
F# Web Tools: Rich client/server web applications in F#  

(Unpublished draft) 

  

 Tomáš Petříček Don Syme 

 Charles University in Prague Microsoft Research, 

 Faculty of Mathematics and Physics Cambridge 

 tomas@tomasp.net dsyme@microsoft.com 

 
 

Abstract 
 “Ajax” programming is becoming a de-facto standard for 

certain types of web applications, but unfortunately developing 

this kind of application is a difficult task. Developers have to 

deal with problems like a language impedance mismatch, 

limited execution runtime for the code running in web browser 

on the client-side and no integration between client and server-

side parts that are developed as a two independent applications, 

but typically form a single and homogenous application. In this 

paper we present the first project that deals with all three 

mentioned problems but which still integrates with existing 

web development technologies such as ASP.NET on the server 

and JavaScript on the client. We use the F# language for 

writing both client and server-side part of the web application, 

which lets us develop client-side code in a type-safe 

programming language using a subset of the F# library, and we 

provide a way to write both server-side and client-side code as 

a part of single homogeneous module defining the web page 

logic. This code is executed heterogeneously, part as JavaScript 

on the client, and part as native code on the server. Finally we 

use monadic syntax for the separation of client and server-side 

code, tracking this separation through the F# type system. 

Categories and Subject Descriptors D.1.1 [Programming 
techniques]: Applicative (Functional) Programming 

General Terms Languages 

Keywords ML, F#, Meta-Programming, Web Development, 
Ajax 
 

1. Introduction 
This paper is concerned with the following question: how do 

we bring the goodness of ML to web programming? That is, 

how do we bring the benefits of typed functional programming 

to the tasks that occupy the lives of the thousands of 

programmers who currently write web applications in 

JavaScript (on the client side) and PHP/VisualBasic/C#/ 

Java/Ruby (on the server side). This class of applications can, 

broadly speaking, be called Ajax1 applications. We show that 

the F# dialect of ML can be used to build homogeneous (i.e. 

single-language) type-checked client/server Ajax applications 

that are executed heterogeneously, as JavaScript in the browser 

and as native code on the server. Among other things this 

allows the construction of client-side functionality that takes 

advantage of the particular symbolic-programming strengths of 

ML. 

                                                                 
1 Ajax stands for Asynchronous JavaScript and XML, The Ajax name first 

appeared in [1]. 

As first summarized in [1] and later clarified in [2] Ajax 

applications typically perform the following tasks: they present 

data using (X)HTML and CSS in a web browser, they use 

asynchronous requests back to the server to dynamically load 

data on demand, and they update the displayed data using 

JavaScript code running in the browser. One important 

observation made in [2] is that this definition discusses only the 

client-side part of the application (running in a web-browser), 

but ignores the code running on the server-side, while in most 

of the situations these two parts are actually inseparable parts 

of a single application. Indeed, while an Ajax application 

executes primarily on the client side, it is authored on the 

server and served to the client in response to an initial HTTP 

request. Hence a program written in one language (the server-

side program) must serve and interoperate with a program 

writer in another (the JavaScript client-side program). This 

somewhat confused mix of multiple languages, staged 

computation and program generation means there is a real need 

for tools, languages and frameworks that make the 

development of these applications easier.   

In this paper we show how to solve three of the fundamental 

difficulties of web programming: the heterogeneous nature of 

execution, the discontinuity between client and server parts of 

execution and the lack of type-checked execution on the client 

side. We use the F# language [24], making use of recent 

additions including meta-programming via “quotations” [10], 

simpler manipulations of quotations via active patterns [11], the 

combination of object-oriented programming with functional 

programming [23, 24], and a monadic syntax akin to that of 

Haskell [24]. On the server side we use ASP.NET framework 

[9], because it is easily accessible from F#, though we believe 

that our approach could be used with many other web 

development tools, accessible via Mono [25]. We also discuss 

what language features are crucial for supporting particular 

features of the presented work. 

From a language point of view, our work presents the following 

interesting aspects: 

• We use meta-programming to write code that is executed 

across heterogeneous environments using a single 

homogenous language. As far as we are aware, we are 

first to use it for a web development scenario. 

• We present the first translator from an ML-family 

functional language to JavaScript, including the 

translation of ML core language constructs and as well as 

a subset of the F# and .NET libraries. We also show how 



native JavaScript components3 can be accessed from the 

source language in a type-safe way. 

• We discuss approaches that we are investigating for 

verifying that the part of the code which is intended to 

run on the client-side (and so will be translated to 

JavaScript) uses only functions and types that have a 

corresponding JavaScript implementation.  

The use of F# for developing both client-side and server-side 

parts of the application together with the fact that both parts can 

be written in single file (and in the case of class-based 

components even in a single component) allows us to achieve 

many interesting things from a web-development point of view 

as well. The contributions of this work from the web-

development perspective are: 

• We allow the use of F# “asynchronous workflows” 

(essentially monadic syntax for the continuation monad) 

in client side code, which makes it very easy to write 

non-blocking code (for example repeated server-side 

polling) that would be otherwise be written explicitly 

using events. 

• We present a mechanism for managing client-side state 

changes performed by server-side components during 

asynchronous callbacks to the server. 

• We show possible ways for developing a component 

based web development framework where interactions 

between components can be defined for both server and 

client side code in a uniform way. 

In the rest of the paper we first discuss the difficulties of the 

Ajax-style web development (§1.1), provide an overview of 

relevant F# language constructs and further discuss the 

background of web development in general (§0). Next we 

present an example where we use our project to write an 

application running in a web browser performing parsing and 

symbolic manipulations of the entered mathematical 

expressions (§2) and follow the example with detailed 

discussion of the used techniques (§3). In §5 we present an 

example of a data-driven web application for organizing 

lectures and describe aspects of our work important for that 

kind of applications. Finally, in §5 we discuss related work, 

mention possible future work and discuss the repeatability of 

the presented solution by reviewing all the important 

contributions of our work and looking at the language features 

that are important to make particular parts possible. 

1.1 Why Web Applications are Hard 
We start with a discussion of the reasons why developing Ajax-

style web applications is difficult.  

The first reason is that the environment available on the client-

side is limited in many ways – for better or for worse, the only 

language available in web browsers is JavaScript, which is not 

suitable for solving many of the problems that arise when 

developing complex web applications. There are also many 

incompatibilities between different JavaScript language and 

client-side library implementations. For these reasons some 

people (e.g., Meijer [4]) view JavaScript and related libraries 

only as an assembly language and runtime for compiling more 

complex languages and applications. This is also a view 

adopted in our work.   Put bluntly, we take as axiomatic the 

need to execute some ML code in JavaScript some of the time. 

This is in the same way we assume the need to execute some 

code as x86 machine instructions. This far-reaching 

                                                                 
3 By native JavaScript components we mean JavaScript libraries that don’t have 

corresponding representation in the source library (in our case F# and .NET class 

libraries) 

observation changes the whole way we should think about 

designing compilation hierarchies and tool support for our 

languages. Fortunately, the fundamental need to embrace 

heterogeneous execution has already been tackled in the 

context of F# [10]. 4 

The second problem is the discontinuity between server and 

client-side parts of the application – even for very simple 

applications both parts have to be written separately, in 

different languages and with explicit way of communicating 

between both sides. There are several projects that deal with 

language impedance mismatch [4, 5, 6], but only a few projects 

go beyond this and deal also with the separation of client and 

server-side code (Links language [3]). 

Another problem appears when using server-side frameworks 

such as ASP.NET or PHP. In these frameworks components 

(e.g. a calendar control, or a data list) exist only in the server-

side code and interactions between these are executed only 

when processing whole page requests from the client. On the 

client-side, the components behave like a black-box and there 

is no way to specify client-side interactions that are an 

important aspect of any realistic interactive web application. 

For example, a calendar control may need to interact with a 

data list control to show information according to the selected 

date. If the information is already available on the client then 

this interaction should not involve “going back to the server” to 

rebuild the entire page, as is required by ASP.NET, and 

achieving this kind of “smoothness” is part why people resort 

to Ajax-style programming in JavaScript. Some component-

based frameworks make it possible to define client-side 

components as well (for example [7]), but even with these 

extensions it is still impossible to define both server and client-

side properties of a component using a single interface.  

 Background 

In this section we first briefly discuss the F# language [8], its 

support for meta-programming including differences from a 

version described in [10], along with F# active patterns [11], 

used when manipulating F# meta-programs. We also 

informally describe a recent addition to F#: a monadic syntax 

akin to that of Haskell and which is very important for our 

work. We also introduce web development in general and 

changes in the understanding of web caused by a rise of Ajax 

based interactive web applications. 

1.2 F# Language and Runtime 

1.2.1 Core Language 
The F# language is documented on the F# web site [8] and [10] 

presented following description: “F# is a multi-paradigm .NET 

language explicitly designed to be an ML suited to the .NET 

environment. It is rooted in the Core ML design and in 

particular has a core language largely compatible with OCaml.” 

For our work it is important that F# supports mixed 

functional/OO programming and that it interoperates with the 

.NET platform, which allows us to use some parts of ASP.NET 

framework in our work. 

Object oriented constructs in F# are compatible with OO 

support in the .NET CLR, which means that F# supports single 

implementation inheritance, multiple interface inheritance, 

subtyping, and F# object types can have fields, constructors, 

methods and properties (a property is just a syntactic sugar for 

getter and setter methods). An example that introduces the F# 

syntax for object types is shown in Figure 1.  

                                                                 
4 At some point another execution technology may replace JavaScript as the 

ubiquitous, “baseline” execution machinery on the client side of web applications. 

However, even if that happens it is likely that the overall client/server application 

will still be heterogeneous, hence the lesson still remains. 



type MyCell(n:int) = 
  let data = n + 1 
  member x.Data = x.data 
  member x.Print() = printf “%d” x.data 
  static member FromInt(n) = new MyCell(n) 

Figure 1. Example of an object type with a field called data, a 

property called Data, an instance method Print, a static method 

FromInt and an implicit constructor that initializes the value of the 

field. 

1.2.2 F# Intensional Meta-Programming 
The meta-programming capabilities of F# and .NET runtime 

can be viewed as a two separate and orthogonal parts. The 

.NET runtime provides a way for discovering intensional (i.e. 

abstract syntax trees) for all the types and top-level method 

definitions in a running program: this API is called 

System.Reflection and is akin to reflection in Java. F# 

“quotations” [10] provide a way for working with selected F# 

expressions in a similar way. 

An important part of the .NET reflection mechanism is the use 

of custom attributes, which can be used to annotate any 

program construct accessible via reflection with additional 

metadata. The following example demonstrates the syntax for 

attributes in F# by adding Documentation attribute to a top-

level definition:  

[<Documentation("Adds one to a given number")>] 
let addOne x = x + 1 

F# quotations form the second part of the meta-programming 

mechanism, by allowing the capture of type-checked F# 

expressions as structured terms. There are two ways for 

capturing quotations; the first way is to use quotation literals as 

demonstrated in the following example (adopted from [10]): 

<@ 1 + 1 @>             : int expr 
<@ (fun x -> x + 1) @>  : (int -> int) expr 

The second option (which is used more often in our work) is by 

explicitly marking top-level definitions with an attribute that 

instructs the compiler to capture the quotation of the entire 

definition body: 

[<ReflectedDefinition>] 
let addOne x =  
  x + 1 

The quotation of a definition (which can be either function or 

class member) annotated using the ReflectedDefinition 

attribute is then made available through the F# quotation library 

at runtime using the reflection mechanism described earlier, 

however the definition is still available as compiled code and 

can be executed. 

The F# quotations also provide mechanism for splicing values 

into the quotation tree, which is useful mechanism for 

providing input data for further quotation processing. The 

operator for splicing values is the Unicode symbol (§) as 

demonstrated in the following example, where we use it for 

embedding a value that represents a database table6: 

<@ §db.Customers  
    |> filter (fun x -> x.City="London") @> 

Programmatic access to F# quotation trees uses F# active 

patterns [11], which allow the internal representation of 

quotation trees to be hidden while still allowing the use of 

pattern matching as a convenient way to decompose and 

                                                                 
6 This is a simplified example demonstrating a mechanism used in the latest 

version of the F# database access library (FLinq) presented in [10]. 

analyze F# quotations terms. One of the examples presented in 

[10] written using active patterns looks as follows: 

let sinExpr = <@@ sin @@>;; 
 
// Match with top-level definition pattern: 
let sinTopDefData, sinTypeArgs =  
  match sinExpr with 
    | AnyTopDefnUse(res) -> res 
    | _ -> failwith "no match";; 

1.2.3 F# Monadic Syntax 
The last feature of F# that is important for our work is the F# 

monadic syntax, which was introduced recently and hasn’t been 

described in the literature before. Since it is not part of our 

work, we will not describe it fully, but we need to introduce it 

at informally, because we use it later in this paper. 

Properties of a monadic type are defined by a builder type 

which specifies type of a monadic value and behavior of the 

bind and the return operators. The following code shows 

signature of an example type MBuilder, which builds a monad 

of type M: 

// Signature of the builder for monad M 
type MBuilder with 
 member Bind   : M<'a> * ('a -> M<'b>) -> M<'b> 
 member Result : 'a -> M<'a> 
 member Let    : 'a * ('a -> M<'b>) -> M<'b> 

The Bind and Result members specifies standard monadic 

operators, the Let operation is used when binding value of 

ordinary type in a monad (in most situations it could be 

expressed using Bind and Result, but F# defines it as a 

separate operation to give more control over binding). A 

sample implementation of a builder for a trivial monadic type is 

shown below: 

type M<'a> = unit -> 'a 
type MBuilder() = 
  member m.Bind(a,b) : M<'b> = b(a()) 
  member m.Result(a) : M<'a> = (fun () -> a) 
  member m.Let(v,f)  : M<'b> = f v 
 
// Instance of the builder will be used later 
let mb = new MBuilder() 

Having a monadic builder, we can now use a syntactic 

extension that makes it possible to write code that uses the 

monadic operations in a similar way as you would write 

ordinary F# code, as demonstrated in following example:  

mb { let  ordinary = 5 
     let! bound = mFunc() 
     ->   ordinary + bound } 

Here, mb is an instance of type MBuilder7 and mFunc is a 

function with signature unit -> M<int>. When using a 

ordinary value the let or do keywords are used (and these will 

be translated to a call to the Let operator), to bind a monadic 

value, we can use let! and do! keywords. The code de-sugars 

to explicit calls to monadic binders: 

mb.Let(5, fun ordinary -> 
  mb.Bind(mFunc(), fun bound -> 
    mb.Result(ordinary + bound))) 

In this paper we make use of the following constructs from the 

monadic syntax: 

expr = 
  | ident { mexpr } 

                                                                 
7 The main reason why the instance needs to be specified is that it gives the F# 

compiler knowledge about the monadic builder that should be used in the 

monadic expression. 



mexpr = 
  | let! pat = expr in mexpr monadic bind 
  | do! expr   monadic “unit” bind 
  | let pat = expr in mexpr regular bind 
  | do expr   regular “unit” bind 
  | if expr then mexpr else mexpr conditional 
  | match expr with (pat -> mexpr)+   match 

F# monads differ from Haskell monads partly in that it is not 

possible to write code that is generic over the kind of monad 

being used. We haven’t found that a problem in practice, 

mainly because monads are used less frequently in F# 

programming than in Haskell. 

1.3 Web Programming 
In the recent years, the use and understanding of the World 

Wide Web has changed and applications that work on 

principles different to those originally envisaged for the web 

are appearing [13]. These applications are based on immediate 

interaction with the user and combine the behavior of desktop 

applications and traditional web applications. 

Developing highly interactive applications8 is a difficult task, 

partly because this requirement wasn’t envisaged in the original 

web standards, e.g., many problems are caused by the stateless 

nature of the HTTP protocol. The use of the page as a unit of 

display also results in awkward techniques where reloads of an 

entire application in the web browser are required to updated 

simple elements of the client-side display. 

Many of the frameworks that are currently used for web 

development try to abstract from the underlying technologies. 

A very common abstraction is composing pages from reusable 

server-side components that hide the complexity of building 

complex user interfaces. The application then defines only 

interactions between the components. In the presented work we 

use some parts of ASP.NET, which follows this model, 

however we use only the component model and only in one 

part of our work, so most of the work is independent to this 

technology and the rest could be easily adapted to use different 

model.  

1.3.1 Control-flow in Web Applications 
Ajax was introduced [1] as a name for a set of technologies that 

allow writing interactive web applications that share some 

common aspects with desktop applications. Most of the 

technologies that form Ajax were available before the name 

appeared and now the name is used more to describe the 

control flow of a class applications than the particular 

technology that is used to implement that control flow.  

The differences between control flows are demonstrated at 

Diagram 1, which represents initial request and one page 

update traditional web application and Diagram 2, which 

represents the same operation in an Ajax application. 

 

Diagram 1. Control flow of traditional web application 

                                                                 
8 Here we understand application only as one of the possible types of web 

contents, which have much closer to a desktop applications than to a page that 

presents (to some point) static data and we will follow this understanding in the 

rest of the paper.  

In the traditional web application (Diagram 1) the client first 

requests a page (using HTTP request), the server code is 

executed and response, which consists only of data (HTML 

markup, images, etc.) is sent to the client. When the client 

wants to view other data or wants any update from server, it 

needs to send another HTTP request and refreshes the entire 

page. 

 

Diagram 2. Control flow of interactive "Ajax" application 

In an Ajax application (Diagram 2), the client initiates with a 

request to the server, but the answer from server consists of 

data and client-side JavaScript code, which will start executing 

on the client side as soon as it is received. When the user wants 

to display different data or perform any interaction with server, 

the client-side code sends an asynchronous request to the 

server, which generates a response and sends it back to the 

client. The client than processes the response (using JavaScript) 

and updates the displayed content according to the data it 

received.  

1.3.2 Client-Side Runtime Environment 
The previous section shows that in Ajax based applications, the 

client-side part of the application is getting more important and 

more complex as well, because it is responsible for sending 

asynchronous requests to the server and processing the 

responses, updating the user interface on the client and also 

performing possible computations to minimize server 

workload.  

A typical requirement for a web application is to work correctly 

in all frequently used browsers and platforms, which limits the 

choice to JavaScript9. Some projects (for example [15]) attempt 

to provide extended environment running on multiple 

platforms, but the range of platforms supporting JavaScript is 

still much wider. 

2. Example: Web Symbolic Manipulation 
In the first example we use F# to develop an application 

running as a JavaScript code in a web browser that performs 

tasks that are traditionally easy to solve in a functional 

language. The presented application performs tokenization and 

parsing of the entered text and produces an AST representing 

elementary mathematical expressions. Further, the application 

performs symbolic differentiation and simplification of the 

expression, everything running “live” in the web browser, 

despite the fact that the application is originally authored as a 

server-side program. The running application as well as source 

code for all the samples mentioned in this paper is available at 

our web site (http://tomasp.net/fswebtools [16]). Figure 2 

presents a screen-shot of a running application. 

                                                                 
9 By JavaScript we mean implementation corresponding to the ECMA-262, 

edition 3 [14] standard published in 1999, which is supported in most of the web 

browsers. The draft for JavaScript 2.0 (edition 4 of the ECMA standard) was 

recently published, but it is unlikely that it will be supported by all main-stream 

web browsers soon. 



2.1 Parser Functions 
The parser is implemented as a set of functions in a single F# 

module. The signatures of exported functions as well as a type 

used to represent AST tree are shown in Figure 3. 

 

Figure 2. Symbolic manipulation code written in F# and running as 

JavaScript code in the web browser 

type AstNode =  
  | Number   of float 
  | Var      of string 
  | Binary   of char * AstNode * AstNode 
  | Unary    of char * AstNode 
  | Function of string * (AstNode list) 
 
[<NeutralSide>] 
module Parsing = 
  val tokenize : string -> Token list 
  val simplify : AstNode -> AstNode 
  val prettyPrint : AstNode -> string 
  val parse : Token list -> AstNode 
  val getVars : AstNode -> ResizeArray<string> 
  val eval : AstNode * (string -> float) -> float 
  val differentiate : AstNode * string -> AstNode 

Figure 3. Signatures of functions available in the sample and types used 

for representing AST. 

The module is marked using a NeutralSide attribute, which 

means that functions contained in it are implemented using 

library functions and types that are available on both the client-

side and the server-side execution environments – it is not 

using any types or functions that could be executed only at 

client-side (like displaying browser dialog box) and no server-

side only code (for example accessing the database). The 

verification of these rules is a separate topic discussed in §3.2. 

The following example shows a simple evaluation function 

written in F# and we later show the JavaScript code generated 

by our translator: 

let evaluate(nd, varfunc:string -> float) =  
  let rec eval = function 
    | Number(n) -> n 
    | Var(v) -> varfunc v 
    | Binary('+', a, b) ->  
        let (ea, eb) = (eval a, eval b) 
        ea + eb 

    | _ -> failwith "unknown" 
  eval nd 

The code has a few interesting aspects from compiler point of 

view – it uses higher order functions to read values of variables 

in the expression, it defines inner recursive functions and it is 

written using pattern matching on algebraic data type 

representing the AST.  Our translator produces following 

code11: 

function evaluate(nd, varfunc) { 
  var eval = (function (matchval) { 
    if (true==matchval.IsTag('Number')) 
      return matchval.Get('Number', 0); 
    else { 
      if (true==matchval.IsTag('Var'))  
        return matchval.Get('Var', 0); 
      else { 
        if (true==(matchval.IsTag('Binary') &&   
             createDelegate(this, function() { 
                 var t = matchval.Get('Binary', 0); 
                 return t = '+' 
               })())) { 
          var c = matchval.Get('Binary', 0); 
          var a = matchval.Get('Binary', 1); 
          var b = matchval.Get('Binary', 2); 
          var t = CreateObject(new Tuple(), [a,b]); 
          var ea = t.Get(0); 
          var eb = t.Get(1); 
          return ea + eb 
        } else { 
          return Lib.Utils.FailWith("unknown op."); 
        } 
      }     
    } 
  }) 
  return eval(nd); 
} 

Figure 4. JavaScript code generated for the F# evaluate function. 

Since JavaScript supports first-class functions directly, there is 

no special handling required in the translator. F# data types like 

tuples and algebraic data types are not directly supported in  

JavaScript, so the translator uses two simple objects to emulate 

them. The type representing all algebraic data types supports 

method IsTag, which tests if algebraic data type contains 

specific value and Get, which reads one of the stored values. 

The type representing tuple has only Get method for accessing 

specified item (this implementation relies on the fact that 

JavaScript has runtime type checking). 

The technique used for translating F# to JavaScript is further 

described in section §3.1, where we mention other problematic 

topics, like difference between expression and statement in 

JavaScript, different variable scoping etc. 

2.2 Integrating Client and Server Code 
One of the goals of our work is to make it possible to write a 

single file of code that overall represents the behavior of one 

web application, but where portions run in multiple different 

environments. In the parser example, the page uses functions 

from the Parsing module described above and contains 

following functionality: 

• The entered expression is visualized using HTML (the 

visualization is being updated as you enter the 

expression). 

• The expression is simplified and symbolic differentiation 

is calculated as the expression is entered. 

                                                                 
11 In our current implementation, the generated code is more complex, due to the 

use of the if as an expression in functional languages (all conditional expressions 

in this example were changed to statements with imperative return); however we 

plan to implement this simplification as a special case. 



• When expression changes, it is sent to the server-side, 

which renders a graph of the function and sends response 

with the generated image URL. 

First two operations involve executing only client-side code (a 

callback utilizes functions from the Parsing type declared 

earlier), but for the third operation, the client-side code needs to 

collaborate with the server side-code (a server-side function 

draws a graph and sends its address back to the client). The 

following code shows initial portions of three F# functions:  

TextChanged and Process are executed on the client side and a 

function called GenerateImg that draws a graph of the entered 

function, executed on the server-side. The functions are all 

members of the same “page” object. Calls between the client 

and server-side will be discussed shortly.  

member this.TextChanged (s:obj, e:EventArgs) =  
 client 
  { let t = Parsing.Tokenize(this.txtInp.Text);          
    do! this.Process(Parsing.Parse(tokens)) } 
 
member this.Process (ast:AstNode) =  
 client 
  { ... }  
 
member this.GenerateImg (expr:string) =  
 server  
  { ... } 

Figure 5. Example shows subset of page interaction logic of the 

symbolic manipulation application. It contains one server and two 

client-side functions.12  

In this code, each function body is wrapped inside an F# 

monadic block, using either server or client to identify type 

of the monad, ClientM or ServerM respectively. In all we make 

use of three monadic modalities in this paper: 

Builder Monadic Type Modality 

client ClientM<'a> Client-side code 

server ServerM<'a> Server-side code 
client_async ClientAsyncM<'a> Client-side non-blocking code 

Using a typed solution is very appealing – thanks to the 

monadic syntax, the type of the server-side code is not 

compatible with the client-side code and vice-versa.  

Note that monadic typing is not being used to write pure 

programs: in particular you can use regular F# programming 

side effects from both the client-side and server-side, as is 

always the case in ML programming. This is done by using the 

do and do! constructs of the monadic syntax discussed in §2. 

In essence monadic syntax and typing is used to specify a 

modality for mixed functional/imperative code. We are using 

monads to tame control modalities, not to tame side-effects. 

This is partly because we can’t expect that users will use only a 

fixed set of monadic side-effecting operations, if only because 

of the need to reuse F# and .NET standard libraries. 

Additionally, when an entire module or file has the same 

environment affinity the monadic syntax feels too verbose. 

Verification of the modal correctness of the code is further 

discussed in section §3.2. 

The types of the three functions defined in Figure 5 are 

following: 

TextChanged : obj * EventArgs -> ClientM<unit> 
Process     : AstNode         -> ClientM<unit> 
GenerateImg : string          -> ServerM<unit> 

                                                                 
12 All client-side members has to be annotated using ReflectedDefinition 

attribute, however we omit it in the examples, because it is not directly relevant 

for logic of our code. 

Using the monadic bind operator (do! or let! in F#), it is 

possible to call client-side function from other client-side 

functions – as demonstrated in Figure 5, where function 

TextChanged calls function Process using the do! operator. 

Writing a code that tries to call client-side code from a server-

side code causes a type mismatch, because in such code, the 

do! operator expects a value of type ClientM<unit>, but is 

given a value of ServerM<unit>. Therefore the following code 

fails to type-check: 

member this.ClientCode () =  
 client  
  { -> () }  
member this.ServerCode () =  
 server  
  { do! this.ClientCode() }  

If the code is written in this way, the type system ensures that 

the calls between modal functions are correct. 

This way of separating code that is executed in different 

environments is also extensible. We discuss several possible 

extensions later in future work and summary (§5). 

2.3 Asynchronous Server Callbacks 
Asynchronous calls back to the server from the client-side code 

are key aspects of Ajax applications. Traditionally in JavaScript 

these are implemented using events, so that the program 

registers a function to be called when response is received (and 

continues executing on the client-side). In this paper we call 

code that executes by de-scheduling at all blocking I/O 

operations and rescheduling via the event loop “asynchronous” 

code. 

In the symbolic manipulation example we use asynchronous 

code to refresh the graph of the function. We want to 

implement the behavior so that the program checks for changes 

in the expression periodically, but never sends more than one 

request to the server and performs checking for the change with 

some delay (to prevent server overloading when typing an 

expression). 

member this.RefreshImage(lastExpr) = 
 client_async 
  { do! Timer.SleepAsync(1000) 
    let newExpr = this.txtExpr.Text 
    if (lastExpr <> newExpr) then 
      let! url = serverExecute 
        (this.GenerateImg(newExpr)) 
      match url with  
        | Some(u) ->  
           do this.lDrawMsg.Text <- "Success" 
           do this.imgGraph.ImageUrl <- u; 
        | _ -> 
           do this.lDrawMsg.Text <- "Failed!"  
     do! this.RefreshImage(currentExpr); } 

Figure 6. The function that checks for changes in the entered 

expression and refreshes the displayed function graph. 

member this.Client_Load(sender, e) = 
 client 
  { do! asyncExecute(this.RefreshImage("")); }   

Figure 7. Function that starts the refresh loop when page is loaded on 

the client-side. 

Figure 6 shows a function that checks for the changes in the 

input field (accessed via this.txtExpr) and updates URL of 

image element on the page (this.imgGraph) and updates status 

label (this.lDrawMsg). To denote that the code is executed 

asynchronously, it is defined in a different monad type, 

identified by the client_async value. This monadic type is not 

compatible with the ClientM<'a> type mentioned earlier and 

so we need an explicit function call to execute it as 



demonstrated in Figure 7. The call to a server-side code also 

has to be done using an explicit function call which transforms 

monadic type. The two functions that are used in this example 

have following signatures: 

asyncExecute  : ClientAsyncM<'a> -> ClientM<'a> 
serverExecute : ServerM<'a> -> ClientM<'a> 

The do! and let! operators in the client_aysnc block of 

course accept only other ClientAsyncM code, which allows us 

to write a recursive call at the end of the function (which itself 

has signature string -> ClientAsyncM<unit>). This typing 

property also prevents users from writing a code that would 

block the browser user interface, because calls back to the 

server can be done only from an asynchronous modality. 

The ClientAsyncM monad is essentially an implementation of 

the continuation monad, where computations have type (unit 

-> 'a) -> unit13. This is implemented in F# code that is 

translated to JavaScript. This also means that it is possible to 

write primitive asynchronous functions as needed – to 

demonstrate this we show source code of the asynchronous 

sleep function which stops the execution for specified amount 

of time at Figure 8. The generated JavaScript code is 

demonstrated at Figure 9. The F# code isn’t significantly 

shorter, but was much easier to write thanks to the static typing 

guarantees. 

let SleepAsync(ms:int) : ClientAsyncM<unit> =  
    PrimitiveStep (fun cont ->  
        let t = new Timer();  
        t.Interval <- ms; 
        t.Elapsed.Add(fun (sender, e) ->  
          t.Stop(); 
          cont() ) 
        t.Start(); ) 

Figure 8. F# source code for the SleepAsync function. 

function SleepAsync(ms) { 
  return PrimitiveStep(createDelegate(this,  
    function (cont) { 
      var t = CreateObject(new Timer(), []); 
      t.set_Interval(ms); 
      t.get_Elapsed().add(createDelegate(this,        
        function (sender, e) { 
          t.Stop(); 
          cont();  })); 
      t.Start(); })); 
} 

Figure 9. JavaScript generated for the SleepAsync function. 

When calling server-side function with arguments, or when the 

server-side function returns a value, the data needs to be 

serialized and sent over network. Aside from core F# types 

(tuples, records, lists, arrays, and algebraic data types) we also 

need to provide mechanisms for using certain types of objects 

that are used often in F# programming. This topic is further 

discussed in section §3.2 and §3.3. 

3. Translation Techniques 
The basic translation step is that we analyze the loaded 

application during the web request using reflection and 

determine what parts of the page should be executed on client 

side. We than read the quotation data of the appropriate parts of 

the application and translate them to JavaScript. The rest of the 

code that should be executed on server side is runs as a regular 

.NET program on the server side. 

                                                                 
13 This can be read as “a function that will generate an 'a value sooner or later 

and till call the continuation when it’s available” 

3.1 Translating F# to JavaScript 
The presented translator understands with a few exceptions all 

F# language constructs and also uses of standard F# types 

(algebraic data types, records, tuples, lists and arrays). 

Implementing support for most of the functional programming 

constructs used in F# in JavaScript was a relatively easy task, 

because JavaScript supports first-class functions and emulating 

basic algebraic data types and tuples using objects is 

straightforward. Additionally, no special care is needed to 

support list types, because lists are represented in terms of 

unions. To support sending of values from client-side code 

back to the server-side we need to preserve type information 

for all values, so we can deserialize the type correctly on the 

server-side.  

There are however a few difficulties with the JavaScript 

language that we find interesting and that could be helpful for 

future “JavaScript” generators as well. The first is that 

JavaScript distinguishes between statements and expressions 

and so we need to find a way for generating JavaScript 

expressions from a code that produces JavaScript statement. 

Typical example of code that produces a statement is sequence 

of expressions (“a; b”). We also need to treat conditional 

expression with unit return type and conditional expression 

that return a value as distinct cases.  

The second problem that we encountered is different variable 

scoping in JavaScript. According to the specification, the scope 

of any variable is the entire function from where the variable 

was defined. This can cause problems when translating a code 

where one variable is re-used during the execution, for example 

the index variable in a for loop. The following code creates an 

array of lambda functions in a for loop: 

var f = []; 
for(var i=0; i<10; i++)  
{ 
  var x = i;  
  f.push(function() { document.writeln(x); }); 
} 
for(var j=0; j<10; j++) 
  f[j](); 

In JavaScript i is a mutable variable, and using it directly in a 

lambda function would capture it as an “l-value”, i.e. a 

reference to the variable, however using x to store value locally 

in the for loop (as we did in the example) doesn’t help – the 

scope of the x variable is the entire function body and value of 

x is mutated during execution. Our translator resolves this issue 

by generating a new JavaScript function to capture the variable 

scope as it is used in F#: 

var f = []; 
for(var i=0; i<10; i++) (function()  
{ 
  var x = i;  
  f.push(function() { document.writeln(x); }); 
})(); 
for(var j=0; j<10; j++) 
  f[j](); 

Next issue is that JavaScript doesn’t support tailcalls. Two 

possible ways for supporting this are mentioned in [3]. One 

option is to use the JavaScript setInterval function which 

executes the given continuation in newly created context (after 

a specified time), the second option is to generate a trampoline 

(i.e., wrap a call in a loop and throw an exception with a 

continuation when depth reaches some level). The recursive 

function in Figure 6 used a Timer.AsyncSleep, which is 



internally using a setInterval, so it didn’t suffer from this 

problem14. 

Since part of this work requires interoperation with the class-

based object oriented ASP.NET framework, the translator 

supports F# object types as well. JavaScript uses prototype-

based OOP, while F# uses class-based OOP style. To overcome 

this distinction, we use an ASP.NET AJAX JavaScript 

framework for class-based OOP simulation [7]. Since the code 

is generated automatically, this is sufficient solution, because 

developers don’t have to learn how to use the class-based 

extensions. 

3.2 JavaScript Mappings 
When writing client-side applications we need to access to 

native JavaScript components that don’t correspond to any F# 

or .NET library type, for example functions that manipulate the 

DOM15. To allow accessing to these functions from F# we first 

need to define a new mock type with functions of the right 

signatures and annotate it using attributes that define the 

JavaScript code that implement the function. The following 

code demonstrates how a mapping can be defined for the 

JavaScript window.alert function: 

[<Mapping("window", MappingScope.Global,  
          MappingType.Field)>] 
type Window =  
  [<Mapping("alert", MappingScope.Member, 
            MappingType.Method)>] 
  static member Alert (message:string) =  
    (raise ClientSideScript:unit) 
  ... 

Figure 10. Mapping for the window.alert function. 

The purpose of this mock type is just to provide a type-safe 

specification to use from client-side F# code. It is not expected 

that the code will be executed, so the body just raises an 

exception. Ideally it should be possible to verify during the 

compilation that the code will never be executed, the ways 

adopted in this work as well as possible improvements are 

described in §5.2.1. 

The mapping in Figure 10 is defined using the .NET attribute 

Mapping which specifies the name in the target code, and the 

scope (which can be Global for global variables or functions 

or Member for accessing object members like methods or fields) 

and type of the target construct, which can have one of the 

values shown in Figure 11. During the translation process, all 

uses of functions annotated using this attribute will be replaced 

with the defined native call. 

type MappingType =  
| Method // <inst>.Foo(<args>) 
| Property // <inst>.set_Foo/get_Foo(<value>) 
| Field  // <inst>.Foo 
| Object // new Foo(<args>) 
| Inline // Foo(<args>) 

Figure 11. Type that specifies target language construct for translation 

from F# to JavaScript. 

3.3 External Types and Modules 
The second type of mapping that the translator performs allows 

client-side code to use types and modules that exists in the F# 

or .NET library, but where these don’t define JavaScript 

mappings using attributes. We want to allow using such types 

in the client-side code, because it removes the need to duplicate 

standard library types and makes programming much more 

                                                                 
14 In our current implementation we don’t automatically generate any of the two 

possible options, but we plan to implement one of the outlined solutions. 
15 DOM (Document Object Model) represents a way for manipulating the 

displayed page and HTML elements in the browser. 

uniform. Also some types and functions are very closely tied 

with the F# language (for example replacing standard String 

type would be very difficult).  

In the symbolic manipulation we used a type displayed at 

Figure 12 to represent the internal state of the parser. The uses 

the .NET collection type Stack<'a> which is available in the 

client-side code thanks to the external type mappings, so we 

will use it to show how external mappings can be defined.  

type Env =  
  { Nodes:Stack<AstNode>;  
    Operators:Stack<Operator>;  
    lastIdent:bool; } 

Figure 12. Type representing internal state of the parser. 

The external mappings can be defined for types and modules 

from the standard F# and .NET libraries and are simply 

types/modules that have the same structure as the original 

types/modules, but which can be used on client-side, which 

means that it can consist of client-side F# code (when we need 

to re-implement the functionality) or mappings to native 

JavaScript components (when the same functionality already 

exists in JavaScript). 

The example at Figure 13 demonstrates mappings for .NET 

Stack<'a> type, declared as a client-side type and for the Int32 

type that combines use of mapping to native JavaScript code 

and re-implementations of certain functions. 

[<ClientSide; ExternalType(type Stack<obj>)>] 
type Stack_CS<'a> = 
  member this.Push(v:'a) = 
    this.lst.Add(v) 
 
  member this.Pop() =  
    ... 
 
[<ClientSide; ExternalType(type Int32)>] 
type Int32_CS = 
  [<Mapping("Lib.Convert.ToString",    
      MappingScope.Global, MappingType.Method)>] 
  member this.ToString() : string =  
    (raise ClientSideScript) 
 
  static member Parse(s:string) = 
    ... 

Figure 13. Mapping for .NET types Stack<'a> and Int32. 

We found that the combination of client-side code translated to 

JavaScript, mappings to native JavaScript functionality and 

mappings to re-implemented functionality is a very powerful 

combination that allows us to define an entire client-side library 

for our project in a type-safe way using F# alone. Even 

advanced functional programming such as the monadic 

constructs mentioned earlier in §2.3 are written purely in F#. 

3.4 Environment Separation 
The environment (i.e. modality) where the code can be 

executed is determined either by a monad type (when using a 

monadic syntax) or by an attribute that specifies the 

environment explicitly. The type system ensures that calls 

between functions written using monads are correct; however 

for verifying the rest of the rules we decided to design an 

extension to the F# compiler, that checks if types are used in 

the right contexts, where context can be either a monadic block 

or a module/class annotated using a specific attribute. 

Implementation of this extension is further discussed in section 

§5.2.1.  

The rules that need to be verified are following: 



• Standard F# types (tuples, algebraic data types, records, 

lists and arrays) are treated as neutral and can be used in 

both environments16. 

• F# and .NET library types and functions from modules 

are treated as neutral only when JavaScript mapping 

defined using external type mechanism described earlier 

exists, otherwise can be used as a server-side only. 

Modules and classes defined by the user need to be annotated 

using one of the following attributes: 

• NeutralSide – Code marked using this attribute will be 

treated as neutral and can call only other neutral code. 

• ClientSide – The entire type/module can be used only at 

client-side and it can call only neutral or client-side code. 

• MixedSide – Every member of the type/module marked 

using this attribute explicitly define the environment 

using monadic type (client or server), all members 

that are not annotated are treated as server-side. 

• All other types and modules are treated as server-side 

only (and we still need to verify that they don’t call any 

client-side only code). 

4. Example: Lecture Organizer Web 
In the second example we focus on data driven web 

applications, by which we mean applications that display some 

data from the database using different views, allow users to edit 

the data and so on. We use our project to develop an 

application for planning lectures that has the following 

behavior: 

• The web site contains a calendar where user can select a 

date and a list of lectures for the selected date. If the list 

contains more than specified number of lectures, the data 

spans across multiple pages. 

• When the user selects a different date in the calendar the 

first page with lectures for the selected date is loaded, 

without reloading the entire page. 

• When user clicks on the “next” or “previous” button, the 

displayed data change (without reloading the page) and 

the label with information about current page is updated. 

Figure 14. Screenshot of the lecture organizer sample application. 

The page is composed from two parts. HTML markup defines 

the overall look of the page and instantiates controls from 

which the page is composed (calendar, data listing, etc…). The 

second part is F# source code that defines page logic and 

interaction between the controls. Part of the source for the 

lecture organizer example is displayed at Figure 15. 

                                                                 
16 With limitation that members declared on standard F# types (other than classes) 

can’t be used. In future we plan to unify model used for classes and for standard 

F# types. 

[<MixedSide>] 
type Meetings = 
  inherit ClientPage 
 
  [<DuplexField>] 
  val mutable selPage : int 
  val calDate : Calendar 
  val listLectures : Repeater 
  val imgWait : Image 

 
  member this.UpdateData () =  
   server 
    { let dt = this.calDate.SelectedDate 
      let ds = Db.LoadPage(dt, this.selPage) 
      do! this.listLectures.SetData(ds) } 
 
  member this.NextPage (sender, e) = 
   client 
    { do  this.selPage <- this.selPage + 1; 
      do  this.imgWait.Visible <- true; 
      do! asyncExecute 
           (client_async 
             { do! serverExecute(this.UpdateData()) 
               do  this.imgWait.Visible <- false }} 
  ... 

Figure 15. Code that loads lectures for the next page. 

4.1 State Management 
In this section we explain how the code in Figure 15 executes, 

but first let us shortly explain what motivates the 

implementation. One of the goals of our work is to make it 

possible to compose the application from several independent 

components, because it allows users to develop controls that 

can be easily reused in multiple applications. The developers of 

the controls will typically want to expose some functionality 

that can be limited to a specific environment (server or client 

side).  

In the earlier example with symbolic manipulations, the 

integration between client-side and server-side was 

implemented explicitly – the client-side code called a function 

on the server-side and processed the returned results, but for 

developing controls we require a slightly different semantics. 

When some functionality of the control is invoked from the 

server-side code of the page, we want it to behave like a self-

contained operation, but in the case of pure functions we would 

have to collect all results and invoke controls after returning to 

the client-side again to update its visual representation. 

Alternatively the execution control could be transferred 

between server and client-side during the execution, but in the 

case of complex server-side code involving updates of many 

controls, this would lead to poor performance. 

In the presented implementation, state management is another 

aspect of the server monad, which allows controls to record 

state changes that should be performed on the client-side. We 

can see where this occurs in the Figure 15, when we look for 

uses of the do! operator, which represents monadic bind and so 

can be used for accumulating state changes that will be sent to 

the client-side. In the sample code it is used only when calling 

SetData to set the displayed list of lectures and indeed this is 

the only place where state needs to be collected in this 

example. 

When the NextPage function calls a server-side instance 

method of the page (UpdateData) using serverExecute, the 

object that represents page is created on the server-side 

including all members that represent controls (for example 

calDate for the calendar) and values of all fields marked using 

DuplexField attribute are sent from the client as well (in this 

example we need to access index of the selected page from 

both server and client sides). Than the code in the server monad 



is executed, collecting all changes to the state of particular 

controls and finally the state changes together with the function 

return value are sent as a response back to the client, which 

applies all the collected state changes to the client-side state. 

The use of a primitive operation that collects a single state 

change is show at Figure 16.  

member this.SetData(data) =  
 server 
  { do! „(§this).set_ClientData(§data)“ } 
 
member this.set_ClientData(data) = 
 client  
  { let html = (* ... generate html ... *) 
    do  this.InnerHtml <- html; } 

Figure 16. Implementation of the SetData member in the Repeater. 

The implementation of the Unicode double quotation mark 

operator17 („ ... “) uses a quotation template literal (the 

compiled representation of the F# quotations as described in 

[10]) with spliced values to capture the essence of the operation 

to be performed. As we already described in §1.2, the operator 

(§) splices a value of the expression in the quotation tree, 

which means that in the example at Figure 16 we get a tree 

representing a call to the set_ClientData function with a 

spliced value referencing the control and a spliced value 

referencing the data as an arguments. Using this information 

the operator produces a server monad value which represents 

the invocation and when the execution of the server side code 

completes, the client side function set_ClientData is called. 

5. Summary 

5.1 Related Work  
From our point of view there are two problems that need to be 

investigated in the web programming. The first problem, which 

is the complexity of writing client-side code, can be solved by 

replacing JavaScript altogether, extending JavaScript as a 

language or by providing a compiler from another language to 

JavaScript. The extensions to the language can be written as a 

set of functions that capture common programming patterns, as 

in [7] which contains a layer for emulating .NET programming 

patterns. The compiler to JavaScript can take a low-level 

language as an input (like Java bytecode in [5] or .NET IL in 

[4]), in which case it can become very complex, or it can take 

high-level language (for example C# in [6] or Links language 

in [3]). Another promising approach to the development of the 

client side code was presented in [26], which enables use of the 

functional reactive programming style for describing client side 

behavior in a language based on JavaScript, which is compiled 

to an ordinary JavaScript code. 

The second problem is the integration between client and 

server-side code. There are many attempts to make it possible 

to use the same programming language for writing client and 

server-side code, but integrating code for both sides in one 

program is more difficult problem and there are only a few 

projects that attempt to solve it (one of them is the Links 

project [3]). 

There are a several projects that try to solve some of the web 

development problems mentioned in this paper. The following 

table shows a summary of several possible approaches and the 

projects that follow them. Our project is displayed under a 

code-name F# Web Tools as well. 

 

 

                                                                 
17 Alternatively we also allow <@! ... !@> syntax. 

 Client  

Language 

Client  

Runtime 

Server  

Language 

Integrated 

Code 

MS AJAX JS
‡
 JS Any no 

Script# C# JS Any no 

GWT Java/bytecode
†
 JS Any no 

Volta C#/VB/.NET
† 

JS Any no 

Silverlight .NET .NET Any no 

Links Links JS Links yes 

F# WT F# JS F#, ASP Yes 

Figure 17. Comparison of several approaches to web programming. 
† Language support depends on completeness of the decompiler from 

low-level code (bytecode in case of GWT or IL in case of Volta).  

‡ With several extensions that emulate .NET programming patterns. 

Commercially used frameworks based on OO principles focus 

mostly on server-side component-based development and 

providing a way for describing client-side interactions between 

components. In ASP.NET AJAX [7] or Backbase [12] this can 

be done by specifying declarative descriptions of the 

interactions using XML that are processed by a native 

JavaScript engine which is part of the framework. Declarative 

definitions are easier to write and can be also easily verified for 

correctness to some point, but are limited in what interactions 

they allow users to define and require knowledge of domain 

specific (XML based) language that is specific for every web 

framework.  

The second problem that we deal with is the language 

impedance mismatch. Solving this problem in the web-

development field is one of the main goals of the Links project 

[3, 17] where the Links language is compiled and executed 

differently when running on client, server and when accessing 

the database. The translation to JavaScript can be done from a 

high-level programming language as in Links project (which 

takes the functional Links language as a source) and in Script# 

[6] (which takes C# as a source language) or from a low-level 

language. Low level language translation from Java bytecode is 

performed by Google Web Toolkit [5] and from the .NET IL 

by Volta [4]. The overall complexity of our implementation 

stack is very low in comparison to these approaches: our entire 

translator and library mappings consist of approximately 3,000 

lines of F# code and only a handful of lines of bespoke 

JavaScript. This has convinced us that the foundational 

elements offered by F# combine to give by far the best 

environment for applied heterogeneous execution of this kind, 

regardless of whether F# Web Tools becomes the world’s 

biggest web-development platform or not. 

In the .NET environment, abstractions for data access were 

investigated in [18] and [19] and are being implemented 

commercially in [20]. In F# the data-access without a language 

impedance mismatch is presented in [10]. 

The integration between code executed on the client-side and 

server-side in our work is tight, but the calls between different 

execution environments are explicit. A very interesting 

approach for the integration of sides is used in Links [3], where 

the entire code is compiled to a continuation passing style code 

and calls different environments are allowed implicitly. 

Another project that allows tight integration between execution 

environments is the HOP language [21]. 

Other related projects that focus mostly on the language 

impedance mismatch (like [4, 5, 6]) don’t provide any direct 

integration between client-side and server-side code, but allow 

using RPC or Web Services for invoking server-code from the 

client side. 



Another aspect of web programming is the separation between 

web design aspects (CSS, HTML, etc…) of the page and the 

application logic (e.g., F# code). Our implementation is based 

on ASP.NET [9] where this separation is directly supported. 

The advantages of separating application logic from HTML 

markup are also discussed in [22], but its implementation in 

projects that integrate client and server-side code is not very 

common and most of the related projects [3, 5, 21] work with 

HTML markup directly from the language, however [17] 

discusses several possible abstractions in the future work 

section. 

A different approach for simplifying development of the client-

side code is taken in the Silverlight project [15], which requires 

installation of a web-browser plug-in instead of producing 

JavaScript code. We can see Silverlight as another execution 

environment, because it is able to execute .NET IL code and 

supports a limited set of standard libraries, but since it doesn’t 

provide any mechanism for integrating client and server-side 

code it might be interesting to extend our project to support 

Silverlight as another target client-side environment. 

5.2 Future Work 

5.2.1 Verification using Compiler Extensions 
In the section §3.4 we informally described a rules that have to 

be verified in order to ensure that the environment separation of 

the program is correct, even in the parts that are not written 

using monadic typing. 

To verify these rules we are working on a compiler extension 

for F#18, which will allow code checking mechanisms to be 

added to the F# compiler. In general we think that compiler 

extensibility would be very helpful in any meta-programming 

scenario where the code is executed in heterogeneous 

environments and where additional ad hoc restrictions exist, for 

example in the examples presented in [10] (when translating 

subset of F# code to SQL or when executing subset of F# on 

GPU). 

5.2.2 Web Development Issues 
There are also several issues related to the web development 

that we’d like to address in the future. Writing code for the 

client-side in F# is significantly easier than writing code in 

JavaScript, however debugging client-side code is still difficult. 

An interesting solution for this problem is used in [5], which 

provides a debugging environment where the client-side code is 

executed natively instead of translating it and executing it in 

the browser and so the code can be debugged using any 

debugging tools for Java. A similar solution would be 

applicable to our project. 

We also find very interesting an approach used for execution 

control in [3], which makes it possible to call a client-side code 

from a server-side thanks to the use of continuation-passing 

style. Adopting similar techniques in our work should be 

possible thanks to use of the F# monadic syntax, where 

execution control can be defined by a monad. 

5.3 Conclusions 
In this paper we have shown how F# (or any other 

appropriately extended version of ML) can be used to tackle 

three of the key issues in client/server web programming:  the 

heterogeneous nature of execution, the discontinuity between 

client and server parts of execution and the lack of type-

checked execution on the client side. We use F# meta-

programming to serve the client-side portions of an F# 

application as JavaScript, which makes it possible to write 

                                                                 
18 We expect to release an initial version of the extensibility mechanism for F# 

compiler and extension for verifying separation of environments prior to the 

workshop. 

programs running in web browsers in a type-checked functional 

language without installing any extensions to the browsers. The 

meta-programming is non-intrusive through the use of 

attributes to indicate client-side and server-side portions of the 

application. 

We also demonstrate mechanisms for accessing native 

JavaScript functionality from F#, which together with the 

translator gives us enough expressive power to write an entire 

client-side library purely in F#. We use monadic modalities in 

F# to separate the code intended to run in specific 

environments and, thanks to the typing properties of monads, 

we make calls between different environments explicit, which 

prevents users from writing incorrect code and also gives a clue 

where application performs inefficient call between 

environments. 

In the presented work we used these two techniques together to 

allow development of web applications with both client and 

server-side functionality written in an integrated way in a single 

language, but the same approach for separating environments 

could also be as used in cases where all parts of the application 

execute natively. 

From a web development perspective, we allow writing client-

side code in an asynchronous way similarly to the continuation-

passing style presented in [17], but we make this explicit using 

F# monadic syntax. We also presented a way for building 

composable components that expose separate client-side and 

server-side functionality as part of their interface. 

Acknowledgments 
The project was developed during a Microsoft Research 

Internship and we thank to everyone who made it possible. 

Special thanks to James Margetson for his useful comments 

and suggestions. 

References 
[1] Jesse James Garrett. Ajax: A new approach to web 

applications. Adaptive path, 2005 

[2] Ali Mesbah; Arie van Deursen. An Architectural Style for 

Ajax. In Proceedings of the 6th Working IEEE/IFIP 

Conference on Software Architecture, 2006 

[3] Ezra Cooper, Sam Lindley, Philip Wadler, Jeremy Yallop. 

Links project. The Links website, 2007. See 

http://groups.inf.ed.ac.uk/links/ 

[4] Erik Meijer et al. Project Volta. Microsoft, 2007. See 

http://channel9.msdn.com/ShowPost.aspx?PostID=223865 

[5] Google Web Toolkit. The GWT website, 2007. See 

http://code.google.com/webtoolkit/ 

[6] Nikhil Kothari. Script#. The Script# website, 2007. See 

http://projects.nikhilk.net/Projects/ScriptSharp.aspx 

[7] ASP.NET AJAX. Microsoft, 2007.  

See http://ajax.asp.net/ 

[8] Don Syme and James Margetson. The F# website, 2006. 

See http://research.microsoft.com/fsharp/.  

[9] ASP.NET. Microsoft, 2007. See http://asp.net/ 

[10] Don Syme. Leveraging .NET meta-programming 

components from F#: Integrated queries and interoperable 

heterogeneous execution. In Proceedings of the ACM 

SIGPLAN Workshop on ML and its Applications, 2006. 

[11] Don Syme, Gregory Neverov, James Margetson. 

Extensible Pattern Matching via a Lightweight Language.  

To appear in Proceedings of the Inter-national Conference 

on Functional Programming (ICFP ’07). ACM, 2007  



[12] Backbase AJAX Solutions. The Backbase website, 2007. 

See http://www.backbase.com/ 

[13] Tim O’Reilly. What Is Web 2.0: Design Patterns and 

Business Models for the Next Generation of Software. 

O'Reilly Media, Inc, 2007 

[14] ECMAScript Language Specification. ECMA 262 3rd 

edition, 1999. 

[15] Silverlight. Microsoft 2007.  

See http://silverlight.net/ 

[16] Tomas Petricek. F# WebTools project website, 2007.  

See http://tomasp.net/fswebtools 

[17] Ezra Cooper, Sam Lindley, Philip Wadler, Jeremy Yallop. 

Links: Web Programming Without Tiers, In Proceedings 

of 5th International Symposium on Formal Methods for 

Components and Objects ‘06. 2006 

[18] Gavin Bierman, Erik Meijer,Wolfram Schulte. 

Programming with rectangles, triangles, and circles. XML 

Conference, 2003. 

[19] Gavin Bierman, Erik Meijer,Wolfram Schulte. The 

essence of data access in Cω. In Proceedings on the 19th 

European Conference on Object Oriented Programming, 

pages 287–311, July 2005. 

[20] Microsoft Corporation. The LINQ May 2006 Preview, 

2006. See http://msdn.microsoft.com/data/ref/linq/ 

[21] Manuel Serrano, Erick Gallesio, and Florian Loitsch. 

HOP, a language for programming the Web 2.0. 

Proceedings of the First Dynamic Languages Symposium, 

Portland, Oregon, October 2006. 

[22] David L. Atkins, Thomas Ball, Glenn Bruns and Kenneth 

C. Cox. Mawl: A domain-specific language for formbased 

services. Software Engineering, 25(3):334 346, 1999. 

[23] Robert Pickering. Foundations of F# (book). Apress, 2007. 

ISBN 978-1590597576 

[24] Don Syme, Adam Granicz, Antonio Cisternino. Expert F# 

(book). Apress 2007. ISBN 978-1590598504 

[25] Mono. Mono Project website  

See http://www.mono-project.com 

[26] Leo Meyerovich. Flapjax: Functional Reactive Web 

Programming. See 

http://www.cs.brown.edu/~lmeyerov/thesis8.pdf 

 


