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Preface q1. 2002  

By Lin Chao, Publisher Intel Technology Journal 

This February 2002 issue of the Intel Technology Journal (ITJ) is full of new things.  First, there 

is a new look and design.  This is the first big redesign since the inception of the ITJ on the Web 

in 1997.  The new design, together with inclusion of the ISSN (International Standard Serial 

Number), makes it easier to index articles into technical indexes and search engines. There are 

new “subscribe,” search ITJ, and “e-mail to a colleague” features in the left navigation tool bar.  

Readers are encouraged to subscribe to the ITJ.  The benefit is subscribers are notified by e-mail 

when a new issue is published.   

The focus of this issue is Hyper-Threading Technology, a new microprocessor architecture 

technology.  It makes a single processor look like two processors to the operating system.  Intel's 

Hyper-Threading Technology delivers two logical processors that can execute different tasks 

simultaneously using shared hardware resources.  Hyper-Threading Technology effectively looks 

like two processors on a chip.  A chip with this technology will not equal the computing power of 

two processors; however, it will seem like two, as the performance boost is substantial.  Chips 

enabled with Hyper-Threading Technology will also be cheaper than dual-processor computers: 

one heat sink, one fan, one cooling solution, and one chip are what are necessary. 

The six papers in this issue of the Intel Technology Journal discuss this new technology.  The 

papers cover a broad view of Hyper-Threading Technology including the architecture, 

microarchitecture, pre-silicon validation and performance impact on media and compute-

intensive applications.  Also included is an intriguing paper on speculative precomputation, a 

technique that improves the latency of single -threaded applications by utilizing idle 

multithreading hardware resources to perform long-range data prefetches.  
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Intel  Hyper-Threading Technology  

By Robert L. Cross 

Multithreading Technologies Manager 

Performance–affordable performance, relevant performance, and pervasively available performance–

continues to be a key concern for end users.  Enterprise and technical computing users have a never-ending 

need for increased performance and capacity.  Moreover, industry analysts continue to observe that 

complex games and rich entertainment for consumers, plus a wide range of new business uses, software, 

and components, will necessitate growth in computing power.   

Processor resources, however, are often underutilized and the growing gap between core processor 

frequency and memory speed causes memory latency to become an increasing performance challenge.  

Intel’s Hyper-Threading Technology brings Simultaneous Multi-Threading to the Intel Architecture and 

makes a single physical processor appear as two logical processors with duplicated architecture state, but 

with shared physical execution resources.  This allows two tasks (two threads from a single application or 

two separate applications) to execute in parallel, increasing processor utilization and reducing the 

performance impact of memory latency by overlapping the memory latency of one task with the execution 

of another.  Hyper-Threading Technology-capable processors offer significant performance improvements 

for multi-threaded and multi-tasking workloads without sacrificing compatibility with existing software or 

single-threaded performance.  Remarkably, Hyper-Threading Technology implements these improvements 

at a very low cost in power and processor die size.  

The papers in this issue of the Intel Technology Journal discuss the design, challenges, and performance 

opportunities of Intel’s first implementation of Hyper-Threading Technology in the Intel® Xeon  processor 

family.  Hyper-Threading Technology is a key feature of Intel’s enterprise product line and will be 

integrated into a wide variety of products.  It marks the beginning of a new era: the transition from 

instruction-level parallelism to thread-level parallelism, and it lays the foundation for a new level of 

computing industry innovation and end-user benefits.   

                                                                 

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other 

countries.  

Xeon is a trademark of Intel Corporation or its subsidiaries in the United States and other countries. 
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ABSTRACT 

Intel’s Hyper-Threading Technology brings the concept 
of simultaneous multi-threading to the Intel 
Architecture.  Hyper-Threading Technology makes a 
single physical processor appear as two logical 
processors; the physical execution resources are shared 
and the architecture state is duplicated for the two 
logical processors.  From a software or architecture 
perspective, this means operating systems and user 
programs can schedule processes or threads to logical 
processors as they would on multiple physical 
processors.  From a microarchitecture perspective, this 
means that instructions from both logical processors 
will persist and execute simultaneously on shared 
execution resources.  

This paper describes the Hyper-Threading Technology 
architecture, and discusses the microarchitecture details 
of Intel's first implementation on the Intel Xeon 
processor family.  Hyper-Threading Technology is an 
important addition to Intel’s enterprise product line and 
will be integrated into a wide variety of products. 

                                                           
Intel is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries.  
Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 

INTRODUCTION 
The amazing growth of the Internet and 
telecommunications is powered by ever-faster systems 
demanding increasingly higher levels of processor 
performance.  To keep up with this demand we cannot 
rely entirely on traditional approaches to processor 
design.  Microarchitecture techniques used to achieve 
past processor performance improvement–super-
pipelining, branch prediction, super-scalar execution, 
out-of-order execution, caches–have made 
microprocessors increasingly more complex, have more 
transistors, and consume more power.  In fact, transistor 
counts and power are increasing at rates greater than 
processor performance.  Processor architects are 
therefore looking for ways to improve performance at a 
greater rate than transistor counts and power 
dissipation.  Intel’s Hyper-Threading Technology is one 
solution. 

Processor Microarchitecture 
Traditional approaches to processor design have 
focused on higher clock speeds, instruction-level 
parallelism (ILP), and caches.  Techniques to achieve 
higher clock speeds involve pipelining the 
microarchitecture to finer granularities, also called 
super-pipelining.  Higher clock frequencies can greatly 
improve performance by increasing the number of 
instructions that can be executed each second.  Because 
there will be far more instructions in-flight in a super-
pipelined microarchitecture, handling of events that 
disrupt the pipeline, e.g., cache misses, interrupts and 
branch mispredictions, can be costly.   
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ILP refers to techniques to increase the number of 
instructions executed each clock cycle.  For example, a 
super-scalar processor has multiple parallel execution 
units that can process instructions simultaneously.  With 
super-scalar execution, several instructions can be 
executed each clock cycle.  However, with simple in-
order execution, it is not enough to simply have multiple 
execution units.  The challenge is to find enough 
instructions to execute.  One technique is out-of-order 
execution where a large window of instructions is 
simultaneously evaluated and sent to execution units, 
based on instruction dependencies rather than program 
order. 

Accesses to DRAM memory are slow compared to 
execution speeds of the processor.  One technique to 
reduce this latency is to add fast caches close to the 
processor.  Caches can provide fast memory access to 
frequently accessed data or instructions.  However, 
caches can only be fast when they are small.  For this 
reason, processors often are designed with a cache 
hierarchy in which fast, small caches are located and 
operated at access latencies very close to that of the 
processor core, and progressively larger caches, which 
handle less frequently accessed data or instructions, are 
implemented with longer access latencies.  However, 
there will always be times when the data needed will not 
be in any processor cache.  Handling such cache misses 
requires accessing memory, and the processor is likely 
to quickly run out of instructions to execute before 
stalling on the cache miss. 

The vast majority of techniques to improve processor 
performance from one generation to the next is complex 
and often adds significant die-size and power costs.  
These techniques increase performance but not with 
100% efficiency; i.e., doubling the number of execution 
units in a processor does not double the performance of 
the processor, due to limited parallelism in instruction 
flows.  Similarly, simply doubling the clock rate does 
not double the performance due to the number of 
processor cycles lost to branch mispredictions.  
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Figure 1: Single-stream performance vs. cost 

Figure 1 shows the relative increase in performance and 
the costs, such as die size and power, over the last ten 
years on Intel processors1.  In order to isolate the 
microarchitecture impact, this comparison assumes that 
the four generations of processors are on the same 
silicon process technology and that the speed-ups are 
normalized to the performance of an Intel486 
processor.  Although we use Intel’s processor history in 
this example, other high-performance processor 
manufacturers during this time period would have 
similar trends.  Intel’s processor performance, due to 
microarchitecture advances alone, has improved integer 
performance five- or six-fold1.  Most integer 
applications have limited ILP and the instruction flow 
can be hard to predict.  

Over the same period, the relative die size has gone up 
fifteen-fold, a three-times-higher rate than the gains in 
integer performance.  Fortunately, advances in silicon 
process technology allow more transistors to be packed 
into a given amount of die area so that the actual 
measured die size of each generation microarchitecture 
has not increased significantly. 

The relative power increased almost eighteen-fold 
during this period1.  Fortunately, there exist a number of 
known techniques to significantly reduce power 
consumption on processors and there is much on-going 
research in this area.  However, current processor power 
dissipation is at the limit of what can be easily dealt 
with in desktop platforms and we must put greater 
emphasis on improving performance in conjunction with 
new technology, specifically to control power.  

                                                           
1 These data are approximate and are intended only to show 
trends, not actual performance. 

 Intel486 is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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Thread-Level Parallelism  

A look at today’s software trends reveals that server 
applications consist of multiple threads or processes that 
can be executed in parallel.  On-line transaction 
processing and Web services have an abundance of 
software threads that can be executed simultaneously 
for faster performance.  Even desktop applications are 
becoming increasingly parallel.  Intel architects have 
been trying to leverage this so-called thread-level 
parallelism (TLP) to gain a better performance vs. 
transistor count and power ratio.   

In both the high-end and mid-range server markets, 
multiprocessors have been commonly used to get more 
performance from the system.  By adding more 
processors, applications potentially get substantial 
performance improvement by executing multiple 
threads on multiple processors at the same time.  These 
threads might be from the same application, from 
different applications running simultaneously, from 
operating system services, or from operating system 
threads doing background maintenance.  Multiprocessor 
systems have been used for many years, and high-end 
programmers are familiar with the techniques to exploit 
multiprocessors for higher performance levels.   

In recent years a number of other techniques to further 
exploit TLP have been discussed and some products 
have been announced.  One of these techniques is chip 
multiprocessing (CMP), where two processors are put 
on a single die.  The two processors each have a full set 
of execution and architectural resources.  The 
processors may or may not share a large on-chip cache.  
CMP is largely orthogonal to conventional 
multiprocessor systems, as you can have multiple CMP 
processors in a multiprocessor configuration.  Recently 
announced processors incorporate two processors on 
each die.  However, a CMP chip is significantly larger 
than the size of a single-core chip and therefore more 
expensive to manufacture; moreover, it does not begin 
to address the die size and power considerations. 

Another approach is to allow a single processor to 
execute multiple threads by switching between them.  
Time-slice multithreading is where the processor 
switches between software threads after a fixed time 
period.  Time-slice multithreading can result in wasted 
execution slots but can effectively minimize the effects 
of long latencies to memory.  Switch-on-event multi-
threading would switch threads on long latency events 
such as cache misses.  This approach can work well for 
server applications that have large numbers of cache 
misses and where the two threads are executing similar 
tasks.  However, both the time-slice and the switch-on-

event multi-threading techniques do not achieve optimal 
overlap of many sources of inefficient resource usage, 
such as branch mispredictions, instruction 
dependencies, etc. 

Finally, there is simultaneous multi-threading, where 
multiple threads can execute on a single processor 
without switching.  The threads execute simultaneously 
and make much better use of the resources.  This 
approach makes the most effective use of processor 
resources: it maximizes the performance vs. transistor 
count and power consumption. 
 
Hyper-Threading Technology brings the simultaneous 
multi-threading approach to the Intel architecture.  In 
this paper we discuss the architecture and the first 
implementation of Hyper-Threading Technology on the 
Intel Xeon processor family.   

HYPER-THREADING TECHNOLOGY 
ARCHITECTURE 
Hyper-Threading Technology makes a single physical 
processor appear as multiple logical processors [11, 12].  
To do this, there is one copy of the architecture state for 
each logical processor, and the logical processors share 
a single set of physical execution resources.  From a 
software or architecture perspective, this means 
operating systems and user programs can schedule 
processes or threads to logical processors as they would 
on conventional physical processors in a multi-
processor system.  From a microarchitecture 
perspective, this means that instructions from logical 
processors will persist and execute simultaneously on 
shared execution resources. 

Figure 2: Processors without Hyper-Threading Tech  

                                                           
Intel is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries.  

Processor Execution 
Resources

Arch StateArch State

Processor Execution 
Resources
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As an example, Figure 2 shows a multiprocessor system 
with two physical processors that are not Hyper-
Threading Technology-capable.  Figure 3 shows a 
multiprocessor system with two physical processors that 
are Hyper-Threading Technology-capable.  With two 
copies of the architectural state on each physical 
processor, the system appears to have four logical 
processors. 

 

Figure 3: Processors with Hyper-Threading 
Technology  

The first implementation of Hyper-Threading 
Technology is being made available on the Intel 
Xeon processor family for dual and multiprocessor 
servers, with two logical processors per physical 
processor.  By more efficiently using existing processor 
resources, the Intel Xeon processor family can 
significantly improve performance at virtually the same 
system cost.  This implementation of Hyper-Threading 
Technology added less than 5% to the relative chip size 
and maximum power requirements, but can provide 
performance benefits much greater than that. 

Each logical processor maintains a complete set of the 
architecture state.  The architecture state consists of 
registers including the general-purpose registers, the 
control registers, the advanced programmable interrupt 
controller (APIC) registers, and some machine state 
registers.  From a software perspective, once the 
architecture state is duplicated, the processor appears to 
be two processors.  The number of transistors to store 
the architecture state is an extremely small fraction of 
the total.  Logical processors share nearly all other 
resources on the physical processor, such as caches, 

                                                           
 Intel is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
 Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 

execution units, branch predictors, control logic, and 
buses.   

Each logical processor has its own interrupt controller 
or APIC.  Interrupts sent to a specific logical processor 
are handled only by that logical processor. 

FIRST IMPLEMENTATION ON THE 
INTEL XEON PROCESSOR FAMILY 
Several goals were at the heart of the microarchitecture 
design choices made for the Intel Xeon processor MP 
implementation of Hyper-Threading Technology.  One 
goal was to minimize the die area cost of implementing 
Hyper-Threading Technology.  Since the logical 
processors share the vast majority of microarchitecture 
resources and only a few small structures were 
replicated, the die area cost of the first implementation 
was less than 5% of the total die area. 

A second goal was to ensure that when one logical 
processor is stalled the other logical processor could 
continue to make forward progress.  A logical processor 
may be temporarily stalled for a variety of reasons, 
including servicing cache misses, handling branch 
mispredictions, or waiting for the results of previous 
instructions.  Independent forward progress was ensured 
by managing buffering queues such that no logical 
processor can use all the entries when two active 
software threads2 were executing.  This is accomplished 
by either partitioning or limiting the number of active 
entries each thread can have. 

A third goal was to allow a processor running only one 
active software thread to run at the same speed on a 
processor with Hyper-Threading Technology as on a 
processor without this capability.  This means that 
partitioned resources should be recombined when only 
one software thread is active.  A high-level view of the 
microarchitecture pipeline is shown in Figure 4.  As 
shown, buffering queues separate major pipeline logic 
blocks.  The buffering queues are either partitioned or 
duplicated to ensure independent forward progress 
through each logic block. 

                                                           
Intel is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
 Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
2 Active software threads include the operating system 
idle loop because it runs a sequence of code that 
continuously checks the work queue(s).  The operating 
system idle loop can consume considerable execution 
resources. 
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Figure 4 Intel® Xeon™ processor pipeline 

 

In the following sections we will walk through the 
pipeline, discuss the implementation of major functions, 
and detail several ways resources are shared or 
replicated. 

FRONT END 
The front end of the pipeline is responsible for 
delivering instructions to the later pipe stages.  As 
shown in Figure 5a, instructions generally come from 
the Execution Trace Cache (TC), which is the primary 
or Level 1 (L1) instruction cache.  Figure 5b shows that 
only when there is a TC miss does the machine fetch 
and decode instructions from the integrated Level 2 (L2) 
cache.  Near the TC is the Microcode ROM, which 
stores decoded instructions for the longer and more 
complex IA-32 instructions.   

 

Cache 
Fill

Trace
Cache

Uop 
Queue

IP

Queue
L2 

Access

Decode

Queue

ITLBITLB

Decode

L2 Access

I-Fetch

Trace
Cache

Uop 
Queue

IP

(a)

(b)  
Figure 5: Front-end detailed pipeline (a) Trace Cache Hit (b) Trace Cache Miss
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Execution Trace Cache (TC)   
The TC stores decoded instructions, called micro-
operations or “uops.”  Most instructions in a program 
are fetched and executed from the TC.  Two sets of 
next-instruction-pointers independently track the 
progress of the two software threads executing.  The 
two logical processors arbitrate access to the TC every 
clock cycle.  If both logical processors want access to 
the TC at the same time, access is granted to one then 
the other in alternating clock cycles.  For example, if 
one cycle is used to fetch a line for one logical 
processor, the next cycle would be used to fetch a line 
for the other logical processor, provided that both 
logical processors requested access to the trace cache. If 
one logical processor is stalled or is unable to use the 
TC, the other logical processor can use the full 
bandwidth of the trace cache, every cycle.   

The TC entries are tagged with thread information and 
are dynamically allocated as needed.  The TC is 8-way 
set associative, and entries are replaced based on a least-
recently-used (LRU) algorithm that is based on the full 
8 ways.  The shared nature of the TC allows one logical 
processor to have more entries than the other if needed. 

Microcode ROM   
When a complex instruction is encountered, the TC 
sends a microcode-instruction pointer to the Microcode 
ROM.  The Microcode ROM controller then fetches the 
uops needed and returns control to the TC.  Two 
microcode instruction pointers are used to control the 
flows independently if both logical processors are 
executing complex IA-32 instructions.   

Both logical processors share the Microcode ROM 
entries.  Access to the Microcode ROM alternates 
between logical processors just as in the TC.   

ITLB and Branch Prediction  
If there is a TC miss, then instruction bytes need to be 
fetched from the L2 cache and decoded into uops to be 
placed in the TC.  The Instruction Translation 
Lookaside Buffer (ITLB) receives the request from the 
TC to deliver new instructions, and it translates the 
next-instruction pointer address to a physical address.  
A request is sent to the L2 cache, and instruction bytes 
are returned.  These bytes are placed into streaming 
buffers, which hold the bytes until they can be decoded. 

The ITLBs are duplicated.  Each logical processor has 
its own ITLB and its own set of instruction pointers to 
track the progress of instruction fetch for the two logical 
processors.  The instruction fetch logic in charge of 
sending requests to the L2 cache arbitrates on a first- 

come first-served basis, while always reserving at least 
one request slot for each logical processor.  In this way, 
both logical processors can have fetches pending 
simultaneously. 

Each logical processor has its own set of two 64-byte 
streaming buffers to hold instruction bytes in 
preparation for the instruction decode stage.  The ITLBs 
and the streaming buffers are small structures, so the die 
size cost of duplicating these structures is very low. 

The branch prediction structures are either duplicated or 
shared.  The return stack buffer, which predicts the 
target of return instructions, is duplicated because it is a 
very small structure and the call/return pairs are better 
predicted for software threads independently.  The 
branch history buffer used to look up the global history 
array is also tracked independently for each logical 
processor.  However, the large global history array is a 
shared structure with entries that are tagged with a 
logical processor ID.   

IA-32 Instruction Decode   
IA-32 instructions are cumbersome to decode because 
the instructions have a variable number of bytes and 
have many different options.  A significant amount of 
logic and intermediate state is needed to decode these 
instructions.  Fortunately, the TC provides most of the 
uops, and decoding is only needed for instructions that 
miss the TC. 

The decode logic takes instruction bytes from the 
streaming buffers and decodes them into uops.  When 
both threads are decoding instructions simultaneously, 
the streaming buffers alternate between threads so that 
both threads share the same decoder logic.  The decode 
logic has to keep two copies of all the state needed to 
decode IA-32 instructions for the two logical processors 
even though it only decodes instructions for one logical 
processor at a time.  In general, several instructions are 
decoded for one logical processor before switching to 
the other logical processor.  The decision to do a coarser 
level of granularity in switching between logical 
processors was made in the interest of die size and to 
reduce complexity.  Of course, if only one logical 
processor needs the decode logic, the full decode 
bandwidth is dedicated to that logical processor.  The 
decoded instructions are written into the TC and 
forwarded to the uop queue. 

Uop Queue  
After uops are fetched from the trace cache or the 
Microcode ROM, or forwarded from the instruction 
decode logic, they are placed in a “uop queue.” This 
queue decouples the Front End from the Out-of-order 
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Execution Engine in the pipeline flow.  The uop queue 
is partitioned such that each logical processor has half 
the entries.  This partitioning allows both logical 
processors to make independent forward progress 
regardless of front-end stalls (e.g., TC miss) or 
execution stalls. 

OUT-OF-ORDER EXECUTION ENGINE 
The out-of-order execution engine consists of the 
allocation, register renaming, scheduling, and execution 
functions, as shown in Figure 6.  This part of the 
machine re-orders instructions and executes them as 

quickly as their inputs are ready, without regard to the 
original program order. 

Allocator   
The out-of-order execution engine has several buffers to 
perform its re-ordering, tracing, and sequencing 
operations.  The allocator logic takes uops from the uop 
queue and allocates many of the key machine buffers 
needed to execute each uop, including the 126 re-order 
buffer entries, 128 integer and 128 floating-point 
physical registers, 48 load and 24 store buffer entries.  
Some of these key buffers are partitioned such that each 
logical processor can use at most half the entries.   
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Figure 6: Out-of-order execution engine detailed pipeline

Specifically, each logical processor can use up to a 
maximum of 63 re-order buffer entries, 24 load buffers, 
and 12 store buffer entries. 

If there are uops for both logical processors in the uop 
queue, the allocator will alternate selecting uops from 
the logical processors every clock cycle to assign 
resources.  If a logical processor has used its limit of a 
needed resource, such as store buffer entries, the 
allocator will signal “stall” for that logical processor and 
continue to assign resources for the other logical 
processor.  In addition, if the uop queue only contains 
uops for one logical processor, the allocator will try to 
assign resources for that logical processor every cycle to 
optimize allocation bandwidth, though the resource 
limits would still be enforced. 

By limiting the maximum resource usage of key buffers, 
the machine helps enforce fairness and prevents 
deadlocks. 

Register Rename  
The register rename logic renames the architectural IA-
32 registers onto the machine’s physical registers.  This 
allows the 8 general-use IA-32 integer registers to be 
dynamically expanded to use the available 128 physical 
registers.  The renaming logic uses a Register Alias 
Table (RAT) to track the latest version of each 
architectural register to tell the next instruction(s) where 
to get its input operands. 

Since each logical processor must maintain and track its 
own complete architecture state, there are two RATs, 
one for each logical processor.  The register renaming 
process is done in parallel to the allocator logic 
described above, so the register rename logic works on 
the same uops to which the allocator is assigning 
resources. 

Once uops have completed the allocation and register 
rename processes, they are placed into two sets of 
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queues, one for memory operations (loads and stores) 
and another for all other operations.  The two sets of 
queues are called the memory instruction queue and the 
general instruction queue, respectively.  The two sets of 
queues are also partitioned such that uops from each 
logical processor can use at most half the entries. 

Instruction Scheduling   
The schedulers are at the heart of the out-of-order 
execution engine.  Five uop schedulers are used to 
schedule different types of uops for the various 
execution units.  Collectively, they can dispatch up to 
six uops each clock cycle.  The schedulers determine 
when uops are ready to execute based on the readiness 
of their dependent input register operands and the 
availability of the execution unit resources. 

The memory instruction queue and general instruction 
queues send uops to the five scheduler queues as fast as 
they can, alternating between uops for the two logical 
processors every clock cycle, as needed. 

Each scheduler has its own scheduler queue of eight to 
twelve entries from which it selects uops to send to the 
execution units.  The schedulers choose uops regardless 
of whether they belong to one logical processor or the 
other.  The schedulers are effectively oblivious to 
logical processor distinctions.  The uops are simply 
evaluated based on dependent inputs and availability of 
execution resources.  For example, the schedulers could 
dispatch two uops from one logical processor and two 
uops from the other logical processor in the same clock 
cycle.  To avoid deadlock and ensure fairness, there is a 
limit on the number of active entries that a logical 
processor can have in each scheduler’s queue.  This 
limit is dependent on the size of the scheduler queue. 

Execution Units  
The execution core and memory hierarchy are also 
largely oblivious to logical processors.  Since the source 
and destination registers were renamed earlier to 
physical registers in a shared physical register pool, 
uops merely access the physical register file to get their 
destinations, and they write results back to the physical 
register file.  Comparing physical register numbers 
enables the forwarding logic to forward results to other 
executing uops without having to understand logical 
processors. 

After execution, the uops are placed in the re-order 
buffer.  The re-order buffer decouples the execution 
stage from the retirement stage.  The re-order buffer is 
partitioned such that each logical processor can use half 
the entries. 

Retirement  
Uop retirement logic commits the architecture state in 
program order.  The retirement logic tracks when uops 
from the two logical processors are ready to be retired, 
then retires the uops in program order for each logical 
processor by alternating between the two logical 
processors.  Retirement logic will retire uops for one 
logical processor, then the other, alternating back and 
forth.  If one logical processor is not ready to retire any 
uops then all retirement bandwidth is dedicated to the 
other logical processor. 

Once stores have retired, the store data needs to be 
written into the level-one data cache.  Selection logic 
alternates between the two logical processors to commit 
store data to the cache.   

MEMORY SUBSYSTEM 
The memory subsystem includes the DTLB, the low-
latency Level 1 (L1) data cache, the Level 2 (L2) unified 
cache, and the Level 3 unified cache (the Level 3 cache 
is only available on the Intel Xeon processor MP).  
Access to the memory subsystem is also largely 
oblivious to logical processors.  The schedulers send 
load or store uops without regard to logical processors 
and the memory subsystem handles them as they come. 

DTLB  
The DTLB translates addresses to physical addresses.  It 
has 64 fully associative entries; each entry can map 
either a 4K or a 4MB page.  Although the DTLB is a 
shared structure between the two logical processors, 
each entry includes a logical processor ID tag.  Each 
logical processor also has a reservation register to 
ensure fairness and forward progress in processing 
DTLB misses. 

L1 Data Cache, L2 Cache, L3 Cache   
The L1 data cache is 4-way set associative with 64-byte 
lines.  It is a write-through cache, meaning that writes 
are always copied to the L2 cache.  The L1 data cache is 
virtually addressed and physically tagged. 

The L2 and L3 caches are 8-way set associative with 
128-byte lines.  The L2 and L3 caches are physically 
addressed.  Both logical processors, without regard to 
which logical processor’s uops may have initially 
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brought the data into the cache, can share all entries in 
all three levels of cache.   

Because logical processors can share data in the cache, 
there is the potential for cache conflicts, which can 
result in lower observed performance.  However, there 
is also the possibility for sharing data in the cache.  For 
example, one logical processor may prefetch 
instructions or data, needed by the other, into the cache; 
this is common in server application code.  In a 
producer-consumer usage model, one logical processor 
may produce data that the other logical processor wants 
to use.  In such cases, there is the potential for good 
performance benefits. 

BUS 
Logical processor memory requests not satisfied by the 
cache hierarchy are serviced by the bus logic.  The bus 
logic includes the local APIC interrupt controller, as 
well as off-chip system memory and I/O space.  Bus 
logic also deals with cacheable address coherency 
(snooping) of requests originated by other external bus 
agents, plus incoming interrupt request delivery via the 
local APICs. 

From a service perspective, requests from the logical 
processors are treated on a first-come basis, with queue 
and buffering space appearing shared.  Priority is not 
given to one logical processor above the other. 

Distinctions between requests from the logical 
processors are reliably maintained in the bus queues 
nonetheless.  Requests to the local APIC and interrupt 
delivery resources are unique and separate per logical 
processor.  Bus logic also carries out portions of barrier 
fence and memory ordering operations, which are 
applied to the bus request queues on a per logical 
processor basis.  

For debug purposes, and as an aid to forward progress 
mechanisms in clustered multiprocessor 
implementations, the logical processor ID is visibly sent 
onto the processor external bus in the request phase 
portion of a transaction.  Other bus transactions, such as 
cache line eviction or prefetch transactions, inherit the 
logical processor ID of the request that generated the 
transaction. 

SINGLE-TASK AND MULTI-TASK 
MODES  
To optimize performance when there is one software 
thread to execute, there are two modes of operation 
referred to as single-task (ST) or multi-task (MT).  In 
MT-mode, there are two active logical processors and 
some of the resources are partitioned as described 

earlier.  There are two flavors of ST-mode: single-task 
logical processor 0 (ST0) and single-task logical 
processor 1 (ST1).  In ST0- or ST1-mode, only one 
logical processor is active, and resources that were 
partitioned in MT-mode are re-combined to give the 
single active logical processor use of all of the 
resources.  The IA-32 Intel Architecture has an 
instruction called HALT that stops processor execution 
and normally allows the processor to go into a lower-
power mode.  HALT is a privileged instruction, meaning 
that only the operating system or other ring-0 processes 
may execute this instruction.  User-level applications 
cannot execute HALT. 

On a processor with Hyper-Threading Technology, 
executing HALT transitions the processor from MT-
mode to ST0- or ST1-mode, depending on which logical 
processor executed the HALT.  For example, if logical 
processor 0 executes HALT, only logical processor 1 
would be active; the physical processor would be in 
ST1-mode and partitioned resources would be 
recombined giving logical processor 1 full use of all 
processor resources.  If the remaining active logical 
processor also executes HALT, the physical processor 
would then be able to go to a lower-power mode. 

In ST0- or ST1-modes, an interrupt sent to the HALTed 
processor would cause a transition to MT-mode.  The 
operating system is responsible for managing MT-mode 
transitions (described in the next section). 

Figure 7: Resource allocation  

Figure 7 summarizes this discussion.  On a processor 
with Hyper-Threading Technology, resources are 
allocated to a single logical processor if the processor is 
in ST0- or ST1-mode.  On the MT-mode, resources are 
shared between the two logical processors. 

OPERATING SYSTEM AND 
APPLICATIONS  
A system with processors that use Hyper-Threading 
Technology appears to the operating system and 
application software as having twice the number of 
processors than it physically has.  Operating systems 
manage logical processors as they do physical 
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processors, scheduling runnable tasks or threads to 
logical processors.  However, for best performance, the 
operating system should implement two optimizations. 

The first is to use the HALT instruction if one logical 
processor is active and the other is not.  HALT will 
allow the processor to transition to either the ST0- or 
ST1-mode.  An operating system that does not use this 
optimization would execute on the idle logical processor 
a sequence of instructions that repeatedly checks for 
work to do.  This so-called “idle loop” can consume 
significant execution resources that could otherwise be 
used to make faster progress on the other active logical 
processor. 

The second optimization is in scheduling software 
threads to logical processors.  In general, for best 
performance, the operating system should schedule 
threads to logical processors on different physical 
processors before scheduling multiple threads to the 
same physical processor.  This optimization allows 
software threads to use different physical execution 
resources when possible. 

PERFORMANCE 
The Intel Xeon processor family delivers the highest 
server system performance of any IA-32 Intel 
architecture processor introduced to date.  Initial 
benchmark tests show up to a 65% performance 
increase on high-end server applications when 
compared to the previous-generation Pentium® III 
Xeon™ processor on 4-way server platforms.  A 
significant portion of those gains can be attributed to 
Hyper-Threading Technology. 
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Figure 8:  Performance increases from Hyper-
Threading Technology on an OLTP workload 

Figure 8 shows the online transaction processing 
performance, scaling from a single-processor 
configuration through to a 4-processor system with 
Hyper-Threading Technology enabled.  This graph is 
normalized to the performance of the single-processor 
system.  It can be seen that there is a significant overall 
performance gain attributable to Hyper-Threading 
Technology, 21% in the cases of the single and dual-
processor systems.   
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Figure 9: Web server benchmark performance 

Figure 9 shows the benefit of Hyper-Threading 
Technology when executing other server-centric 
benchmarks.  The workloads chosen were two different 
benchmarks that are designed to exercise data and Web 
server characteristics and a workload that focuses on 
exercising a server-side Java environment.  In these 
cases the performance benefit ranged from 16 to 28%.  
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All the performance results quoted above are 
normalized to ensure that readers focus on the relative 
performance and not the absolute performance.   
 
Performance tests and ratings are measured using 
specific computer systems and/or components and 
reflect the approximate performance of Intel products as 
measured by those tests.  Any difference in system 
hardware or software design or configuration may affect 
actual performance.  Buyers should consult other 
sources of information to evaluate the performance of 
systems or components they are considering purchasing. 
For more information on performance tests and on the 
performance of Intel products, refer to 
wwwwww..iinntteell..ccoomm//pprrooccss//ppeerrff//lliimmiittss..hhttmm or call (U.S.) 1-
800-628-8686 or 1-916-356-3104 

CONCLUSION 
Intel’s Hyper-Threading Technology brings the concept 
of simultaneous multi-threading to the Intel 
Architecture.  This is a significant new technology 
direction for Intel’s future processors.  It will become 
increasingly important going forward as it adds a new 
technique for obtaining additional performance for 
lower transistor and power costs. 

The first implementation of Hyper-Threading 
Technology was done on the Intel Xeon processor 
MP.  In this implementation there are two logical 
processors on each physical processor.  The logical 
processors have their own independent architecture 
state, but they share nearly all the physical execution 
and hardware resources of the processor.  The goal was 
to implement the technology at minimum cost while 
ensuring forward progress on logical processors, even if 
the other is stalled, and to deliver full performance even 
when there is only one active logical processor.  These 
goals were achieved through efficient logical processor 
selection algorithms and the creative partitioning and 
recombining algorithms of many key resources. 

Measured performance on the Intel Xeon processor MP 
with Hyper-Threading Technology shows performance 
gains of up to 30% on common server application 
benchmarks for this technology.   

The potential for Hyper-Threading Technology is 
tremendous; our current implementation has only just 
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begun to tap into this potential.  Hyper-Threading 
Technology is expected to be viable from mobile 
processors to servers; its introduction into market 
segments other than servers is only gated by the 
availability and prevalence of threaded applications and 
workloads in those markets. 

ACKNOWLEDGMENTS 
Making Hyper-Threading Technology a reality was the 
result of enormous dedication, planning, and sheer hard 
work from a large number of designers, validators, 
architects, and others.  There was incredible teamwork 
from the operating system developers, BIOS writers, 
and software developers who helped with innovations 
and provided support for many decisions that were 
made during the definition process of Hyper-Threading 
Technology.  Many dedicated engineers are continuing 
to work with our ISV partners to analyze application 
performance for this technology.  Their contributions 
and hard work have already made and will continue to 
make a real difference to our customers. 

REFERENCES 
A. Agarwal, B.H. Lim, D. Kranz and J. Kubiatowicz, “APRIL: 

A processor Architecture for Multiprocessing,” in 
Proceedings of the 17th Annual International Symposium 
on Computer Architectures, pages 104-114, May 1990. 

R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. 
Porter, and B. Smith, “The TERA Computer System,” in 
International Conference on Supercomputing, Pages 1 - 6, 
June 1990. 

L. A. Barroso et. al., “Piranha: A Scalable Architecture Based 
on Single-Chip Multiprocessing,” in Proceedings of the 
27th Annual International Symposium on Computer 
Architecture, Pages 282 - 293, June 2000. 

M. Fillo, S. Keckler, W. Dally, N. Carter, A. Chang, Y. 
Gurevich, and W. Lee, “The M-Machine Multicomputer,” 
in 28th Annual International Symposium on 
Microarchitecture, Nov. 1995. 

L. Hammond, B. Nayfeh, and K. Olukotun, “A Single-Chip 
Multiprocessor,” Computer, 30(9), 79 - 85, September 
1997. 

D. J. C. Johnson, “HP's Mako Processor,” Microprocessor 
Forum, October 2001, 
http://www.cpus.hp.com/technical_references/mpf_2001.pd
f 

B.J. Smith, “Architecture and Applications of the HEP 
Multiprocessor Computer System,” in SPIE Real Time 
Signal Processing IV, Pages 2 241 - 248, 1981. 

J. M. Tendler, S. Dodson, and S. Fields, “POWER4 System 
Microarchitecture,” Technical White Paper. IBM Server 
Group, October 2001. 



Intel Technology Journal Q1, 2002 

Hyper-Threading Technology Architecture and Microarchitecture 15

D. Tullsen, S. Eggers, and H. Levy, “Simultaneous 
Multithreading: Maximizing On-chip Parallelism,” in 22nd 
Annual International Symposium on Computer 
Architecture, June 1995. 

D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm, 
“Exploiting choice: Instruction fetch and issue on an 
implementable simultaneous multithreading processor,” in 
23rd Annual International Symposium on Computer 
Architecture, May 1996. 

Intel Corporation. “IA-32 Intel Architecture Software 
Developer’s Manual, Volume 1: Basic Architecture,” Order 
number 245472, 2001 
http://developer.intel.com/design/Pentium4/manuals 

Intel Corporation. “IA-32 Intel Architecture Software 
Developer’s Manual, Volume 3: System Programming 
Guide,” Order number 245472, 2001 
http://developer.intel.com/design/Pentium4/manuals 

AUTHORS’ BIOGRAPHIES 
Deborah T. Marr is the CPU architect responsible for 
Hyper-Threading Technology in the Desktop Products 
Group.  Deborah has been at Intel for over ten years.  
She first joined Intel in 1988 and made significant 
contributions to the Intel 386SX processor, the P6 
processor microarchitecture, and the Intel® Pentium® 4 
Processor microarchitecture.  Her interests are in high-
performance microarchitecture and performance 
analysis.  Deborah received her B.S. degree in EECS 
from the University of California at Berkeley in 1988, 
and her M.S. degree in ECE from Cornell University in 
1992.  Her e-mail address is debbie.marr@intel.com. 

Frank Binns obtained a B.S. degree in electrical 
engineering from Salford University, England. He 
joined Intel in 1984 after holding research engineering 
positions with Marconi Research Laboratories and the 
Diamond Trading Company Research Laboratory, both 
of the U.K. Frank has spent the last 16 years with Intel, 
initially holding technical management positions in the 
Development Tool, Multibus Systems and PC Systems 
divisions. Frank’s last eight years have been spent in the 
Desktop Processor Group in Technical Marketing and 
Processor Architecture roles. His e-mail is 
frank.binns@intel.com.  

Dave L. Hill joined Intel in 1993 and was the quad 
pumped bus logic architect for the Pentium® 4 
processor. Dave has 20 years industry experience 
primarily in high-performance memory system 
microarchitecture, logic design, and system debug. His 
e-mail address is david.l.hill@intel.com.  

Glenn Hinton is an Intel Fellow, Desktop Platforms 
Group and Director of IA-32 Microarchitecture 
Development. He is responsible for the 

microarchitecture development for the next-generation 
IA-32 design. He was appointed Intel Fellow in January 
1999. He received bachelor’s and master’s degrees in 
Electrical Engineering from Brigham Young University 
in 1982 and 1983, respectively. His e-mail address is 
glenn.hinton@intel.com. 

David A. Koufaty received B.S. and M.S. degrees from 
the Simon Bolivar University, Venezuela in 1988 and 
1991, respectively. He then received a Ph.D. degree in 
Computer Science from the University of Illinois at 
Urbana-Champaign in 1997. For the last three years he 
has worked for the DPG CPU Architecture organization. 
His main interests are in multiprocessor architecture and 
software, performance, and compilation. His e-mail 
address is david.a.koufaty@intel.com.  

John (Alan) Miller has worked at Intel for over five 
years.  During that time, he worked on design and 
architecture for the Pentium® 4 processor and 
proliferation projects.  Alan obtained his M.S. degree in 
Electrical and Computer Engineering from Carnegie-
Mellon University. His e-mail is alan.miller@intel.com. 

Michael Upton is a Principal Engineer/Architect in 
Intel’s Desktop Platforms Group, and is one of the 
architects of the Intel Pentium® 4 processor. He 
completed B.S. and M.S. degrees in Electrical 
Engineering from the University of Washington in 1985 
and 1990. After a number of years in IC design and 
CAD tool development, he entered the University of 
Michigan to study computer architecture. Upon 
completion of his Ph.D. degree in 1994, he joined Intel 
to work on the Pentium® Pro and Pentium 4 processors. 
His e-mail address is mike.upton@intel.com.  

Copyright © Intel Corporation 2002.  
Other names and brands may be claimed as the property 
of others.  

This publication was downloaded from 
http://developer.intel.com/ 

Legal notices at 
http://developer.intel.com/sites/corporate/tradmarx.htm. 

 



Pre-Silicon Validation of Hyper-Threading Technology 16

Pre-Silicon Validation of Hyper-Threading Technology 

David Burns, Desktop Platforms Group, Intel Corp. 
 

Index words: microprocessor, validation, bugs, verification 
 

ABSTRACT 

Hyper-Threading Technology delivers significantly 
improved architectural performance at a lower-than- 
traditional power consumption and die size cost. However, 
increased logic complexity is one of the trade-offs of this 
technology.  Hyper-Threading Technology exponentially 
increases the micro-architectural state space, decreases 
validation controllability, and creates a number of new and 
interesting micro-architectural boundary conditions.  On 
the Intel Xeon processor family, which implements two 
logical processors per physical processor, there are 
multiple, independent logical processor selection points 
that use several algorithms to determine logical processor 
selection.  Four types of resources: Duplicated, Fully 
Shared, Entry Tagged, and Partitioned, are used to 
support the technology.  This complexity adds to the pre-
silicon validation challenge. 

Not only is the architectural state space much larger (see 
“Hyper-Threading Technology Architecture and 
Microarchitecture” in this issue of the Intel Technology 
Journal), but also a temporal factor is involved.  Testing 
an architectural state may not be effective if one logical 
processor is halted before the other logical processor is 
halted.  The multiple, independent, logical processor 
selection points and interference from simultaneously 
executing instructions reduce controllability.  This in turn 
increases the difficulty of setting up precise boundary 
conditions to test.  Supporting four resource types creates 
new validation conditions such as cross-logical processor 
corruption of the architectural state.  Moreover, Hyper-
Threading Technology provides support for inter- and 
intra-logical processor store to load forwarding, greatly 
increasing the challenge of memory ordering and memory 
coherency validation. 
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This paper describes how Hyper-Threading Technology 
impacts pre-silicon validation, the new validation 
challenges created by this technology, and our strategy 
for pre-silicon validation.  Bug data are then presented and 
used to demonstrate the effectiveness of our pre-silicon 
Hyper-Threading Technology validation.  

INTRODUCTION 
Intel IA-32 processors that feature the Intel NetBurst 
microarchitecture can also support Hyper-Threading 
Technology or simultaneous multi-threading (SMT).  Pre-
silicon validation of Hyper-Threading Technology was 
successfully accomplished in parallel with the Pentium® 4 
processor pre-silicon validation, and it leveraged the 
Pentium 4 processor pre-silicon validation techniques of 
Formal Verification (FV), Cluster Test Environments 
(CTEs), Architecture Validation (AV), and Coverage-
Based Validation. 

THE CHALLENGES OF PRE-SILICON 
HYPER-THREADING TECHNOLOGY 
VALIDATION 
The main validation challenge presented by Hyper-
Threading Technology is an increase in complexity that 
manifested itself in these major ways: 

• Project management issues 

• An increase in the number of operating modes: MT-
mode, ST0-mode, and ST1-mode, each described in 
“Hyper-Threading Technology Architecture and 
Microarchitecture” in this issue of the Intel 
Technology Journal.  
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• Hyper-Threading Technology squared the 
architectural state space. 

• A decrease in controllability. 

• An increase in the number and complexity of 
microarchitectural boundary conditions. 

• New validation concerns for logical processor 
starvation and fairness. 

Microprocessor validation already was an exercise in the 
intractable engineering problem of ensuring the correct 
functionality of an immensely complex design with a 
limited budget and on a tight schedule.  Hyper-Threading 
Technology made it even more intractable.  Hyper-
Threading Technology did not demand entirely new 
validation methods and it did fit within the already 
planned Pentium 4 processor validation framework of 
formal verification, cluster testing, architectural validation, 
and coverage-based microarchitectural validation. What 
Hyper-Threading Technology did require, however, was 
an increase in validation staffing and a significant increase 
in computing capacity.  

Project Management 

The major pre-silicon validation project management 
decision was where to use the additional staff.  Was a 
single team, which focused exclusively on Hyper-
Threading Technology validation, needed?  Should all the 
current functional validation teams focus on Hyper-
Threading Technology validation?  The answer, driven by 
the pervasiveness, complexity, and implementation of the 
technology, was both.  All of the existing pre-silicon 
validation teams assumed responsibility for portions of 
the validation, and a new small team of experienced 
engineers was formed to focus exclusively on Hyper-
Threading Technology validation.  The task was divided 
as follows: 

• Coverage-based validation [1] teams employed 
coverage validation at the microcode, cluster, and full-
chip levels.  Approximately thirty percent of the 
coded conditions were related to Hyper-Threading 
Technology.  As discussed later in this paper, the use 
of cluster test environments was essential for 
overcoming the controllability issues posed by the 
technology. 

• The Architecture Validation (AV) [1] team fully 
explored the IA-32 Instruction Set Architecture space.  
The tests were primarily single-threaded tests 
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(meaning the test has only a single thread of 
execution and therefore each test runs on one logical 
processor) and were run on each logical processor to 
ensure symmetry.  

• The Formal Verification (FV) team proved high-risk 
logical processor-related properties.  Nearly one-third 
of the FV proofs were for Hyper-Threading 
Technology [1]. 

• The MT Validation (MTV)  team validated specific 
issues raised in the Hyper-Threading Technology 
architecture specification and any related validation 
area not covered by other teams.  Special attention 
was paid to the cross product of the architectural 
state space, logical processor data sharing, logical 
processor forward progress, atomic operations and 
self-modifying code. 

Operating Modes 
Hyper-Threading Technology led to the creation of the 
three operating modes, MT, ST0, and ST1, and four 
general types of resources used to implement Hyper-
Threading Technology.  These resources can be 
categorized as follows: 

• Duplicated.  This is where the resources required to 
maintain the unique architectural state of each logical 
processor are replicated. 

• Partitioned.  This is where a structure is divided in 
half between the logical processors in MT-mode and 
fully utilized by the active logical processor in ST0- or 
ST1-mode.  

• Entry Tagged.  This is where the overall structure is 
competitively shared, but the individual entries are 
owned by a logical processor and identified with a 
logical processor ID. 

• Fully Shared.  This is where logical processors 
compete on an equal basis for the same resource. 

Examples of each type of resource can be found in 
“Hyper-Threading Technology Architecture and 
Microarchitecture” in this issue of the Intel Technology 
Journal.  Consider the operating modes state diagram 
shown in Figure 1.    
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Figure 1: Operating Mode State Diagram 

It can be used to illustrate test cases involving the three 
operating modes and how they affect the four types of 
resources.  At the start of test, both logical processors are 
reset.  After reset, the logical processors vie to become 
the boot serial processor. Assume logical processor 0 
wins and the operating mode is now ST0.  All non-
duplicated resources are fully devoted to logical 
processor 0.  Next, logical processor 1 is activated and 
MT-mode is entered.  To make the transition from ST0- or 
ST1-mode to MT-mode, the partitioned structures, which 
are now fully devoted to only one logical processor, must 
be drained and divided between the logical processors.  
In MT-mode, accidental architectural state corruption 
becomes an issue, especially for the entry-tagged and 
shared resources. When a logical processor runs the hlt 
instruction, it is halted, and one of the ST-modes is 
entered.  If logical processor 0 is halted, then the 
transition is made from MT-mode to ST1-mode.  During 
this transition, the partitioned structures must again be 
drained and then recombined and fully devoted to logical 
processor 1. MT-mode can be re-entered if, for example, 
an interrupt or non-maskable interrupt (NMI) is sent to 
logical processor 0.  The Power Down state is entered 
whenever the STP_CLK pin is asserted or if both logical 
processors are halted.  

Now contrast this to a non-Hyper-Threading Technology- 
capable processor like the Intel Pentium 4 processor.  For 
the Pentium 4 processor, there are only three states: Reset, 
Power Down, and Active, and four state transitions to 
validate.  In addition, there is no need to validate the 
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transitioning of partitioned resources from divided to and 
from combined. 

Architectural State Space 
The creation of three operating modes has a material 
impact on the amount of architectural state space that 
must be validated.  As mentioned earlier, the AV team 
develops single-threaded tests that fully explore the IA-32 
Instruction Set Architecture and architectural space.  A 
single-threaded test has just one thread of execution, 
meaning that it can run on only one logical processor.  A 
multi-threaded test has two or more threads of execution, 
meaning that it can run and use two or more logical 
processors simultaneously.   

To validate both ST0-mode and ST1-mode, all AV tests 
need to be run on both logical processors.  A possible 
solution to validating the micro-architectural state space 
might be to take all AV tests and simulate all combinations 
of them in MT-mode.  This proved to be impractical and 
insufficient because one AV test might be much shorter 
than the other test so a logical processor is halted and an 
ST-mode is entered before the MT-mode architectural 
state is achieved.  The practical problem is that while 
simulating all AV tests in one of the ST modes can be 
done regularly, simulating the cross-product of all AV 
tests was calculated to take nearly one thousand years [3]! 

The solution was to analyze the IA-32 architectural state 
space for the essential combinations that must be 
validated in MT-mode.  

A three-pronged attack was used to tackle the challenge 
of Hyper-Threading Technology micro-architectural state 
space: 

• All AV tests would be run at least once in both ST0- 
and ST1-mode.  This wasn’t necessarily a doubling of 
the required simulation time, since the AV tests are 
normally run more than once during a project anyway.  
There was just the additional overhead of tracking 
which tests had been simulated in both ST modes. 

• A tool, Mtmerge, was developed that allowed single-
threaded tests to be merged and simulated in MT-
mode.  Care was taken to adjust code and data spaces 
to ensure the tests did not modify each other’s data 
and to preserve the original intentions of the single-
threaded tests. 

• The MTV team created directed-random tests to 
address the MT-mode architectural space. Among the 
random variables were the instruction stream types: 
integer, floating-point, MMX, SSE, SSE2, the 
instructions within the stream, memory types, 
exceptions, and random pin events such as INIT, 
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SMI, STP_CLK and SLP.  The directed variables that 
were systematically tested against each other 
included programming modes, paging modes, 
interrupts, and NMI. 

CONTROLLABILITY 
The implementation of Hyper-Threading Technology used 
multiple logical processor selection points at various 
pipeline stages.  There was no requirement that all 
selection points picked the same logical processor in 
unison.  The first critical selection point is at the trace 
cache, which sends decoded micro-operations to the out-

of-order execution engine.  This selection point uses an 
algorithm that considers factors such as trace cache 
misses and queue full stalls.  Hence, controllability can be 
lost even before reaching the out-of-order execution 
engine.  In addition to the logical processor selection 
points, controllability is lost because uops from both 
logical processors are simultaneously active in the 
pipeline and competing for the same resources.  The same 
test run twice on the same logical processor, but with 
different tests on the other logical processor used during 
both simulations, can have vastly different performance 
characteristics.
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Figure 2: Logical processor selection point

Figure 2 shows some of the critical logical processor 
selection points and provides a glimpse into how 
interacting logical processors can affect their performance 
characteristics.  The independent selection points coupled 
with the out-of-order, speculative execution, and 
speculative data nature of the microarchitecture obviously 
resulted in low controllability at the full-chip level.  The 
solution to the low controllability was the use of the 
Cluster Test Environment [1] coupled with coverage-
based validation at the CTE and full-chip levels. 

The Cluster Test Environments allow direct access to the 
inputs of a cluster that helps alleviate controllability 
issues, especially in the backend memory and bus 
clusters.  However, logical processor selection points and 
other complex logic are buried deep within the clusters.  
This meant that coverage-based validation coupled with 
directed-random testing was needed to ensure all 

interesting boundary conditions had been validated.  
Naturally, cluster interactions can be validated only at the 
full-chip level and again coverage-based validation and 
directed-random testing were used extensively. 

Boundary Conditions  

Hyper-Threading Technology created boundary 
conditions that were difficult to validate and had a large 
impact on our validation tool suite.  Memory ordering 
validation was made more difficult since data sharing 
between logical processors could occur entirely within the 
same processor.  Tools that looked only at bus traffic to 
determine correct memory ordering between logical 
processors  were insufficient.  Instead, internal RTL 
information needed to be conveyed to architectural state 
checking tools such as Archsim-MP, an internal tool 
provided by Intel Design Technology.  
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While ALU bypassing is a common feature, it becomes 
more risky when uops from different logical processors are 
executing together.  Validation tested that cross-logical-
processor ALU forwarding never occurred to avoid 
corruption of each logical processor’s architectural state. 

New Validation Concerns  

Hyper-Threading Technology adds two new issues that 
need to be addressed: logical processor starvation and 
logical processor fairness.  Starvation occurs when 
activity on one logical processor prevents the other from 
fetching instructions.  Similar to starvation are issues of 
logical processor fairness.  Both logical processors may 
want to use the same shared resource.  One logical 
processor must not be allowed to permanently block the 
other from using a resource.  The validation team had to 
study and test for all such scenarios. 

BUG ANALYSIS  
The first silicon with Hyper-Threading Technology 
successfully booted multi-processor-capable operating 
systems and ran applications in MT-mode.  The systems 
ranged from a single physical processor with two logical 
processors, to four-way systems running eight logical 
processors.  Still, there is always room for improvement in 
validation.  An analysis was done to review the sources of 
pre-silicon and post-silicon bugs, and to identify areas for 
improving pre-silicon Hyper-Threading Technology 
validation. 

To conduct the analysis of Hyper-Threading Technology 
bugs, it was necessary to define what such a bug is.  A 
Hyper-Threading Technology bug is a bug that broke 
MT-mode functionality.  While a seemingly obvious 
definition, such tests were found to be very good at 
finding ST-mode bugs.  The bugs causing most MT-mode 
test failures were actually bugs that would break both ST-
mode and MT-mode functionality.  They just happened to 
be found first by multi-threaded tests.  Every bug found 
from MT-mode testing was studied to understand if it 
would also cause ST-mode failures.  The bugs of interest 
for this analysis were those that affected only MT-mode 
functionality.  The bug review revealed the following: 

• Eight percent of all pre-silicon SRTL bugs were MT-
mode bugs. 

• Pre-silicon MT-mode bugs were found in every 
cluster and microcode. 

• Fifteen percent of all post-silicon SRTL bugs were 
MT-mode bugs. 

• Two clusters [2] did not have any MT-mode post-
silicon SRTL bugs. 
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Figure 3: Breakdown of post-silicon MT-Mode bugs 

Figure 3 categorizes the post-silicon MT-mode bugs into 
the functionality that they affected [2, 3]. Multi-Threading 
Architectural Validation (MT AV) bugs occurred where a 
particular combination of the huge cross product of IA-32 
architectural state space did not function properly.  Locks 
are those bugs that broke the functionality of atomic 
operations in MT-mode.  ULD represents bugs involving 
logical processor forward progress performance 
degradation.  Self-Modifying Code (SMC) bugs were bugs 
that broke the functionality of self or cross-logical 
processor modifying code.  Other is the category of other 
tricky micro-architectural boundary conditions.  Metal 
Only is an interesting grouping.  We found that post-
silicon MT-mode bugs were difficult to fix in metal only 
steppings and often required full layer tapeouts to fix 
successfully.  Metal Only are the bugs caused by 
attempting to fix known bugs in Metal Only tapeouts.   

IMPROVING MULTI-THREADING 
VALIDATION 
Clearly, with MT-mode bugs constituting nearly twice the 
number of post-silicon bugs, 15% versus 8% of the pre-
silicon bugs, coupled with the high cost of fixing post-
silicon MT bugs (full layer versus metal tapeouts), there is 
an opportunity for improving pre-silicon validation of 
future MT-capable processors.  Driven by the analysis of 
pre- and post-silicon MT-mode bugs [2, 3], we are 
improving pre-silicon validation by doing the following: 

• Enhancing the Cluster Test Environments to improve 
MT-mode functionality checking. 

• Increasing the focus on microarchitecture validation 
of multi-cluster protocols such as SMC, atomic 
operations, and forward progress mechanisms. 

• Increasing the use of coverage-based validation 
techniques to address hardware/microcode 
interactions in the MT AV validation space. 
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• Increasing the use of coverage-based validation 
techniques at the full-chip level to track resource 
utilization. 

Done mainly in the spirit of continuous improvement, 
enhancing the CTEs to more completely model adjacent 
clusters and improve checking will increase the 
controllability benefits of CTE testing and improve both 
ST- and MT-mode validation.  Much of the full-chip 
microarchitecture validation (uAV) had focused on 
testing of cluster boundaries to complement CTE testing. 
While this continues, additional resources have been 
allocated to the multi-cluster protocols mentioned 
previously. 

The MTV team is, for the first time, using coverage-based 
validation to track architectural state coverage.  For 
example, the plan is to go beyond testing of interrupts on 
both logical processors by skewing a window of interrupt 
occurrence on both logical processors at the full-chip 
level.  In addition, this will guarantee that both logical 
processors are simultaneously in a given architectural 
state. 

The MTV team is also increasing its use of coverage to 
track resource consumption.  One case would be the 
filling of a fully shared structure, by one logical 
processor, that the other logical processor needs to use. 
The goal is to use coverage to ensure that the desired 
traffic patterns have been created. 

Nevertheless, these changes represent fine-tuning of the 
original strategy developed for Hyper-Threading 
Technology validation.  The use of CTEs proved 
essential for overcoming decreased controllability, and 
the division of MT-mode validation work among the 
existing functional validation teams proved an effective 
and efficient way of tackling this large challenge.  The 
targeted microarchitecture boundary conditions, resource 
structures, and areas identified as new validation 
concerns were all highly functional at initial tapeout. 
Many of the bugs that escaped pre-silicon validation 
could have been caught with existing pre-silicon tests if 
those tests could have been run for hundreds of millions 
of clock cycles or involved unintended consequences 
from rare interactions between protocols. 

CONCLUSION 
The first Intel microprocessor with Hyper-Threading 
Technology was highly functional on A-0 silicon.  The 
initial pre-silicon validation strategy using the trinity of 
coverage-based validation, CTE testing, and sharing the 
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validation work was successful in overcoming the 
complexities and new challenges posed by this 
technology.  Driven by bug data, refinements of the 
original validation process will help ensure that Intel 
Corporation can successfully deploy new processors with 
Hyper-Threading Technology and reap the benefits of 
improved performance at lower die size and power cost. 
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ABSTRACT 
Speculative Precomputation (SP) is a technique to improve 
the latency of single-threaded applications by utilizing idle 
multithreading hardware resources to perform aggressive 
long-range data prefetches.  Instead of trying to explicitly 
parallelize a single-threaded application, SP does the 
following: 

• Targets only a small set of static load instructions, 
called delinquent loads, which incur the most 
performance degrading cache miss penalties.  

• Identifies the dependent instruction slice leading to 
each delinquent load.  

• Dynamically spawns the slice on a spare hardware 
thread to speculatively precompute the load address 
and perform data prefetch.  

Consequently, a significant amount of cache misses can 
be overlapped with useful work, thus hiding the memory 
latency from the critical path in the original program. 

Fundamentally, contrary to conventional wisdom that 
multithreading microarchitecture techniques can be used 
to only improve the throughput of multitasking workloads 
or the performance of multithreaded programs , SP 
demonstrates the potential to leverage multithreading 
hardware resources to exploit a form of implicit thread-
level parallelism and significantly speed up single-
threaded applications.  Most desktop applications in the 

traditional PC environment are not otherwise easily 
parallelized to take advantage of multithreading resources. 

This paper chronicles the milestones and key lessons from 
Intel’s research on SP, including an initial simulation-
based evaluation of SP for both in-order and out-of-order 
multithreaded microarchitectures.  We also look at recent 
experiments in applying software-based SP (SSP) to 
significantly speed up a set of pointer-intensive 
applications on a pre-production version of Intel Xeon 
processors with Hyper-Threading Technology. 

INTRODUCTION 
Memory latency has become the critical bottleneck to 
achieving high performance on modern processors.  Many 
large applications today are memory intensive, because  
their memory access patterns are difficult to predict and 
their working sets are becoming quite large. Despite 
continued advances in cache design and new 
developments in prefetching techniques, the memory 
bottleneck problem still persists.  This problem worsens 
when executing pointer-intensive applications, which tend 
to defy conventional stride-based prefetching techniques.  
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One solution is to overlap memory stalls in one program 
with the execution of useful instructions from another 
program, thus effectively improving system performance 
in terms of overall throughput.  Improving throughput of 
multitasking workloads on a single processor has been the 
primary motivation behind the emerging simultaneous 
multithreading (SMT) techniques [1][2][3]. An SMT 
processor can issue instructions from multiple hardware 
contexts, or logical processors (sometimes also called 
hardware threads), to the functional units of a super-
scalar processor in the same cycle.  SMT achieves higher 
overall throughput by increasing overall instruction-level 
parallelism available to the architecture via the exploitation 
of the natural parallelism between independent threads 
during each cycle.  

However, this traditional use of SMT does not directly 
improve performance in terms of latency when only a 
single thread is executing.  Since the majority of desktop 
applications in the traditional PC environment are single-
threaded code, it is important to investigate if and how 
SMT techniques can be used to enhance single-threaded 
code performance by reducing latency.  

At Intel Labs, extensive microarchitecture research efforts 
have been dedicated to discover and evaluate innovative 
hardware and software techniques to leverage 
multithreaded hardware resources to speed up single-
threaded applications.  One of the techniques is called 
Speculative Precomputation  (SP), a novel thread-based 
cache prefetching mechanism.  The key idea behind SP is 
to utilize otherwise idle hardware thread contexts to 
execute speculative threads on behalf of the main (non-
speculative) thread.  These speculative threads attempt to 
trigger future cache-miss events far enough in advance of 
access by the non-speculative thread that the memory 
miss latency can be masked.  SP can be thought of as a 
special prefetch mechanism that effectively targets load 
instructions that exhibit unpredictable irregular or data-
dependent access patterns.  Traditionally, these loads 
have been difficult to handle via either hardware 
prefetchers [5][6][7] or software prefetchers [8].  

In this paper, we chronicle several milestones we have 
reached including initial simulation-based evaluations of 
SP for both in-order and out-of-order multithreaded 
research processors [9][10][11][12][13][14], and highlight 
recent experiments in successfully applying software-
based SP (SSP) to significantly speed up a set of pointer-
intensive benchmarks on a pre-production version of 

Intel Xeon processors with the Hyper-Threading  
Technology. 

We first recount the motivation for SP, and we introduce 
the basic algorithmic ingredients and key optimizations, 
such as chaining triggers, which ensure the effectiveness 
of SP.  We then compare SP with out-of-order execution, 
the traditional latency tolerance technique, and shed light 
on the effectiveness of combining both techniques.  We 
follow with a discussion of the trade-offs for hardware-
based SP and software-based SP (SSP), and in particular, 
highlight an automated post-pass binary adaptation tool 
for SSP.  This tool can achieve performance gains 
comparable to that of implementing SSP using hand 
optimization.  We then describe recent experiments where 
SSP is applied to speed up a set of applications on a pre-
production version of Intel Xeon processors with the 
Hyper-Threading Technology.  Finally, we review related 
work. 

SPECULATIVE PRECOMPUTATION: KEY 
IDEAS 
Chronologically, the key ideas for Speculative 
Precomputation (SP) were developed prior to the arrival of 
silicon for the Intel® Xeon™ processors with Hyper-
Threading Technology.  Our initial research work on SP 
was conducted on a simulation infrastructure modeling a 
range of research Itanium™ processors that support 
Simultaneous Multithreading (SMT) with a pipeline 
configurable to be either in-order or out-of-order.  Before 
we discuss the trade-offs for hardware- vs. software-based 
implementations of SP, our discussion will assume the 
research processor model described below in  

Table 1.  We use a set of benchmarks selected from 
SPEC2000 and the Olden suite, including art, equake, 
gzip, mcf, health and mst.  

Table 1: Details of the research Itanium processor 
models 

Pipeline 
Structure 

In-order: 8-12-stage pipeline.  
Out-of-order: 12-16-stage pipeline. 

Fetch 2 bundles from 1 thread, or  
1 bundle from each of 2 threads. 

Branch pred 2K-entry GSHARE. 256 entry 4-way 
associative BTB. 
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Expansion Private, per-thread, in-order 8 bundle 
expansion queue 

Register Files Private, per-thread register files.   
128 integer registers, 128 FP registers, 64 
predicate registers, 128 application 
registers 

Execute 
Bandwidth 

In-order: 6 instructions from one thread or 
3 instructions from each of 2 threads  
Out-of-order: 18-instruction schedule 
window 

Cache 
Structure 

L1 (separate I and D): 16K 4-way, 8-way 
banked, 1-2-cycle  
L2 (shared): 256K 4-way, 8-way banked, 7-
14-cycle  
L3 (shared): 3072K 12-way, 1-way banked, 
15-30-cycle  
Fill buffer (MSHR): 16 entries. All caches: 
64-byte lines 

Memory 115-230 cycle latency, TLB Miss Penalty 
30 cycles. 

Delinquent Loads 
For most programs, only a small number of static loads are 
responsible for the vast majority of cache misses [15]. 
Figure 1 shows the cumulative contributions to L1 data 
cache misses by the top 50 static loads for the processor 
models  in  

Table 1 running benchmarks to completion.  It is evident 
that a few poorly behaved static loads dominate cache 
misses in these programs.  We call these loads delinquent 
loads.  
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Figure 1:  Cumulative L1 data cache misses due to 
delinquent loads  

In order to gauge the impact of these loads on 
performance, Figure 2 compares the performance of a 
perfect memory subsystem, where all loads hit in the L1, to 
that of a memory subsystem that assumes the worst 10 

delinquent loads always hitting in the L1 cache.  In most 
cases, eliminating performance losses from only the top 
delinquent loads yields most of the speed-up achievable 
by the ideal memory.  These data suggest that significant 
improvements can be achieved by just focusing latency-
reduction techniques on the delinquent loads. 
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Figure 2:  Speed-up when 10 delinquent loads are 

assumed to always hit in cache 

SP Overview 
To perform effective prefetch for delinquent loads, SP 
requires the construction of the precomputation slices, or 
p-slices, which consist of dependent instructions that 
compute the addresses accessed by delinquent loads.  
When an event triggers the invocation of a p-slice, a 
speculative thread is spawned to execute the p-slice.  The 
speculatively executed p-slice then prefetches for the 
delinquent load that will be executed later by the main 
thread.  Speculative threads can be spawned under one of 
two conditions: when encountering a basic trigger, which 
occurs when a designated instruction in the non-
speculative thread is retired, or when encountering a 
chaining trigger, which occurs when a speculative thread 
explicitly spawns another.   

Spawning a speculative thread entails allocating a 
hardware thread context, copying necessary live-in values 
into its register file, and providing the thread context with 
the address of the first instruction of the p-slice.  If a free 
hardware context is not available, the spawn request is 
ignored. 

Necessary live-in values are always copied into the thread 
context when a speculative thread is spawned.  This 
eliminates the possibility of inter-thread hazards, where a 
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register is overwritten in one thread before a child thread 
has read it.  Fortunately, as shown in Table 2, the number 
of live-in values that must be copied is very small. 

 

Table 2:  Slice statistics 

Benchmark 
Slices 

(#) 
Average size 

(#inst) 

Average #  

live-in 

art 2 4 3.5 

equake 8 12.5 4.5 

gzip 9 9.5 6.0 

mcf 6 5.8 2.5 

health 8 9.1 5.3 

mst 8 26 4.7 

 

When spawned, a speculative thread occupies a hardware 
thread context until the speculative thread completes 
execution of all instructions in the p-slice.  Speculative 
threads are not allowed to update the architectural state. 
In particular, stores in a p-slice are not allowed to update 
any memory state.  For the benchmarks studied in this 
research, however, none of the p-slices include any store 
instructions. 

SP Tasks 
Several steps are necessary to employ SP: identification of 
the set of delinquent loads, construction of p-slices for 
these loads, and the establishment of triggers.  In addition, 
upon dynamic execution with SP, proper control is 
necessary to ensure that the precomputation can generate 
timely and accurate prefetches.  These steps can be 
performed by a variety of approaches including compiler 
assistance, hardware support , and a hybrid of both 
software and hardware approaches.  These steps can be 
applied to any processor supporting SMT, regardless of 
differences in instruction set architectures (ISA) or 
pipeline organization.  Different manifestations of SP are 
further discussed later in the paper. 

Identify Delinquent Loads  
The set of delinquent loads that contribute the majority of 
cache misses is determined through memory access 
profiling, performed either by the compiler or a memory 
access simulator [15], or by dedicated profiling tools for 

real silicon, such as the VTune Performance Analyzer 
[16].  From such profile analysis, the loads that have the 
largest impact on performance (i.e., incurring long 
latencies) are selected as delinquent loads.  The total 
number of L1 cache misses can be used as the criterion to 
select delinquent loads, while other filters (e.g., L2 or L3 
misses or total memory latency) could also be used.  For 
example, in our simulation-based study, we use the L1 
cache misses to identify the delinquent loads, while for 
our experiment on a pre-production version of the Intel 
Xeon processor with the Hyper-Threading Technology, 
we use L2 cache miss profiling from the VTune analyzer 
instead. 

Construct and Optimize P-Slices  
In this phase, a p-slice is created for each delinquent load.  
Depending upon the environment, the p-slice can be 
constructed by hand, via a simulator [11][13], by a 
compiler [14], or directly by hardware [12].  For example, a 
p-slice with a basic trigger can be captured via traditional 
backward slicing [17] within a window of dynamic 
instruction traces.  By eliminating instructions that 
delinquent loads do not depend on, the resulting p-slices 
are typically of very small sizes, typically 5 to 15 
instructions per p-slice.  For p-slices with chaining 
triggers, a more elaborate construction process is required.  

P-slices containing chaining triggers typically have three 
parts–a prologue, a spawn instruction for spawning 
another copy of the p-slice, and an epilogue.  The 
prologue consists of instructions that compute values 
associated with a loop-carried dependency, i.e., those 
values produced in one loop iteration and used in the next 
loop iteration, such as  updates to a loop induction 
variable.  The epilogue consists of instructions that 
produce the address for the targeted delinquent load.  The 
goal behind chaining trigger construction is for the 
prologue to be executed as quickly as possible, so that 
additional speculative threads can be spawned as quickly 
as possible. 

To add chaining triggers to p-slices targeting delinquent 
loads within loops, the algorithm for capturing p-slices 
using basic triggers can be augmented to track the 
distance between different instances of a delinquent load.  
If two instances of the same p-slice are consistently 
spawned within a fixed-sized window of instructions, we 
create a new p-slice that includes a chaining trigger that 
targets the same delinquent load.  Instructions from one 

                                                                 
 VTune is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries .  
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slice that modify values used in the next p-slice are added 
to the prologue.  Instructions that are necessary to 
produce the address loaded by the delinquent load are 
added to the epilogue.  Between the prologue and 
epilogue, a spawn instruction is inserted to spawn another 
copy of this same p-slice. 

Condition Precomputation 
To be effective, SP-based prefetches  must be accurate 
and timely.  By accuracy, we mean a p-slice upon 
spawning should use mostly valid live-in values to 
produce a correct prefetch address.  By timeliness, we 
mean the speculative threads performing the SP prefetch 
thread should run neither behind nor too far ahead of the 
main non-speculative thread. 

For accuracy, if spawning of the speculative thread is 
done only after its corresponding trigger reaches the 
commit stage of the processor pipeline, then the live-in 
values of the associated p-slice are usually guaranteed to 
be architecturally correct, thus ensuring precomputation 
will produce the correct prefetch address.  An alternative 
policy might attempt to spawn as soon as the trigger 
instruction is detected at the decode stage of the pipeline. 
The drawback of such an early spawning scheme is that 
both the trigger and the live-in values are speculative and 
prefetching from the wrong address can occur. 

For timeliness, basic trigger by definition is more sensitive 
to how far it is between the trigger and the target 
delinquent load and how long the p-slice is, since the 
thread spawning is tightly coupled to progress made by 
the main thread.  Any overhead associated with thread 
spawning will not only reduce the headroom for prefetch 
but also incur additional latency on the main thread.   

The use of chaining, while decoupling thread spawning 
from progress made by the main thread, could potentially 
be overly aggressive in getting too far ahead and evicting 
useful data from the cache before the main thread has 
accessed them.  To condition the run-ahead distance 
between the main thread and the SP threads, a structure 
called an Outstanding Slice Counter (OSC), is introduced 
to track, for a subset of distinct delinquent loads, the 
number of speculative threads that have been spawned 
relative to the number of instances of a delinquent load 
that have not yet been retired by the non-speculative 
thread.  Each entry in the OSC tracking structure contains 
a counter, the instruction pointer (IP) of a delinquent load 
and the address of the first instruction in a p-slice, which 
identifies the p-slice.  This counter is decremented when 
the non-speculative thread retires the corresponding 
delinquent load, and is incremented when the 
corresponding p-slice is spawned.  When a speculative 
thread is spawned for which the entry in the OSC is 

negative, the resulting speculative thread is forced to wait 
in the pending state until the counter becomes positive, 
during which time it is not considered for assignment to a 
hardware thread context.   

As we will see later, the controlling mechanism can also be 
implemented entirely in software as part of the speculative 
thread. 

SP Trade-offs  
One of the key findings in our SP research is that the 
chaining trigger, assuming fairly conservative hardware 
support but with a proper conditioning mechanism, can be 
much more effective than the basic trigger even assuming 
ideal hardware support.  The trade-offs between the basic 
trigger and the chaining trigger can be summarized as 
follows. 

Basic Trigger With Ideal Hardware Assumption 
Figure 3 shows the performance gains achieved through 
two rather ideal SP configurations.  One is more 
aggressive in that speculative threads are spawned from 
the non-speculative thread at the rename stage, but only 
by an instruction on the correct control flow path using 
oracle knowledge.  The other is a less aggressive one, in 
that speculative threads are spawned only at the commit 
stage, when the instruction is guaranteed to be on the 
correct path.  In both cases, we assume aggressive and 
ideal hardware support for directly copying live-in values 
from the non-speculative parent thread’s context to its 
child thread’s context, i.e., one-cycle flash-copy of live-in 
values.  This allows the speculative thread to begin 
execution of a p-slice just one cycle after it is spawned.  

For each benchmark, results are grouped into three pairs, 
corresponding to, from left to right, 2, 4, and 8 total 
hardware thread contexts.  Within each pair, the 
configuration on the left corresponds to spawning 
speculative threads in the rename stage, while the 
configuration on the right corresponds to spawning in the 
commit stage as described above. 

Basic Trigger Without Ideal Hardware Assumption 
We propose a more realistic implementation of SP, which 
performs thread spawning after the trigger instruction is 
retired and assumes overhead, such as potential pipeline 
flush and multiple-cycle transfer of live-in values across 
threads via memory.  This approach differs from the 
idealized hardware approach in two ways.  First, spawning 
a thread is no longer instantaneous.  It will slow down the 
non-speculative thread, due to the need to invoke and 
execute the handler code to check hardware thread 
availability and copy out live-in values to memory to 
prepare for cross-thread transfer.  At the very minimum, 
invoking this handler requires a pipeline flush.  The 
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second difference is that p-slices must be modified with a 
prologue to first load their live-in values from the transfer 
memory buffer, thus delaying the beginning of 
precomputation. 

Potential Speed-up (Basic Triggers)
Ideal Speedup from Speculative Precomputation 

Using Basic Triggers
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Figure 3: SP speed-up with basic trigger and ideal 
hardware assumptions 
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Figure 4: SP speed-up with basic trigger and realistic 
hardware 

Figure 4 shows the performance speed-ups achieved when 
this more realistic hardware is assumed for a processor 
with eight hardware thread contexts.  Four processor 
configurations are shown, each corresponding to differing 
thread-spawning costs.  The leftmost configuration is 
given for reference, in which speculative threads are 
spawned with no penalty for the non-speculative thread, 
but must still perform a sequence of load instructions to 
read their live-in values from the memory transfer buffer.  
This configuration yields the highest possible 
performance because the main thread is still instantaneous 
in spawning a speculative thread.  In the other three 

configurations, spawning a speculative thread causes the 
non-speculative thread’s instructions following the trigger 
to be flushed from the pipeline.  In the configuration 
second from the left, this pipeline flush is the only penalty, 
while in the third and fourth configurations, an additional 
penalty of 8 and 16 cycles, respectively, is assumed for the 
cost of executing the handler code to perform the live-in 
transfer. 

Comparing these results to the performance of SP with 
ideal hardware (see Figure 3), the results for realistic SP in 
Figure 4 are rather disappointing.  The primary reason that 
this performance falls short of that in the ideal case is the 
overhead incurred when the non-speculative thread 
spawns speculative threads.  Specifically, the penalty of 
pipeline flush and the cost of performing live-in spill 
instructions in the handler both negatively affect the 
performance of the non-speculative thread.   

Chaining Trigger  
Figure 5 shows the speed-up achieved from realistic SP 
using chaining triggers as the number of thread contexts is 
varied.  We assume that a thread spawning incurs a 
pipeline flush and an additional penalty of 16 cycles. 
Chaining triggers make effective use of available thread 
contexts when sufficient memory parallelism exists, 
resulting in impressive average performance gains of 51% 
with four threads and 76% with eight threads. 

Speedup from Speculative Precomputation Using 
Chaining Triggers 
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Figure 5: SP speed-up with  chaining trigger and 
realistic hardware  

Most noticeable is health.  Though it does not benefit 
significantly from basic triggers (as shown in Figure 4) the 
speed-up is boosted to 169%, when using chaining 
triggers.  

Figure 6 shows which level of the memory hierarchy is 
accessed by delinquent loads under three processor 
configurations: the baseline processor without use of SP, 
a processor with 8 thread contexts that uses basic triggers, 
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and a processor with 8 thread contexts that uses both 
basic and chaining triggers. 
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Figure 6: Reduction of cache misses in the memory 
hierarchy via SP-based prefetching 

In general, basic triggers provide high accuracy but fail to 
significantly impact the number of loads that require 
access to the main memory.  Even though basic triggers 
can be effective in targeting delinquent loads with 
relatively low latency, such as L1 misses, they are not 
likely to significantly help prefetch cache misses to main 
memory in a timely manner. 

Chaining triggers, however, can achieve higher coverage 
and prefetch data in a much more timely manner, even for 
data that require access to the main memory.  This is due 
to the chaining trigger’s ability to effectively target 
delinquent loads and perform prefetches significantly far 
ahead of the non-speculative thread.  

MEMORY LATENCY TOLERANCE: SP VS. 
OOO 
Before the advent of thread-based prefetch techniques like 
SP, out-of-order (OOO) execution [18][19][20] has been the 
primary microarchitecture technique to tolerate cache miss 
latency.  With the register renamer and reservation 
stations, an OOO processor is able to dynamically 
schedule the in-flight instructions, and execute those 
instructions independent of the missing loads, while the 
misses are being served.  

Fundamentally, both OOO and SP aim to hide memory 
latency by overlapping instruction execution with the 
service to outstanding cache misses.  OOO tries to overlap 
the outstanding cache-miss cycles by finding independent 
instructions after the missing load and executing them as 
early as possible, while SP prefetches for the delinquent 
loads far ahead of the non-speculative thread, thus 

overlapping future cache misses with the current 
execution of the non-speculative thread. 

While both SP and OOO can reduce the data cache miss 
penalty incurred on the program’s critical path, they differ 
in the targeted memory access instructions and the 
effectiveness for different levels of the cache hierarchy.  
On the one hand, while OOO can potentially hide the miss 
penalty for all load and store instructions to all layers of 
the cache hierarchy, it is most effective in tolerating L1 
miss penalties.  But for misses on L2 or L3, OOO may have 
difficulty in finding sufficient independent instructions to 
execute and overlap the much longer cache-miss latency.  
On the other hand, SP by design targets only a small set of 
delinquent loads that incur cache misses all the way to the 
memory.  

To quantify the difference between SP and OOO, using 
the research processor models in  Table 1, we evaluate two 
sets of benchmarks, one representing CPU-intensive 
workloads, including gap, gzip and parser, from 
SPEC2000Int, and the other representing memory-access-
intensive workloads, including equake from SPEC2000fp, 
mcf from SPEC2000int, and health from the Olden suite.  
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Figure 7: Characteristics of CPU-intensive vs. memory-
intensive workloads on an in-order machine 

Figure 7 depicts the cycle breakdown of these benchmarks 
on the in-order baseline processor.  A cycle is assigned to 
L1, L2, and L3 when the memory system is busy servicing 
the miss at the respective layer of cache hierarchy.  
Execute indicates that the processor issues an instruction 
for execution while the memory system is idle.  Finally, 
CacheExecute shows the overlapping of cache misses 
with instruction execution.  Clearly, the compute-intensive 
benchmarks spend most of their time in Execute while the 
memory-intensive benchmarks spend their time in waiting 
for cache misses. 
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Figure 8 shows speed-ups over the baseline model 
achieved by each of the two memory-tolerance techniques 
and by a combination of the two.  The OOO processor 
model has four additional pipe stages to account for the 
increased complexity.  Furthermore, SP assumes the use of 
chaining triggers and support for conditional 
precomputation. 

Performance improvement over in-order Itaniumtm processor model
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Figure 8: Speed-ups of in-order+SP, OOO, OOO+SP 
over in-order 

Figure 9 further shows the cycle breakdown normalized to 
the in-order execution.  This allows us to dissect where the 
speed-ups come from in terms of contributions leading to 
latency reduction. 
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Figure 9: Cycle breakdown of in-order+SP, OOO and 
OOO+SP relative to in-order (100%) 

The key findings can be summarized as follows. 

OOO vs. SP 
As shown in Figure 8, for memory-intensive workloads, 
the SP-enabled in-order SMT processor, albeit targeting 
only up to the top ten most delinquent loads that miss 
frequently in the L2 or L3 caches, can achieve slightly 

better speed-up than OOO.  As shown in Figure 9, the 
speed-up is due to the reduction of the miss penalty at 
different levels of the cache hierarchy.  For example, for 
health, OOO reduces the L3 cycle count from 62% in the 
baseline in-order to 28%, while SP achieves an even bigger 
reduction, down to 9%. 

However, for compute-intensive benchmarks, SP can 
actually degrade performance.  This is because for these 
benchmarks, almost all the delinquent loads that miss L1 
hit in L2 and leave little headroom for the SP threads to run 
ahead and produce timely prefetches.  In addition, 
spawning threads increase resource contention with the 
main thread and potentially can induce slowdowns in the 
main thread as well.  

However, OOO is able to tolerate cache misses at all levels 
of the cache hierarchy and tolerate long latency 
executions on functional units.  For instance, for parser, 
OOO can achieve a 10% reduction in the L1 cache stall 
cycles, and an even larger reduction of 12% in the 
execution cycles accounted by Execute.  Furthermore, 
CacheExecute, the portion accounting for overlapping 
between cache servicing and execution, also increases by 
9%. 

Combination of OOO and SP 
As shown in Figure 8, for compute-intensive benchmarks, 
SP does not bring about any speed-up beyond using OOO 
alone. 

For memory-intensive benchmarks, however, the 
effectiveness of combining SP with OOO depends on the 
benchmarks.  For health,  if used individually, the OOO 
and SP approaches can achieve about a 131% and 90% 
speed-up, respectively.  Together the two approaches 
achieve a near additive speed-up of 198%, demonstrating 
a potential complementary effect between the two 
approaches.  Data in Figure 9 further shed light on the 
cause behind this effect.  For health, SP alone can reduce 
L3 cycles to 9% without improving L1, and OOO alone 
can reduce L1 to 11% with a relatively smaller reduction in 
L3.  By attacking both L1 and L3 cache misses, SP and 
OOO used in combination can achieve an overall 
reduction for both L1 and L3.  This is the root of the 
complementary effect between OOO and SP, where each 
covers cache misses at relatively disjointed levels of the 
cache hierarchy.  Another interesting observation is that 
on the SP-enabled OOO processor, almost all instruction 
executions are overlapped with memory accesses, a 
desired effect of memory tolerance techniques. 

For mcf, comparing the SP-enabled in-order execution 
(a.k.a. in-order+SP) with OOO in Figure 9, a relatively 
smaller difference exists between cycle counts in each 
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corresponding category.  This is a clear indication of 
overlapping, whose root cause is  the fact that SP and 
OOO redundantly cover the delinquent loads in the loop 
body. 

A key to effectively utilizing SP on an OOO processor is to 
avoid overlapping the efforts of these two approaches. In 
particular, in typical memory-intensive loops, lengthy loop 
control that contains pointer chasing usually is on the 
critical path for the OOO processor.  Loop control consists 
of instructions that resolve loop-carried dependencies and 
compute the induction variables for the next loop iteration.  
Once such a computation in the loop control is completed, 
independent instructions across multiple iterations can be 
effectively executed to tolerate cache misses incurred in 
the loop body of a particular iteration.  A good 
combination of SP and OOO is to judiciously apply SP to 
perform prefetches for the critical loads in the loop control 
while letting OOO handle delinquent loads in the loop 
body.  Then complementary benefits can be achieved, as 
shown in the case of health. 

HARDWARE-ONLY SPECULATIVE 
PRECOMPUTATION VS. SOFTWARE-
ONLY SPECULATIVE PRECOMPUTATION 
The basic steps and algorithmic ingredients for 
Speculative Precomputation (SP) can be implemented in a 
gamut of techniques ranging from a hardware-only [12] 
approach to a software-only approach [14], in addition to 
the hybrid approaches originally studied in [11][13]. 

At one end of the spectrum, in close collaboration with 
Professor Dean Tullsen’s research team at the University 
of California at San Diego, we investigated the hardware-
only approach, called Dynamic Speculative 
Precomputation (DSP), a run-time technique that employs 
hardware mechanisms to identify a program’s delinquent 
loads and generate precomputation slices to prefetch 
them.  Like thread-based prefetching, the prefetch code is 
decoupled from the main program, allowing much more 
flexibility than traditional software prefetching.  Like 
hardware prefetching, DSP works on legacy code and 
does not sacrifice software compatibility with future 
architectures and can operate on dynamic information 
rather than static to initiate prefetching and to evaluate the 
effectiveness of a prefetch.  But unlike the software 
approaches, speculative threads on DSP are constructed, 
spawned, enhanced, and possibly removed by hardware. 
Both basic trigger- and chaining trigger-based p-slices can 
be efficiently constructed using a back-end structure off 
the critical path.  Even with minimal p-slice optimization, a 
speed-up of 14% can be achieved on a set of various 
memory-limited benchmarks.  More aggressive p-slice 
optimizations yield an average speed-up of 33%.  

Interestingly, even in a multiprogramming environment 
where multiple non-speculative threads execute, if SP is 
applied to the worst behaving loads in the machine, 
regardless of which thread they belong to, the overall 
throughput can actually be improved, even if only one of 
the threads benefits directly from SP.  In other words, 
though SP is originally intended to reduce the latency of a 
single-threaded application, it can also contribute to 
throughput improvement in a multiprogramming 
environment.  

At the other end of the spectrum, we developed a post-
pass compilation tool [14] that facilitates the automatic 
adaptation of existing single-threaded binaries for SSP on 
a multithreaded target processor without requiring any 
additional hardware mechanisms .  This tool has been 
implemented in Intel’s IPF production compiler 
infrastructure and is able to accomplish the following 
tasks:  

1) Analyze an existing single-thread binary to generate 
prefetch threads.  

2) Identify and embed triggering points in the original 
binary code. 

3) Produce a new binary that has the prefetch threads 
attached, which can be spawned at run time. 

The execution of the new binary spawns the prefetch 
threads, which are executed concurrently with the main 
thread.  Initial results indicate that the prefetching 
performed by the speculative threads can achieve 
significant speed-ups on an in-order processor, ranging 
from 16% to 104%, on pointer-intensive benchmarks. 
Furthermore, the speed-ups achieved using the automated 
binary-adaptation tool loses at most 18% of the speed-up 
relative to that produced by hand-generated SSP code on 
the same processor.  

To our knowledge, this is the first time that such an 
automated binary-adaptation tool has been implemented 
and shown to be effective in accomplishing the entire 
process of extracting dependent instructions leading to 
target operation, identifying proper spawning points, and 
managing inter-thread communication to ensure timely 
pre-execution leading to effective prefetches .  
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SPECULATIVE PRECOMPUTATION ON 
THE INTEL  XEON  PROCESSOR WITH 
HYPER-THREADING TECHNOLOGY 
With the arrival of silicon for the Intel Xeon processor 
with Hyper-Threading Technology, it is of great interest to 
try out our Speculative Precomputation (SP) ideas on a 
real physical computer, since, thus far, our techniques 
have been primarily developed on simulation-based 
research processor models.  Within just a few weeks of 
getting a system with a pre-production version of the Intel 
Xeon processor with Hyper-Threading Technology, we 
were able to come up with a crucial set of insights and 
innovative techniques to successfully apply software-
only SP (SSP) to a small set of pointer-intensive 
benchmarks via hand adaptation of the original code.  As 
shown in Table 3, significant performance boosts were 
achieved.  The range of speed-ups per benchmark is due 
to the use of different inputs. This result was first 
disclosed in the 2001 Microprocessor Forum [2] where the 
details of Intel’s Hyper-Threading Technology were 
originally introduced. 

Benchmark Description Speed-up 

Synthetic Graph traversal in large 
random graph simulating 
large database retrieval 

22% - 45% 

MST 

(Olden) 

Minimal Spanning Tree 
algorithm used for data 

clustering 

23% - 40% 

Health 

(Olden) 

Hierarchical database 
modeling health care 

system 

11% - 24% 

MCF 
(SPEC2000int) 

Integer programming 
algorithm used for bus 

scheduling 

7.08 % 

 

Table 3: Initial performance data: SP on a pre-production 
version of an Intel® Xeon™ processor with Hyper-

Threading Technology  

                                                                 
Intel and Pentium are registered trademarks of Intel 
Corporation or its subsidiaries in the United States and 
other countries. 
Xeon and VTune are trademarks of Intel Corporation or 
its subsidiaries in the United States and other countries. 

 

 

The silicon used in our experiment is the first generation 
implementation of Hyper-Threading Technology.  The 
chip provides two hardware thread contexts and runs 
under Microsoft’s Windows ∗ XP Operating System 
optimized for Hyper-Threading Technology.  The two 
hardware contexts are exposed to the user as two 
symmetric multiprocessing logical processors.  The on-
chip cache hierarchy has the same configuration as the 
commercially available Intel Pentium® 4 processor in the 
2001 timeframe.  The entire on-chip cache hierarchy is 
shared between two hardware threads.  There is no special 
hardware support for SP on this chip.  In the following 
subsections, we use a pseudo-code of the synthetic 
benchmark in Table 3 as an example to highlight the 
methodology of applying SSP. 

Figure 10 shows the pseudo-code for this 
microbenchmark.  Figure 11 and Figure 12 illustrate the 
pseudo-code for both the main thread and the SP prefetch 
worker thread. 

1 main()

  {

2 2   n = NodeArray[0]

3   while(n and remaining)

    {

4      work()
5      n->i = n->next->j + n->next->k + n->next->l
6      n = n->next

7      remaining--

    }

  }

Line 4: 49.47% of total execution time
Line 5: 49.46% of total execution time
Line 5: 99.95% of total L2 misses

 

Figure 10: Pseudo-code for single-thread code and the 
delinquent load profile 

Like the general SP tasks described earlier, our experiment 
consists of methodologies for identification of delinquent 
loads, construction of SP threads, embedding of SP 
triggers, and a mechanism enabling live-in state transfer 
between the main thread and the speculative thread.   

The identification of delinquent loads can be performed 
with the help of Intel’s VTune™ Performance Analyzer 6.0 
[16].  For instance, as shown in Figure 10, the pointer de-
referencing loads originated at Line 5 are identified as 
delinquent with regard to L2 misses, and they incur 
significant latency. 

                                                                 
∗Other brands may be claimed as the property of others. 
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Without explicit hardware support for thread spawning, 
for inter-thread communication and state transfer, we use 
standard Win32∗ thread APIs.  CreateThread()is used 
to create the SP thread at initialization, SetEvent() is 
used to embed a basic trigger inside the main thread, and 
WaitForSingleObject() is used in the SP prefetch 
thread to implement the event-driven activation inside the 
corresponding speculative thread.  In addition, we use 
global variables as a medium to explicitly implement inter-
thread state transfer, where the main thread is responsible 
for copying out the live-in values before signaling a 
trigger event (using SetEvent()).  The SP prefetch 
thread is responsible for copying in the live-in values prior 
to performing pointer-chasing prefetches.  

 

 1  main() 
  { 
2    CreateThread(T

) 3    WaitForSingleObject
() 

4   n = NodeArray[0
] 5   while(n and 

remaining)     { 
6 work() 
7 n->i = n->next->j + n->next->k + n-
>next->l 8n = n-
>next 9remaining-
- 10 Every stride 
times 11 global_n = 
n 12 global_r = 
remaining 13 SetEvent(
)     } 

  } 

Line 11-12: Live-in’s for 
cross thread transfer 
Line 13: Trigger to activate 
SP thread 

SP: Main Thread

 

Figure 11: SP main thread pseudo-code 

 

 1 T() 
  { 
2     Do Stride times 
3        n->i = n->next->j + n->next->k + n->next->l
4        n = n->next 
5        remaining-- 
6 
     SetEvent

 () 
7    while(n and remaining)
     { 
8        Do Stride times 
9           n->i = n->next->j + n->next->k + n->next->l
10         n = n->next
11         remaining--

12 
       

WaitForSingleObject () 
13       if (remaining < global_r)
14 remaining = global_r
15 n = global_n 
     } 
      } 

Line 9 : Responsible for Most 
effective  prefetch  due to run-ahead 
Line 13 : Detect run-behind, adjust 
by jumping ahead 

SP: Worker  Thread 

 

Figure 12: SP Prefetch worker thread–pseudo-code 

Furthermore, as shown in Figure 12, a simple yet extremely 
important mechanism is used to implement SP 
conditioning inside the SP prefetch worker thread.  This 
mechanism effectively ensures the SP prefetch worker 
thread performs the following two essential steps. 

                                                                 
∗ Other brands may be claimed as the property of others. 

1. Upon each activation, it always runs a set of “stride” 
iterations of pointer chasing independent from the 
main thread. 

It is important to note that the pointer chasing loop 
bounded by “stride” effectively realizes a chaining 
trigger mechanism, since the progress can be made 
across multiple iterations independent of the main 
thread’s progress. 

2. After completing each set of “stride” iterations, it 
always monitors the progress made by the main 
thread to determine whether it is behind.  

If running behind, the SP thread will try to catch up 
with the main thread by synchronizing the global 
pointer.  

In addition, conditioning code can be introduced to 
detect if the SP thread is running too far ahead.  The 
thread local variables “remaining” within both the 
main thread and the SP worker thread, are essentially 
trip counts recording their respective progress.  

It is interesting to note that the SP worker thread uses 
only a regular load instruction and achieves effective 
prefetch for the main thread without actually using any 
literal prefetch instruction.  

To do a fair comparison of performance, we use the Win32 
API routine timeGetTime() to measure and compare the 
absolute wall clock execution time of the original code and 
the SSP-enabled code, both built for maximum speed 
optimizations using the Intel IA-32 C/C++ compiler [35].  
For the example microbenchmark, Figure 13 summarizes the 
reason why SSP-enabled code runs faster, using profiling 
information from the VTune Performance Analyzer 6.0 [16].  
In short, the SP thread is able to prefetch successfully 
most cache misses for the identified delinquent loads.  
This optimization brings about a 22% – 45% speed-up for 
a range of input sizes.   

 Main Thread : 
• Line 7  corresponds to  Line 5  of  single thread code 
o Execution  time: 
19%  vs  49.46% in single-thread code 
o L2 miss: 
0.61%  vs  99.95% in single-thread code 
SP worker thread : 
• Line 9 : 
o Execution  time: 
26.21% 
o L2 miss: 
97.61% 

SP successful in shouldering most L2 cache misses 
 

Figure 13: Why SSP-enabled code runs faster 
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This successful experiment not only serves to corroborate 
insights and benefits of SP learned from our earlier 
studies , which were based on simulation, but also 
convincingly demonstrates an alternative way to 
effectively use multithreading processor resources, i.e., 
exploit a pseudo form of “thread-level parallelism” within 
the single-threaded application, and use multithreading 
hardware to reduce its latency.  

RELATED WORK 
Earlier ideas exploring speculative threads to achieve 
benefits of cache prefetches include Chappel et al., 
Simultaneous Subordinate Microthreading (SSMT) [27]; 
Sundaramoorthy et al., Slipstream Processors [28]; and 
Song et al., Assisted Execution [29]. 

Along with our research on SP [9][10][11][12][13][14], 
several thread-based prefetch paradigms have recently 
been proposed, including Zilles and Sohi’s Speculative 
Slices [21], Roth and Sohi’s Data Driven Multithreading 
[22], Luk’s Software Controlled Pre-Execution [23], 
Annavaram et al., Data Graph Precomputation [24], and 
Moshovos et al., Slice-Processors [25].  Most of these 
techniques are equivalent to the basic trigger SP 
mechanism.  

As pointed out by Roth et al. in [30], these thread-based 
prefetching approaches are in effect performing a logical 
form of access execute decoupling as originally 
envisioned by Smith in [31] and further studied in 
[32][33][34].  Instead of assuming a dedicated decoupled 
memory access engine, the access function is carried out 
by the prefetching SP threads.  Using the post-pass SSP 
tool, special “access” threads are attached to the original 
code.  “Access” and “Execute” threads are performed and 
overlapped (“pipelining”) on distinct hardware thread 
contexts in a general-purpose SMT or CMP processor.  

What distinguishes our research from other research in 
this area includes the discovery of the chaining trigger 
mechanism; in-depth analysis of trade-offs between 
different memory tolerance techniques, especially SP and 
OOO; a fully automated post-pass compilation tool for 
binary adaptation to enable SSP; and the physical 
experiment successfully demonstrating that using SSP on 
real hardware enabled with Hyper-Threading Technology 
can bring about significant speed-up for single-threaded 
benchmarks.   

CONCLUSION 
In this paper we examine key milestones from Intel’s 
research on Speculative Precomputation (SP), a technique 
that allows a multithreaded processor to use spare 
hardware contexts to spawn speculative threads to 

prefetch data well in advance of the main thread.  
Fundamentally, our research demonstrates Simultaneous 
Multithreading (SMT) processor resources can be used 
effectively to reduce the latency and enhance the 
performance of single-threaded applications.  

Instead of relying on the existence of a multitasking or 
multiprogramming workload environment in which many 
threads run simultaneously on SMT processors to achieve 
better throughput, SP is geared towards latency reduction 
by extracting assist threads out of the targeted single-
threaded application itself.  One insight about SP is that 
the potential performance gain is dictated by the reduction 
of cache miss latency (which is likely to get worse as clock 
frequency increases) and not by the increased instruction 
execution throughput in an SMT processor.  Executing a 
small number of instructions of an SP thread can result in 
latency reduction far greater than the latency required to 
execute the SP thread.  In traditional multithreading of an 
application, the potential speed-up is bounded by the 
number of instructions that can be executed in the 
additional thread context. 

As explained in [2], the arrival of Intel’s Hyper-Threading 
Technology on the Intel Xeon processor marks the 
beginning of a new era: the transition from instruction-
level parallelism (ILP) to thread-level parallelism (TLP).  
Multithreading techniques can help both power and 
complexity efficiency in future microarchitecture designs.  
It is of great interest to us to continue to look for alternate 
(and potentially better) use of multithreading resources.  
To summarize: Speculative Precomputation (SP) in effect 
leverages resources intended for thread-level parallelism 
(TLP) to achieve greater memory-level parallelism (MLP).  
This in turn  significantly improves the effective 
instruction-level parallelism (ILP) of traditional single-
threaded applications.  
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ABSTRACT 
In the never-ending quest for higher performance, CPUs 
become faster and faster.  Processor resources, however, 
are generally underutilized by many applications.  Intel’s 
Hyper-Threading Technology is developed to resolve this 
issue.  This new technology allows a single processor to 
manage data as if it were two processors by executing data 
instructions from different threads in parallel rather than 
serially.  Processors enabled with Hyper-Threading 
Technology can greatly imp rove the performance of 
applications with a high degree of parallelism.  However, 
the potential gain is only obtained if an application is 
multithreaded, by either manual, automatic, or semi-
automatic parallelization techniques.  This paper presents 
the compiler techniques of OpenMP pragma- and 
directive-guided parallelization developed for the high-
performance Intel C++/Fortran compiler.  We also present 
a performance evaluation of a set of benchmarks and 
applications.     

INTRODUCTION 

Intel processors have a rich set of performance-enabling 
features such as the Streaming-SIMD-Extensions (SSE and 
SSE2) in the IA-32 architecture [11], large register files, 
predication, and control and data speculation in the 
Itanium-based architecture [8]. These features allow the 
compiler to exploit parallelism at various levels.  Intel’s 

                                                                 
 Intel is a registered trademark of Intel Corporation or its 
subsidiaries in the United States and other countries.  

newest Hyper-Threading Technology [14], a simultaneous 
multithreading design, allows one physical processor to 
manage data as if it were two logical processors by 
handling data instructions in parallel rather than serially.  
The Hyper-Threading Technology-enabled processors 
can significantly increase the performance of application 
programs with a high degree of parallelism. These 
potential performance gains are only obtained, however, if 
an application is efficiently multithreaded, either manually 
or by automatic or semi-automatic parallelization 
techniques.  The Intel C++/Fortran high-performance 
compiler supports several such techniques.  One of those 
techniques, automatic loop parallelization, was presented 
in [3].  In addition to automatic loop level parallelization, 
Intel compilers support OpenMP directive- and pragma-
guided parallelization as well, which significantly increase 
the domain of various applications amenable to effective 
parallelism.  For example, users can use OpenMP parallel 
sections to develop an application where section-1 calls 
an integer-intensive routine and where section-2 calls a 
floating-point intensive routine.  Higher performance is 
obtained by scheduling section-1 and section-2 onto two 
different logical processors that share the same physical 
processor to fully utilize processor resources based on the 
Hyper-Threading Technology. The OpenMP standard API 
[12, 13] supports a multi-platform, shared-memory, parallel 
programming paradigm in C++/C/Fortran95 on all Intel 
architectures and popular operating systems such as 
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Windows NT∗, Linux*, and Unix*. OpenMP directives and 
pragmas have emerged as the de facto standard of 
expressing parallelism in various applications as they 
substantially simplify the notoriously complex task of 
writing multithreaded programs.  

The Intel compilers support the OpenMP pragmas and 
directives in the languages C++/C/Fortran95, on 
Windows* and Linux platforms and on IA-32 and IPF 
architectures. The Intel OpenMP implementation in the 
compiler strives to (i) generate multithreaded code which 
gains a speed-up due to Hyper-Threading Technology 
over optimized uniprocessor code, (ii) integrate 
parallelization tightly with advanced scalar and loop 
optimizations such as intra-register vectorization [4] and 
memory optimizations [1, 10] to achieve better cache 
locality and efficiently exploit multi-level parallelism, and 
(iii) minimize the overhead of data-sharing among threads. 

This paper focuses on the design and implementation of 
OpenMP pragma- and directive-guided parallelization in 
the Intel® C++/Fortran compilers.  We also present 
performance results of a number of applications (Micro-
benchmark, Image processing library functions, OpenMP 
benchmarks from [2]) that exhibit performance gains due to 
Hyper-Threading Technology when such programs are 
multithreaded through the OpenMP directives or pragmas 
and compiled with Intel C++/Fortran compilers. 

The remainder of this paper is organized as follows.  We 
first give a high-level overview of the architecture of the 
Intel C++/Fortran compiler with OpenMP support.  We 
then present the Multi-Entry Threading (MET) technique 
that is the key technique developed for multithreaded 
code generation in the Intel compilers.  We go on to 
describe the local static data-sharing and privatization 
methods for minimizing overhead of data sharing among 
threads.  We briefly explain how OpenMP parallelization 
interacts with advanced optimizations such as constant 
propagation, interprocedural optimization, and partial 
redundancy elimination.  We also briefly describe how 
multi-level parallelism is exploited by combining 
parallelization with intra-register vectorization to take 
advantage of the Intel Pentium 4 processor SIMD-
Streaming-Extensions (SSE and SSE2).  Finally, we show 
the performance results of several OpenMP benchmarks 
and applications when such programs are multithreaded 
by the Intel OpenMP C++/Fortran compilers.  

                                                                 
∗Other brands and names may be claimed as the property 
of others. 

 Pentium is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries.  

HIGH-LEVEL COMPILER OVERVIEW 

A high-level overview of the Intel® OpenMP C++/Fortran 
compiler is shown in Figure 1.  The compiler incorporates 
many well-known and advanced optimization techniques 
that are designed and extended to fully leverage Intel 
processor features for higher performance.  The Intel 
compiler has a common intermediate representation for 
C++, C and Fortran95 languages, so that the OpenMP 
directive- or pragma-guided parallelization and a majority 
of optimization techniques are applicable through a single 
high-level code transformation, irrespective of the source 
language. Throughout the rest of this paper, we refer to 
Intel OpenMP C++ and Fortran compilers for IA-32 and 
Itanium processor family architectures collectively as 
“the Intel compiler.” 

C++/C Front-End Fortran 95 Front-End

OpenMP/Automatic
Parallelization and Vectorization

Code Restructuring and IPO

HLO and Scalar Optimizations

Lower Level Code Generation
and Optimizations

IA-32 (NT & Linux) IA-64 (NT & Linux)

 

Figure 1: Compiler architecture overview 

The code transformations and optimizations in the Intel 
compiler can be classified into (i) code restructuring and 
interprocedural optimizations (IPO); (ii) OpenMP-based 
and automatic parallelization and vectorization; (iii) high-
level optimizations (HLO) and scalar optimizations 
including memory optimizations such as loop control and 
data transformations, partial redundancy elimination (PRE) 
[7], and partial dead store elimination (PDSE); and (iv) low-
level machine code generation and optimizations such as 
register allocation and instruction scheduling.  
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Parallelization [3, 4, 10] guided by OpenMP directives or 
pragmas or derived by automatic data dependency and 
control-flow analysis is a high-level code transformation 
that exploits both medium- and coarse-grained parallelism 
for Intel processor and multiprocessor systems enabled 
with Hyper-Threading Technology to achieve better 
performance and higher throughput.  The Intel compiler 
has a common intermediate code representation (called 
IL0) into which C++/C and Fortran95 programs are 
translated by the language front-ends.  Many optimization 
phases in the compiler work on the IL0 representation.  
The IL0 has been extended to express the OpenMP 
directives and pragmas. Implementing the OpenMP phase 
at the IL0 level allows the same implementation to be used 
across languages (C++/C, Fortran95) and architectures 
(IA-32 and IPF). The Intel compiler-generated code has 
references to a high-level multithreaded library API; this  
allows the compiler OpenMP transformation phase to be 
independent of the underlying operating systems. This 
also facilitates our “one-for-all” design philosophy.  

A primary goal of the Intel compiler is to have OpenMP 
parallelization tightly integrated with advanced compiler 
optimizations for generating efficient multithreaded code 
that gains a speed-up over optimized uniprocessor code. 
Therefore, an effective optimization phase ordering has 
been designed in the Intel compiler to make sure that all 
optimizations, such as IPO inlining, code restructuring; 
Igoto optimizations, and constant propagation, which are 
effectively enabled before the OpenMP parallelization, 
preserve legal OpenMP program semantics and necessary 
information for parallelization.  It als o ensures that all 
optimizations after the OpenMP parallelization, such as 
automatic vectorization, loop transformation, PRE, and 
PDSE, can effectively kick in to achieve a better cache 
locality and to minimize the number of computations and 
the number of references to memory.  For example, given a 
double-nested OpenMP parallel loop, the parallelization 
methods are able to generate multithreaded code for the 
outer loop, while maintaining the loop structure, memory 
reference behavior, and symbol table information for the 
innermost loop.  This enables subsequent intra-register 
vectorization of the innermost loop to fully leverage the 
Hyper-Threading Technology and SIMD Streaming 
Extension features of Intel processors.  Exploiting multi-
level parallelism is described later in this paper. 

OpenMP parallelization in the Intel compiler includes (i) a 
pre-pass that transforms OpenMP parallel sections and 
worksharing sections into a parallel loop and worksharing 
loop, respectively; (ii) a work-region graph builder that 
builds a region hierarchical graph based on the OpenMP-
aware control-flow graph; (iii) a loop analysis phase for 
building the loop structure that consists of loop control 
variable, loop lower-bound, loop upper-bound, loop pre-

header, loop header, and control expression; (iv) a variable 
classification phase that performs analysis of shared and 
private variables; (v) a multithreaded code generator that 
generates multithreaded code at compiler intermediate 
code level based on Guide, a multithreaded  run-time 
library API that is provided by the Intel KAI Software 
Laboratory (KSL); (vi) a privatizer that performs 
privatization to handle firstprivate, private, lastprivate, and 
reduction variables; and (vii) a post-pass that generates 
code to cache in thread local storage for handling 
threadprivate variables.  There are a number of compiler 
techniques developed for parallelization in the Intel 
compiler.  The following sections describe some of these 
techniques in detail.  

MULTI-ENTRY THREADING 

A well-known conventional technology, which was named 
outlining [5, 6], has been used by existing parallelizing 
compilers for generating multithreaded codes.  The basic 
idea of outlining is to generate a separate subroutine for a 
parallel region or loop.  All threads in a team call this 
routine with necessary data environment.  In contrast to 
the outlining technology, we developed and implemented 
a new compiler technology called Multi-Entry Threading 
(MET).  The rationale behind MET is that the compiler 
does not create a separate compilation unit (or routine) for 
a parallel region or loop. Instead, the compiler generates a 
threaded entry and a threaded return for a given parallel 
region and loop [3].  Based on this idea, we introduced 
three new graph nodes in the Region-based graph, built 
on top of the control-flow graph.  These graph nodes are 
T-entry (threaded entry), T-ret (threaded return), and T-
region (threaded code region).  A detailed  description of 
these graph nodes is given as follows: 

• T-entry indicates the entry point of a multithreaded 
code region and has a list of firstprivate, lastprivate, 
shared and/or reduction variables for communication 
among the threads in a team. 

• T-ret indicates the exit point of a multithreaded code 
region and guides the lower-level target machine code 
generator to adjust stack offset properly and give the 
control to the caller inside the runtime library.   T-
region represents a multithreaded code region that is 
attached inside the original user routine.  

The main concept of the MET compilation model is to 
keep all newly generated multithreaded codes, which are 
captured by T-entry, T-region and T-ret nodes, intact or 
inlined within the same user-defined routine without 
splitting them into independent subroutines.  This method 
provides later compiler optimizations with more 
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opportunities for performing optimization.  Example (E1-I) 
is an OpenMP program sample. 

Given the parallel program with OpenMP pragmas above, 
its region-based hierarchical graph is shown in Figure 2.  
As we see, the first T-region represents the OpenMP 
parallel sections and the second T-region represents the 
OpenMP parallel loop in the routine ‘parfoo.’  Each T-
region contains a T-entry node and a T-ret node.  With 
OpenMP data attribute clauses, the variables ‘w’ and ‘y’ 
are marked as shared and the arrays ‘x’ and ‘z’ are marked 
as shared as well in the parallel sections clause.  For the 
parallel loop, the  loop control variable ‘m’ is marked as 
private, and the variables ‘y’ and ‘w’ and the array ‘z’ are 
marked as shared. The guided scheduling type is 
specified for the parallel loop. The generated pseudo-
multithreaded code is shown below in (E1-II). As 
mentioned  previously,  the Intel KSL Guide runtime library 
API has been adopted for thread creation, synchronization 
and scheduling.  

  

 

R-entry 

R-return 

T-region 

T-region 

T-entry/T-ret 

 

Figure 2: Region-based hierarchical graph 

(E1-I)  An OpenMP Parallel Sections and Loop Example 
void  parfoo( ) 
{   int  m, y, x[5000]; 
     float   w, z[3000]; 
#pragma omp parallel sections shared(w, z, y, x) 
    { 
           w =  floatpoint_foo(z, 3000);   
      #pragma omp section 
           y =  myinteger_goo(x, 5000) ;       
    } 
#pragma omp parallel for private(m) shared(y, z, w) 
schedule(guided) 
    for (m=0; m<3000; m++) { 
          z[m] = z[m] * w * y; 
    } 
} 

Essentially, the multithreaded code generator inserts the 
thread invocation call __kmpc_fork_call(…) with T-entry 
point and data environment (source line information loc, 
thread number tid, etc.) for each parallel loop, parallel 
sections or parallel region, and transforms a serial loop, 
sections, or region to a multithreaded loop, sections, or 
region, respectively.  In this example, the pre-pass first 
converts a parallel section to a parallel loop. Then, the 
multithreaded code generator localizes loop lower-bound 
and upper-bound, privatizes the section id variable, and 
generates runtime initialization and synchronization code 
such as the call __kmpc_static_init(…) and the call 
__kmpc_static_fini(…) for the T-region marked with 
[T_entry, T-ret] nodes.  For the parallel loop in the routine 
“parfoo” with the scheduling type guided, the OpenMP 
parallelization involves (i) generating a runtime dispatch 
and initialization routine (__kmpc_dispatch_init) call to 
pass necessary information to the runtime system; (ii) 
generating an enclosing while loop to dispatch loop-
chunk  at runtime through the __kmpc_dispatch_next 
routine in the library; (iii) localizing the loop lower-bound, 
upper-bound, and privatizing the loop control variable ‘m.’  

 (E1-II) Pesudo Multithreaded Code after Parallelization 
R-entry void  parfoo( ) 
{    int m, y, x[5000]; 
      float  w, z[3000];        
     __kmpc_fork_call(loc, 4, T-entry(_parfoo_psection_0), 
&w,z,x,&y) 
     goto L1:  
     T -entry _parfoo_psection_0(loc, tid, *w, z[], *y, x[]) { 
         lower_pid = 0; 
         upper_pid = 1; 
        __kmpc_static_init(loc, tid, STATIC, &lower_pid, 
&upper_pid...);   
        for (pid=lower_pid,  pid<=upper_pid; pid++)  { 
              if (pid == 0) {  
                  *w = floatpoint_foo(z, 3000); 
              } else if (pid == 1) { 
                  *y = myinteger_goo(x, 5000); 
              } 
        } 
       __kmpc_static_fini(loc, tid); 
       T -ret; 
    } 
L1: 
    __kmpc_fork_call(loc, 3, T-entry(_parfoo_ploop_1), &w, z, 
&y); 
    goto L2: 
    T -entry _parfoo_ploop_1(loc, tid, *w, z[], *y) { 
        lower = 0; 
        upper = 3000; 
        __kmpc_dispatch_init(loc, tid, GUIDED, &lower, &upper, 
…); 
        while (__kmpc_dispatch_next(loc, tid, &lower, &upper, …)) 
{ 
             for (prv_m=lower; prv<upper; prv_m++)  { 
                 z[prv_m] = z[prv_m] * (*w) * (*y); 
            } 



Intel Technology Journal Q1, 2002. Vol. 6 Issue 1. 

Intel  OpenMP C++/Fortran Compiler for Hyper-Threading Technology 40
  

        } 
        T -ret; 
    } 
 L2: 
    R-return; 
} 

There are four well-defined properties of the T-region 
graph model of the Multi-Entry Threading technique:   

1. T-region is a sub-graph on top of the pragma-aware 
control-flow graph, which is identified by the T-entry 
and T-ret node for a parallel region, sections, or loop. 

2. T-region can be nested to present the hierarchy of 
nested parallelism, e.g., T-region(k) = [T-entry(m), T-
region(m), T-ret(m)], where the ‘k’ and ‘m’ are the 
unique id of a T-region inside this routine.  

3. T-region shares the same local memory locations of all 
local static variables of R-entry (Routine entry). In 
other words, the local static variables are visible by 
every T-region associated with this routine.  

4. Multiple T-regions are permitted to represent multiple 
parallel constructs at the same nesting level.   

With the T-region graph representation of the Multi-Entry 
Threading technique, the OpenMP parallelizer and low-
level code generators do not generate a separate routine 
(or compilation unit) for a parallel region or parallel loop.  
All newly generated multithreaded code blocks (T-
regions) for parallel loops are still kept inlined within the 
same compilation unit. The code transformations are done 
in a natural way.  

From a compiler engineering point of view, the Multi-Entry 
Threading technique greatly reduces the complexity of 
generating separate routines in the Intel compiler.  In 
addition, this technique minimizes the impact of OpenMP 
parallelization on well supported optimizations in the Intel 
compiler such as constant propagation, vectorization, 
PRE, PDSE, scalar replacement, loop transformation, 
interprocedural optimization, and profile-feedback guided 
optimization (PGO).  This meets one of the design goals, 
namely, to tightly incorporate parallelization with all well-
known and advanced compiler optimizations in the Intel 
compiler.  

DATA-SHARING AND PRIVATIZATION   

When a routine calls another routine, the communication 
between them is through global variables and through 
arguments of the called routine (or callee).  This argument-
passing across the routine boundary introduces some 
overhead.  The more arguments are passed, the more 
overhead is introduced.  If the call-by-reference method is 
used for associating actual and dummy arguments, the 

caller passes to the callee the storage address of the actual 
argument, and the reference to the dummy argument in the 
callee becomes an indirect reference.  Many optimizations 
could become disabled by this memory de-referencing.  
Given the Guide run-time library API, with the outlining 
technology, the parallelizer needs to create a separate 
routine for a parallel construct, which means the address 
of each local static variable has to be passed to the 
outlined routine, since the local static variables in a 
routine are not visible to other routines.  Thus, there are 
three drawbacks with the outlining technique [5, 6]: (i) it 
adds extra overhead due to argument-passing to outlined 
routine for sharing local static variables among threads; 
(ii) it causes less efficient memory access due to memory 
de-referencing in the outlined routine; and (iii) it may 
disable some optimizations such as Intra-Register 
Vectorization and Partial Redundancy Elimination (PRE).   

In our implementation of OpenMP parallelization, we are 
able to overcome these drawbacks based on our Multi-
Entry Threading technique.  The advances of our 
technique are: (i) the extra overhead of sharing local static 
variables is reduced to zero; (ii) no extra memory de-
referencing is introduced for accessing local static shared 
variables; and (iii) later scalar optimizations on local static 
variables are preserved.  The following (E2-I) example has 
local static variables ‘w,’ ‘z,’ ‘y,’ and ‘x’ that are marked as 
shared.   

(E2-I) An OpenMP Parallel Sections Example 
void  staticparfoo( ) 
{   int  m;  
     static int     y, x[5000]; 
     static float  w, z[5000]; 
#pragma omp parallel sections shared(w, z, y, x) 
    { 
           w =  floatpoint_foo(z, 5000);   
      #pragma omp section 
           y =  myinteger_goo(x, 5000) ;       
    } 
    return; 
} 

In (E2-II), we show the C-like pseudo-multithreaded code 
generated by the parallelizer.  As we see, there are no extra 
arguments on the T-entry node for sharing local static 
variable ‘w,’ ‘z,’ ‘y,’ and ‘x,’ and there is no pointer de-
referencing inside the T-region for sharing those local 
static variables among all threads in the team. 

(E2-II) Pesudo Multithreaded Code after Parallelization 
R-entry void  staticfoo( ) 
{    int m;  
      static int     y, x[5000]; 
      static float  w, z[5000];      
     __kmpc_fork_call(loc, 0, T -entry(_staticfoo_psection_0)) 
     goto L1:  
     T -entry _parfoo_psection_0(loc, tid) { 
         lower_pid = 0; upper_pid = 1; 
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        __kmpc_static_init(loc, tid, STATIC, &lower_pid, 
&upper_pid...);   
        for (pid=lower_pid,  pid<=upper_pid; pid++)  { 
              if (pid == 0) {  
                  w = floatpoint_foo(z, 5000); 
              } else if (pid == 1) { 
                  y = myinteger_goo(x, 5000); 
              } 
        } 
       __kmpc_static_fini(loc, tid); 
       T -ret; 
    } 
L1:     R-return; 
} 

It is well known that the privatization technique can break 
cycles in a dependence graph and eliminate loop-carried 
dependencies, so parallelization can be enabled 
effectively.  Actually, privatization removes memory de-
references as well.  There are three privatization clauses: 
firstprivate, lastprivate and private, defined in the 
OpenMP Fortran and C++ standard.  Given an OpenMP 
Fortran example in (E3-I), we see that variables ‘x’ and ‘y’ 
are marked as firstprivate.  The intermediate code before 
parallelization contains memory de-references *(F32 *)x 
and *(F32 *)y (where ‘F32’ indicates 32-bit floating-point 
data type) for accessing the variables ‘x’ and ‘y’ in terms 
of the call-by-reference argument-passing method used in 
the Fortran language, as shown in (E3-II). 

 (E3-I) An OpenMP Fortran Example 
      subroutine privatefoo(x, y)   
      real x, y  
      real, save :: a(100) 
!$omp parallel do firstprivate(x,y) shared(a) 
      do k=1, 100 
        a(k) = x + y*k 
      end do 
      return 
      end 
 
(E3-II) Pesudo Intermediate Code before Parallelization 
R-entry void  privatefoo(x, y)   
{   … … … 
     DIR_OMP_PARALLEL_LOOP FIRSTPRIVATE(x, y) 
SHARED(a) 
     k = 1; 
  L3: 
     a[k] = *(F32*)x + *(F32*)y * k; 
     k = k + 1; 
     if (k <= 100 )  { goto L3;  } 
     DIR_OMP_END_PARALLEL_LOOP 
     R-return 
} 
(E3-III) Pesudo Multithreaded Code after  Parallelization  
R-entry void  privatefoo(x, y) 
{    … … … 
     __kmpc_fork_call(loc, 2, T -entry(_privatefoo_ploop_0), x, y) 
     goto L1:  
     T -entry _privatefoo_ploop_0(loc, tid, *x, *y) { 

         lower = 0;   
         upper = 99; 
         prv_x = *(F32 *)x; 
         prv_y = *(F32 *)y; 
        __kmpc_static_init(loc, tid, STATIC, &lower, &upper, ...); 
         prv_k = lower;   
         L4:  
               a[prv_k] = prv_x + prv_y * prv_k; 
               prv_k = prv_k + 1 
               if (prv_k <= upper) { goto L4: } 
       __kmpc_static_fini(loc, tid); 
       T -ret; 
    } 
L1:     R-return; 
} 

As we can see from (E3-III), privatization has eliminated 
the memory de-references *x and *y inside the parallel 
loop through the pre-load and pre-copy into the local 
stack variables ‘prv_x’ and ‘prv_y’ created by the 
privatizer.  Obviously, this transformation improves the 
performance by lifting memory de-references outside the 
loop.    

ADVANCED OPTIMIZATIONS 

In order to fully leverage advanced scalar optimizations 
before and after the OpenMP parallelization phase, an 
optimization phase ordering is carefully designed and 
implemented in the Intel compiler.  In this section, we 
discuss our design relative to advanced optimizations 
such as Inter-Procedural Optimization (IPO) [9] and Partial 
Redundancy Elimination (PRE).  

The IPO phase is enabled before OpenMP parallelization 
at the higher optimization level, so that the Profile-
feedback Guided Optimization (PGO), inlining, partial 
inlining, and forward-substitution can use and benefit 
from all heuristic and profiling information without any 
disturbance from multithreaded code generated by the 
OpenMP parallelizer.  In this way, the parallelization is  
done based on the optimized code.  See example E4-I. 

(E4-I) An OpenMP Example for Using IPO  

float w; 
void floatpoint_add(float z[ ], int n) 
{  int k; 
#pragma omp for reduction(+: w) private(k) 
    for (k =0; k < n; k++) { 
         w = w + z[k]; 
   } 
} 
  
void  inlinefoo( ) 
{   static float  w, z[5000]; 
#pragma omp parallel shared(w, z) 
    {   
         floatpoint_add(z, 5000);   
    } 
} 
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(E4-II) Pesudo intermediate code after IPO   
float  w; 
R-entry void  inlinefoo( ) 
{  static float  w, z[5000]; 
#pragma omp parallel shared(w, z) 
    {    int k; 
#pragma omp for reduction(+: w) private(k) 
          for (k =0; k < 5000; k++) { 
              w = w + z[k]; 
         } 
    } 
    R-return; 
} 
 

With IPO inlining and forward-substitution optimization, 
the subroutine ‘floatpoint_add’ is inlined to the 
subroutine ‘inlinefoo,’ the variable ‘n’ is substituted with 
the constant 5000.  If the IPO is enabled after OpenMP 
parallelization, then inlining and forward-substitution may 
not be able to kick in due to extensive code transformation 
within the ‘floatpoint_add’ and ‘inlinefoo’ by the  
parallelization phase, and due to the changes of the 
profiling information.  

The PRE phase was implemented based on the algorithm 
in [7] and runs after OpenMP parallelization. Given the 
example E5-I, the expression ‘x+y*k’ is redundant and 
only needs to be evaluated once for each iteration, and 
‘x*y’ can be lifted outside the parallel loop.  

(E5-I) An OpenMP for Using PRE  
int b[200], c[200]; 
void prefoo(int x, int y)  /* x=1 and y=2  in caller */ 
{ int a[100], k;     
 
#pragma omp parallel for private(k) shared(a, b, c, x,  y) 
    for (k = 0; k < 100; k++) { 
         a[k] = b[x + y*k] + c[x+y k] + x*y;  
   } 
   return; 
}  

(E5-II) Pesudo Multithreaded Code from Parallelization and PRE  
R-entry void prefoo(int x, int y)   
{    … … … 
     __kmpc_fork_call(loc, 2, T -entry(_prefoo_ploop_0), &x, &y) 
     goto L1:  
     T -entry _privatefoo_ploop_0(loc, tid, *x, *y) { 
         lower = 0;  
         upper = 99; 
         prv_x = *(SI32 *)x; 
         prv_y = *(SI32 *)y; 
         t0 = prv_x * prv_y; 
        __kmpc_static_init(loc, tid, STATIC, &lower, &upper, ...);   
         L3:  
               t1 = prv_x + prv_y * prv_k; 
               a[prv_k] = b[t1] + c[t1] + t0; 
               prv_k = prv_k + 1 
               if (prv_k <= upper) {  
                    goto L3:  

               } 
       __kmpc_static_fini(loc, tid); 
       T -ret; 
    } 
L1: 
    R-return; 
} 
 

Redundancy is removed through saving the value of the 
redundant expression in a temporary variable and later 
reusing that value instead of reevaluating the expression. 
However, we must be careful with moving code around 
parallel constructs, since it could generate an unsafe 
insertion of code for a lifted common expression without 
knowing the parallel region or parallel loop boundary. Our 
solution is to apply PRE within each T-region after 
OpenMP parallelization.  This guarantees that the correct 
code is generated.  In the code example shown above, we 
see that ‘t0’ and ‘t1’ are created as register temporary 
variables.  The ‘t0’ is lifted outside the parallel loop, but it 
is inserted within the T-region and only evaluated once 
for each thread.  The ‘t1’ is only evaluated once for each 
loop iteration.  In our experience, there is almost no 
difference between this and applying PRE optimization to 
sequential code.  There are many more design and 
implementation details related to incorporating advanced 
optimizations with parallelization.  In the next section, we 
discuss how the OpenMP parallelization incorporates 
intra-register vectorization to effectively exploit multi-level 
parallelism. 

MULTI-LEVEL PARALLELISM 

The SIMD extensions to the Intel Architecture provide 
an alternative way to utilize data parallelism in multi-media 
and scientific applications.  These extensions let multiple 
functional units operate simultaneously on packed data 
elements, i.e., relatively short vectors that reside in 
memory or registers.  The Pentium 4 processor features 
the streaming-SIMD-extensions (SSE and SSE2) that 
support floating-point operations on 4 packed single-
precision and 2 packed double-precision floating-point 
numbers, as well as integer operations on 16 packed bytes, 
8 packed words and 4 packed dwords.  The Intel compiler 
supports the automatic conversion of serial loops into 
SIMD form, a transformation that we refer to as intra-
register vectorization [3,4].  

                                                                 
 Intel is a registered trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
 Pentium  is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
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Combining intra-register vectorization with parallelization 
for hyper- or multithreading enables the exploitation of 
multi-level parallelism, i.e., using the different forms of 
parallelism that are present in a code fragment to obtain 
high performance.  Take, for instance, the code for matrix-
vector multiplication shown in example (E6-I). 

(E6-I) An OpenMP-Vector Loop Example 
double a[N][N], x[N], y[N]; 
… 
#pragma omp parallel for private(k,j) 
 for (k = 0; k < N; k++) { /* parallel loop */  
    double d = 0.0; 
    for (j = 0; j < N; j++) { /* vector loop */ 
         d += a[k][j] * y[j]; 
    } 
    x[k] = d; 
 } 
…               
 
 (E6-II) Pseudo code after Parallelization and Vectorization    
     __kmpc_fork_call(loc, 0, T -entry(_ompvec_ploop_0),  … ) 
     goto L1:  
     T -entry _ompvec_ploop_0(loc, tid) { 
         lower = 0;  
         upper = N; 
        __kmpc_static_init(loc, tid, STATIC, &lower, &upper, ...); 
         prv_k = lower;   
L2:  
         xorpd    xmm0, xmm0              ; reset accumulator 
L3:                                      
         movapd   xmm1, _a[ecx+edx]  ; load 2 DP  from a 
         mulpd     xmm1, _y[edx]          ; mult 2 DP  from y 
         addpd     xmm0, xmm1             ; add  2 DP  into accumulator 
         add         edx, 16                       ; 
         cmp        edx, eax                      ;   
         jl              L3                             ; looping logic 
 
         movapd    xmm1, xmm0           ; 
         unpckhpd xmm1, xmm1           ; 
         addsd       xmm0, xmm1           ; compute final sum 
 
          store result in  x[prv_k] 
 
          prv_k = prv_k + 1 
          if (prv_k <= upper) goto L2; 
 
         __kmpc_static_fini(loc, tid); 
         T -ret; 
     } 
L1:  … …  

In this example, parallelism appears at multiple levels. The 
iterations of the outermost k-loop may execute 
independently, as has been made explicit with an OpenMP 
pragma.  The reduction performed in the innermost j-loop 
provides yet another level of parallelism.  This loop can be 
implemented by accumulating partial sums in SIMD style, 
followed by code that constructs the final sum.  In (E6-II), 
we illustrate how these two levels of parallelism can be 

exploited (where we assume that all access patterns in the 
vector loop are aligned at a 16-byte boundary).  

If the alignment of memory references cannot be 
determined at compile-time, the Intel compiler has at its 
disposal several alignment optimizations (such as run-time 
loop peeling) to avoid performance penalties that are 
usually associated with unaligned memory accesses. 
Dynamic data dependence testing is used to allow the 
compiler to proceed with vectorization in situations where 
analysis has failed to prove independence statically.  
These advanced techniques (and others) have been 
discussed in detail in previous work [4]. 

PERFORMANCE EVALUATION   

The performance study of SPEC OpenMP benchmarks is 
carried out on a pre-production 1-CPU Hyper-Threading 
Technology-enabled Intel Xeon processor system 
running at 1.7GHz, with 512M memory, an 8K L1-Cache, 
and a 256K L2-Cache.  All benchmarks and applications 
studied in this paper are compiled by the Intel OpenMP 
C++/Fortran compiler.  For the performance study, we 
chose a subset of SPEC OMPM2001 benchmarks to 
demonstrate the performance effect of Hyper-Threading 
Technology.  The SPEC OMPM2001 is a benchmark suite 
that consists of a set of  scientific applications.  Those 
SPEC OpenMP benchmarks target small and medium scale 
(2- to 16-way) SMP multiprocessor systems and the 
memory footprint reaches 1.6GB for several very large 
application programs.  

The performance scaling is derived from serial execution 
(SEQ) with Hyper-Threading Technology disabled, and 
multithreaded execution under one thread and two threads 
with Hyper-Threading Technology disabled and enabled. 
In Figure 3, we show the normalized speed-up of the 
chosen OpenMP benchmarks compared to the serial 
execution with Hyper-Threading Technology disabled. 
The OMP1 and OMP2 denote the multithreaded code 
generated by the Intel OpenMP C++/Fortran compiler 
executing with one thread and two threads, respectively.  

As we see, the multithreaded code generated by the Intel 
compiler on a Hyper-Threading Technology-enabled Intel 
Xeon processor 1-CPU system achieved a performance 
improvement of 4% to 34% (OMP2 w/ HT).  The 
320.equake obtained a 14% performance gain from scalar 
optimizations enabled by OpenMP (OMP1 w/o HT).  

                                                                 
 Intel is a registered trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
 Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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Another 20% performance improvement was achieved by 
the second thread running on the second logical 
processor, resulting in a 34% performance gain overall 
(OMP2 w/ HT).  The multithreaded code of the 330.art 
does not show OpenMP overhead, and obtained an 8% 
speed-up.  A 23% slowdown was observed from the 
332.ammp due to the overhead of thread creation, forking, 
synchronization, scheduling at run-time, and memory 
access de-referencing for sharing local stack variables 
(OMP1 w/o HT), but the second thread running on the 
second logical processor contributed to the overall 4% 
performance improvement  (OMP2 w/ HT).  
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Figure 3: Performance of  OpenMP benchmarks  

In Figure 4, we show the performance speed-up of three 
image-processing functions taken from the OpenMP 
version IPPI library developed by the Intel Performance 
Library group.  The performance speed-up ranges from 
1.26x to 1.41x (image size 720x480) on a pre-production 
Hyper-Threading Technology-enabled Intel Xeon 
processor 1-CPU system running at 1.8GHz, with 512M of 
memory, an 8K L1-Cache and a 256K L2-Cache.   

As far as we know, there are around 300 image-processing 
and JPEG functions multithreaded by OpenMP directives 
in the Intel IPPI performance library. An average speedup 
of 1.4x was reported when compared with the serial 
execution of those routines on a pre-production Intel 
1.8GHz Hyper-Threading Technology -enabled Intel Xeon 
Processor 1-CPU system.  
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Figure 4: Performance of image processing functions 

In Figure 5, we show some performance results for the 
matrix-vector multiplication kernel discussed earlier on a 
pre-production Hyper-Threading Technology-enabled 
Intel Xeon processor dual-CPU system running at 1.5GHz 
with 512MB of memory, an 8K L1-Cache and a 256K L2-
Cache.  This graph shows speed-ups (relative to serial 
execution) for varying matrix sizes for vector execution 
(VEC), multithreaded execution using two threads and four 
threads, (OMP2) and (OMP4), respectively, and vector-
multithreaded execution using two and four threads, 
(OMP2+VEC) and (OMP4+VEC), respectively.  
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Figure 5: Performance of Matrix x Vector kernel 

Timings were obtained by calling the kernel many times 
and dividing the total execution time accordingly, which 
implies that for the data sets that completely fit in cache, 
the kernel is computationally bound.  In these cases, intra-
register vectorization alone obtains a speed-up of up to 2x.  
For the larger data sets, where the kernel becomes more 
memory bound, the improvements of merely intra-register 
vectorization become less evident.  As we have seen 
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before, the overhead associated with multithreading 
causes a slight slowdown for the matrix size 32x32.  For the 
larger matrices ranging from 64x64 to 256x256, the relative 
overhead introduced by parallelization becomes negligible 
and observed speed-up ranges from 1.4x to 5.8x. 

The difference between (OMP2) and (OPM4) for matrix 
size 200x200 reveals a 1.6x performance gain. For the same 
matrix size, the performance gain from the versions that are 
optimized with intra-register vectorization, (OMP2+VEC) 
and (OMP4+VEC), is 1.2x.  The best performance gains are 
obtained when all levels of parallelism (SIMD parallelism 
and parallelism due to Hyper-Threading Technology and 
multithreading) are exploited simultaneously, yielding a 
speed-up of up to 5.8x with four threads (OMP4+VEC) and 
a speed-up of 5.1x with two threads (OMP2+VEC).  

 

CONCLUSION 

With the growing processor-memory performance gap, 
memory latency becomes a major bottleneck for achieving 
high performance for various applications. There are a 
number of multithreading techniques proposed to hide 
memory latency.  Intel’s Hyper-Threading Technology is a 
very promising technology that allows a single processor 
to manage data as if it were two processors by executing 
data instructions in parallel rather than serially.  With this 
new  technology, the performance of applications can be 
greatly  improved by exploiting thread-level parallelism.  
The potential gains are only obtained, however, if an 
application program is multithreaded.  The Intel OpenMP 
C++/Fortran compiler has been designed to leverage the 
rich set of performance enabling features, such as Hyper-
Threading Technology and the Streaming-SIMD-
Extensions (SSE and SSE2), this is achieved by tightly 
integrating OpenMP directive- or pragma-guided 
parallelization with other well-known and advanced 
optimizations to generate efficient multithreaded code for 
exploiting parallelism at various levels.  The results of 
performance measurement show that OpenMP 
applications compiled with the Intel C++/Fortran compiler 
can achieve great performance gains on Intel single and 
multiprocessor systems that are enabled with Hyper-
Threading Technology.   

                                                                 
 Intel is a registered trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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ABSTRACT 

This paper characterizes selected workloads of multimedia 
applications on current superscalar architectures, and then 
it characterizes the same workloads on Intel Hyper-
Threading Technology.  The workloads, including video 
encoding, decoding, and watermark detection, are 
optimized for the Intel® Pentium® 4 processor.  One of the 
workloads is even commercially available and it performs 
best on the Pentium 4 processor.  Nonetheless, due to the 
inherently sequential constitution of the algorithms, most 
of the modules in these well-optimized workloads cannot 
fully utilize all the execution units available in the 
microprocessor.  Some of the modules are memory-
bounded, while some are computation-bounded. 
Therefore, Hyper-Threading Technology is a promising 
architecture feature that allows more CPU resources to be 
used at a given moment. 

Our goal, in this paper, is to better explain the performance 
improvements that are possible in multimedia applications 
using Hyper-Threading Technology.  Our initial studies 
show that there are many unexplored issues in algorithms 
and applications for Hyper-Threading Technology.  In 
particular, there are many techniques to develop better 
software for multithreading systems.  We demonstrate 
different task partition/scheduling schemes and discuss 
their trade-offs so that a reader can understand how to 

                                                                 
Intel and Pentium are registered trademarks of Intel 
Corporation or its subsidiaries in the United States and 
other countries. 

develop efficient applications on processors with Hyper-
Threading Technology.  

INTRODUCTION  
To date, computational power has typically increased over 
time because of the evolution from simple pipelined 
designs to the complex speculation and out-of-order 
execution of many of today’s deeply-pipelined superscalar 
designs.  While processors are now much faster than they 
used to be, the rapidly growing complexity of such 
designs also makes achieving significant additional gains 
more difficult.  Consequently, processors/systems that 
can run multiple software threads have received increasing 
attention as a means of boosting overall performance.  In 
this paper, we first characterize the workloads of video 
decoding, encoding, and watermarking on current 
superscalar architectures, and then we characterize the 
same workloads using the recently-announced Hyper-
Threading Technology.  Our goal is to provide a better 
understanding of performance improvements in multimedia 
applications on processors with Hyper-Threading 
Technology.  

Figure 1 shows a high-level view of Hyper-Threading 
Technology and compares it to a dual-processor system.  
In the first implementation of Hyper-Threading 
Technology, one physical processor exposes two logical 
processors .  Similar to a dual-core or dual-processor 
system, a processor with Hyper-Threading Technology 
appears to an application as two processors .  Two 
applications or threads can be executed in parallel.  The 
major difference between systems that use Hyper-
Threading Technology and dual-processor systems is the 
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different amounts of duplicated resources.  In today’s 
Hyper-Threading Technology, only a small set of the 
microarchitecture state is duplicated1, while the front-end 
logic, execution units, out-of-order retirement engine, and 
memory hierarchy are shared.  Thus, compared to 
processors without Hyper-Threading Technology, the die-
size is increased by less than 5% [7].  While sharing some 
resources may increase the latency of some single-
threaded applications, the overall throughput is higher for 
multi-threaded or multi-process applications. 
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Figure 1: High-level diagram of (a) a processor with 
Hyper-Threading Technology and (b) a dual-processor 

system 

This paper is organized as follows.  First, we provide a 
brief review of the basic principles behind most current 
video codecs, describing the overall application behavior 
of video decoding/encoding/watermarking and the 
implications of the key kernels for current and emerging 
architectures.  Then, we show the multi-threaded software 
architectures of our applications, including data-domain 
and functional decomposition.  Additionally, we describe 
some potential pitfalls when developing software on 
processors with Hyper-Threading Technology and our 

                                                                 
1 Nearly all the architectural state is duplicated, however. 

techniques to avoid them.  Finally, we provide some 
performance numbers and our observations. 

MULTIMEDIA WORKLOADS 
This section describes the workload characterization of 
selected multimedia applications on current superscalar 
architectures.  Although the workloads are well optimized 
for Pentium® 4 processors, due to the inherent 
constitution of the algorithms, most of the modules in 
these workloads cannot fully utilize all the execution 
resources available in the microprocessor.  The particular 
workloads we target are video decoding, encoding, and 
watermark detection2, which are key components in both 
current and many future applications and are 
representative of many media workloads.  

MPEG Decoder and Encoder 
The Moving Pictures Expert Group (MPEG) is a standards 
group founded in 1988.  Since its inception, the group has 
defined a number of popular audio and video compression 
standards, including MPEG-1, MPEG-2, and MPEG-4 [3].  
The standards incorporate three major compression 
techniques: (1) predictive coding; (2) transform-based 
coding; and (3) entropy coding.  To implement these, the 
MPEG encoding pipeline consists of motion estimation, 
Discrete Cosine Transform (DCT), quantization, and 
variable-length coding.  The MPEG decoding pipeline 
consists of the counterpart operations of Variable-Length 
Decoding (VLD), Inverse Quantization (IQ), Inverse 
Discrete Cosine Transform (IDCT), and Motion 
Compensation (MC), as shown in Figure 2. 
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Figure 2: Block diagram of  an MPEG decoder 

                                                                 
2 A digital video watermark, which is invisible and hard to 
alter by others, is information embedded in the video 
content.  A watermark can be made by slightly changing 
the video content according to a secret pattern.  For 
example, when just a few out of the millions of pixels in a 
picture are adjusted, the change is imperceptible to the 
human eye.  A decoder can detect and retrieve the 
watermark by using the key that was used to create the 
watermark.  
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Figure 3: MPEG-2, 720x480 decoding breakdown by time 
on 2GHz Pentium® 4 processors 

The behavior of the MPEG decoder can be highly 
dependent on the characteristics of the video stream being 
decoded.  Figure 3 shows an exa mple of the CPU time 
breakdown of our MPEG decoder for a typical DVD 
resolution video sequence.  VLD, IDCT, and MC are the 
main components in the process.  The decoder used in the 
study is part of the Intel Media Processing Library (MPL)3,  
which was developed by Intel Labs.  The software was 
analyzed using the Intel VTune Performance Analyzer on 
an Intel® Pentium 4 processor with a 400 MHz system 
bus, an 8 KB first-level data cache, a 256 KB second-level 
                                                                 
3 More information about the MPL can be found at 
http://www.intel.com/research/mrl/research/mpl/. 
Additionally, the MPL MPEG-2 decoder is commercially 
available as part of the Ligos* GoMotion* SDK. 
VTune is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
 Pentium is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 

shared instruction/data cache, and 512 MB of main 
memory.  We run our applications on Windows ∗ XP.    

Table 1 shows a high-level analysis of the MPEG-2 
decoder.  The first stage of the decoding pipeline, VLD/IQ, 
is characterized by substantial data dependency, limiting 
opportunities for instruction, data, and thread-level 
parallelism.  The kernel is entirely computation-bound, and 
it shows excellent performance scaling over increasing 
frequencies on the Pentium 4 processor.  The next stage, 
IDCT, is also completely computation-bound.  The kernel 
is dominated by MMX/SSE/SSE2 (Streaming SIMD 
Extension) operations, with interspersed register-to-
register moves and stores; e.g., a sequence of movaps, 
addps, and subps is a typical recurring theme, 
corresponding to the well-known butterfly operation, 
surrounded by associated prescaling/multiply operations.  
Because 90% of the instructions are executed in the 
MMX/SSE/SSE2 unit, the integer execution unit is idle 
most of the time in the IDCT module4.  The final stage of 
the decoding pipeline, MC, is memory intensive compared 
to the other modules in the pipeline.  The front-side bus is 
busy 30% of the time in this module.  Although the out-of-
order execution core in the Pentium 4 processor can 
tolerate some memory latencies, the module shows an 
equal distribution of time between computation and 
memory latency because there are too many memory 
operations.  All these modules are well-optimized, but still 
cannot utilize 100% of the execution units available in the 
microprocessors.  While the Pentium 4 processor can 
execute multiple uops in one cycle, the uops retired per 
cycle (UPC) is only 0.74 in the MPL decoder. 

MPEG encoders, similar to the decoder, consist of some 
MMX/SSE/SSE2 intensive modules (e.g., motion 
estimation, DCT) and some data-dependent modules (e.g., 
variable-length coding).  All these modules are well 
optimized, but a UPC of 1.05 again indicates that the 

                                                                 
∗Other brands and names may be claimed as the property 
of others. 
4  See Figure 4 in [4], integer operations and floating-
point/MMX/SSE/SSE2 operations are executed in different 
units. 

Table 1: MPEG decoding kernel characterization on 2 GHz Pentium® 4 processors (9 Mb/s MPEG-2, 720x480) 

Kernel IPC UPC MMX/SSE/SSE-2 
per instructions 

Cond. 
Branch/ instr. 

Mispred. 
Cond./ Instr. 

Mispred. 
Cond./ Clock 

L1 misses/ 
Instr. 

FSB 
activity 

VLD 0.76 0.99 0.074 1/9 1/120 1/158 1/92 11.1% 
IDCT 0.59 0.89 0.90 1/141 1/2585 1/4381 1/193 2.4% 
MC 0.24 0.40 0.42 1/17 1/142 1/592 1/11 30. 3% 
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encoder cannot fully utilize all the execution units 
available in the microprocessor.  

Video Watermarking 
Another application that we studied is video watermark 
detection [1]. Our watermark detector has two basic 
stages: video decoding and image-domain watermark 
detection.  The application is optimized with MPL (as the 
video decoder) and the Intel IPL (for the image 
manipulations used during watermark detection) [5]. A 
UPC of 1.01 also indicates that there is room for 
improvement.  
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Figure 4: Two slice-based task partitioning schemes 
between two threads: (a) half-and-half dispatching (static 
scheduling); and (b) slice-by-slice scheduling (dynamic 

scheduling) 

TASK PARTITIONING AND SCHEDULING 
In general, multimedia applications, such as video 
encoding and decoding, exhibit not only data- and 
instruction-level parallelism, but also the possibility for 
substantial thread-level parallelism.  Such workloads are 
good candidates for speed-up on a number of different 
multithreading architectures.  This section discusses the 
trade-offs of different software multithreading methods. 

Data-Domain Decomposition–Slice-Based 
Dispatching 
As shown in Figure 4, a picture in a video bit stream can 
be divided into slices of macroblocks.  Each slice, 
consisting of blocks of pixels, is a unit that can be 
decoded independently.  Here we compare two methods to 
decode the pictures in parallel: 

1. Half-and-half (aka static partitioning):  In this 
method, one thread is statically assigned the first 
half of the picture, while another thread is 

assigned the other half of the picture (as shown 
in Figure 4 (a)).  Assuming that the complexity of 
the first half and second half is similar, these two 
threads will finish the task at roughly the same 
time.  However, some areas of the picture may be 
easier to decode than others .  This may lead to 
one thread being idle while the other thread is 
still busy. 

2. Slice-by-slice (aka dynamic partitioning):  In this 
method, slices are dispatched dynamically. A 
new slice is assigned to a thread when the thread 
has finished its previously assigned slice. In this 
case, we don’t know which slices will be 
assigned to which thread.  Instead, the 
assignment depends on the complexity of the 
slices assigned.  As a result, one thread may 
decode a larger portion of the picture than the 
other if its assignments are easier than those of 
the other thread.  The execution time difference 
between two threads, in the worst case, is the 
decoding time of the last slice.  

In both cases, each thread performs Variable-Length 
Decoding (VLD), Inverse Discrete Cosine Transform 
(IDCT), and Motion Compensation (MC) in its share of the 
pictures, macroblock by macroblock.  While one thread is 
working on MC (memory intensive), the other thread may 
work on VLD or IDCT (less memory intensive).  Although 
the partitioning does not explicitly interleave 
computations and memory references, on average, it better 
balances the use of resources. 

Functional Decomposition of Video 
Watermark Detection 
Besides data-domain decomposition, an application can 
also be partitioned functionally into multiple threads.  For 
example, our video watermark detector consists of two 
basic stages: video decoding and watermark detection.  
Hence, we assign different threads to decode the video 
and to detect the watermark, as shown in Figure 5. 

One method is to use two threads: one for video decoding 
and another for watermark detection, as shown in Figure 5 
(b).  However, this method does not have very good load 
balance.  This is because in our video watermark detector, 
video decoding takes roughly one-third of the CPU time, 
while watermark detection takes two-thirds of the CPU 
time.   
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Because watermark detection takes twice as much 
computation time as video decoding, we use two threads 
for watermark detection for better load balancing, as 
shown in Figure 5 (c).  While one thread decodes the 
video sequence, two threads work on watermark detection.  
The lines in the figure indicate the dependency between 
functional blocks.  We can see that at any moment, there 
are at least two threads running in the three-threaded 
mode.  In contrast to the data-domain video decoding 
decomposition described above, threads in this 
implementation are assigned to different functions. 

IMPLICATIONS OF SOFTWARE DESIGN 
FOR HYPER-THREADING TECHNOLOGY  
During the implementation of our applications on 
processors with Hyper-Threading Technology, we had a 
number of observations.  In this section, we discuss some 
general software techniques to help readers design their 

applications better on systems with Hyper-Threading 
Technology.  

Frame t Frame t+1Frame t Frame t+1  
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Figure 6: Cache localities, during; (a) motion 
compensation, in; (b) static partitioning, and in; (c) 

dynamic partitioning 

Using Hyper-Threading Technology, performance can be 
lost when the loads are not balanced.  Because two logical 
processors share resources on one physical processor 
with Hyper-Threading Technology, each logical processor 
does not get all the resources a single processor would 
get.  When only a single thread of the application is 
actively working and the other thread is waiting 
(especially, spin-waiting), this portion of the application 
could have less than 100% of the resources when 
compared to a single processor, and it might run slower on 
a processor with simultaneous multithreading capability 
than on processors without simultaneous multithreading 
capability.  Thus, it is important to reduce the portion in 
which only one thread is actively working.  For better 
performance, effective load balancing is crucial.   

The foremost advantage of the dynamic scheduling 
scheme (see Figure 4) is its good load balance between the 
two threads.  Because some areas of the picture may be 
easier to decode than others, one thread under the static 
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Figure 5: Three threading methods for video 
watermark detection: (a) single-threaded mode; (b) two-

threaded mode; and (c) three-threaded mode 
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partitioning scheme may be idle while another thread still 
has a lot of work to do.  In the dynamic partitioning 
scheme, we have very good load balance.  As we assign a 
new slice to a thread only when it has finished its previous 
slice, the execution time difference between the two 
threads, in the worst case, is the decoding time of a slice. 

Because two logical processors share one physical 
processor, the effective sizes of the caches for each logical 
processor are roughly one half of the original size.  Thus, 
it is important for multithreaded applications to target one 
half of the caches for each application thread.  For 
example, when considering code size optimization, 
excessive loop unrolling should be avoided.   

While sharing caches may be a drawback for some 
applications running on processors with Hyper-Threading 
Technology, it can provide better cache locality between 
the two logical processors for other applications.  For 
example, Wang et al. use one logical processor to prefetch 
data into the shared caches to reduce a substantial 
amount of the memory latency of the application in the 
other logical processors [8].  We now illustrate the 
advantage of sharing caches in our application. 

On dual-processor systems, each processor has a private 
cache.  Thus, there may be a drawback to dynamic 
partitioning in terms of cache locality.  Figure 6 illustrates 
the cache locality in multiple frames of video. During 
motion compensation, the decoder uses part of the 
previous picture, the referenced part of which is roughly 
co-located in the previous reference frame, to reconstruct 
the current frame.  It is faster to decode the picture when 
the co-located part of the picture is still in the cache.  In 
the case of a dual-processor system, each thread is 
running on its own processor, each with its own cache.  If 
the co-located part of the picture in the previous frame is 
decoded by the same thread, it is more likely that the local 
cache will have the pictures that have just been decoded.  
Since we dynamically assign slices to different threads, it 
is more likely that the co-located portion of the previous 
picture may not be in the local cache when each thread is 
running on its own physical processor and cache, as 
shown in Figure 6 (c).  Thus, dynamic partitioning may 
incur more bus transactions5. In contrast, the cache is 
shared between logical processors on a processor with 

                                                                 
5 On dual-processor systems, an alternative method of 
keeping cache locality in dynamic scheduling is to 
dispatch slices to one thread from top-down and slices to 
the other thread from bottom-up.  However, it is hard to 
generalize the method for four-way or eight-way multi-
processor systems.  In this paper, we did not show the 
results of this method. 

Hyper-Threading Technology, and thus, cache localities 
are preserved.  We obtain the best of both worlds with 
dynamic scheduling: there is load balancing between the 
threads, and there is the same effective cache locality as 
for static scheduling on a dual-processor system.  

RESULTS 
This shows some performance numbers and analysis of 
our applications on multithreading architectures. In 
general, our results show that Hyper-Threading 
Technology offers a cost-effective performance 
improvement (7%-18%) for multithreading without 
doubling hardware cost (see Figure 7) as in dual-processor 
systems. 

Our Hyper-Threading Technology system has an 
experimental 1.7GHz Intel Pentium 4 processor with 
Hyper-Threading Technology capability, which is a pre-
production prototype, running Windows ∗ XP.  The 
processor has a 512KB second-level cache, but no third-
level cache.  To contrast the performance with single-
thread performance on the system experimentally in lab 
setting, we disable the support of Hyper-Threading 
Technology from the CPU, motherboard, BIOS, and the 
operating system.  Our dual-processor system has two 
1.7GHz Intel Xeon processors, each of which has a 
256KB second-level cache and a 1MB third-level cache, 
running Windows XP.  To measure single-thread 
performance on the dual-processor system, we disable one 
physical processor and run a single-thread version of the 
application.  The relative speed between Hyper-Threading 
Technology systems and dual-processor systems is not 
measured in our experiment. 

To measure the performance of the encoder, we use five 
720x480 YVU 4:2:0 benchmark sequences.  To measure the 
performance of the decoder, we use one 640x480, three 
704x480, three 720x480, one 1280x720, and two 1920x1080 
MPEG-2 sequences.  Moreover, three 704x480 MPEG-2 
sequences are used to measure the performance of the 
video watermark detectors.  The speed-ups are sequence 
dependent, but within a small variation.  We report only 
the average numbers in Figure 7. 

                                                                 
 Pentium is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
∗ Other brands and names may be claimed as the property 
of others 
Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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Data-Domain Decomposition 
This section describes the performance of the data-domain 
decomposition of the video decoding described earlier.  

First, Figure 7 (b) shows that it is better to use the 
dynamic scheduling method than the static scheduling 
method on a processor with Hyper-Threading 
Technology, as it is very important to have a balanced 
load.  Because resources are shared between the logical 
processors, the relative performance of each logical 
processor can be less than 1.0 compared to an equivalent 
processor without simultaneous multithreading capability.  
When only one thread is busy, the overall throughput is 
less than that of a single processor.  To have the best 
performance, it is important to have a balanced workload 
between threads.  Hence, the dynamic scheme is better 
than static scheduling.  

On the other hand, Figure 7 (b) shows that the static 
scheduling method is better than the dynamic scheduling 
method on a dual-processor system.  It is faster to decode 
the picture when the co-located parts of the pictures are 
still in the cache.  As mentioned earlier, although dynamic 
scheduling has better load balance, co-located parts of the 
pictures may not be decoded by the same processor when 
using dynamic scheduling.  This scheduling scheme 
incurs more bus transactions, as shown in Table 2, with 
the result that the overall speed using dynamic scheduling 
is slower. 

Compared to dual-processor systems, processors with 
Hyper-Threading Technology have the advantage of 
sharing the second-level cache between two logical 
processors.  Even when the same logical processor does 
not decode the co-located part of the reference picture, 
that part of the picture can still be read from the shared 
second-level cache.  Table 3 shows that the numbers of 
bus activities are similar between static scheduling and 
dynamic scheduling.  In this case, the overall speed of 
dynamic scheduling is faster because the workload is 
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Figure 7: Performance of; (a) our video encoder; (b) our 
video decoder; and (c) our watermarking detection with 

software configurations 

Table 2: The numbers of front-side bus (FSB) data 
activities per second between static scheduling and 

dynamic scheduling on a dual-processor system 

Event 
Static 
scheduling 

Dynamic 
scheduling 

FSB_data_activity 8,604,511 12,486,051 

Table 3: The numbers of FSB data activities per second 
between static scheduling and dynamic scheduling on a 

processor with Hyper-Threading Technology 

Event 
Static 
scheduling 

Dynamic 
scheduling 

FSB_data_activity 8,474,022 8,536,838 
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better balanced. 

Functional Decomposition 
Here, we describe the performance of the video watermark 
detection functional decomposition described earlier in 
Figure 5.  Figure 7 (c) shows the performance 
comparisons.  2-thread denotes one video-decoding 
thread and one watermark detection thread, and 3-thread 
denotes one video-decoding thread and two watermarking 
threads (see Figure 5 (c)).  Similar to the results of the 
video decoder, better performance is obtained with better 
balanced workloads.   

Overall Performance Characteristics 
As mentioned earlier, different modules have been 
interleaved in the application to utilize more execution 
resources in the machine at a given time.  Hence, it is hard 
to break down the workload characteristics in individual 
modules.  Rather, it is better to consider the application as 
a whole. 

As shown in Table 4, although the numbers of 
instructions retired and cache misses (e.g., trace and first-
level) increase in both applications after threading, 
because of threading overhead and capacity misses in 
each thread, the overall application performance still 
increases.  To verify that resource utilization is better 
balanced on a processor with Hyper-Threading 
Technology, we compare UPC for single-threaded and 
multi-threaded applications.  UPC increases from 1.05 to 
1.33 in video encoding, from 0.78 to 0.85 in video 
decoding, and from 1.01 to 1.21 in watermark detection, 
confirming the more efficient resource utilization possible 
with Hyper-Threading Technology.  (These numbers 
include the overhead of thread synchronization; however, 
this overhead is relatively small, being on the order of 

0.5% for watermark detection, approximately 3-4% for 
video decoding, and 4-5% for video encoding.) 

POWER CONSUMPTION ISSUES 
In this paper, we have mainly discussed methods to 
improve the application throughput on processors with 
Hyper-Threading Technology.  In addition to throughput, 
power consumption is also an important performance 
factor for the next generation of processors.  This is 
especially true for battery-run mobile systems, in which 
the average power consumption for a given fixed 
application is a crucial parameter to consider for the 
evaluation of the overall performance of the system.  

In this section, we show that Hyper-Threading 
Technology can not only improve system throughput but 
can also save energy for applications with fixed duties.  
As an introduction to this new research topic, we give 
some hints on how to design “power-aware” applications 
on processors with Hyper-Threading Technology and we 
show the first results of this ongoing work.  
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Table 4: The workload characteristics of our applications on single-threaded processors and processors with Hyper-
Threading Technology 

 MPEG encoding MPEG decoding Video watermarking 
Event Single-

thread 
Hyper-

threading 
Single-
thread 

Hyper-
threading  

Single-
thread 

Hyper-
threading 

Clockticks (Millions) 13,977 11,688 7,467 6,687 23,942 20,162 
Instructions retired (Millions) 11,253 11,674 3,777 3,921 17,728 17,821 
Uops retired (Millions) 14,735 15,539 5,489 5,667 24,120 24,333 
MMX/SIMD uops retired (Millions) 6,226 6,220 1,119 1,120 5,334 5,341 
IPC (instructions per clock) 0.80 1.00 0.51 0.59 0.74 0.88 
UPC (uops per clock) 1.05 1.33 0.74 0.85 1.01 1.21 
Trace cache misses (Millions) 20.8 29.0 13.3 24.1 7.6 13.3 
First-level cache misses (Millions) 132 145 132 166 510 638 
Bus utilization 8.5% 8.5% 14.7% 16.4% 14.2% 22.3% 
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Figure 8: Measured power consumption of our 
watermark detector on a processor with Hyper-Threading 

Technology and a normal system at the same frequency 
and voltage      

In various situations, Hyper-Threading Technology 
consumes additional power while improving the 
performance, as shown in Figure 8.  When idle, the 
execution units in Intel Pentium 4 processors consume 
less power because of clockgating [2].  Hyper-Threading 
Technology makes the execution units busier, and thus, 
they consume slightly more power.  The graphs also show 
that the task finishes earlier on a system with Hyper-
Threading Technology.  Because the task finishes in fewer 
cycles, the overall energy consumption is slightly less on 
a system with Hyper-Threading Technology even with the 
same voltage and frequency.  This is because powering up 
additional execution units for two simultaneous threads is 
more economical than powering the whole pipeline with 
fewer execution units to run serial threads. 

In the case of real-time applications6, where we need only 
a fixed amount of throughput, we can reduce the 
frequency and the voltage.  As Hyper-Threading 
Technology increases the throughput, and we have more 
spare cycles, we can further reduce the frequency and the 
voltage.  Because the active power consumption is 
proportional to frequency*(voltage)2, we can have a cubic 
effect on energy saving.  

Nonetheless, a common thread scheduling pitfall in 
multithreading real-time applications can reduce the 
overall energy gain on the system with Hyper-Threading 
Technology.  Figure 9 (a) shows a common, but less than 
optimal, multithreading method of the watermark detection 
application–the watermark detector is active immediately 
after the video frame is decoded.  Due to a large cycle 
period, there may be no overlapping between two threads 
(see Figure 5 (b)).  While Figure 9 (b) has the same cycle 
period as Figure 9 (a), by delaying the starting time of the 
second thread, we increase the overlapping period of two 
threads.  That is, we queue the tasks and dispatch 
together to maximize the overlap.  In this case, the halted 
period in CPU is increased.  Because powering up 
additional execution units for two simultaneous threads is 
more economical and the physical processor consumes 
less power when it is halted (or when both logical 
                                                                 
 Pentium is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries.  
6 Real-time in this work means that applications need to 
perform some tasks periodically, while throughput-
oriented applications just finish all the tasks as fast as 
possible.    

processors are halted), Figure 9 (b) consumes less energy.  
(In our real-time watermark detector, the measured CPU 
power is 22.8 watts vs. 23.6 watts7.)  The key is to overlap 
the busy cycles of one logical processor with those of the 
other. 
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Figure 9: Two different methods of multithreading real-
time applications. (a) uses more energy than (b) 

CONCLUSION 
In this paper we explained how typical media applications 
can benefit from Hyper-Threading Technology.  From the 
increases in UPCs, we have observed that Hyper-
Threading Technology can increase the utilization of 
processor resources by 15 to 27%, even for well-optimized 
multimedia applications.  The results given in this paper 
also show that it is possible to benefit from Hyper-
Threading Technology to save power when executing a 
fixed task. 

Moreover, it has been shown that it is crucial to reach an 
optimal load balancing for an efficient implementation on 
Hyper-Threading Technology.  This can usually be done 
for media applications exploiting both data and functional 
decompositions.  Such partitioning, especially with a 
dynamic scheduling scheme, benefits in most cases from 
the fact that, unlike in symmetric multiprocessor systems, 

                                                                 
7 Here, we use average power as the indicator for energy 
saving.  In real-time applications, power saving and 
energy saving can be used interchangeably. 
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threads share the cache in a processor with Hyper-
Threading Technology.  

Finally, the results show that for complex media 
applications running on Hyper-Threading Technology, in 
which multiple threads typically interact together and 
access memory concurrently, the thread synchronization 
issues and the overall data and functional partitioning are 
more important than the individual function 
characteristics. 
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ABSTRACT 

Intel’s recently introduced Hyper-Threading Technology 
promises to increase application- and system-level 
performance through increased utilization of processor 
resources.  It achieves this goal by allowing the 
processor to simultaneously maintain the context of 
multiple instruction streams and execute multiple 
instruction streams or threads.  These multiple streams 
afford the processor added flexibility in internal 
scheduling, lowering the impact of external data latency, 
raising utilization of internal resources, and increasing 
overall performance. 

We compare the performance of an Intel Xeon 
processor enabled with Hyper-Threading Technology to 
that of a dual Xeon processor that does not have Hyper-
Threading Technology on a range of compute-intensive, 
data-parallel applications threaded with OpenMP1.  The 
applications include both real-world codes and hand-
coded “kernels” that illustrate performance 
characteristics of Hyper-Threading Technology. 

The results demonstrate that, in addition to functionally 
decomposed applications, the technology is effective for 

                                                                 
 Intel is a registered trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
 Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
1 OpenMP is an industry-standard specification for multi-
threading data-intensive and other highly structured 
applications in C, C++, and Fortran.  See 
www.openmp.org for more information. 

many data-parallel applications.  Using hardware 
performance counters, we identify some characteristics 
of applications that make them especially promising 
candidates for high performance on threaded processors. 

Finally, we explore some of the issues involved in 
threading codes to exploit Hyper-Threading Technology, 
including a brief survey of both existing and still-needed 
tools to support multi-threaded software development. 

INTRODUCTION 
While the most visible indicator of computer 
performance is its clock rate, overall system performance 
is also proportional to the number of instructions retired 
per clock cycle.  Ever-increasing demand for processing 
speed has driven an impressive array of architectural 
innovations in processors, resulting in substantial 
improvements in clock rates and instructions per cycle. 

One important innovation, super-scalar execution, 
exploits multiple execution units to allow more than one 
operation to be in flight simultaneously.  While the 
performance potential of this design is enormous, 
keeping these units busy requires super-scalar 
processors to extract independent work, or instruction-
level parallelism (ILP), directly from a single instruction 
stream.  

Modern compilers are very sophisticated and do an 
admirable job of exposing parallelism to the processor; 
nonetheless, ILP is often limited, leaving some internal 
processor resources unused.  This can occur for a 
number of reasons, including long latency to main 
memory, branch mis -prediction, or data dependences in 
the instruction stream itself.  Achieving additional 
performance often requires tedious performance 
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analysis, experimentation with advanced compiler 
optimization settings, or even algorithmic changes.  
Feature sets, rather than performance, drive software 
economics.  This results in most applications never 
undergoing performance tuning beyond default comp iler 
optimization. 

An Intel processor with Hyper-Threading Technology 
offers a different approach to increasing performance.  
By presenting itself to the operating system as two 
logical processors, it is afforded the benefit of 
simultaneously scheduling two potentially independent 
instruction streams [1].  This explicit parallelism 
complements ILP to increase instructions retired per 
cycle and increase overall system utilization.  This 
approach is known as simultaneous multi-threading, or 
SMT. 

Because the operating system treats an SMT processor 
as two separate processors, Hyper-Threading 
Technology is able to leverage the existing base of multi-
threaded applications and deliver immediate performance 
gains. 

To assess the effectiveness of this technology, we first 
measure the performance of existing multi-threaded 
applications on systems containing the Intel® Xeon 
processor with Hyper-Threading Technology.  We then 
examine the system’s performance characteristics more 
closely using a selection of hand-coded application 
kernels.  Finally, we consider the issues and challenges 
application developers face in creating new threaded 
applications, including existing and needed tools for 
efficient multi-threaded development. 

APPLICATION SCOPE 
While many existing applications can benefit from 
Hyper-Threading Technology, we focus our attention on 
single-process, numerically intensive applications.  By 
numerically intensive, we mean applications that rarely 
wait on external inputs, such as remote data sources or 
network requests, and instead work out of main system 
memory.  Typical examples include mechanical design 
analysis, multi-variate optimization, electronic design 
automation, genomics, photo-realistic rendering, weather 
forecasting, and computational chemistry. 

A fast turnaround of results normally provides 
significant value to the users of these applications 
                                                                 
 Intel is a registered trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
 Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 

through better quality products delivered more quickly 
to market.  The data-intensive nature of these codes, 
paired with the demand for better performance, makes 
them ideal candidates for multi-threaded speed-up on 
shared memory multi-processor (SMP) systems. 

We considered a range of applications, threaded with 
OpenMP, that show good speed-up on SMP systems.  
The applications and their problem domains are listed in 
Table 1.  Each of these applications achieves 100% 
processor utilization from the operating system’s point 
of view.  Despite external appearances, however, 
internal processor resources often remain underutilized.  
For this reason, these applications appeared to be good 
candidates for additional speed-up via Hyper-Threading 
Technology. 

Table 1: Applications type 

Code  Description 

A1 Mechanical Design Analysis (finite element method)  
This application is used for metal-forming, drop testing, and 
crash simulation. 

A2 Genetics 
A genetics application that correlates DNA samples from 
multiple animals to better understand congenital diseases.  

A3 Computational Chemistry 
This application uses the self-consistent field method to 
compute chemical properties of molecules such as new 
pharmaceuticals.  

A4 Mechanical Design Analysis 
This application simulates the metal-stamping process.  

A5 Mesoscale Weather Modeling 
This application simulates and predicts mesoscale and 
regional-scale atmospheric circulation. 

A6 Genetics 
This application is designed to generate Expressed Sequence 
Tags (EST) clusters, which are used to locate important 
genes. 

A7 Computational Fluid Dynamics 
This application is used to model free-surface and confined 
flows. 

A8 Finite Element Analysis 
This finite element application is specifically targeted toward 
geophysical engineering applications.  

A9 Finite Element Analysis 
This explicit time-stepping application is used for crash test 
studies and computational fluid dynamics. 

 

One might suspect that, for applications performing very 
similar operations on different data, the instruction 
streams might be too highly correlated to share a 
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threaded processor’s resources effectively.  Our results 
show differently. 

METHODOLOGY 
To assess the effectiveness of Hyper-Threading 
Technology for this class of applications, we measured 
the performance of existing multi-threaded executables, 
with no changes to target the threaded processor 
specifically. 

We measured the elapsed completion time of stable, 
reproducible workloads using operating-system- 
provided timers for three configurations: 

1. single-threaded execution on an single-processor 
SMT system 

2. dual-threaded execution on a single-processor SMT 
system 

3. dual-threaded execution on a dual-processor, non-
SMT system 

We then computed application speed-up as the ratio of 
the elapsed time of a single-threaded run to that of a 
multi-threaded run.  Using the Intel VTune Performance 
Analyzer, we gathered the following counter data 
directly from the processor during a representative time 
interval of each application2: 

• Clock cycles 

• Instructions retired 

• Micro-operations retired 

• Floatingpoint instructions retired 

From this raw data, we evaluated these ratios: 

• Clock cycles per instruction retired (CPI) 

• Clock cycles per micro-operation retired (CPu) 

• Fractional floating-point instructions retired 
(FP%) 

APPLICATION RESULTS 
Naturally, highly scalable applications; that is, those that 
speed up best when run on multiple, physical 
processors, are the best candidates for performance 
improvement on a threaded processor.  We expect less 

                                                                 
 VTune is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
2 The counters and their significance are described in the 
Appendix. 

scalable applications to experience correspondingly 
smaller potential benefits. 

As shown in Figure 1, this is generally the case, with all 
of the applications, except application A1, receiving a 
significant benefit from the introduction of Hyper-
Threading Technology.  It is important to note that the 
applications realized these benefits with little to no 
incremental system cost and no code changes. 
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Figure 1: Application relative speed-up  

Because the Intel Xeon processor is capable of 
retiring up to three micro-operations per cycle, the best-
case value of clocks per micro-op (CPu) is 1/3.  Table 2 
shows counter data and performance results for the 
application experiments.  The comparatively high CPI 
and CPu values indicate an individual stream does not 
typically saturate internal processor resources.  While 
not sufficient, high CPu is a necessary condition for 
good speed-up in an SMT processor.

                                                                 
 Intel is a registered trademark of Intel Corporation or its 
subsidiaries in the United States and other countries.  
 Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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Table 2: Counter data and performance results 

Exactly which resources lie idle, however, is not clear.  
The fraction of floating-point instructions (FP%) gives 
one indication of the per-stream instruction mix.  For the 
chosen applications, the FP% ranges from zero, for 
application A6, to the range of 4.6% to 35.5% for the 
remaining applications.  It may seem unusual that the 
FP% of these numerically intensive applications is so 
low; however, even in numerically intensive code, many 
other instructions are used to index into arrays, manage 
data structures, load/store to memory, and perform flow 
control.  The result can be a surprisingly balanced 
instruction mix. 

Even though the instruction mix within a stream may be 
varied, a data parallel application typically presents pairs 
of similar or even identical instruction streams that could 
compete for processor resources at each given moment.  
The performance results, however, show that Hyper-
Threading Technology is able to overlap execution of 
even highly correlated instruction streams effectively.  
To understand how this can occur, consider two threads 
consisting of identical instruction streams.  As these 
threads execute, spatial correlation exists only with 
particular temporal alignments; a slight shift in the timing 
of the streams can eliminate the correlation, allowing a 
more effective interleaving of the streams and their 
resource demands.  The net result is that two identical 
but time-shifted instruction streams can effectively share 
a pool of resources. 

By reducing the impact of memory latency, branch mis -
prediction penalties, and stalls due to insufficient ILP, 
Hyper-Threading Technology allows the Xeonprocessor 
to more effectively utilize its internal resources and 
increase system throughput. 

TEST KERNEL RESULTS 
To examine these effects more closely, we developed 
four test kernels.  The first two kernels (int_mem and 
dbl_mem) illustrate the effects of latency hiding in the 
memory hierarchy, while the third kernel (int_dbl) 
attempts to avoid stalls due to low ILP.  The fourth 
kernel (matmul) and a corresponding, tuned library 
function illustrate the interplay between high ILP and 
SMT speed-up. The performance results of all the 
kernels are shown in Table 3.  The int_mem kernel, 
shown in Figure 2, attempts to overlap cache misses with 
integer operations.  It first creates a randomized access 
pattern into an array of cache-line-sized objects, then 
indexes into the objects via the randomized index vector 
and performs a series of addition operations on the 
cache line. 

#pragma omp for 

    for (i = 0; i < buf_len; ++i) { 

        j = index[ i ]; 

        for (k = 0; k < load; ++k) { 

            buffer[ j ][ 0 ] += input; 

            buffer[ j ][ 1 ] += input; 

            buffer[ j ][ 2 ] += input; 

            buffer[ j ][ 3 ] += input; 

        } 

    } 

Figure 2: The int_mem benchmark 

 

Application Cycles/instruction Cycles/uop FP% SMT speedup SMP Speedup 

A1 2.04 1.47 29 1.05 1.65 

A2 1.11 0.89 4.6 1.09 1.79 

A3 1.69 0.91 16 1.09 1.77 

A4 1.82 1.29 20 1.11 1.54 

A5 2.48 1.45 36 1.17 1.68 

A6 2.54 1.60 0.1 1.19 2.00 

A7 2.80 2.05 10 1.23 1.75 

A8 1.69 1.27 19 1.28 1.85 

A9 2.26 1.76 20 1.28 1.89 
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Table 3: Kernel performance results 

Code Benchmark CPI CPuops  FP%  SMT Speed-up 

M1 int_mem (load=32) 1.99 0.94 0.0% 1.08 

M2 int_mem (load=4) 6.91 3.61 0.0% 1.36 

M3 dbl_mem (load=32) 1.81 1.47 23.2% 1.90 

M4 int_dbl 3.72 1.63 9.8% 1.76 

M5 matmul 2.17 1.60 34.5% 1.64 

M6 dgemm 1.63 1.58 58.0% 1.00 

 

We tested two variants (M1 and M2).  In the first, we 
assigned a value of 32 to the parameter “load”; in the 
second test, “load” was 4.  The larger value of “load” 
allows the processor to work repeatedly with the same 
data.  Cache hit rates are consequently high, as is integer 
unit utilization.  Smaller values of “load” cause the code 
to access second-level cache and main memory more 
often, leading to higher latencies and increased demand 
on the memory subsystem.  Provided these additional 
accesses do not saturate the memory bus bandwidth, the 
processor can overlap the two threads’ operations and 
effectively hide the memory latency.  This point is 
demonstrated by the inverse relationship between clocks 
per instruction and speed-up. 

The dbl_mem kernel is identical to int_mem, but with the 
data variables changed to type “double.”  The results 
with “load” equal to 32 (M3) demonstrate the same 
effect, instead interleaving double-precision floating-
point instructions with cache misses.   In addition, the 
floating-point operations can overlap with the 
supporting integer instructions in the instruction mix to 
allow the concurrent use of separate functional units 
resulting in near-linear speed-up. 

The int_dbl kernel (M4), shown in Figure 3, calculates an 
approximation to Pi via a simple Monte Carlo method.  
This method uses an integer random number generator 
to choose points in the x-y plane from the range [-1…1].  
It then converts these values to floating point and uses 
each point’s distance from the origin to determine if the 
point falls within the area of the unit radius circle.  The 
fraction of points that lies within this circle approximates 
Pi/4.  Like dbl_mem, this kernel achieves excellent speed-
up, but for a different reason: the different functional 
units inside the processor are utilized simultaneously. 

 

#pragma omp for reduction(+:count) 

    for (i = 0; i < NPOINTS; ++i) { 

        double x, y; 

        // guess returns a pseudo-random 
number 

        x = guess(&seed, 2.0)-1.0; 

        y = guess(&seed, 2.0)-1.0; 

        if ( sqrt(x*x + y*y) <= 1.0 ) { 

            /* The current point is 

               inside the circle... */ 

            ++count; 

        } 

    } 

Figure 3: The int_dbl benchmark 

The “matmul” kernel (M5), shown in Figure 4, computes 
the product of two 1000 x 1000 matrices using a naïve 
loop formulation written in FORTRAN.  Comparing its 
absolute performance and speed-up to that of a 
functionally equivalent, but hand-tuned library routine 
illustrates the effect of serial optimization on the 
effectiveness of Hyper-Threading Technology.  The 
naïve loop formulation (M5) has comparatively poor 
absolute performance, executing in 3.4 seconds, but 
achieves good SMT speed-up.  The hand-optimized 
dgemm (M6) library routine executes in a fraction of the 
time (0.6s), but the speed-up vanishes.  The highly tuned 
version of the code effectively saturates the processor, 
leaving no units idle3. 

!$omp parallel do  

      DO  26  J = 1,N 

          DO  24  K = 1,N 

              DO  22  I = 1,N 

                  C(I,J) = C(I,J) + A(I,K) 
* B(K,J) 

   22         CONTINUE 

   24     CONTINUE 

   26 CONTINUE 

                                                                 
3 Note that the FP% for M6 is due to SIMD packed 
double precision instructions, rather than the simpler x87 
instructions used by the other test codes. 
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Figure 4: The Matmul kernel 

MEMORY HIERARCHY EFFECTS 
Depending on the application characteristics, Hyper-
Threading Technology’s shared caches [1] have the 
potential to help or hinder performance.  The threads in 
data parallel applications tend to work on distinct 
subsets of the memory, so we expected this to halve the 
effective cache size available to each logical processor.  
To understand the impact of reduced cache, we 
formulated a very simplified execution model of cache-
based system. 

In a threaded microprocessor with two logical 
processors, the goal is to execute both threads with no 
resource contention issues or stalls.  When this occurs, 
two fully independent threads should be able to execute 
an application in half the time of a single thread.  
Likewise, each thread can execute up to 50% more slowly 
than the single-threaded case and still yield speed-up. 

Figure 5 exhibits the approximate time to execute an 
application on a hypothetical system with a three-level 
memory hierarchy consisting of registers, cache, and 
main memory. 

Given:  
N  = Number of instructions executed 
Fmemory   = Fraction of N that access memory 
Ghit  = Fraction of loads that hit the cache 
Tproc = #cycles to process an instruction 
Tcache = #cycles to process a hit  
Tmemory  = #cycles to process a miss 

 Texe = Execution time 

Then: 

Texe/N = (1 – Fmemory ) Tproc + Fmemory  [Ghit Tcache 
+ (1 – Ghit) Tmemory ] 

Figure 5: Simple performance model for a single-level 
cache system 

While cache hit rates, Ghit, cannot be easily estimated for 
the shared cache, we can explore the performance impact 
of a range of possible hit rates.  We assume 
Fmemory =20%, Tproc=2, Tcache=3, and Tmemory =100.  For a 
given cache hit rate in the original, single-threaded 
execution, Figure 6 illustrates the effective miss rate, 
T’

miss, which would cause the thread to run twice as 
slowly as in serial.  Thus, any hit rate that falls in the 
shaded region between the curves should result in 
overall speed-up when two threads are active. 
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Figure 6: Hit rate tolerance for 2x slowdown in 
performance 

The shaded region narrows dramatically as the original 
cache hit rate approaches 100%, indicating that 
applications with excellent cache affinity will be the least 
tolerant of reduced effective cache size.  For example, 
when a single-threaded run achieves a 60% hit rate, the 
dual-threaded run’s hit rate can be as low as 10% and 
still offer overall speed-up.  On the other hand, an 
application with a 99% hit rate must maintain an 88% hit 
rate in the smaller cache to avoid slowdown. 

TOOLS FOR MULTI-THREADING 
It is easy to see that the existence of many multi-
threaded applications increases the utility of Hyper-
Threading Technology.  In fact, every multi-threaded 
application can potentially benefit from SMT without 
modification.  On the other hand, if no applications were 
multi-threaded, the only obvious benefits from SMT 
would be throughput benefits from multi-process 
parallelism.  Shared memory parallel computers have 
existed for more than a decade, and much of the 
performance benefits of multi-threading have been 
available, yet few multi-threaded applications exist.  
What are some of the reasons for this lack of multi-
threaded applications, and how might SMT technology 
change the situation? 

First and foremost among these reasons is the difficulty 
of building a correct and well-performing multi-threaded 
application.  While it is not impossible to build such 
applications, it tends to be significantly more difficult 
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than building sequential ones.  Consequently, most 
developers avoid building multi-threading applications 
until their customers demand additional performance.  
The following constraints often drive performance 
requirements: 

• Real-time requirements to accomplish some 
computing task that cannot be satisfied by a single 
processor, e.g., weather forecasting, where a 24-hour 
forecast has value only if completed and published 
in well under 24 hours. 

• Throughput requirements, usually in interactive 
applications, such that users are not kept waiting for 
too long, e.g., background printing while editing in a 
word processor. 

• Turnaround requirement, where job completion time 
materially impacts the design cycle, e.g., 
computational fluid dynamics used in the design of 
aircraft, automobiles, etc. 

Most software applications do not have the above 
constraints and are not threaded.  A good number of 
applications do have the throughput requirement, but 
that particular one is easier to satisfy without particular 
attention to correctness or performance. 

Another reason for the lack of many multi-threaded 
applications has been the cost of systems that can 
effectively utilize multiple threads.  Up until now, the 
only kinds of systems that could provide effective 
performance benefits from multiple threads were 
expensive multiple-processor systems.  Hyper-Threading 
Technology changes the economics of producing multi-
processor systems, because it eliminates much of the 
additional “glue” hardware that previous systems 
needed. 

Economics alone cannot guarantee a better computing 
experience via the efficient utilization of Hyper-
Threading Technology.  Effective tools are also 
necessary to create mu lti-threaded applications.  What 
are some of the capabilities of these tools?  Do such 
tools already exist in research institutions?   

One of the difficulties is the lack of a good programming 
language for multi-threading.  The most popular multi-
threading languages are the POSIX∗ threads API and the 
Windows* Threads API.  However, these are the 
threading equivalent of assembly language, or C at best.  
All the burden of creating high-level structures is placed 
upon the programmer, resulting in users making the same 

                                                                 
∗Other brands and names may be claimed as the property 
of others.  

mistakes repeatedly.  Modern programming languages 
like Java and C# include threading as a part of the 
language, but again few high-level structures are 
available for programmers.  These languages are only 
marginally better than the threading APIs.  Languages 
like OpenMP [3,5] do offer higher-level constructs that 
address synchronous threading issues well, but they 
offer little for asynchronous threading.  Even for 
synchronous threading, OpenMP [3,5] has little market 
penetration outside the technical computing market.  If 
OpenMP [3,5] can successfully address synchronous 
threading outside the technical market, it needs to be 
deployed broadly to ease the effort required to create 
multi-threaded applications correctly.  For asynchronous 
threading, perhaps the best model is the Java- and C#- 
like threading model, together with the threading APIs. 

Besides threaded programming languages, help is also 
needed in implementing correct threaded programs.  The 
timing dependencies among the threads in multi-
threaded programs make correctness validation an 
immense challenge.  However, race detection tools have 
existed in the research community for a long time, and 
lately some commercial tools like Visual Threads [7] and 
Assure [6] have appeared that address these issues.  
These tools are extremely good at finding bugs in 
threaded programs, but they suffer from long execution 
times and large memory-size footprints.  Despite these 
issues, these tools are a very promising start for 
ensuring the correctness of multi-threaded programs and 
offer much hope for the future. 

After building a correct multi-threaded program, a tool to 
help with the performance analysis of the program is also 
required.  There are some very powerful tools today for 
analysis of sequential applications, like the VTune 
Performance Analyzer.  However, the equivalent is 
missing for multi-threaded programs.  Again, for 
OpenMP [3,5], good performance-analysis tools do exist 
in the research community and commercially.  These 
tools rely heavily on the structured, synchronous 
OpenMP [3,5] programming model.  The same tools for 
asynchronous threading APIs are non-existent, but seem 
necessary for the availability of large numbers of multi-
threaded applications.  Hyper-Threading Technology 
presents a unique challenge for performance-analysis 
tools, because the processors share resources and 
neither processor has all of the resources available at all 
times.  In order to create a large pool of multi-threaded 
applications, it seems clear that effective tools are 
necessary.  It is also clear that such tools are not yet 
                                                                 
 VTune is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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available today.  To exploit Hyper-Threading 
Technology effectively, multi-threaded applications are 
necessary, and tools to create those are key.   

CONCLUSION 
High clock rates combined with efficient utilization of 
available processor resources can yield high application 
performance.  As microprocessors have evolved from 
simple single-issue architectures to the more complex 
multiple-issue architectures, many more resources have 
become available to the microprocessor.  The challenge 
now is effective utilization of the available resources.  As 
processor clock frequencies increase relative to memory 
access speed, the processor spends more time waiting 
for memory accesses.  This gap can be filled using 
extensions of techniques already in use, but the cost of 
these improvements is often greater than the relative 
gain.  Hyper-Threading Technology uses the explicit 
parallel structure of a multi-threaded application to 
complement ILP and exploit otherwise wasted resources.  
Under carefully controlled conditions, such as the test 
kernels presented above, the speed-ups can be quite 
dramatic. 

Real applications enjoy speed-ups that are more modest.  
We have shown that a range of existing, data-parallel, 
compute-intensive applications benefit from the 
presence of Hyper-Threading Technology with no 
source code changes.  In this suite of multi-threaded 
applications, every application benefited from threading 
in the processor.  Like assembly language tuning, Hyper-
Threading Technology provides another tool in the 
application programmer’s arsenal for extracting more 
performance from his or her computer system.  We have 
shown that high values of clock cycles per instruction 
and per micro-op are indicative of opportunities for good 
speed-up. 

While many existing multi-threaded applications can 
immediately benefit from this technology, the creation of 
additional multi-threaded applications is the key to fully 
realizing the value of Hyper-Threading Technology.  
Effective software engineering tools are necessary to 
lower the barriers to threading and accelerate its 
adoption into more applications. 

Hyper-Threading Technology, as it appears in today’s 
Intel Xeon processors, is just the beginning.  The 

                                                                 
 Intel is a registered trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
 Xeon and VTune are trademarks of Intel Corporation or 
its subsidiaries in the United States and other countries. 

fundamental ideas behind the technology apply equally 
well to larger numbers of threads sharing additional 
resources.  Just as the number of distinct lines in a 
telephone network grows slowly relative to the number 
of customers served, Hyper-Threading Technology has 
the potential to modestly increase the number of 
resources in the processor core and serve a large 
numbers of threads.  This combination has the potential 
to hide almost any latency and utilize the functional units 
very effectively.   

APPENDIX: PERFORMANCE METRICS 
Using the VTune™ Performance Analyzer, one can 
collect several execution metrics in situ as the 
application runs.  While the Intel Xeon™ processor 
contains a host of counters, we focused on the following 
set of raw values and derived ratios. 

Clock Cycles 
The numb er of clock cycles used by the application is a 
good substitute for the CPU time required to execute the 
application.  For a single threaded run, the total clock 
cycles multiplied by the clock rate gives the total running 
time of the application.  For a mu ltithreaded application 
on a Hyper-Threading Technology-enabled processor, 
the process level measure of clock cycles is the sum of 
the clocks cycles for both threads. 

Instructions Retired 
When a program runs, the processor executes sequences 
of instructions, and when the execution of each 
instruction is completed, the instructions are retired.  
This metric reports the number of instructions that are 
retired during the execution of the program. 

Clock Cycles Per Instruction Retired 
CPI is the ratio of clock cycles to instructions retired.  It 
is one measure of the processor’s internal resource 
utilization.  A high value indicates low resource 
utilization. 

Micro-Operations Retired 
Each instruction is further broken down into micro-
operations by the processor.  This metric reports the 
number of micro-operations retired during the execution 
of the program.  This number is always greater than the 
number of instructions retired. 

                                                                                                       

 

 



Intel Technology Journal Q1, 2002. Vol. 6 Issue 1. 

Hyper-Threading Technology: Impact on Compute-Intensive Workloads  66 

Clock Cycles Per Micro-Operations Retired 
This derived metric is the ratio of retired micro-
operations to clock cycles.  Like CPI, it measures the 
processor’s internal resource utilization.  This is a finer 
measure of utilization than CPI because the execution 
engine operates directly upon micro-ops rather than 
instructions.  The Xeon processor core is capable of 
retiring up to three micro-ops per cycle.   

Percentage of Floating-Point Instructions 
This metric measures the percentage of retired 
instructions that involve floating-point operations.  To 
what extent the different functional units in the 
processor are busy can be determined by the instruction 
type mix because processors typically have multiple 
floating-point, integer, and load/store functional units.  
The percentage of floating-point instructions is an 
important indicator of whether the program is biased 
toward the use of a specific resource, potentially leaving 
other resources idle. 
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