
incurs more bus transactions, as shown in Table 2, with
the result that the overall speed using dynamic scheduling
is slower.

Compared to dual-processor systems, processors with
Hyper-Threading Technology have the advantage of
sharing the second-level cache between two logical
processors. Even when the same logical processor does
not decode the co-located part of the reference picture,
that part of the picture can still be read from the shared
second-level cache. Table 3 shows that the numbers of
bus activities are similar between static scheduling and
dynamic scheduling. In this case, the overall speed of
dynamic scheduling is faster because the workload is

1

1.
61

1 1.
12

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Sp
ee

d-
up

Dual-
processor

Hyper-
Thread

Technology

Single-thread Multi-thread

(a)

1

1.
66

1.
61

1 1.
04

1.
07

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Sp
ee

d-
up

Dual-
processor

Hyper-
Threading

Technology

Single-thread Static Dynamic

(b)

1

1.
33

1.
61

1 1.
08 1.

18

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Sp
ee

d-
up

Dual-
processor

Hyper-
Threading

Technology

1 thread 2 threads 3 threads

(c)

Figure 7: Performance of; (a) our video encoder; (b) our
video decoder; and (c) our watermarking detection with

software configurations

Table 2: The numbers of front-side bus (FSB) data
activities per second between static scheduling and

dynamic scheduling on a dual-processor system

Event
Static
scheduling

Dynamic
scheduling

FSB_data_activity 8,604,511 12,486,051

Table 3: The numbers of FSB data activities per second
between static scheduling and dynamic scheduling on a

processor with Hyper-Threading Technology

Event
Static
scheduling

Dynamic
scheduling

FSB_data_activity 8,474,022 8,536,838

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1

Media Applications on Hyper-Threading Technology 54

better balanced.

Functional Decomposition
Here, we describe the performance of the video watermark
detection functional decomposition described earlier in
Figure 5. Figure 7 (c) shows the performance
comparisons. 2-thread denotes one video-decoding
thread and one watermark detection thread, and 3-thread
denotes one video-decoding thread and two watermarking
threads (see Figure 5 (c)). Similar to the results of the
video decoder, better performance is obtained with better
balanced workloads.

Overall Performance Characteristics
As mentioned earlier, different modules have been
interleaved in the application to utilize more execution
resources in the machine at a given time. Hence, it is hard
to break down the workload characteristics in individual
modules. Rather, it is better to consider the application as
a whole.

As shown in Table 4, although the numbers of
instructions retired and cache misses (e.g., trace and first-
level) increase in both applications after threading,
because of threading overhead and capacity misses in
each thread, the overall application performance still
increases. To verify that resource utilization is better
balanced on a processor with Hyper-Threading
Technology, we compare UPC for single-threaded and
multi-threaded applications. UPC increases from 1.05 to
1.33 in video encoding, from 0.78 to 0.85 in video
decoding, and from 1.01 to 1.21 in watermark detection,
confirming the more efficient resource utilization possible
with Hyper-Threading Technology. (These numbers
include the overhead of thread synchronization; however,
this overhead is relatively small, being on the order of

0.5% for watermark detection, approximately 3-4% for
video decoding, and 4-5% for video encoding.)

POWER CONSUMPTION ISSUES
In this paper, we have mainly discussed methods to
improve the application throughput on processors with
Hyper-Threading Technology. In addition to throughput,
power consumption is also an important performance
factor for the next generation of processors. This is
especially true for battery-run mobile systems, in which
the average power consumption for a given fixed
application is a crucial parameter to consider for the
evaluation of the overall performance of the system.

In this section, we show that Hyper-Threading
Technology can not only improve system throughput but
can also save energy for applications with fixed duties.
As an introduction to this new research topic, we give
some hints on how to design “power-aware” applications
on processors with Hyper-Threading Technology and we
show the first results of this ongoing work.

Watermark detection as fast as possible

0

10

20

30

40

50

60

0 5 10 15 20 25

Seconds

P
ow

er
 (w

at
ts

)

Hyper-Threading Technology Single-thread

Start
application Task finished

Watermark detection as fast as possible

0

10

20

30

40

50

60

0 5 10 15 20 25

Seconds

P
ow

er
 (w

at
ts

)

Hyper-Threading Technology Single-thread

Start
application Task finished

Table 4: The workload characteristics of our applications on single-threaded processors and processors with Hyper-
Threading Technology

 MPEG encoding MPEG decoding Video watermarking
Event Single-

thread
Hyper-

threading
Single-
thread

Hyper-
threading

Single-
thread

Hyper-
threading

Clockticks (Millions) 13,977 11,688 7,467 6,687 23,942 20,162
Instructions retired (Millions) 11,253 11,674 3,777 3,921 17,728 17,821
Uops retired (Millions) 14,735 15,539 5,489 5,667 24,120 24,333
MMX/SIMD uops retired (Millions) 6,226 6,220 1,119 1,120 5,334 5,341
IPC (instructions per clock) 0.80 1.00 0.51 0.59 0.74 0.88
UPC (uops per clock) 1.05 1.33 0.74 0.85 1.01 1.21
Trace cache misses (Millions) 20.8 29.0 13.3 24.1 7.6 13.3
First-level cache misses (Millions) 132 145 132 166 510 638
Bus utilization 8.5% 8.5% 14.7% 16.4% 14.2% 22.3%

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Media Applications on Hyper-Threading Technology 55

Figure 8: Measured power consumption of our
watermark detector on a processor with Hyper-Threading

Technology and a normal system at the same frequency
and voltage

In various situations, Hyper-Threading Technology
consumes additional power while improving the
performance, as shown in Figure 8. When idle, the
execution units in Intel Pentium 4 processors consume
less power because of clockgating [2]. Hyper-Threading
Technology makes the execution units busier, and thus,
they consume slightly more power. The graphs also show
that the task finishes earlier on a system with Hyper-
Threading Technology. Because the task finishes in fewer
cycles, the overall energy consumption is slightly less on
a system with Hyper-Threading Technology even with the
same voltage and frequency. This is because powering up
additional execution units for two simultaneous threads is
more economical than powering the whole pipeline with
fewer execution units to run serial threads.

In the case of real-time applications6, where we need only
a fixed amount of throughput, we can reduce the
frequency and the voltage. As Hyper-Threading
Technology increases the throughput, and we have more
spare cycles, we can further reduce the frequency and the
voltage. Because the active power consumption is
proportional to frequency*(voltage)2, we can have a cubic
effect on energy saving.

Nonetheless, a common thread scheduling pitfall in
multithreading real-time applications can reduce the
overall energy gain on the system with Hyper-Threading
Technology. Figure 9 (a) shows a common, but less than
optimal, multithreading method of the watermark detection
application–the watermark detector is active immediately
after the video frame is decoded. Due to a large cycle
period, there may be no overlapping between two threads
(see Figure 5 (b)). While Figure 9 (b) has the same cycle
period as Figure 9 (a), by delaying the starting time of the
second thread, we increase the overlapping period of two
threads. That is, we queue the tasks and dispatch
together to maximize the overlap. In this case, the halted
period in CPU is increased. Because powering up
additional execution units for two simultaneous threads is
more economical and the physical processor consumes
less power when it is halted (or when both logical

 Pentium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
6 Real-time in this work means that applications need to
perform some tasks periodically, while throughput-
oriented applications just finish all the tasks as fast as
possible.

processors are halted), Figure 9 (b) consumes less energy.
(In our real-time watermark detector, the measured CPU
power is 22.8 watts vs. 23.6 watts7.) The key is to overlap
the busy cycles of one logical processor with those of the
other.

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

C
yc

le
 p

er
io

d
Ti

m
e

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

C
yc

le
 p

er
io

d
Ti

m
e

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

Ti
m

e
C

yc
le

 p
er

io
d

O
ve

rla
p

pe
rio

d
N

on
-h

al
te

d
pe

rio
d

H
al

te
d

pe
rio

d

Decode
Frame 1

W.M.
Detect

Frame 1

Decode
Frame 2

W.M.
Detect

Frame 2

Decode
Frame 3

W.M.
Detect

Frame 3

Decode
Frame 4

Ti
m

e
C

yc
le

 p
er

io
d

O
ve

rla
p

pe
rio

d
N

on
-h

al
te

d
pe

rio
d

H
al

te
d

pe
rio

d

(a) (b)

Figure 9: Two different methods of multithreading real-
time applications. (a) uses more energy than (b)

CONCLUSION
In this paper we explained how typical media applications
can benefit from Hyper-Threading Technology. From the
increases in UPCs, we have observed that Hyper-
Threading Technology can increase the utilization of
processor resources by 15 to 27%, even for well-optimized
multimedia applications. The results given in this paper
also show that it is possible to benefit from Hyper-
Threading Technology to save power when executing a
fixed task.

Moreover, it has been shown that it is crucial to reach an
optimal load balancing for an efficient implementation on
Hyper-Threading Technology. This can usually be done
for media applications exploiting both data and functional
decompositions. Such partitioning, especially with a
dynamic scheduling scheme, benefits in most cases from
the fact that, unlike in symmetric multiprocessor systems,

7 Here, we use average power as the indicator for energy
saving. In real-time applications, power saving and
energy saving can be used interchangeably.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1

Media Applications on Hyper-Threading Technology 56

threads share the cache in a processor with Hyper-
Threading Technology.

Finally, the results show that for complex media
applications running on Hyper-Threading Technology, in
which multiple threads typically interact together and
access memory concurrently, the thread synchronization
issues and the overall data and functional partitioning are
more important than the individual function
characteristics.

ACKNOWLEDGMENTS
We acknowledge the exceptional efforts of the people at
the Intel Nizhny Novgorod Lab in developing the
encoder/decoder used in this study, especially Valery
Kuriakin. Additionally, we thank Doug Carmean, Mike
Upton, Per Hammarlund, Russell Arnold, Shihjong Kuo,
George K. Chen, and Stephen Gunther for their help in
setting up our Hyper-Threading Technology hardware
and software environments and for valuable discussions
during this work.

REFERENCES
[1] E. Debes, M. Holliman, W. Macy, Y.-K. Chen, and M.

Yeung, “Computational Analysis and System
Implications of Video Watermarking Applications,” in
Proceedings of SPIE Conference on Security and
Watermarking of Multimedia Contents IV, Jan. 2002.

[2] S. Gunther, F. Binns, D. Carmean, and J. Hall,
“Managing the Impact of Increasing Microprocessor
Power Consumption,” Intel Technology Journal, Q1
2001.

[3] B. G. Haskell, A. Puri, and A. N. Netravali, Digital
Video: An Introduction to MPEG-2, MA: Kluwer,
1997.

[4] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel, “The Microarchitecture of
the Pentium® 4 Processor,” Intel Technology Journal,
Q1 2001.

[5] Intel Corp., Intel® Performance Library Suite,
(available on-line:
http://developer.intel.com/software/products/
perflib/index.htm)

[6] Intel Corp., Intel® Pentium® 4 Processor Optimization
Reference Manual, Order Number: 248966 (also
available on-line:
http://developer.intel.com/design/pentium4/manuals/2
4896604.pdf)

[7] D. Marr, et al., “Hyper-Threading Technology
Microarchitecture and Performance,” Intel Technology
Journal, Q1 2002.

[8] H. Wang, P. Wang, R. D. Weldon, S. Ettinger, H. Saito,
M. Girkar, S. Liao, and J. Shen, “Speculative

Precomputation: Exploring the Use of Multithreading
Technology for Latency,” Intel Technology Journal,
Q1 2002.

AUTHORS’ BIOGRAPHIES
Yen-Kuang Chen is a researcher in the Media Systems
Lab, Microprocessor Research, Intel Labs. His research
interests include video compression and processing,
architecture and algorithm design in multimedia
computing, video and graphics hardware design, and
performance evaluation. He received a Ph.D. in electrical
engineering from Princeton University. His e-mail is yen-
kuang.chen@intel.com.

Matthew J. Holliman is a researcher in the Media Systems
Lab, Microprocessor Research, Intel Labs. His research
interests include media and Internet technology, focusing
on content delivery and protection. His e-mail is
matthew.holliman@intel.com.

Eric Debes is a researcher in the Media Systems Lab,
Microprocessor Research, Intel Labs. His research
interests include media coding, processing,
communications and content protection as well as
microarchitecture design and parallelism in computer
architecture. He received an M.S. degree in electrical and
computer engineering from Supélec, France, an M.S.
degree in electrical engineering from the Technical
University Darmstadt, Germany and a Ph.D. degree from
the Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland. His e-mail is Eric.Debes@intel.com.

Sergey Zheltov is a project manager in Microprocessor
Research, Intel Labs. His research interests include media
compression and processing, software and platforms
architecture, signal processing, high-order spectra. He
received a Diploma in radio-physical engineering and MS
degree in theoretical and mathematical physics from
Nizhny Novgorod State University. His e-mail is
Sergey.Zheltov@intel.com.

Alexander Knyazev is a software engineer in
Microprocessor Research, Intel Labs. His research
interests include video compression and processing,
multimedia software architecture, platforms architecture,
test, rough set and fuzzy logic theories. He received a
Master’s Degree of Applied Mathematics and Computer
Science from Nizhny Novgorod State University. His e-
mail is Alexander.Knyazev@intel.com.

Stanislav Bratanov is a software engineer in
Microprocessor Research, Intel Labs. His research
interests include multi-processor software platforms,
operating system environments, and platform-dependent
media data coding. He graduated from Nizhny Novgorod

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Media Applications on Hyper-Threading Technology 57

State University, Russia. His e-mail is
Stanislav.Bratanov@intel.com.

Roman Belenov is a software engineer in Microprocessor
Research, Intel Labs. His research interests include video
compression and processing, multimedia software
architecture and wireless networking. He received a
Diploma in physics from Nizhny Novgorod State
University. His e-mail is Roman.Belenov@intel.com

Ishmael Santos is a Hardware Engineer for Power and
Trace Technologies in Software Solutions Group, Intel
Corporation. His interests include computer architecture
with an emphasis on microprocessor power consumption
and performance. Ishmael received his B.S. in Electrical
Engineering and Computer Science from the University of
California, Los Angeles. His e-mail is
Ishmael.F.Santos@intel.com.

Copyright © Intel Corporation 2002. This publication was
downloaded from http://developer.intel.com/ .

Other names and brands may be claimed as the property of
others.

Legal notices at
http://developer.intel.com/sites/corporate/tradmarx.htm

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 58

Hyper-Threading Technology: Impact on
Compute-Intensive Workloads

William Magro, Software Solutions Group, Intel Corporation
Paul Petersen, Software Solutions Group, Intel Corporation
 Sanjiv Shah, Software Solutions Group, Intel Corporation

Index words: SMP, SMT, Hyper-Threading Technology, OpenMP, Compute Intensive, Parallel
Programming, Multi-Threading

ABSTRACT

Intel’s recently introduced Hyper-Threading Technology
promises to increase application- and system-level
performance through increased utilization of processor
resources. It achieves this goal by allowing the
processor to simultaneously maintain the context of
multiple instruction streams and execute multiple
instruction streams or threads. These multiple streams
afford the processor added flexibility in internal
scheduling, lowering the impact of external data latency,
raising utilization of internal resources, and increasing
overall performance.

We compare the performance of an Intel Xeon
processor enabled with Hyper-Threading Technology to
that of a dual Xeon processor that does not have Hyper-
Threading Technology on a range of compute-intensive,
data-parallel applications threaded with OpenMP1. The
applications include both real-world codes and hand-
coded “kernels” that illustrate performance
characteristics of Hyper-Threading Technology.

The results demonstrate that, in addition to functionally
decomposed applications, the technology is effective for

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
1 OpenMP is an industry-standard specification for multi-
threading data-intensive and other highly structured
applications in C, C++, and Fortran. See
www.openmp.org for more information.

many data-parallel applications. Using hardware
performance counters, we identify some characteristics
of applications that make them especially promising
candidates for high performance on threaded processors.

Finally, we explore some of the issues involved in
threading codes to exploit Hyper-Threading Technology,
including a brief survey of both existing and still-needed
tools to support multi-threaded software development.

INTRODUCTION
While the most visible indicator of computer
performance is its clock rate, overall system performance
is also proportional to the number of instructions retired
per clock cycle. Ever-increasing demand for processing
speed has driven an impressive array of architectural
innovations in processors, resulting in substantial
improvements in clock rates and instructions per cycle.

One important innovation, super-scalar execution,
exploits multiple execution units to allow more than one
operation to be in flight simultaneously. While the
performance potential of this design is enormous,
keeping these units busy requires super-scalar
processors to extract independent work, or instruction-
level parallelism (ILP), directly from a single instruction
stream.

Modern compilers are very sophisticated and do an
admirable job of exposing parallelism to the processor;
nonetheless, ILP is often limited, leaving some internal
processor resources unused. This can occur for a
number of reasons, including long latency to main
memory, branch mis -prediction, or data dependences in
the instruction stream itself. Achieving additional
performance often requires tedious performance

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 59

analysis, experimentation with advanced compiler
optimization settings, or even algorithmic changes.
Feature sets, rather than performance, drive software
economics. This results in most applications never
undergoing performance tuning beyond default comp iler
optimization.

An Intel processor with Hyper-Threading Technology
offers a different approach to increasing performance.
By presenting itself to the operating system as two
logical processors, it is afforded the benefit of
simultaneously scheduling two potentially independent
instruction streams [1]. This explicit parallelism
complements ILP to increase instructions retired per
cycle and increase overall system utilization. This
approach is known as simultaneous multi-threading, or
SMT.

Because the operating system treats an SMT processor
as two separate processors, Hyper-Threading
Technology is able to leverage the existing base of multi-
threaded applications and deliver immediate performance
gains.

To assess the effectiveness of this technology, we first
measure the performance of existing multi-threaded
applications on systems containing the Intel® Xeon
processor with Hyper-Threading Technology. We then
examine the system’s performance characteristics more
closely using a selection of hand-coded application
kernels. Finally, we consider the issues and challenges
application developers face in creating new threaded
applications, including existing and needed tools for
efficient multi-threaded development.

APPLICATION SCOPE
While many existing applications can benefit from
Hyper-Threading Technology, we focus our attention on
single-process, numerically intensive applications. By
numerically intensive, we mean applications that rarely
wait on external inputs, such as remote data sources or
network requests, and instead work out of main system
memory. Typical examples include mechanical design
analysis, multi-variate optimization, electronic design
automation, genomics, photo-realistic rendering, weather
forecasting, and computational chemistry.

A fast turnaround of results normally provides
significant value to the users of these applications

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

through better quality products delivered more quickly
to market. The data-intensive nature of these codes,
paired with the demand for better performance, makes
them ideal candidates for multi-threaded speed-up on
shared memory multi-processor (SMP) systems.

We considered a range of applications, threaded with
OpenMP, that show good speed-up on SMP systems.
The applications and their problem domains are listed in
Table 1. Each of these applications achieves 100%
processor utilization from the operating system’s point
of view. Despite external appearances, however,
internal processor resources often remain underutilized.
For this reason, these applications appeared to be good
candidates for additional speed-up via Hyper-Threading
Technology.

Table 1: Applications type

Code Description

A1 Mechanical Design Analysis (finite element method)
This application is used for metal-forming, drop testing, and
crash simulation.

A2 Genetics
A genetics application that correlates DNA samples from
multiple animals to better understand congenital diseases.

A3 Computational Chemistry
This application uses the self-consistent field method to
compute chemical properties of molecules such as new
pharmaceuticals.

A4 Mechanical Design Analysis
This application simulates the metal-stamping process.

A5 Mesoscale Weather Modeling
This application simulates and predicts mesoscale and
regional-scale atmospheric circulation.

A6 Genetics
This application is designed to generate Expressed Sequence
Tags (EST) clusters, which are used to locate important
genes.

A7 Computational Fluid Dynamics
This application is used to model free-surface and confined
flows.

A8 Finite Element Analysis
This finite element application is specifically targeted toward
geophysical engineering applications.

A9 Finite Element Analysis
This explicit time-stepping application is used for crash test
studies and computational fluid dynamics.

One might suspect that, for applications performing very
similar operations on different data, the instruction
streams might be too highly correlated to share a

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 60

threaded processor’s resources effectively. Our results
show differently.

METHODOLOGY
To assess the effectiveness of Hyper-Threading
Technology for this class of applications, we measured
the performance of existing multi-threaded executables,
with no changes to target the threaded processor
specifically.

We measured the elapsed completion time of stable,
reproducible workloads using operating-system-
provided timers for three configurations:

1. single-threaded execution on an single-processor
SMT system

2. dual-threaded execution on a single-processor SMT
system

3. dual-threaded execution on a dual-processor, non-
SMT system

We then computed application speed-up as the ratio of
the elapsed time of a single-threaded run to that of a
multi-threaded run. Using the Intel VTune Performance
Analyzer, we gathered the following counter data
directly from the processor during a representative time
interval of each application2:

• Clock cycles

• Instructions retired

• Micro-operations retired

• Floatingpoint instructions retired

From this raw data, we evaluated these ratios:

• Clock cycles per instruction retired (CPI)

• Clock cycles per micro-operation retired (CPu)

• Fractional floating-point instructions retired
(FP%)

APPLICATION RESULTS
Naturally, highly scalable applications; that is, those that
speed up best when run on multiple, physical
processors, are the best candidates for performance
improvement on a threaded processor. We expect less

 VTune is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
2 The counters and their significance are described in the
Appendix.

scalable applications to experience correspondingly
smaller potential benefits.

As shown in Figure 1, this is generally the case, with all
of the applications, except application A1, receiving a
significant benefit from the introduction of Hyper-
Threading Technology. It is important to note that the
applications realized these benefits with little to no
incremental system cost and no code changes.

0

0.5

1

1.5

2

2.5

A1 A2 A3 A4 A5 A6 A7 A8 A9

Application

R
el

at
iv

e
S

p
ee

d
u

p

SMP
HyperThreading
Serial

Figure 1: Application relative speed-up

Because the Intel Xeon processor is capable of
retiring up to three micro-operations per cycle, the best-
case value of clocks per micro-op (CPu) is 1/3. Table 2
shows counter data and performance results for the
application experiments. The comparatively high CPI
and CPu values indicate an individual stream does not
typically saturate internal processor resources. While
not sufficient, high CPu is a necessary condition for
good speed-up in an SMT processor.

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 61

Table 2: Counter data and performance results

Exactly which resources lie idle, however, is not clear.
The fraction of floating-point instructions (FP%) gives
one indication of the per-stream instruction mix. For the
chosen applications, the FP% ranges from zero, for
application A6, to the range of 4.6% to 35.5% for the
remaining applications. It may seem unusual that the
FP% of these numerically intensive applications is so
low; however, even in numerically intensive code, many
other instructions are used to index into arrays, manage
data structures, load/store to memory, and perform flow
control. The result can be a surprisingly balanced
instruction mix.

Even though the instruction mix within a stream may be
varied, a data parallel application typically presents pairs
of similar or even identical instruction streams that could
compete for processor resources at each given moment.
The performance results, however, show that Hyper-
Threading Technology is able to overlap execution of
even highly correlated instruction streams effectively.
To understand how this can occur, consider two threads
consisting of identical instruction streams. As these
threads execute, spatial correlation exists only with
particular temporal alignments; a slight shift in the timing
of the streams can eliminate the correlation, allowing a
more effective interleaving of the streams and their
resource demands. The net result is that two identical
but time-shifted instruction streams can effectively share
a pool of resources.

By reducing the impact of memory latency, branch mis -
prediction penalties, and stalls due to insufficient ILP,
Hyper-Threading Technology allows the Xeonprocessor
to more effectively utilize its internal resources and
increase system throughput.

TEST KERNEL RESULTS
To examine these effects more closely, we developed
four test kernels. The first two kernels (int_mem and
dbl_mem) illustrate the effects of latency hiding in the
memory hierarchy, while the third kernel (int_dbl)
attempts to avoid stalls due to low ILP. The fourth
kernel (matmul) and a corresponding, tuned library
function illustrate the interplay between high ILP and
SMT speed-up. The performance results of all the
kernels are shown in Table 3. The int_mem kernel,
shown in Figure 2, attempts to overlap cache misses with
integer operations. It first creates a randomized access
pattern into an array of cache-line-sized objects, then
indexes into the objects via the randomized index vector
and performs a series of addition operations on the
cache line.

#pragma omp for

 for (i = 0; i < buf_len; ++i) {

 j = index[i];

 for (k = 0; k < load; ++k) {

 buffer[j][0] += input;

 buffer[j][1] += input;

 buffer[j][2] += input;

 buffer[j][3] += input;

 }

 }

Figure 2: The int_mem benchmark

Application Cycles/instruction Cycles/uop FP% SMT speedup SMP Speedup

A1 2.04 1.47 29 1.05 1.65

A2 1.11 0.89 4.6 1.09 1.79

A3 1.69 0.91 16 1.09 1.77

A4 1.82 1.29 20 1.11 1.54

A5 2.48 1.45 36 1.17 1.68

A6 2.54 1.60 0.1 1.19 2.00

A7 2.80 2.05 10 1.23 1.75

A8 1.69 1.27 19 1.28 1.85

A9 2.26 1.76 20 1.28 1.89

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 62

Table 3: Kernel performance results

Code Benchmark CPI CPuops FP% SMT Speed-up

M1 int_mem (load=32) 1.99 0.94 0.0% 1.08

M2 int_mem (load=4) 6.91 3.61 0.0% 1.36

M3 dbl_mem (load=32) 1.81 1.47 23.2% 1.90

M4 int_dbl 3.72 1.63 9.8% 1.76

M5 matmul 2.17 1.60 34.5% 1.64

M6 dgemm 1.63 1.58 58.0% 1.00

We tested two variants (M1 and M2). In the first, we
assigned a value of 32 to the parameter “load”; in the
second test, “load” was 4. The larger value of “load”
allows the processor to work repeatedly with the same
data. Cache hit rates are consequently high, as is integer
unit utilization. Smaller values of “load” cause the code
to access second-level cache and main memory more
often, leading to higher latencies and increased demand
on the memory subsystem. Provided these additional
accesses do not saturate the memory bus bandwidth, the
processor can overlap the two threads’ operations and
effectively hide the memory latency. This point is
demonstrated by the inverse relationship between clocks
per instruction and speed-up.

The dbl_mem kernel is identical to int_mem, but with the
data variables changed to type “double.” The results
with “load” equal to 32 (M3) demonstrate the same
effect, instead interleaving double-precision floating-
point instructions with cache misses. In addition, the
floating-point operations can overlap with the
supporting integer instructions in the instruction mix to
allow the concurrent use of separate functional units
resulting in near-linear speed-up.

The int_dbl kernel (M4), shown in Figure 3, calculates an
approximation to Pi via a simple Monte Carlo method.
This method uses an integer random number generator
to choose points in the x-y plane from the range [-1…1].
It then converts these values to floating point and uses
each point’s distance from the origin to determine if the
point falls within the area of the unit radius circle. The
fraction of points that lies within this circle approximates
Pi/4. Like dbl_mem, this kernel achieves excellent speed-
up, but for a different reason: the different functional
units inside the processor are utilized simultaneously.

#pragma omp for reduction(+:count)

 for (i = 0; i < NPOINTS; ++i) {

 double x, y;

 // guess returns a pseudo-random
number

 x = guess(&seed, 2.0)-1.0;

 y = guess(&seed, 2.0)-1.0;

 if (sqrt(x*x + y*y) <= 1.0) {

 /* The current point is

 inside the circle... */

 ++count;

 }

 }

Figure 3: The int_dbl benchmark

The “matmul” kernel (M5), shown in Figure 4, computes
the product of two 1000 x 1000 matrices using a naïve
loop formulation written in FORTRAN. Comparing its
absolute performance and speed-up to that of a
functionally equivalent, but hand-tuned library routine
illustrates the effect of serial optimization on the
effectiveness of Hyper-Threading Technology. The
naïve loop formulation (M5) has comparatively poor
absolute performance, executing in 3.4 seconds, but
achieves good SMT speed-up. The hand-optimized
dgemm (M6) library routine executes in a fraction of the
time (0.6s), but the speed-up vanishes. The highly tuned
version of the code effectively saturates the processor,
leaving no units idle3.

!$omp parallel do

 DO 26 J = 1,N

 DO 24 K = 1,N

 DO 22 I = 1,N

 C(I,J) = C(I,J) + A(I,K)
* B(K,J)

 22 CONTINUE

 24 CONTINUE

 26 CONTINUE

3 Note that the FP% for M6 is due to SIMD packed
double precision instructions, rather than the simpler x87
instructions used by the other test codes.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 63

Figure 4: The Matmul kernel

MEMORY HIERARCHY EFFECTS
Depending on the application characteristics, Hyper-
Threading Technology’s shared caches [1] have the
potential to help or hinder performance. The threads in
data parallel applications tend to work on distinct
subsets of the memory, so we expected this to halve the
effective cache size available to each logical processor.
To understand the impact of reduced cache, we
formulated a very simplified execution model of cache-
based system.

In a threaded microprocessor with two logical
processors, the goal is to execute both threads with no
resource contention issues or stalls. When this occurs,
two fully independent threads should be able to execute
an application in half the time of a single thread.
Likewise, each thread can execute up to 50% more slowly
than the single-threaded case and still yield speed-up.

Figure 5 exhibits the approximate time to execute an
application on a hypothetical system with a three-level
memory hierarchy consisting of registers, cache, and
main memory.

Given:
N = Number of instructions executed
Fmemory = Fraction of N that access memory
Ghit = Fraction of loads that hit the cache
Tproc = #cycles to process an instruction
Tcache = #cycles to process a hit
Tmemory = #cycles to process a miss

 Texe = Execution time

Then:

Texe/N = (1 – Fmemory) Tproc + Fmemory [Ghit Tcache
+ (1 – Ghit) Tmemory]

Figure 5: Simple performance model for a single-level
cache system

While cache hit rates, Ghit, cannot be easily estimated for
the shared cache, we can explore the performance impact
of a range of possible hit rates. We assume
Fmemory =20%, Tproc=2, Tcache=3, and Tmemory =100. For a
given cache hit rate in the original, single-threaded
execution, Figure 6 illustrates the effective miss rate,
T’

miss, which would cause the thread to run twice as
slowly as in serial. Thus, any hit rate that falls in the
shaded region between the curves should result in
overall speed-up when two threads are active.

Cache Hit Rate Tolerance

0

10

20

30

40

50

60

70

80

90

100

60 70 80 90 100

Original Hit Rate

N
ew

 H
it

 R
at

e

Hit Rate to Cause 2x Slowdown

Hit rate for no slowdown

Figure 6: Hit rate tolerance for 2x slowdown in
performance

The shaded region narrows dramatically as the original
cache hit rate approaches 100%, indicating that
applications with excellent cache affinity will be the least
tolerant of reduced effective cache size. For example,
when a single-threaded run achieves a 60% hit rate, the
dual-threaded run’s hit rate can be as low as 10% and
still offer overall speed-up. On the other hand, an
application with a 99% hit rate must maintain an 88% hit
rate in the smaller cache to avoid slowdown.

TOOLS FOR MULTI-THREADING
It is easy to see that the existence of many multi-
threaded applications increases the utility of Hyper-
Threading Technology. In fact, every multi-threaded
application can potentially benefit from SMT without
modification. On the other hand, if no applications were
multi-threaded, the only obvious benefits from SMT
would be throughput benefits from multi-process
parallelism. Shared memory parallel computers have
existed for more than a decade, and much of the
performance benefits of multi-threading have been
available, yet few multi-threaded applications exist.
What are some of the reasons for this lack of multi-
threaded applications, and how might SMT technology
change the situation?

First and foremost among these reasons is the difficulty
of building a correct and well-performing multi-threaded
application. While it is not impossible to build such
applications, it tends to be significantly more difficult

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 64

than building sequential ones. Consequently, most
developers avoid building multi-threading applications
until their customers demand additional performance.
The following constraints often drive performance
requirements:

• Real-time requirements to accomplish some
computing task that cannot be satisfied by a single
processor, e.g., weather forecasting, where a 24-hour
forecast has value only if completed and published
in well under 24 hours.

• Throughput requirements, usually in interactive
applications, such that users are not kept waiting for
too long, e.g., background printing while editing in a
word processor.

• Turnaround requirement, where job completion time
materially impacts the design cycle, e.g.,
computational fluid dynamics used in the design of
aircraft, automobiles, etc.

Most software applications do not have the above
constraints and are not threaded. A good number of
applications do have the throughput requirement, but
that particular one is easier to satisfy without particular
attention to correctness or performance.

Another reason for the lack of many multi-threaded
applications has been the cost of systems that can
effectively utilize multiple threads. Up until now, the
only kinds of systems that could provide effective
performance benefits from multiple threads were
expensive multiple-processor systems. Hyper-Threading
Technology changes the economics of producing multi-
processor systems, because it eliminates much of the
additional “glue” hardware that previous systems
needed.

Economics alone cannot guarantee a better computing
experience via the efficient utilization of Hyper-
Threading Technology. Effective tools are also
necessary to create mu lti-threaded applications. What
are some of the capabilities of these tools? Do such
tools already exist in research institutions?

One of the difficulties is the lack of a good programming
language for multi-threading. The most popular multi-
threading languages are the POSIX∗ threads API and the
Windows* Threads API. However, these are the
threading equivalent of assembly language, or C at best.
All the burden of creating high-level structures is placed
upon the programmer, resulting in users making the same

∗Other brands and names may be claimed as the property
of others.

mistakes repeatedly. Modern programming languages
like Java and C# include threading as a part of the
language, but again few high-level structures are
available for programmers. These languages are only
marginally better than the threading APIs. Languages
like OpenMP [3,5] do offer higher-level constructs that
address synchronous threading issues well, but they
offer little for asynchronous threading. Even for
synchronous threading, OpenMP [3,5] has little market
penetration outside the technical computing market. If
OpenMP [3,5] can successfully address synchronous
threading outside the technical market, it needs to be
deployed broadly to ease the effort required to create
multi-threaded applications correctly. For asynchronous
threading, perhaps the best model is the Java- and C#-
like threading model, together with the threading APIs.

Besides threaded programming languages, help is also
needed in implementing correct threaded programs. The
timing dependencies among the threads in multi-
threaded programs make correctness validation an
immense challenge. However, race detection tools have
existed in the research community for a long time, and
lately some commercial tools like Visual Threads [7] and
Assure [6] have appeared that address these issues.
These tools are extremely good at finding bugs in
threaded programs, but they suffer from long execution
times and large memory-size footprints. Despite these
issues, these tools are a very promising start for
ensuring the correctness of multi-threaded programs and
offer much hope for the future.

After building a correct multi-threaded program, a tool to
help with the performance analysis of the program is also
required. There are some very powerful tools today for
analysis of sequential applications, like the VTune
Performance Analyzer. However, the equivalent is
missing for multi-threaded programs. Again, for
OpenMP [3,5], good performance-analysis tools do exist
in the research community and commercially. These
tools rely heavily on the structured, synchronous
OpenMP [3,5] programming model. The same tools for
asynchronous threading APIs are non-existent, but seem
necessary for the availability of large numbers of multi-
threaded applications. Hyper-Threading Technology
presents a unique challenge for performance-analysis
tools, because the processors share resources and
neither processor has all of the resources available at all
times. In order to create a large pool of multi-threaded
applications, it seems clear that effective tools are
necessary. It is also clear that such tools are not yet

 VTune is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 65

available today. To exploit Hyper-Threading
Technology effectively, multi-threaded applications are
necessary, and tools to create those are key.

CONCLUSION
High clock rates combined with efficient utilization of
available processor resources can yield high application
performance. As microprocessors have evolved from
simple single-issue architectures to the more complex
multiple-issue architectures, many more resources have
become available to the microprocessor. The challenge
now is effective utilization of the available resources. As
processor clock frequencies increase relative to memory
access speed, the processor spends more time waiting
for memory accesses. This gap can be filled using
extensions of techniques already in use, but the cost of
these improvements is often greater than the relative
gain. Hyper-Threading Technology uses the explicit
parallel structure of a multi-threaded application to
complement ILP and exploit otherwise wasted resources.
Under carefully controlled conditions, such as the test
kernels presented above, the speed-ups can be quite
dramatic.

Real applications enjoy speed-ups that are more modest.
We have shown that a range of existing, data-parallel,
compute-intensive applications benefit from the
presence of Hyper-Threading Technology with no
source code changes. In this suite of multi-threaded
applications, every application benefited from threading
in the processor. Like assembly language tuning, Hyper-
Threading Technology provides another tool in the
application programmer’s arsenal for extracting more
performance from his or her computer system. We have
shown that high values of clock cycles per instruction
and per micro-op are indicative of opportunities for good
speed-up.

While many existing multi-threaded applications can
immediately benefit from this technology, the creation of
additional multi-threaded applications is the key to fully
realizing the value of Hyper-Threading Technology.
Effective software engineering tools are necessary to
lower the barriers to threading and accelerate its
adoption into more applications.

Hyper-Threading Technology, as it appears in today’s
Intel Xeon processors, is just the beginning. The

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Xeon and VTune are trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

fundamental ideas behind the technology apply equally
well to larger numbers of threads sharing additional
resources. Just as the number of distinct lines in a
telephone network grows slowly relative to the number
of customers served, Hyper-Threading Technology has
the potential to modestly increase the number of
resources in the processor core and serve a large
numbers of threads. This combination has the potential
to hide almost any latency and utilize the functional units
very effectively.

APPENDIX: PERFORMANCE METRICS
Using the VTune™ Performance Analyzer, one can
collect several execution metrics in situ as the
application runs. While the Intel Xeon™ processor
contains a host of counters, we focused on the following
set of raw values and derived ratios.

Clock Cycles
The numb er of clock cycles used by the application is a
good substitute for the CPU time required to execute the
application. For a single threaded run, the total clock
cycles multiplied by the clock rate gives the total running
time of the application. For a mu ltithreaded application
on a Hyper-Threading Technology-enabled processor,
the process level measure of clock cycles is the sum of
the clocks cycles for both threads.

Instructions Retired
When a program runs, the processor executes sequences
of instructions, and when the execution of each
instruction is completed, the instructions are retired.
This metric reports the number of instructions that are
retired during the execution of the program.

Clock Cycles Per Instruction Retired
CPI is the ratio of clock cycles to instructions retired. It
is one measure of the processor’s internal resource
utilization. A high value indicates low resource
utilization.

Micro-Operations Retired
Each instruction is further broken down into micro-
operations by the processor. This metric reports the
number of micro-operations retired during the execution
of the program. This number is always greater than the
number of instructions retired.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 66

Clock Cycles Per Micro-Operations Retired
This derived metric is the ratio of retired micro-
operations to clock cycles. Like CPI, it measures the
processor’s internal resource utilization. This is a finer
measure of utilization than CPI because the execution
engine operates directly upon micro-ops rather than
instructions. The Xeon processor core is capable of
retiring up to three micro-ops per cycle.

Percentage of Floating-Point Instructions
This metric measures the percentage of retired
instructions that involve floating-point operations. To
what extent the different functional units in the
processor are busy can be determined by the instruction
type mix because processors typically have multiple
floating-point, integer, and load/store functional units.
The percentage of floating-point instructions is an
important indicator of whether the program is biased
toward the use of a specific resource, potentially leaving
other resources idle.

REFERENCES
[1] D. Marr, et al., “Hyper-Threading Technology

Architecture and Microarchitecture,” Intel
Technology Journal, Q1, 2002.

[2] Intel® Pentium® 4 Processor Optimization Reference
Manual.

[3] http://developer.intel.com/software/products/compile
rs/

[4] http://www.openmp.org/

[5] http://developer.intel.com/software/products/kappro/

[6] http://developer.intel.com/software/products/assure/

[7] http://www.compaq.com/products/software/visualthr
eads/

AUTHORS’ BIOGRAPHIES
William Magro manages the Intel Parallel Applications
Center, which works with independent software vendors
and enterprise developers to optimize their applications
for parallel execution on multiple processor systems. He
holds a B.Eng. degree in Applied and Engineering
Physics from Cornell University and M.S. and Ph.D.
degrees in Physics from the University of Illinois at
Urbana-Champaign. His e-mail is bill.magro@intel.com.

Paul Petersen is a Principal Engineer at Intel’s KAI
Software Lab. He currently works with software
development tools to simplify threaded application
development. He has been involved in the creation of

the OpenMP parallel programming language and tools
for the performance and correctness evaluation of
threaded applications. He holds a B.S. degree from the
University of Nebraska and M.Sc. and Ph.D. degrees
from the University of Illinois at Urbana-Champaign, all
in Computer Science. His e-mail is
paul.petersen@intel.com

Sanjiv Shah co-manages the compiler and tools groups
at Intel’s KAI Software Lab. He has worked on
compilers for automatic parallelization and vectorization
and on tools for software engineering of parallel
applications. He has been extensively involved in the
creation of the OpenMP specifications and serves on the
OpenMP board of directors. Sanjiv holds a B.S. degree
in Computer Science with a minor in Mathematics and an
M.S. degree in Computer Science from the University of
Michigan. His e-mail is sanjiv.shah@intel.com.

Copyright © Intel Corporation 2002. This publication
was downloaded from http://developer.intel.com/ .

Other names and brands may be claimed as the property
of others.

Legal notices at:

http://developer.intel.com/sites/corporate/privacy.htm

