

1

GPU Programming Guide

GeForce 8 and 9 Series

December 19, 2008

GeForce 8 and 9 Series GPU Programming Guide

 2

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY,
AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other rights of
third parties that may result from its use. No license is granted by implication or otherwise under any patent or
patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without
notice. This publication supersedes and replaces all information previously supplied. NVIDIA Corporation products
are not authorized for use as critical components in life support devices or systems without express written
approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, and NVIDIA Quadro are registered trademarks of NVIDIA Corporation. Other
company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2008 by NVIDIA Corporation. All rights reserved.

HISTORY OF MAJOR REVISIONS

Version Date Changes

1.0 12/19/2008 Initial

GeForce 8 and 9 Series GPU Programming Guide

 3

Table of Contents

Chapter 1. About This Document .. 7

1.1. Introduction .. 7

Chapter 2. How to Optimize Your Application .. 9

2.1. Making Accurate Measurements ... 9

2.2. Finding the Bottleneck ... 10

2.2.1. Understanding Bottlenecks 10

2.2.2. Basic Tests 12

2.2.3. Using PerfHUD 12

2.3. Bottleneck: CPU .. 13

2.4. Bottleneck: GPU .. 15

Chapter 3. General GPU Performance Tips ... 17

3.1. List of Tips .. 17

3.2. Graphics API Overhead (CPU) .. 19

3.2.1. Use Fewer Batches 19

3.2.2. Reduce state changes and constant changes 20

3.3. Vertex Processing .. 20

3.3.1. Use Indexed Primitive Calls 20

3.3.2. Attribute bottleneck (Vertex Setup) 21

3.4. Shaders .. 21

3.4.1. Choosing the latest shader model 21

3.4.2. Compile with the latest compiler available. 22

3.4.3. Choose the Lowest Data Precision That Works 22

3.4.4. Save Computations by Using Algebra 23

3.4.5. Don’t Write Overly Generic Library Functions 24

3.4.6. Don’t Compute the Length of Normalized Vectors 24

3.4.7. Fold Uniform Constant Expressions 24

3.4.8. Uniform Parameters Caveat 25

3.4.9. Pixel Shader Bottlenecks? 25

3.4.10. Interpolants and Post-transform cache pressure. 26

3.4.11. Geometry Shaders? 27

GeForce 8 and 9 Series GPU Programming Guide

 4

3.4.12. Use the mul() Standard Library Function 27

3.4.13. Use D3DTADDRESS_CLAMP (or GL_CLAMP_TO_EDGE) 28

3.4.14. Too many generated primitives in Geometry Shader 28

3.5. Texturing .. 28

3.5.1. Use Mipmapping 28

3.5.2. Use Trilinear and Anisotropic Filtering Prudently 29

3.5.3. Replace Complex Functions with Texture Lookups 29

3.6. Rasterization ... 30

3.6.1. Double-Speed Z-Only and Stencil Rendering 30

3.6.2. Z-cull Optimization 31

3.6.3. Lay Down Depth First (“Z-only rendering”) 31

3.6.4. Allocating Memory 31

3.7. Antialiasing ... 32

3.7.1. Coverage Sampled Anti-Aliasing (CSAA) 33

Chapter 4. GeForce 8 and 9 Series Programming Tips 34

4.1. Introduction to GeForce 8/9 series architecture 34

4.2. Shader Model 4.0 .. 35

4.3. Shader Model 4 System Values (SV_) ... 36

4.3.1. System Values Performance Tips 36

4.4. Vertex Setup/Attribute bottleneck issues 37

4.4.1. Vertex assembly on a GPU 37

4.4.2. Attribute bottleneck 37

4.4.3. Detecting Attribute bottlenecks 38

4.4.4. Fixing Attribute bottlenecks 38

4.5. Vertex Texture Fetch ... 40

4.6. Geometry Shader .. 40

4.6.1. GS Performance Bottleneck (“maxvertexcount”) 42

4.6.2. A decent use of Geometry Shaders: Point Sprites 42

4.7. Stream out .. 42

4.7.1. Skinned Characters Optimization 42

4.7.2. Blending Morph Targets 43

4.8. ZCULL and EarlyZ: Coarse and Fine-grained Z and Stencil Culling . 43

Chapter 5. DirectX 10 Considerations ... 45

5.1. DirectX 10 States and Constants ... 46

A major cause of poor performance in naïve DirectX 10 ports! 46

GeForce 8 and 9 Series GPU Programming Guide

 5

5.1.1. Immutable State blocks 46

5.1.2. Constant blocks 46

5.1.3. Don’t use global constants! 48

5.1.4. When to use a tbuffer? 49

5.2. Resource Management .. 49

5.2.1. Resource creation and destruction 49

5.2.2. Updating resources 50

5.3. Alpha Test in DirectX 10 .. 51

5.4. Batching and Instancing .. 52

Chapter 6. General Advice .. 53

6.1. Identifying GPUs ... 53

6.2. Hardware Shadow Maps .. 54

6.3. Depth Bounds Test (DBT) .. 55

6.3.1. Important Notes 55

6.3.2. API Usage 55

6.3.3. What is DBT good for? 56

6.4. FOURCC Codes .. 57

6.4.1. NULL Rendertarget (“NULL”) 57

6.4.2. Direct DepthBuffer Access (“INTZ” and “RAWZ”) 58

Chapter 7. Performance Tools Overview .. 60

7.1. PerfKit .. 60

7.1.1. PerfHUD 61

7.1.2. PerfSDK 61

7.1.3. GLExpert 62

7.1.4. ShaderPerf 63

7.2. Shader Debugger .. 63

7.3. FX Composer ... 64

Developer Tools Questions and Feedback ... 65

GeForce 8 and 9 Series GPU Programming Guide

 7

Chapter 1.
About This Document

1.1. Introduction

This guide will help you to get the highest graphics performance out of your
application, graphics API, and graphics processing unit (GPU). Understanding
the information in this guide will help you to write better graphical applications.

This document specifically focuses on the GeForce 8 and 9 Series GPUs,
however many of the concepts and techniques can be applied to graphics
programming in general. For specific advice and programming guide on earlier
GPUs such as the GeForce 6 & 7 series please consult the earlier “GPU
Programming Guide : GeForce 6 & & Series (and earlier)”.

For information about anything and everything graphics and GPU related
please check http://developer.nvidia.com/page/documentation.html

About This Document

 8

This document is organized in the following way:

� Chapter 1(this chapter) gives a brief overview of the document’s contents.

� Chapter 2 explains how to optimize your application by finding and
addressing common bottlenecks.

� Chapter 3 lists tips that help you address bottlenecks once you’ve identified
them. The tips are categorized and prioritized so you can make the most
important optimizations first.

� Chapter 4 presents several useful programming tips for GeForce 8 &
GeForce 9 Series GPUs. These tips focus on features, but also address
performance in some cases.

� Chapter 5 presents general advice for programming Microsoft’s DirectX 10
API and considerations when porting from DirectX 9.

� Chapter 6 provides some general advice on programming graphics with
NVIDIA GPUs.

� Chapter 7 provides an overview of NVIDIA’s performance tools.

GeForce 8 and 9 Series GPU Programming Guide

 9

Chapter 2.How to Optimize Your
Application

This section reviews the typical steps to find and remove performance
bottlenecks in a graphics application.

Also refer to http://developer.nvidia.com/object/practical_perf_analysis.html
for more information on performance analysis.

2.1. Making Accurate Measurements

Many convenient tools allow you to measure performance while providing
tested and reliable performance indicators. For example, NVIDIA’s PerfHUD
tool allows you to measure total milliseconds (ms) per frame and displays the
current frame rate. See the PerfHUD documentation for more information.

Here are some tips to help you ensure accurate and valid measurements:

� Verify that the application runs cleanly. For example, when the
application runs with Microsoft’s DirectX Debug runtime, it should not
generate any errors or warnings.

� Ensure that the test environment is valid. That is, make sure you are
running release versions of the application and its DLLs, as well as the
release runtime of the latest version of DirectX.

� Use release versions (not debug builds) for all software.

� Make sure all control panel display settings are set correctly. Typically,
this means that they are at their default values. Anisotropic filtering and
antialiasing settings particularly influence performance.

How to Optimize Your Application

 10

� Disable vertical sync. This ensures that your frame rate is not limited by
your monitor’s refresh rate. This can be overridden in the NVIDIA control
panel 3D settings. Look for “Vertical Sync” in “Manage 3D settings”
section and switch to “Force OFF”.

� Run on the target hardware. If you’re trying to find out if a particular
hardware configuration will perform sufficiently, make sure you’re running
on the correct CPU, GPU, and with the right amount of memory on the
system. Bottlenecks can change significantly as you move from a low-end
system to a high-end system.

� Confirm system power/performance settings. On some systems,
especially laptops and notebooks the power settings will artificially lower
the CPU performance to preserve battery power. Make sure CPU is at
100%.

� Favor QueryPerformanceCounter() over RDTSC. When manually
timing sections of code it is important to have reliable data.

� Benchmark/Time with averages. Never time a single run, or a single
function execution. Computers are very complex and multi-threaded,
pipelined architectures. The timings of individual operations will vary
wildly during execution. The best method is to execute a test a number of
times and average the results.

� Your ultimate goal is higher frames per second. Measuring how a given
change or optimization changes the fps of your application as averaged over
a handful of frames (~1 second) is probably the best process to go about
optimization.

2.2. Finding the Bottleneck

2.2.1. Understanding Bottlenecks

At this point, assume we have identified a situation that shows poor
performance. Now we need to find the performance bottleneck. The bottleneck
generally shifts depending on the content of the scene. To make things more
complicated, it often shifts over the course of a single frame. So “finding the
bottleneck” really means “Let’s find the bottleneck that limits us the most for
this scenario.” Eliminating this bottleneck achieves the largest performance boost.

GeForce 8 and 9 Series GPU Programming Guide

 11

Figure 1. Potential Bottlenecks

In an ideal case, there won’t be any one bottleneck—the CPU, PCIE bus, and
GPU pipeline stages are all equally loaded (see Figure 1). Unfortunately, that
case is impossible to achieve in real-world applications—in practice, something
always holds back performance.

The bottleneck may reside on the CPU or the GPU. PerfHUD’s dynamic
performance dashboard (see Chapter 7 for more information about PerfHUD
and other tools) shows how many milliseconds the GPU is idle during a frame.
If the GPU is idle for even one millisecond per frame, it indicates that the
application is at least partially CPU-limited. If the GPU is idle for a large
percentage of frame time, or if it’s idle for even one millisecond in all frames
and the application does not synchronize CPU and GPU, then the CPU is the
biggest bottleneck. Improving GPU performance simply increases GPU idle
time.

Another easy way to find out if your application is CPU-limited is to ignore all
draw calls with PerfHUD (removing most of the GPU load, and removing a
small amount of CPU). In the Performance Dashboard, simply press Ctrl + N.
Note that this also omits some CPU overhead from state changes and will not
omit GPU work for stretchrect commands, etc. If you ignore draw calls and
performance doesn’t change, then you are very likely CPU-limited and you
should use a tool like Intel’s VTune or AMD’s CodeAnalyst to optimize your
CPU performance.

How to Optimize Your Application

 12

2.2.2. Basic Tests

You can perform several simple tests to identify your application’s bottleneck.
You don’t need any special tools or drivers to try these, so they are often the
easiest to start with.

� Eliminate all file accesses. Any hard disk access will kill your frame rate.
This condition is easy enough to detect—just take a look at your computer's
"hard disk in use" light or disk performance monitor signals using
Windows’ perfmon tool, AMD’s CodeAnalyst,
(http://www.amd.com/codeanalyst) or Intel’s VTune
(http://www.intel.com/software/products/vtune/). Keep in mind that
hard disk accesses can also be caused by memory swapping, particularly if
your application uses a lot of memory.

� Run identical GPUs on CPUs with different speeds. It’s helpful to find
a system BIOS that allows you to adjust (i.e., down-clock) the CPU speed,
because that lets you test with just one system. If the frame rate varies
proportionally depending on the CPU speed, your application is CPU-
limited.

� Reduce your GPU's core clock. You can use publicly available utilities
such as Coolbits (see Chapter 6) to do this. If a slower core clock
proportionally reduces performance, then your application is limited by the
vertex shader, rasterization, or the fragment shader (that is, shader-limited).

� Reduce your GPU's memory clock. You can use publicly available
utilities such as Coolbits (see Chapter 6) to do this. If the slower memory
clock affects performance, your application is limited by texture or frame
buffer bandwidth (GPU bandwidth-limited).

Generally, changing CPU speed, GPU core clock, and GPU memory clock are
easy ways to quickly determine CPU bottlenecks versus GPU bottlenecks. If
underclocking the CPU by n percent reduces performance by n percent, then
the application is CPU-limited. If underclocking the GPU’s core and memory
clocks by n percent reduces performance by n percent, then the application is
GPU-limited.

2.2.3. Using PerfHUD

PerfHUD provides a vast array of debugging and profiling tools to help
improve your application’s performance. Here are some guidelines to get you
started. The PerfHUD User Guide contains detailed methodology for identifying
and removing bottlenecks, troubleshooting, and more. It is available at
http://developer.nvidia.com/object/PerfHUD_home.html.

GeForce 8 and 9 Series GPU Programming Guide

 13

1. Navigate your application to the area you want to analyze.

2. If you notice any rendering issues, use the Debug Console and Frame
Debugger to solve those problems first.

3. Check the Debug Console for performance warnings.

4. When you notice a performance issue, switch to Frame Profiler Mode (if
you have a GeForce 6 Series or later GPU) and use the advanced profiling
features to identify the bottleneck. Otherwise, use the pipeline experiments
in Performance Dashboard Mode to identify the bottleneck.

2.3. Bottleneck: CPU

If an application is CPU-bound, use profiling to pinpoint what’s consuming
CPU time. The following modules typically use significant amounts of CPU
time:

� Application (the executable as well as related DLLs)

� NVIDIA Driver

� XP (nv4disp.dll, nvoglnt.dll)

� Vista (nv*.dll nvd3dum.dll etc)

� DirectX D3D Runtime (d3d*.dll, d3d9.dll, d3d10.dll etc)

� DirectX Hardware Abstraction Layer (hal32.dll)

Because the goal at this stage is to reduce the CPU overhead so that the CPU is
no longer the bottleneck, it is relatively important to know what consumes the
most CPU time. The usual advice applies: choose algorithmic improvements
over minor optimizations. And of course, find the biggest CPU consumers to
yield the largest performance gains.

Next, we need to drill into the application code and see if it’s possible to
remove or reduce code modules. If the application spends large amounts of
CPU in hal32.dll, d3d*.dll, or nvoglnt.dll, this may indicate API
abuse. If the driver consumes large amounts of CPU, is it possible to reduce the
number of calls made to the driver?

For example, under DirectX 9 improving batch sizes helps reduce driver calls.
Detailed information about batching and DirectX 9 specific optimizations is
available in http://developer.nvidia.com/object/optimizations_for_dx9.html

How to Optimize Your Application

 14

Additional information about DirectX 10 can be found in Chapter 5 and at
http://developer.download.nvidia.com/presentations/2008/GDC/GDC08-
D3DDay-Performance.pdf

PerfHUD also helps to identify driver overhead. It can display the amount of
time spent in the driver per frame (plotted as a red line) and it graphs the
number of batches drawn per frame.

Other areas to check when performance is CPU-bound:

� Is the application locking resources, such as the frame buffer or
textures? Locking resources can serialize the CPU and GPU, in effect
stalling the CPU until the GPU is ready to return the lock. So the CPU is
actively waiting and not available to process the application code. Locking
therefore causes CPU overhead.

� Does the application use the CPU to protect the GPU? Culling small
sets of triangles creates work for the CPU and saves work on the GPU, but
the GPU is already idle! Removing these CPU-side optimizations actually
increase performance when CPU-bound.

� Consider offloading CPU work to the GPU. Can you reformulate your
algorithms so that they fit into the GPU’s vertex or pixel processors?

� Use shaders to increase batch size and decrease driver overhead. For
example, you may be able to combine two materials into a single shader and
draw the geometry as one batch, instead of drawing two batches each with
its own shader. Shader Model 3 and 4 can be useful in a variety of situations
to collapse multiple batches into one, and reduce both batch and draw
overhead.

GeForce 8 and 9 Series GPU Programming Guide

 15

2.4. Bottleneck: GPU

GPUs are deeply pipelined architectures. If the GPU is the bottleneck, we need
to find out which pipeline stage is the largest bottleneck. For an overview of the
various stages of the graphics pipeline, see the GDC 2007 performance analysis
presentation below.

http://developer.download.nvidia.com/presentations/2007/siggraph/perftools
_sigg07.ppt

PerfHUD simplifies things by letting you force various GPU and driver features
on or off. For example, it can force a mipmap LOD bias to make all textures 2
× 2. If performance improves a lot, then texture cache misses are the
bottleneck. PerfHUD similarly permits control over pixel shader execution
times by forcing all or part of the shaders to run in a single cycle.

PerfHUD also gives you detailed access to GPU performance counters and can
automatically find your most expensive render states and draw calls, so we
highly recommend that you use it if you are GPU-limited.

If you determine that the GPU is the bottleneck for your application, use the
tips presented in Chapter 3, Chapter 4, and Chapter 5 to improve performance.

GeForce 8 and 9 Series GPU Programming Guide

 17

Chapter 3.
General GPU Performance Tips

This chapter presents the top performance tips that will help you achieve
optimal performance on GeForce Series GPUs. For your convenience, the tips
are organized by pipeline stage. Within each subsection, the tips are roughly
ordered by importance, so you know where to concentrate your efforts first.

A great place to get an overview of modern GPU pipeline performance is the
Graphics Pipeline Performance chapter of the book GPU Gems: Programming
Techniques, Tips, and Tricks for Real-Time Graphics. The chapter covers bottleneck
identification as well as how to address potential performance problems in all
parts of the graphics pipeline.

Graphics Pipeline Peformance is freely available at
http://developer.nvidia.com/object/gpu_gems_samples.html.

3.1. List of Tips

When used correctly, recent GPUs can achieve extremely high levels of
performance. This list presents an overview of available performance tips that
the subsequent sections explain in more detail.

� API Overhead Causes CPU Bottleneck

� Use fewer batches

� Use texture atlases/texture arrays to avoid state changes.
http://developer.nvidia.com/object/nv_texture_tools.html

� In DirectX, use the Instancing API to avoid SetMatrix and
similar instancing state changes.

� Reduce state changes

General GPU Performance Tips

 18

� Vertex Processing Cause GPU Bottleneck

� Use indexed primitive calls

� Use DirectX ID3DXMesh/ID3DX10Mesh optimization calls
[OptimizeInplace() or Optimize()]

� Use our NVTriStrip utility if an indexed list won’t work
http://developer.nvidia.com/object/nvtristrip_library.html

� Vertex Setup Attribute bottlenecks

� Large vertices/many vertices often results in attribute bottlenecks.

� Recalculate data in the vertex shader

� Reduce vertex size

� Only use dynamic vertex buffers when really needed.

� Shaders Cause GPU Bottleneck

� Choose the highest shader model you can

� Always use the latest version of fxc

� Choose the lowest data precision that works for what you’re doing:

� Prefer half to float for everything that you can.

� Pixel Shader bottleneck?

� Push linearizable calculations to the vertex shader if you’re
bound by pixel shader.

� Take advantage of Early Z culling optimizations

� Interpolant attribute bottleneck?

� Push vertex operations to pixel shader

� Avoid passing constants values as interpolants. Make the same
constants accessible to the shader stages that need them.

� Geometry Shaders:

� Make sure that you really need them and there is no better
alternative, like instancing.

� Use the smallest possible maxvertexcount value

� Use the smallest vertices

� Don’t use uniform parameters for constants that will not change
over the life of a pixel shader.

� Look for opportunities to save computations by using algebra.

� Replace complex functions with texture lookups

GeForce 8 and 9 Series GPU Programming Guide

 19

� Per-pixel specular lighting

� Use FX Composer to bake programmatically generated
textures to files

� But sincos, log, exp are native instructions and do not
need to be replaced by texture lookups

� Texturing Causes GPU Bottleneck

� Always use mipmapping!

� Use trilinear and anisotropic filtering prudently

� Match the level of anisotropic filtering to texture
complexity.

� Use our Photoshop plug-in to vary the anisotropic filtering
level and see what it looks like.
http://developer.nvidia.com/object/nv_texture_tools.html

� Follow this simple rule of thumb: If the texture is noisy,
turn anisotropic filtering on.

� Rasterization Causes GPU bottleneck

� Double-speed z-only and stencil rendering

� Early-z (Z-cull) optimizations

� Antialiasing

� Ensure it is only enabled when necessary

3.2. Graphics API Overhead (CPU)

3.2.1. Use Fewer Batches

“Batching” refers to grouping geometry together so many triangles can be
drawn with one API call, instead of using (in the worse case) one API call per
triangle. There is driver overhead whenever you make an API call, and the best
way to amortize this overhead is to call the API as little as possible. In other
words, reduce the total number of draw calls by drawing several thousand
triangles at once. Using a smaller number of larger batches is a great way to
improve performance. As GPUs become ever more powerful, effective
batching becomes ever more important in order to achieve optimal rendering
rates.

General GPU Performance Tips

 20

Investigate ways that you can reduce the number of batches and API
calls in your engine.

 See section 0 for some information about instancing in DirectX 10.

3.2.1.1. Texture Atlases and Texture Arrays

It is often possible to group many batches of objects using the same mesh with
different textures using a texture atlas (DirectX 9 and DirectX 10) or texture
array (DirectX 10 only). When combined with instancing, this can be used to
easily render an entire field of trees, bushes, etc with a single batch.

3.2.2. Reduce state changes and constant changes

Group batches by render stage to avoid excessive state changes. In addition
don’t re-set render state if it is not necessary. If a state is set to the proper
value, then it will cause overhead to set it to the same value.

Be aware that this grouping may not be desired as it might break other sorting
that is required by the engine.

If you are not performing a depth pre-pass then in many cases it is better to
allow some fragmentation of constants and state changes in favor of sorting
front to back.

3.2.2.1. Set shader constants in groups

When setting constant data to the shaders it is more efficient to set this data in
one call rather than setting many individual constants in separate calls.

3.3. Vertex Processing

3.3.1. Use Indexed Primitive Calls

Using indexed primitive calls allows the GPU to take advantage of its post-
transform-and-lighting vertex cache. If it sees a vertex it’s already transformed,
it doesn’t transform it a second time—it simply uses a cached result.

In DirectX, you can use the ID3DXMesh/ID3DX10Mesh class’s
OptimizeInPlace() or Optimize() functions to optimize meshes and
make them more friendly towards the vertex cache.

GeForce 8 and 9 Series GPU Programming Guide

 21

You can also use our own NVTriStrip utility to create optimized cache-friendly
meshes. NVTriStrip is a standalone program that is available at
http://developer.nvidia.com/object/nvtristrip_library.html.

3.3.2. Attribute bottleneck (Vertex Setup)

You may want to reduce the size of your vertices to get better attribute
performance. In these cases it sometimes makes sense to add more shader
work to reconstruct data. See section 4.4 for more information about vertex
setup attribute bottlenecks.

3.4. Shaders

High-level shading languages provide a powerful and flexible mechanism that
makes writing shaders easy. Unfortunately, this means that writing slow shaders
is easier than ever. If you’re not careful, you can end up with a spontaneous
explosion of slow shaders that brings your application to a halt.

GeForce 8 series and later NVIDIA GPUs make use of a unified shader
architecture. This means that all shader types use the same hardware to execute
instructions. The driver will balance which hardware is allocated to vertex,
geometry or pixel dynamically allowing the GPU to adjust itself to more
efficiently execute differing shader loads. Pre-G80 GPUs will still need to
manually balance vertex and pixel workloads.

This doesn’t mean you should not take care to execute the appropriate
operations on the appropriate shader!

The following tips will help you avoid writing inefficient shaders for simple
effects. In addition, you’ll learn how to take full advantage of the GPU’s
computational power. Used correctly, you can achieve an instructions/ clock
rate many times higher than a naïve implementation.

3.4.1. Choosing the latest shader model

With the advent of GeForce 8 series with its unified shader architecture, and
more work towards better and more optimized compilers/drivers, it is no
longer necessary to pick a low shader model. For all G8x and later cards you
can safely pick shader model 3 for DirectX 9 and shader model 4 for DirectX

General GPU Performance Tips

 22

10 for all shaders and not worry about trying to fit your code into older limits.
But keep in mind that it is still important to make sure your shader code is as
optimal as it can be.

3.4.2. Compile with the latest compiler available.

In general, you should use the latest version of fxc (include with Microsoft’s
DirectX SDK), since Microsoft will add smarter compilation and fix bugs with
each release. Check the latest DirectX SDK version at
http://msdn.microsoft.com/directx

When compiling shaders to binary and using runtime linking ensuring that you
use the latest compiler can result in significant optimizations and bug fixes.

3.4.3. Choose the Lowest Data Precision That Works

Another factor that affects both performance and quality is the precision used
for operations and registers. The GeForce Series GPUs support 32-bit and 16-
bit floating point formats (called float and half, respectively). The float
data type is very IEEE-like, with an s23e8 format. The half is also IEEE-
like, in an s10e5 format.

The performance of these various types varies with precision:

� If you need floating-point precision, the half type delivers higher
performance than the float type. Prudent use of the half type can triple
frame rates, and more than 99% of the rendered pixels will be within one
least-significant bit (LSB) of a fully 32-bit result in most applications.

� If you need the highest possible accuracy, use the float type.

You can use the /Gpp flag to force everything in your shaders to half
precision. After you get your shaders working and follow the tips in this section,
enable this flag to see its effect on performance and quality. If no errors appear,
leave this flag enabled. Otherwise, manually demote to half precision when it
is beneficial (/Gpp provides an upper performance bound that you can work
toward).

When you use the half types, make sure you use them for varying parameters,
uniform parameters, variables, and constants.

Many color-based operations can be performed with the half data types
without any loss of precision (for example, a tex2D*diffuseColor
operation).

GeForce 8 and 9 Series GPU Programming Guide

 23

For instance, the result of any normalize can be half-precision, as can colors.
Positions can be half-precision as well, but they may need to be scaled in the
vertex shader to make the relevant values near zero.

For instance, moving values to local tangent space, and then scaling positions
down can eliminate banding artifacts seen when very large positions are
converted to half precision.

3.4.4. Save Computations by Using Algebra

Once you’ve got your shader working, look at your computations and figure out
if you can collapse them by using mathematical properties. This is especially
true for library functions shared across multiple shaders. For example:

� Generic sphere map projection is often expressed in terms of

p = sqrt(Rx2 + Ry2 + (Rz + 1)2)

This expands to :

p = sqrt(Rx2 + Ry2 + Rz2 + 2Rz + 1)

If you know the reflection vector is normalized (see Sections 3.4.7 and
3.4.5), the sum of the first three terms is guaranteed to be 1.0. This
expression can then be refactored as:

p = sqrt(2 * (Rz + 1)) = 1.414*sqrt(Rz + 1)

� Fold the multiplication by 1.414 into another constant (see Section 3.4.7),
saving a dot product.

� dot(normalize(N), normalize(L)) can be computed far more
efficiently.

� It’s usually computed as (N/|N|) dot (L/|L|), which requires
two expensive reciprocal square root (rsq) computations.

� Doing a little algebra gives us:

� (N/|N|) dot (L/|L|)

� = (N dot L) / (|N| * |L|)

� = (N dot L) / (sqrt((N dot N) * (L dot L))

� = (N dot L) * rsq((N dot N) * (L dot L))

� which requires only one expensive rsq operation.

General GPU Performance Tips

 24

3.4.5. Don’t Write Overly Generic Library Functions

Functions that are shared across multiple shaders are frequently written very
generically. For example, reflection is often computed as:

float3 reflect(float3 I, float3 N) {

 return (2.0*dot(I,N)/dot(N,N))*N – I;

}

Written this way, the reflection vector can be computed independent of the
length of the normal or incident vectors. However, shader authors frequently
want at least the normal vector normalized in order to perform lighting
calculations. If this is the case, then a dot product, a reciprocal, and a scalar
multiply can be removed from reflect(). Optimizations like these can
dramatically improve performance.

3.4.6. Don’t Compute the Length of Normalized Vectors

A common (and expensive) example of an overly-generic library function is one
that computes the lengths of the input vectors locally. However, the vectors
have often been normalized prior to calling the function. Compilers don’t detect
this, which means substantial per-pixel arithmetic is performed to compute 1.0.

If your library functions must work correctly independent of the vector’s
lengths, consider making length a scalar parameter to the functions. That way,
the shaders that normalize vectors before calling the function can pass down a
constant value of 1.0 (providing all the benefits of not computing the length),
and those that don’t normalize vectors can compute the length.

3.4.7. Fold Uniform Constant Expressions

Many developers compute expressions involving dynamic constants in their
pixel shaders. If more than one uniform constant (or a uniform and an in-lined
constant) is used in an expression, there is often a way to fold the constants
together and improve performance. For example:

half4 main(float2 diffuse : TEXCOORD0,

 uniform sampler2D diffuseTex,

 uniform half4 g_OverbrightColor) {

 return tex2D(diffuseTex, diffuse) * g_OverbrightColor * 3.0;

}

GeForce 8 and 9 Series GPU Programming Guide

 25

g_OverbrightColor can be premultiplied by 3.0 on the CPU, saving a per-
pixel multiplication on potentially millions of pixels each frame.

You may need to distribute or factor expressions in order to fold as many
constant expressions as possible. In addition, you can use HLSL preshaders to
perform precomputation on the CPU before a shader runs.

Another common example is computing materialColor * lightColor
at each vertex. Because this expression has the same value for all vertices in a
given batch, it should be calculated on the CPU.

You should also compute matrix inverses and transposes on the CPU instead of
on the GPU, because they only need to be calculated once instead of per-vertex
or per-fragment. The /Zpr (pack row-major) and /Zpc (pack column-major)
compiler options can help store matrices the way you want.

3.4.8. Uniform Parameters Caveat

Don’t Use Uniform Parameters for Constants That Won’t Change Over the
Life of a Pixel Shader

Developers sometimes use uniform parameters to pass in commonly used
constants like 0, 1, and 255. This practice should be avoided. It makes it harder
for compilers to distinguish between constants and shader parameters, reducing
performance. When using constant values in a shader make sure to use the
keyword const to let the compiler know the data value will never change.

3.4.9. Pixel Shader Bottlenecks?

Achieving high performance is all about removing bottlenecks—which really
means that you have to balance every piece of the pipeline: the CPU, the PCIE
bus, and the stages of the graphics pipeline. The GeForce 8 Series and later
GPUs make use of a unifed shader system. This means that the same hardware
is being used to execute vertex, geometry and pixel operations. The decision of
where to execute shader operations should be dictated by where that data is
needed and depends on a few factors. Attempt to execute all operations to the
shader where they will require the least number of executions.

If you expect your application to be run at higher resolutions or if you’re doing
complex shading, the pixel shader is more likely to become the bottleneck. So,
look for opportunities to move calculations to the vertex shader. You can use
our ShaderPerf tool to find out how many cycles your shaders are using. Also,

General GPU Performance Tips

 26

note that newer hardware such as GeForce 8 and 9 Series GPUs will allow more
complex pixel shaders before becoming shader-bound.

Please read the next section 3.4.10 before pushing operations to the VS as this
may actually REDUCE performance.

One more thing to check when you find Pixel Shader bottlenecks is how much
of the pixel shading work was wasted effort because some of the shaded pixels
were later occluded by other objects. PerfHUD can help you determine this to
some degree. If you conclude this is a real problem you should consider some
of the following:

1. Perform a depth prepass of the scene, taking advantage of double speed Z
(Section 3.6.1).

2. Ensure you are getting the most out of coarse and fine-grained Z cull
optimization. See section 4.8 for more details.

NOTE: although alpha-tested geometry (or geometry rendered with
shaders that use texkil, discard or clip) will not get Double-speed Z in
some cases, such us when using costly Pixel Shaders, it may be still worth
to render this geometry in a depth-only prepass of the scene, since that will
guarantee that no shading is wasted in the final shading pass thanks to the
EarlyZ optimization.

3. If not performing a depth prepass, render opaque objects front to back.

4. Use a deferred shading implementation.

3.4.10. Interpolants and Post-transform cache pressure.

In contrast to the advice that says to push linearizable calculations form the PS
to the VS, a graphics programmer needs to be aware that in G8x and later
processors the power of the shader core often means that the application is
NOT limited on shader operations. In this case moving operations from the
PS to the VS will increase the number of attributes output from the VS and
thus DECREASE the performance. This is due, primarily to two reasons:

� Increased vertex size results in lower vertex cache performance. A
larger vertex means that less vertices will fit in the Post-transform cache
and thus there is more pressure on that cache.

� More interpolants reduces vertices/clock. Interpolating vertex data
is fixed function work that a modern GPU does. This work is not free
and in some cases calculating too many interpolants will result in an
attribute bottleneck. See section 4.4.

GeForce 8 and 9 Series GPU Programming Guide

 27

3.4.10.1. When interpolating between VS and PS don’t pack

When passing data from a vertex shader to a pixel shader, the number of scalar
attributes is the only thing that matters.

Packing too much information into a calculation can make it harder for the
compiler to optimize your code efficiently. For example, if you are passing
down a tangent matrix, do not include the view vector in the 3 q components.

This mistake is illustrated below:

// Bad practice

tangent = float4(tangentVec, viewVec.x)

binormal = float4(binormalVec, viewVec.y)

normal = float4(normalVec, viewVec.z)

Instead, place the view vector in a fourth interpolant.

Note: this is not true for vertex declarations (i.e. INPUT to a vertex
shader). When creating a vertex buffer, the number of attributes AND the
number of vector values are both relevant and packing is a valid optimization.
See section 4.4 for more information about vertex setup and attribute
boundedness.

In certain cases there is no other choice but to pack multiple attributes into a
single vector attribute due to the limited number registers that can be taken as
input by the pixel shader. In any other case, however, the advice applies.

3.4.11. Geometry Shaders?

Remember that geometry shaders work on primitives. This means that if you
are transforming the 3 vertices for a triangle in the geometry shader then you
will likely being performing a redundant transformation on the same vertex for
every primitive that shares it. Only use the GS on when you really need it. (See
section 3.4.14) for more information about GS performance.

3.4.12. Use the mul() Standard Library Function

Instead of performing matrix multiplication manually, use the mul() Standard
Library function. This will avoid some row-major/column-major issues that
may appear when applications pass down matrices in interpolants.

General GPU Performance Tips

 28

3.4.13. Use D3DTADDRESS_CLAMP (or GL_CLAMP_TO_EDGE)

Instead of saturate() for Dependent Texture Coordinates, try using
D3DTADDRESS_CLAMP (or GL_CLAMP_TO_EDGE) .

Using saturate()can cost extra on some GPUs. If the clamped result is
used as a texture coordinate, it is preferable to use the texture hardware’s ability
to clamp texture coordinate to the [0..1] range, rather than doing this in the
shader.

3.4.14. Too many generated primitives in Geometry Shader

Geometry Shaders have the ability to output new primitives generated
procedurally in the shader. Be careful to use this feature judiciously as on all
current generation hardware the performance of the geometry shader is directly
proportional to the number of output attributes. In general outputting the same
number as input or a few more is acceptable, but 10x the number of input
primitives will start to slow the shader down to the point where it will become
the bottleneck. See section 4.6 for more information.

3.5. Texturing

3.5.1. Use Mipmapping

To prevent minified textures from causing “sparkling” artifacts, always use
mipmapping in your applications. You’ll achieve better image quality, improved
texture cache behavior, and higher performance. You get all this for just 33%
more memory usage, which is a great trade-off. 3D textures, in particular, can
benefit greatly from mipmapping—we’ve seen performance increases of 30% to
40% when mipmapping was enabled.

When creating mipmaps, don’t simply use a box filter to generate smaller and
smaller mipmaps. Also, never use DirectX’s built in mipmap generation.

Instead, use a Gaussian or Mitchell filter to take more samples—this will
produce a higher quality result. But spending a little more time in the preprocess
to create mipmaps, you can make your application look better continuously at
runtime. Our Photoshop plug-in (part of the NVIDIA Texture Tools suite) can
quickly create high-quality mipmaps for you. The suite is available at
http://developer.nvidia.com/object/nv_texture_tools.html.

GeForce 8 and 9 Series GPU Programming Guide

 29

3.5.2. Use Trilinear and Anisotropic Filtering Prudently

Trilinear and anisotropic filtering both help to improve image quality, but they
each bring a performance penalty. Try to use trilinear and anisotropic filtering
only where they’re needed. In general, you’ll want to use them on textures that
have a lot of high-contrast detail. For anisotropic filtering, you may also want to
consider the orientation of the texture. If you know a texture will be oblique to
the viewer (for example, a floor texture), increase the level of anisotropic
filtering for that texture. For multi-textured surfaces, you should have an
appropriate level of filtering for each of the different layers.

Our Adobe Photoshop plug-in is helpful for determining the level of
anisotropic filtering to use. This tool allows you to try different filtering levels
and see the visual effects. It is available at
http://developer.nvidia.com/object/nv_texture_tools.html. Your artists may
want to use this tool to help them decide which textures require anisotropic or
trilinear filtering.

3.5.3. Replace Complex Functions with Texture Lookups

Textures are a great way to encode complex functions—think of them as
multidimensional arrays that you can index on-the-fly. The GeForce family can
access textures efficiently—often at the same cost as an arithmetic operation.
You can use our FX Composer tool to prototype this kind of optimization. FX
Composer is available at http://developer.nvidia.com/FXComposer.

Any time you can encode a complex sequence of arithmetic operations in a
texture, you can improve performance. Keep in mind that some complex
functions, such as log and exp, are micro-instructions in ps_2_0 and higher
profiles, and therefore don’t need to be encoded in textures for optimal
performance.

3.5.3.1. Per-Pixel Lighting

Using a 2D Texture

One common situation where a texture can be useful is in per-pixel lighting.
You can use a 2D texture that you index with (N dot L) on one axis and (N
dot H) on the other axis. At each (u, v) location, the texture would encode:

max(N dot L,0) + Ks*pow((N dot L>0) ? max(N dot H,0) : 0), n)

This is the standard Blinn lighting model, including clamping for the diffuse and
specular terms.

General GPU Performance Tips

 30

Using a 1D ARGB Texture

A useful trick is to use a 1D ARGB texture, indexed by (N dot H). The
texture encodes (N dot H) to various exponents in each channel. For
example, it may encode:

((N dot H)4, (N dot H)8, (N dot H)12, (N dot H)16)

Then, each material is assigned a four-component weighting constant that
blends these values, giving a monochrome specular value for shading. The
beauty of this approach is that it works on GeForce 4-class hardware and is
flexible enough to enable a variety of appearances.

Using a 3D Texture

You can also add the specular exponentiation to the mix by using a 3D texture.
The first two axes use the 2D texture technique described in the previous
section, and the third axis encodes the specular exponent (shininess).

Remember, however, that cache performance may suffer if the texture is too
large. You may want to encode only the most frequently used exponents and
keep the size very small.

3.5.3.2. The sincos() Function

Despite the preceding advice, the GeForce family GPUs support some complex
mathematical functions natively in hardware. One such function that is
convenient is the sincos function, which allows you to simultaneously
calculate the sine and cosine of a value.

3.6. Rasterization

This is a list of some ideas to enhance performance that will require some work
in adjusting the architecture of your graphics engine. While these require more
up-front work they can often provide a much larger performance benefit than
simply optimizing a shader.

3.6.1. Double-Speed Z-Only and Stencil Rendering

All GeForce Series GPUs (FX and later) render at double speed when rendering
only depth or stencil values. To enable this special rendering mode, you must
follow the following rules:

GeForce 8 and 9 Series GPU Programming Guide

 31

� Color writes are disabled

� Texkill has not been applied to any fragments (clip, discard)

� Depth replace (oDepth, texm3x2depth, texdepth) has not been
applied to any fragments

� Alpha test is disabled

� No color key is used in any of the active textures

See section 6.4.1 for information on NULL render targets with double speed Z.

3.6.2. Z-cull Optimization

Z-cull optimization improves performance by avoiding the rendering of
occluded surfaces. If the occluded surfaces have expensive shaders applied to
them, z-cull can save a large amount of computation time. See section 4.8 for a
discussion on Z-cull and how to best use it.

3.6.3. Lay Down Depth First (“Z-only rendering”)

The best way to take advantage of the two aforementioned performance
features is to “lay down depth first.” By this, we mean that you should use
double-speed depth rendering to draw your scene (without shading) as a first
pass. This then establishes the closest surfaces to the viewer. Now you can
render the scene again, but with full shading. Z-cull will automatically cull out
fragments that aren’t visible, meaning that you save on shading computations.

Laying down depth first requires its own render pass, but can be a performance
win if many occluded surfaces have expensive shading applied to them. Double-
speed rendering is less efficient as triangles get small. And, small triangles can
reduce z-cull efficiency.

Another related technique is Deferred Shading, which you can find in the
NVSDK

3.6.4. Allocating Memory

In order to minimize the chance of your application thrashing video memory,
the best way to allocate shaders and render targets is:

5. Allocate render targets first

� Sort the order of allocation by pitch (width * bpp).

General GPU Performance Tips

 32

� Sort the different pitch groups based on frequency of use. The
surfaces that are rendered to most frequently should be allocated
first.

6. Create vertex and pixel shaders

7. Load remaining textures

3.7. Antialiasing

All GeForce Series GPUs have powerful antialiasing engines. They perform
best with antialiasing enabled, so we recommend that you enable your
applications for antialiasing.

If you need to use techniques that don’t work with antialiasing, contact us—
we’re happy to discuss the problem with you and to help you find solutions.

With DirectX 9, the StretchRect() call can copy the back buffer to an off-
screen texture in concert with multisampling. This allows applications to make
use of multi-sampling with post-processing.

With DirectX 10, you can use ResolveSubresource() to copy a MSAA
resource to a non-MSAA resource.

For instance, if 4x multisampling is enabled, on a 100 × 100 back buffer, the

driver actually internally creates a 200 × 200 back buffer and depth buffer in

order to perform the antialiasing. If the application creates a 100 × 100 off-
screen texture, it can ResolveSubresource() the entire back buffer to
the off-screen surface, and the GPU will filter down the antialiased buffer into
the off-screen buffer.

Then glows and other post-processing effects can be performed on the 100 ×
100 texture, and then applied back to the main back buffer.

This resolution mismatch between the real back buffer size (200 × 200) and the

application’s view of it (100 × 100) is the reason why you can’t attach a
multisampled z buffer to a non-multisampled render target.

GeForce 8 and 9 Series GPU Programming Guide

 33

3.7.1. Coverage Sampled Anti-Aliasing (CSAA)

Coverage Sampling Antialiasing (CSAA) is one of the key new features of the
GeForce 8 series GPUs (and later). CSAA produces antialiased images that
rival the quality of 8x or 16x MSAA, while introducing only a minimal
performance hit over standard (typically 4x) MSAA. It works by introducing the
concept of a new sample type: a sample that represents coverage.

This differs from previous antialiasing (AA) techniques where coverage was
always inherently tied to another sample type. In supersampling for example,
each sample represents shaded color, stored color/z/stencil, and coverage,
which essentially amounts to rendering to an oversized buffer and
downfiltering.

MSAA reduces the shader overhead of this operation by decoupling shaded
samples from stored color and coverage; this allows applications using
antialiasing to operate with fewer shaded samples while maintaining the same
quality color/z/stencil and coverage sampling. CSAA further optimizes this
process by decoupling coverage from color/z/stencil, thus reducing bandwidth
and storage costs.

See the NVSDK sample “Coverage Sampling Antialiasing” for more
information.

http://developer.nvidia.com/object/coverage-sampled-aa.html

GeForce 8 and 9 Series GPU Programming Guide

 34

Chapter 4.
GeForce 8 and 9 Series

Programming Tips

This chapter presents several useful tips that help you fully use the capabilities
of GeForce 8 & 9 Series and GTX 2xx Series as well as G8x based(and later)
Quadro GPUs. These are mostly feature oriented, though some may affect
performance as well. This chapter focuses on Microsoft’s DirectX API.
However, many concepts can be directly translated to OpenGL as well.

4.1. Introduction to GeForce 8/9
series architecture

The GeForce 8 Series GPU revolutionize graphics processing by being the first
DirectX 10 supported GPU. It features a unified shader architecture which
allows for dynamic load balancing of shader workloads. The GeForce 9 series
follows the same architecture as the 8 series with some minor enhancements.
The 9800GTX features 128 unified shader cores @ 1688Mhz for unrivaled
single GPU performance.

GeForce 8 and 9 Series Programming Tips

 35

4.2. Shader Model 4.0

Shader Model 4 is only available in DirectX 10 or OpenGL extensions. With
shader model 4 there is no longer an intermediary shader assembly format.
HLSL is compiled directly to shader binary and a graphics programmer need
not worry about attempting to optimize or write shader asm code. In addition
shader model 4 has been designed with a “common shader core”, meaning that
all general operations are available in all shader types. This closely models the
unified architectures of modern GPUs.

With respect to features, SM4 is a super set of shader model 3, including
everything available in previous shader models (except some specific shader
model 1 one-off features). The following table illustrates some new features in
SM4 above SM3.

See Chapter 5 for more information about DirectX 10 specific issues.

Pixel Shader
Feature

Shader
3.0

Shader 4.0 Description

Shader length 65535+ Unlimited Allows more complex shading, lighting, and
procedural materials

Sample from
MSAA surface?

No Access to
individual
samples.

Developers can control how multiple MSAA
samples are combined and used for custom
effects, and general purpose calculations.

Constants Register
file

Constant
buffers and
Texture buffers

Allows more general use of shaders without the
input/output register restrictions of previous
models.

System value
semantics

No Yes Provide convenient access to vertex, primitive
and pixel IDs. Useful for buffer indexing.

GeForce 8 and 9 Series GPU Programming Guide

 36

4.3. Shader Model 4 System Values
(SV_)

There are a handful of new system values that are available to all shader code
via the SV_* semantic. Simply define a shader constant variable and assign it
the desired semantic and you will have access to that data. Below is a table of
some of the available constants. For the complete list please refer to
Microsoft’s DirectX 10 documentation.

Semantic Type Value Notes

SV_InstanceID uint Unique Id for each
instance in a draw
call.

Monotonically
increasing. Reset to
0 each time.

SV_VertexID uint Unique Id for each
vertex in a draw
call.

Monotonically
increasing. Reset to
0 each time. For
indexed draw calls,
SV_VertexID is
equal to the index
from the IB.

SV_PrimitiveID uint Unique Id for each
pixel in a draw call.

Monotonically
increasing. Reset to
0 each time.

4.3.1. System Values Performance Tips

System values can be used to reduce bottlenecks. Below are a few performance
notes and caveats.

4.3.1.1. Reduce vertex size with SV_InstanceID during instancing

A good use of SV_InstanceID is to encode per instance data into a buffer and
use the Load() call in HLSL to read data using SV_InstanceID to offset. Thus
you are able to significantly shrink the size of your vertices. This can help to
avoid the primitive assembly overhead that generally occurs when using
instancing.

GeForce 8 and 9 Series Programming Tips

 37

Be aware that using the SV_ semantics do add a fixed attribute overhead
or 8 scalar attributes to the shader using it. So if you are attribute bound
and trying to use a system value semantic to reduce your attribute count
make sure you can reduce it more than 8 attributes or it will not make
much of a difference.

4.3.1.2. Take care when using SV_PrimitiveID to sample textures

When using SV_PrimitiveID to index into a texture for sampling you may
encounter poor performance as the order may induce texture cache thrashing.

4.4. Vertex Setup/Attribute
bottleneck issues

Given the large shader operation processing power of the GeForce 8, 9 and
GTX2xx series cards, the bottlenecks have shifted from previous generations of
cards. In many cases we encounter the case where the application is unable to
feed the shader processing cores with enough operations to keep them busy all
the time. This situation results in lost performance and a lower frame rate than
might be otherwise possible. One reason for this could be becoming attribute
bound.

4.4.1. Vertex assembly on a GPU

When rendering a mesh, the application binds one or more vertex buffers with
a custom vertex declaration. Before the vertex shader can operate on a vertex,
that vertex needs to be assembled into a single data chunk. This is also called
“setup”. During setup, each float of vertex data is fetched from the appropriate
location in video memory based on the vertex stream and offset information.
Each float of vertex data is called an “attribute”.

4.4.2. Attribute bottleneck

As the size of a vertex used by the vertex shader increases, the number of
attributes that need to be fetched and assembled increases. On the GeForce 8,
9 and GTX2xx series cards there is a fixed number of attributes that can be
fetched per clock cycle. Thus, you can imagine that if a vertex becomes
extremely large, the vertex setup stage of the graphics pipeline will quickly

GeForce 8 and 9 Series GPU Programming Guide

 38

become the bottleneck and slow down rendering by starving the rest of the
GPU pipeline.

4.4.3. Detecting Attribute bottlenecks

It is fairly easy to determine if you are attribute bound. There are generally two
methods.

4.4.3.1. Increase vertex size and test for slowdown

This is the easiest method, as it does not require that you significantly rewrite
your shader code. This would be to simply add in some dummy data to your
vertex declaration and see if the performance suffers. If it goes down then you
are either attribute bound, or very close to being attribute bound and should
consider ways to reduce your vertex size.

4.4.3.2. Decrease vertex size and test for speedup

This is the more intuitive method as it will mirror your attempts to gain
performance by reducing vertex size. However, you should be careful and try to
keep shader logic, because the changes can result in code simplification and
make the experiment invalid if you are shader bound.

You can use the following simple steps for checking:

1) Replace attribute reference from the shader body by a new variable:
floatN TestAttribute = IN.TestAttribute;

2) Replace attribute by a variable with predictable behaviour
TestAttribute = (floatN(IN.UsedAttribute) + TestAttribute) * eps + Const
eps – small value, used to minimize the influence of attributes used

3) If the performance hasn’t change much, we can remove TestAttribute from
the code:
TestAttribute = floatN(IN.UsedAttribute) * eps + Const;

If you can see a speedup by moving from step 2 to step 3, this is a good
indicator that you are attribute bound, if not, you may try to perform the above
steps for remaining attributes.

4.4.4. Fixing Attribute bottlenecks

All you have to do is reduce the vertex size and make sure your attributes are
packed well.

GeForce 8 and 9 Series Programming Tips

 39

4.4.4.1. Not only total number of attributes matters

The important metric is not only the total number of scalar attributes, but a
number of vector attributes used as well. For example, the following have the
same number of scalar attributes, but may not result in the same performance
on GeForce 8 series or later cards.

float4 myData;

and

float3 myDataOne;

float1 myDataTwo;

Full attributes are better for the vertex declaration.

4.4.4.2. Suggestions

1. First check for and remove unused attributes

This is the easiest and least likely to be found. Sometimes a programmer will
allocate a float4 while developing and never use the data in the w component.
This is an extra attribute and will possibly increase the setup time. You can
easily check the assembly for these (unused attributes are removed from the
input signature) and use that space for some other valuable attributes.

2. Try to perform logical grouping of your attributes to reduce the total
number of vector attributes used

Logical grouping means combining a number of separate attributes into a single
attribute, up to float4, all components of which will be used in the same passes.

For example, if you are using a pair of texture coordinates, it is better to pack
them into a single float4, than using two separate float2 attributes. Almost
always vertex position requires just a single float3 value, if you can logically
combine it with a separate float value used, do it.

3. Recalculate attributes

You do not need to pass down all the data you will be using. In many cases
there are dependencies in the data such that you can pass down a subset and
recalculate the rest. For example, you do not need to pass a normal, binormal
and tangent to the vertex shader. Passing down the normal and tangent alone
and recalculating the binormal using a cross product will result in more shader
operations but a smaller vertex size. Depending on your bottleneck this could
be a significant speedup.

GeForce 8 and 9 Series GPU Programming Guide

 40

4. Use vertex shader load()

Given that VTF is blazingly fast on GeForce 8 and later cards, using the system
value SV_VertexID to create texture coordinates and fetch vertex data from a
texture in video memory is now a viable option for those who are encountering
an attribute bottleneck. Note, this is not always faster, so care should be taken
to test the effectiveness of this optimization. In particular, adding
SV_VertexID or SV_InstanceID will result in additional overhead, so make
sure you are able to remove at least a pair of vector attributes used, the more
the better.

4.5. Vertex Texture Fetch

From GeForce series 8 and later, NVIDIA graphics chips are now using a
unified shader architecture. This means that shader code for vertex, geometry
and pixel shaders is executed on the same hardware. This also means that
vertex and geometry shader texture fetch uses the same hardware as pixel, and
thus benefits from the same caching and speed.

Thus it is now possible to make use of a large texture or buffer of constant data
and load values from that resource in the shader. This is often required for
processing that access into a constant data set that cannot fit into traditional
constant memory. For example, NVIDIA SDK sample “Skinned Instancing”
uses VTF to fetch animation bone matrices from a texture that contains all
frames of all animations for a character. This allows thousands of
independently animated character meshes to be rendered in just a hand full of
draw calls.

4.6. Geometry Shader

Shader Model 4 and DirectX 10 level GPUs have added a brand new shader
stage. This stage is called the Geometry Shader. It is executed just after the
vertex shader and allows primitive level operations. It inputs all vertices for a
primitive and potentially neighboring primitives. It outputs 0 or more
primitives to be rasterized (or written to memory with stream out, see section
4.7).

The geometry shader also allows creation (or destruction) of small amounts of
primitives. Due to the requirement that the output of a Geometry Shader

GeForce 8 and 9 Series Programming Tips

 41

thread must preserve the order in which it is generated, the GPU must support
buffering the output data in this correct order for a number of threads running
in parallel.

GeForce 8, 9 and GTX2xx series have limited output buffer sizes, which is at
least sufficient to support the maximum output size allowed in Direct3D 10
(1024 32-bit scalars). The output buffer size may vary by GPU.

The performance of a GS is inversely proportional to the output size (in scalars)
declared in the Geometry Shader, which is the product of the vertex size and
the number of vertices (maxvertexcount). This performance degradation
however occurs at particular output sizes, and is not smooth.

For example, on a GeForce 8800 GTX a GS that outputs at most 1 to 20
scalars in total would run at peak performance, whereas a GS would run at 50%
of peak performance if the total maximum output was declared to be between
27 and 40 scalars.

More concretely, if your vertex declaration is:

float3 pos: POSITION;

float2 tex: TEXCOORD;

Each vertex is 5 scalar attributes in size.

If the GS defines a maxvertexcount of 4 vertices, then it will run at full speed
(20 scalar attributes).

But if you increase the vertex size by adding a float3 normal, the number of
scalars will increase by 4 * 3, putting your total at 32 scalar attributes. This will
result in the GS running at 50% peak performance.

Thus, it is important to understand that the main use of the geometry shader is
NOT for doing heavy output algorithms such as tessellation.

In addition, because a GS runs on primitives, per-vertex operations will be
duplicated for all primitives that share a vertex. This is potentially a waste of
processing power.

A geometry shader is most useful when doing operations on small vertices or
primitive data that requires outputting only small amounts of new data. But in
general, the potential for wasted work and performance penalties for using a GS
makes it an often unused feature of Shader model 4.

GeForce 8 and 9 Series GPU Programming Guide

 42

4.6.1. GS Performance Bottleneck (“maxvertexcount”)

Keep maxvertexcount as low as possible!

In addition, one thing to be aware of when outputting many attributes from a
Geometry Shader program is that if you are outputting a dynamically variable
number of attributes for each primitive then ALL primitives executing the
geometry shader will run at the worst case of the geometry shader output.

That is, when declaring the geometry shader you must define the maximum
number of vertices that the shader will output. It is THIS declaration that
determines the speed with which the GS runs.

4.6.2. A decent use of Geometry Shaders: Point Sprites

In contrast to all the performance hazards of using the GS, one case generally
will run very well, and be simple to implement. This case is point sprites.
Given that the point sprite fixed function capability has been removed in
DirectX 10, you can now simply generate a primitive from a single input vertex.
This has the benefit of generally reducing vertex setup attribute boundedness
for that batch, as well the generated vertices will generally be small in size and
thus the performance of the GS will stay fast. But be mindful of the number of
output scalar attributes. You can still easily hit the performance cliff if you
make your vertices large. See the previous example.

4.7. Stream out

Stream out is a new feature available in DirectX 10 and OpenGL for G80 and
later GPUs. With stream out the programmer is able to bypass the rasterization
and later stages of the graphics pipeline and write the output of the
geometry/vertex shader directly into video memory. This is a versatile and
useful tool to enable custom processing without the overhead of the pixel
pipeline. Some examples below.

4.7.1. Skinned Characters Optimization

With stream out a game engine can pose/skin a matrix palette skinned character
and save the posed mesh in model space out as a collection of vertices in video
memory. Then in subsequent passes, rather than skinning the character each
time it is rendered the pre-skinned mesh is used. This is an optimization
applied to animated characters. In most game engines a character will be

GeForce 8 and 9 Series Programming Tips

 43

rendered at least twice. Once for the shadow map and once for the main
In some deferred rendering engines, or if there are more than one shadow
casting light the number of times rendered may be even more. By pre-
computing (each frame) the animated character the engine can save the cost of
re-evaluating the animation palette and at least a matrix multiply per vertex.

A sample render flow is below.

1. Render animated character mesh using simple vertex shader
2. Using stream out bypass rasterization and save posed mesh to memory
3. Render shadow map generation sourcing posed mesh

• Vertex shader does not do skinning operations
4. Render main render sourcing posed mesh

• Vertex shader does not do skinning operations

4.7.2. Blending Morph Targets

By using stream out an engine can support effectively infinite morph targets.
Simply define to buffers one as input and one as output. Starting with the initial
mesh:

1. Evaluate the input mesh using the morph target
2. Write the morphed mesh using stream out
3. Swap input and output buffers and change morph operation.
4. Repeat for 1-3 for as many morph targets as you desire.

4.8. ZCULL and EarlyZ: Coarse and
Fine-grained Z and Stencil
Culling

NVIDIA GeForce 6 series and later GPUs can perform a coarse level Z and
Stencil culling. Thanks to this optimization large blocks of pixels will not be
scheduled for pixel shading if they are determined to be definitely occluded.

In addition, GeForce 8 series and later GPUs can also perform fine-grained Z
and Stencil culling, which allow the GPU to skip the shading of occluded pixels.

These hardware optimizations are automatically enabled when possible, so they
are mostly transparent to developers. However, it is good to know when they
cannot be enabled or when they can underperform to ensure that you are taking
advantage of them.

GeForce 8 and 9 Series GPU Programming Guide

 44

Coarse Z/Stencil culling (also known as ZCULL) will not be able to cull any
pixels in the following cases:

1. If you don’t use Clears (instead of fullscreen quads that write depth) to
clear the depth-stencil buffer.

2. If the pixel shader writes depth.

3. If you change the direction of the depth test while writing depth.
ZCULL will not cull any pixels until the next depth buffer Clear.

4. If stencil writes are enabled while doing stencil testing (no stencil
culling)

5. On GeForce 8 series, if the DepthStencilView has
Texture2D[MS]Array dimension

Also note that ZCULL will perform less efficiently in the following
circumstances

1. If the depth buffer was written using a different depth test direction
than that used for testing

2. If the depth of the scene contains a lot of high frequency information
(i.e.: the depth varies a lot within a few pixels)

3. If you allocate too many large depth buffers.

4. If using DXGI_FORMAT_D32_FLOAT format

Similarly, fine-grained Z/Stencil culling (also known as EarlyZ) is disabled in
the following cases:

1. If the pixel shader outputs depth

2. If the pixel shader uses the .z component of an input attribute with the
SV_Position semantic (only on GeForce 8 series in D3D10)

3. If Depth or Stencil writes are enabled, or Occlusion Queries are
enabled, and one of the following is true:

• Alpha-test is enabled

• Pixel Shader kills pixels (clip(), texkil, discard)

• Alpha To Coverage is enabled

• SampleMask is not 0xFFFFFFFF (SampleMask is set in
D3D10 using OMSetBlendState and in D3D9 setting the
D3DRS_MULTISAMPLEMASK renderstate)

GeForce 8 and 9 Series GPU Programming Guide

 45

Chapter 5. DirectX 10 Considerations

With the introduction of DirectX 10, we have seen a significant change in the
performance characteristics of 3D applications. It is not necessarily the case
that simply converting your DirectX 9 application to DirectX 10 will result in a
speedup. In fact, in many cases, a slowdown is perceived. This is often due to a
naïve porting effort. It is essential to understand the important differences
between DirectX 9 and 10 in order to properly effect a codebase transition.

In DirectX10 Microsoft has moved validation of api call parameters from
runtime to creation time. This means that, generally, runtime calls to DirectX10
have less CPU overhead than DirectX9. This translates to an increase in the
number of draw calls you can issue per frame and still maintain a high frame
rate.

However, naively porting your DirectX9 code to DirectX10 will induce
slowdowns. In particular, the most common source of a performance
slowdown when porting is due to improper use of shader constants and
constant buffers. In addition are to keep focus on when porting would be
resource updates. Refer to the specific subsections in this chapter for
information about these concepts.

In addition, you can gain additional performance benefit by using built in the
new features in DirectX10 such as instancing, texture arrays, stream out, etc.

Refer to Microsoft’s “Direct3D 9 to Direct3D 10 considerations” for more information.

DirectX 10 Considerations

 46

5.1. DirectX 10 States and Constants

A major cause of poor performance in naïve DirectX 10
ports!

5.1.1. Immutable State blocks

A large change in DirectX10 is the use of render state blocks. Previously, each
render state was separately set, and those commands were injected into the
command buffer. In DirectX10 there are 5 groups of render state that are set
together and bound into an immutable state block object. You create these
state blocks which are unique based on a hash of all the values in them.

The important thing to remember about state blocks is that creating state blocks
takes time. A game should not dynamically create state blocks.

Always create your state blocks at load time.

One recommendation that has not changed is to sort draw calls by render states.

5.1.2. Constant blocks

Constants are declared in buffers in DirectX 10. These buffers are atomically
updated. This means, that if any data in a constant buffer changes, the entire
buffer needs to be re-uploaded. This can be a significant bandwidth hit if your
application has large constant buffers.

5.1.2.1. Group and sort constants by update frequency

The recommendation is to separate shader constants into buffers based on
update frequency. And example would be per-frame, per-mesh, per-draw and
global constant buffers. A more simple illustration of this is below.

cbuffer PerFrameConstants

{

 float4x4 mView;

 float fTime;

 float3 fWindForce;

 // etc.

};

GeForce 8 and 9 Series GPU Programming Guide

 47

All constants in PerFrameCosntants changes only per frame, they are constant
between meshes and draw calls, and thus the buffer only needs to be uploaded
once per frame.

cbuffer SkinningMatricesConstants

{

 float4x4 mSkin[64];

};

In contrast to SkinningMatricesConstants which is constant per mesh, and will only
need to be re-uploaded when the mesh changes. Since many meshes have more
than one draw call and a matrix pallete for animation is very large, separating
this into its own buffer will often save a lot of bandwidth.

In general the graphics engineer will need to strike a good balance between:

• Amount of constant data to upload

• Number calls required to do it (== # of cbuffers)

• Don’t go overboard (3-5 constant buffers is enough)

Another key concept to remember is that it is entirely possible to share constant
buffers between pixel and vertex shaders in the same call.

Example:

• PerFrameGlobal (time, per-light properties)

• PerView (main camera xforms, shadowmap xforms)

• PerObjectStatic (world matrix, static light indices)

• PerObjectDynamic (skinning matrices, dynamic lightIDs)

5.1.2.2. Constant grouping within a block

Another decision to make is the ordering of individual constants withing a state
block. Given that constant blocks can be thought of a buffers that are loaded
from, you can imagine that constant data needs to be cached as it is read from
video memory. Thus two constant reads that are spatially local will be faster
due to higher percentage of hits in the cache.

Thus the recommendation is to sort constants in a block by access pattern.

For example, given the block of shader code below, there are a number of ways
to order the constants in the constant block.

float4 PS_main(PSInput in)

DirectX 10 Considerations

 48

{

 float4 diffuse = tex2D0.Sample(mipmapSampler,

in.Tex0);

 float ndotl = dot(in.Normal, vLightVector.xyz);

 return ndotl * vLightColor * diffuse;

}

The above GOOD and BAD orderings illustrate what you should do when
ordering constants in a block. Due to the fact that vLightVector and
vLightColor are accessed in order, placing a large block of unused data in
between then inside a constant block will result in a cache miss when loading
vLightColor. Placing them together in the block will result in a higher
likelihood that the cach line loaded when accessing vLightVector will include
vLightColor.

5.1.3. Don’t use global constants!

If you place all of your constant variables outside of an explicit block they will
automatically be compiled into a cbuffer called $Globals.

The $Globals buffer typically has poor performance due to:

- Wasted CPU cycles (and bandwidth) updating unused constants
- Cbuffer contention
- Poor cache reuse due to improper ordering of constants.

You can check to see if a constant is being used with
D3D10_SHADER_VARIABLE_DESC.uFlags which is part of the DirectX 10
reflection API.

// GOOD ordering

cbuffer PerFrameConstants

{

 float4 vLightVector;

 float4 vLightColor;

 float4 vOtherStuff[32];

};

// BAD ordering

cbuffer PerFrameConstants

{

 float4 vLightVector;

 float4 vOtherStuff[32];

 float4 vLightColor;

};

GeForce 8 and 9 Series GPU Programming Guide

 49

5.1.3.1. D3D10_SHADER_ENABLE_BACKWARDS_COMPATIBILITY

When compiling SM3 shaders to SM4+ and using the
D3D10_SHADER_ENABLE_BACKWARDS_COMPATIBILITY flag, you
can group constants into constant block with a preprocessor conditional to
declare cbuffers. This allows you to share shaders between DirectX 9 and
DirectX 10 without sacrificing constant buffer performance.

For example:

#ifdef DX10

cbuffer MyBuffer {

#endif

5.1.4. When to use a tbuffer?

A tbuffer uses texture memory to store constant data. As a result is follows the
more traditional texture sample path when loading that data. It is appropriate to
use in situations where the data in the buffer is very large, and you are randomly
(non-sequentially) accessing it. It can also be used if you are unable to fit your
data in the constant buffer size limit.

Type Max Size

cbuffer 4096*float4(16 bytes)

tbuffer 128 MiB

tbuffers have larger latency for data loading, but if you can mask that latency
with shader operations then they will be as fast as cbuffers.

5.2. Resource Management

5.2.1. Resource creation and destruction

Resource creation and destruction calls have significant overhead. They allocate
memory, validate the call, and include various driver checks. This results in
time to create resources.

DirectX 10 Considerations

 50

If possible keep the number of resource creations and destructions to a
minimum. Attempt to create all resource that you will use either up front (i.e
during application or level load), or save them for non-performance critical
times (i.e cut-scenes). At runtime when a resource changes, rather than delete
and re-create, attempt to reuse an existing resource and simply update the data.

5.2.2. Updating resources

There are a few recommendations for updating resource data with Direct 10.

5.2.2.1. Textures (UpdateSubresource is bad!)

When updating textures avoid the UpdateSubresource() call. This call is not
performant for larger data resources and is very bad for really large textures.

We recommend using a ring buffer of intermediate staging textures and then
copying them to video memory resources using the following method.

1. D3D10_USAGE_STAGING textures.
2. Map(D3D10_MAP_WRITE,…) with flag

• D3D10_MAP_FLAG_DO_NOT_WAIT to avoid stalls
3. Copy textures to video memory (D3D10_USAGE_DEFAULT)

• CopyResource() or CopySubresourceRegion()

5.2.2.2. Buffers

When updating buffers in general you have two options.

1. Map(D3D10_MAP_WRITE_DISCARD,…);
2. UpdateSubResource();

In general, for buffers either one works well. With Map the CPU can avoid
updating data in the buffer that the shader doesn’t care about. However, the
entire buffer will need to be copied to the GPU after being updated.

For very large dynamic Vertex/Index buffers

This is a special case for very large VB/IBs. The recommendation in this case is
to use a large shared ring buffer type construct. This would be essentially
placing the separate buffers back to back in a large buffer and adjusting an
offset. Then,

- Map(D3D10_MAP_DISCARD,…) when buffer is full or the first time
initializing it.

GeForce 8 and 9 Series GPU Programming Guide

 51

- Map(D3D10_MAP_No_OVERWRITE,…) when updating the next buffer
in the ring.

- Avoid Updatesubresource() as it is very bad in this case.

5.3. Alpha Test in DirectX 10

In DirectX 10, Microsoft has removed the fixed function alpha test
renderstates. To perform alpha test operations the only way is to use the
discard() or clip() functions in your pixel shader.

One performance mistake that is common when implementing alpha test in
DirectX 10 is to create a shader that handles both alpha testing and non-alpha
testing objects.

The following is an example of this PERFORMANCE MISTAKE:

 if (bAlphaTestOn && alpha < threshold) {

 discard;

 }

When a shader potentially uses the discard() function the hardware is unable to
rely on the information in the Z buffer and thus is forced to disable early Z
functionality. So by combining alpha test and non alpha test operations
together into a single shader, an application will disable early for all rendered
objects including opaque objects.

The recommendation is to create two shaders. One shader is for opaque
objects that do not require alpha test, and one is for transparent objects that will
be using alpha test. By doing this you can ensure optimal z culling and
performance. Please refer to section 4.8 for more information about Z culling.

DirectX 10 Considerations

 52

5.4. Batching and Instancing

As mentioned above, in DirectX 10 runtime API call validation has been moved
to creation time, resulting in a reduction of call overhead. In DirectX 9 this was
seen most prominently in draw call overhead. Many applications would become
CPU bound due to this validation when issuing many draw calls per frame.
DirectX 10 has improved this situation. However, runtime api overhead still
exists, and can be reduced by using geometry instancing.

In DirectX10 instancing support has been build into the API directly. In
addition to being able to specify the instance count as a Draw*() parameter,
there are explicit specifications in the vertex declaration to support per instance
data.

Because of this the concept of drawing everything in a scene in a single draw
call has changed to:

“Be as efficient as possible in reducing API calls, including state
changes, and constant changes. Not just draw calls.”

Instancing still plays a large role in enabling this.

For example, it is still valid to group all blades of grass in a field into a single
call. Instancing can allow those grass blades to be independently perturbed by
winds or other interactions.

Check out NVIDIA SDK 10.5 sample “Instancing Tests” for a test application
where you can evaluate how instancing can help your content. It allows for
loading a custom mesh and includes source code so you can easily evaluate
different rendering techniques.

http://developer.download.nvidia.com/SDK/10.5/Samples/InstancingTests.zi
p

GeForce 8 and 9 Series GPU Programming Guide

 53

Chapter 6.General Advice

This chapter covers general advice about programming GPUs that can be
leveraged across multiple GPU families.

6.1. Identifying GPUs

In the past, developers often queried a GPU’s device ID (through Windows) to
find out what GPU they were running on. The device IDs have historically been
monotonically increasing. However, with the GeForce 6 & 7 Series (and later)
GPUs, this is no longer the case. Therefore, we recommend that you rely on
caps bits (in DirectX) or the extensions string (in OpenGL) to establish the
features of the GPU you’re running on. If you’re using OpenGL’s renderer
string, don’t forget that NV40-based chips do not all have an “FX” moniker in
their name (they are named “GeForce 6xxx” or “Quadro FX x400”). Similarly,
G70-based chips are named “GeForce 7xxx”.

Device IDs are often used by developers to try to reduce support calls. If you
mishandle Device IDs, you will instead create support calls. Often, when we
create a new GPU, many applications will not recognize it and fail to run.

One key idea that cannot be stressed enough is that not recognizing a Device
ID does not give you any information. Do not take any drastic action just
because you do not recognize a Device ID.

The only reasonable use of Device ID is to take action when you recognize the
ID, and you know there is a special capability or issue you wish to address.

Some games are failing to run on GeForce 8 & 9 SeriesGPUs because they mis-
identify the GPU as a TNT-class GPU, or don’t recognize the Device ID. This
behavior creates a support nightmare, as the G80 generation of chips is the
most capable ever, and yet some games won’t run due to poor coding practices.

General Advice

 54

Device IDs are also not a substitute for caps (DirectX 9) and extension
strings(OpenGL). Caps have and do change over time, due to various reasons.
Mostly, caps will be turned on over time, but caps also get turned off, due to
specs being tightened up and clarified, or simply the difficulty or cost of
maintaining certain driver or hardware capabilities.

One benefit of using DirectX 10 is that Microsoft has removed the concept of
caps bits and a GPU that supports DirectX 10 must support all features of
DirectX 10.

Render target and texture formats also have been turned off from time to time,
so be sure to check for support.

For an up to date list of Device IDs refer to
http://developer.nvidia.com/object/device_ids.html

If you are having problems with Device IDs, please contact our Developer
Relations group at devrelfeedback@nvidia.com.

The current list of Device IDs for all NVIDIA GPUs is here:
http://developer.nvidia.com/object/device_ids.html.

6.2. Hardware Shadow Maps

NVIDIA hardware from the GeForce 3 GPU and up supports hardware
shadow mapping in OpenGL and DirectX. “Hardware shadow mapping”
means that we have dedicated special transistors specifically for performing the
shadow map depth comparison and percentage-closer filtering operations. We
recommend that you take advantage of this feature, as it produces higher quality
filtered shadow map edges very efficiently. Because dedicated transistors exist
for hardware shadow mapping, you will lose performance and quality if you try
to emulate our shadow mapping algorithm with ps_2_0 of higher.

For a lot more information about shadowing and the many different techniques
available check out the following link.

http://developer.nvidia.com/object/doc_shadows.html

There are many techniques available. However, the general recommendation is
that unless you know what you are doing you should just implement simple
multi-tap cascaded shadow maps. In general, 3 levels are sufficient to provide
good shadow detail for any scene.

GeForce 8 and 9 Series GPU Programming Guide

 55

6.3. Depth Bounds Test (DBT)

 Depth Bounds Test and is available on all GPUs from GeForce 6 Series and
later.

Depth Bounds Test (DBT) allows the programmer to enable an additional
criterion to allow discarding of a pixel before blending to the rendertarget.

The extension adds a new per-fragment test that is, logically, after the scissor
test and before the alpha test. The depth bounds test compares the depth value
stored at the location given by the incoming fragment's (xw,yw) coordinates to a
user-defined minimum and maximum depth value. If the stored depth value is
outside the user-defined range (exclusive), the incoming fragment is discarded.
Unlike the depth test, the depth bounds test has NO dependency on the
fragment's window-space depth value.

6.3.1. Important Notes

• It is important to note that DBT does not depend on the depth of
the pixel out from the pixel shader only the previously stored render
target depth position.

• The DBT comes logically after the scissor test and before alpha testing.

• The min/max values are clamped to [0..1]. NANs are converted to 0.

• The depth bound test is enabled if all the following is true:
o min < max (after clamping)
o min > 0 or max < 1 (after clamping)
o A depth buffer is in use

6.3.2. API Usage

To check for DBT support:

if(dev->CheckDeviceFormat(Adapter, D3DDEVTYPE_HAL, AdapterFormat, 0,

D3DRTYPE_SURFACE, (D3DFORMAT MAKEFOURCC('N','V','D','B')) == S_OK)

{

MessageBox(NULL, _T("Device/driver does not support depth bounds

test!"), _T("ERROR"), MB_OK|MB_SETFOREGROUND|MB_TOPMOST);

 return E_FAIL;

}

General Advice

 56

Enabling DBT under DirectX 9 is as follows:

float zMin,zMax;

zMin = .25f;

zMax = .75f;

dev->SetRenderState(D3DRS_ADAPTIVETESS_X,MAKEFOURCC('N','V','D','B'));

dev->SetRenderState(D3DRS_ADAPTIVETESS_Z,*(DWORD*)&zMin);

dev->SetRenderState(D3DRS_ADAPTIVETESS_W,*(DWORD*)&zMax);

To disable it, simply change the fourCC code for the adaptiveness.

dev->SetRenderState(D3DRS_ADAPTIVETESS_X,0);

6.3.3. What is DBT good for?

Depth Bounds Test can be used in any case where you wish to manually restrict
pixels being written to your render target based on a stored depth value.
Because the depth of the actual pixel as output from the shader does not get
evaluated, it is sometimes tricky to understand the usefulness.

Below is an example taken from the OpenGL extension document on depth
bounds test:

“This functionality is useful in the context of attenuated stenciled shadow
volume rendering. To motivate the functionality's utility in this context, we first
describe how conventional scissor testing can be used to optimize shadow
volume rendering.

If an attenuated light source's illumination can be bounded to a rectangle in XY
window-space, the conventional scissor test can be used to discard shadow
volume fragments that are guaranteed to be outside the light source's window-
space XY rectangle. The stencil increments and decrements that would
otherwise be generated by these scissored fragments are inconsequential
because the light source's illumination can pre-determined to be fully attenuated
outside the scissored region. In other words, the scissor test can be used to
discard shadow volume fragments rendered outside the scissor, thereby
improving performance, without affecting the ultimate illumination of these
pixels with respect to the attenuated light source. This scissoring optimization
can be used both when rendering the stenciled shadow volumes to update
stencil (incrementing and decrementing the stencil buffer) AND when adding

GeForce 8 and 9 Series GPU Programming Guide

 57

the illumination contribution of attenuated light source's. In a similar fashion,
we can compute the attenuated light source's window-space Z bounds
(zmin,zmax) of consequential illumination. Unless a depth value (in the depth
buffer) at a pixel is within the range [zmin,zmax], the light source's illumination
can be pre-determined to be inconsequential for the pixel. Said another way,
the pixel being illuminated is either far enough in front of or behind the
attenuated light source so that the light source's illumination for the pixel is fully
attenuated. The depth bounds test can perform this test.”

Another example is deferred renderers. Given that lighting is rendered by first
converting the light to screen space, can make use of DBT to cull pixels in areas
of the screen where the light depth (previously written) will not be visible.

6.4. FOURCC Codes

FourCC codes are special codes that give developers access to certain custom
formats that are specific to an IHV. NVIDIA provides a number of extremely
useful FourCC codes to enable maximum performance and efficiency on the
latest GPUs.

6.4.1. NULL Rendertarget (“NULL”)

Supported GPUs: GeForce 6 Series and Later

When rendering a shadow map occlusion pass using hardware shadow maps it
is necessary to bind a color buffer. This is a DirectX API restriction. Another
restriction is that the color and depth buffers be the same size. Because
rendering a shadow map when using hardware shadow maps does not actually
use the color buffer this results often in the need to create an unused color
buffer to bind to the pipeline. In most cases the shadow map resolution doesn’t
match a previously allocated color buffer. This is a waste of precious video
memory.

This is the reason to use a NULL rendertarget. A NULL rendertarget
advertises any resolution that you want but does not actually allocate any
memory and thus takes up no space in video memory.

6.4.1.1. Usage

Below is a code example showing how to check for hardware shadow map
support and create an appropriate NULL render target.

General Advice

 58

m_zFormat = D3DFMT_D24X8;

m_colorFormat = D3DFMT_A8R8G8B8;

m_nullFormat = (D3DFORMAT)MAKEFOURCC('N','U','L','L');

// Check for hardware shadowmap support

if(FAILED(CheckResourceFormatSupport(m_pd3dDevice, m_zFormat,

D3DRTYPE_TEXTURE, D3DUSAGE_DEPTHSTENCIL)))

{

 MessageBox(NULL, _T("Device/driver does not support hardware shadow

maps!"), _T("ERROR"), MB_OK|MB_SETFOREGROUND|MB_TOPMOST);

 return E_FAIL;

}

 // Check for NULL render target support

if(FAILED(CheckResourceFormatSupport(m_pd3dDevice, m_nullFormat,

D3DRTYPE_SURFACE, D3DUSAGE_RENDERTARGET)))

{

 MessageBox(NULL, _T("Device/driver does not support hardware shadow

maps with NULL colorbuffers!"), _T("ERROR"),

MB_OK|MB_SETFOREGROUND|MB_TOPMOST);

 return E_FAIL;

}

if(FAILED(m_pd3dDevice->CreateRenderTarget (TEXDEPTH_WIDTH,

TEXDEPTH_HEIGHT, m_nullFormat, D3DMULTISAMPLE_NONE, (DWORD)0, FALSE,

&m_pSMColorSurface, NULL)))

 return E_FAIL;

m_pSMColorTexture = NULL;

6.4.2. Direct DepthBuffer Access (“INTZ” and “RAWZ”)

Supported GPUs: GeForce 6 Series and later (INTZ requires 8 Series)

There are two fourcc codes that allow direct depth buffer access. The first
“RAWZ” gives a 4 component value that represents the raw data stored in the
depth buffer. The second “INTZ” returns a simple depth value representing
the depth that is stored in the depth buffer. INTZ is the recommended code to
use, but it is only supported on GeForce 8 Series GPUs and later.

You can use direct access to the depth buffer to enable effects (such as custom
shadow mapping) without having to render depth to a color buffer. By
performing a Z only render you can make use of the double speed Z rendering
and still get direct access to the rendered depth.

GeForce 8 and 9 Series GPU Programming Guide

 59

6.4.2.1. Usage

"No z-compare" z-buffers are exposed as a separate FOURCC format ('RAWZ'
on NV4x and 'INTZ' on G8x).

To create a RAWZ z-buffer, just do:

1. On GeForce 6/7 series use: (D3DFORMAT)MAKEFOURCC('R','A','W','Z')
2. On GeForce 8 series use: (D3DFORMAT)MAKEFOURCC('I','N','T','Z')

m_pd3dDevice->CreateTexture(TEXDEPTH_WIDTH, TEXDEPTH_HEIGHT, 1,

D3DUSAGE_DEPTHSTENCIL, (D3DFORMAT)MAKEFOURCC('I','N','T','Z'),

D3DPOOL_DEFAULT, &m_pSMZTexture, NULL)

Then use it just as if it was a normal z-buffer (render to it, etc).

6.4.2.2. Reconstructing Z for RAWZ (GeForce 6/7 Series GPUs)

REMINDER: Since the GeForce 8 Series and later GPUs can read depth
buffers directly, there's no need for the 'RAWZ' format. Thus, this mode is
exposed as FOURCC of 'INTZ' on G8x. When reading it in the shader, no
reconstruction is necessary - z value is replicated to all four components of a
texture fetch.

If you are using RAWZ due to running on a GeForce 6/7 Series GPU then in
the shader you reconstruct the z-value as follows:

float z = dot(tex2D(RawZSampler, tcoord).arg,

float3(0.996093809371817670572857294849,

0.0038909914428586627756752238080039,

1.5199185323666651467481343000015e-5));

Unfortunately, the result provided by this simple approximation is not always
accurate enough. In fact, due to rounding errors, it can be as bad as being
accurate to only 8 bits. Better accuracy (at the cost of more instructions) can be
obtained by dropping any extra rounding errors as follows:

float3 rawval = floor(255.0 * tex2D(RawZSampler, tcoord).arg +

0.5);

float z = dot(rawval, float3(0.996093809371817670572857294849,

0.0038909914428586627756752238080039,

1.5199185323666651467481343000015e-5) / 255.0);

GeForce 8 and 9 Series GPU Programming Guide

 60

Chapter 7.
Performance Tools Overview

This section describes several of our tools that will help you identify and remedy
performance bottlenecks as well as assist you in content creation. Our tools are
constantly being updated and new tools being developed. For up to date
information as well as the latest releases and usage information please visit

http://developer.nvidia.com/page/tools.html

This chapter will overview some of the most used tools.

7.1. PerfKit

http://developer.nvidia.com/PerfKit

NVIDIA PerfKit is a comprehensive suite of performance tools to help debug
and profile OpenGL and Direct3D applications. It gives you access to low-level
performance counters inside the driver and hardware counters inside the GPU
itself. The counters can be used to determine exactly how your application is
using the GPU, identify performance issues, and confirm that performance
problems have been resolved.

NVIDIA PerfKit includes support for 32-bit and 64-bit Windows XP and
Vista platforms.

The performance counters are available directly in your OpenGL and DirectX
applications and in tools such as Intel® VTune™ for Windows and Graphic
Remedy’s gDEBugger via the Windows Management Instrumentation (WMI)
Performance Data Helper (PDH) interface. A plug-in supporting Microsoft PIX

Performance Tools Overview

 61

for Windows is also provided, giving you low-latency access to PerfKit
performance counters directly from the driver.

The following tools are included (plus more) in the NVIDIA PerfKit.

7.1.1. PerfHUD

http://developer.nvidia.com/PerfHUD

NVIDIA PerfHUD is a
powerful real-time performance
analysis tool for Direct3D
applications. PerfHUD is widely
used by the world's best game
developers and was a 2007
Game Developer Magazine
Frontline Award Finalist.

Check out screenshots of
PerfHUD running in some
today's most successful games,
testimonials by game developers
all over the world, or reviews of PerfHUD 5 from iXBT and Beyond3D.

• GeForce GTX 200 Series GPU Support

• A robust input layer for intercepting the mouse and keyboard

• Works with standard drivers on Windows Vista

• SLI Support

• Texture Visualization and Overrides

• API Call List

• Dependency View

• CPU/GPU Timing graph

7.1.2. PerfSDK

http://developer.nvidia.com/object/nvperfsdk_home.html

NVPerfSDK is a component of NVPerfKit that provides a programmatic API
for accessing performance counters in the graphics driver and GPU. It allows
you to query performance counters from your own applications, enabling you to

GeForce 8 and 9 Series GPU Programming Guide

 62

build customized profiling functionality. NVPerfSDK is available in 32-bit and
64-bit Windows as well as 32-bit and 64-bit Linux.

NVPerfSDK has the following features:

• NVIDIA NVPerfAPI for easy integration into applications

• Sample applications provided to learn from

• Simplified Experiments
o Targeted, multipass experiments to determine GPU bottleneck
o Automated analysis of results to show bottlenecked unit

• Use cases
o Real time performance monitoring using GPU and driver

counters, round robin sampling
o Simplified Experiments for single frame analysis

To learn more about NVPerfSDK, we recommend that you view our "GPU
Performance Tuning with NVIDIA Performance Tools" talk from GDC 2006.

7.1.3. GLExpert

http://developer.nvidia.com/object/glexpert_home.html

GLExpert is a component of NVPerfKit that helps OpenGL developers by
identifying errors and performance issues.

GLExpert is controlled using the GLExpert tab of the NVIDIA Developer
Control panel. You can choose what level of debugging information to report,
as well as where the output is sent.

GLExpert provides the following features:

• Outputs to console/stdout or debugger

• Displays different groups and levels of information detail

• OpenGL errors: print as they arise

• Software Fallbacks: indicate when the driver is using
software emulation

• GPU Programs: print errors during compilation or linking

• VBOs: show where buffers reside along with mapping details

• FBOs: print reasons why a configuration is unsupported

You can expect even more functionality in the future as GLExpert's

feature list grows with driver advances.

Performance Tools Overview

 63

To learn more about GLExpert, we recommend that you take a look at our
"GPU Performance Tuning with NVIDIA Performance Tools" talk from GDC
2006.

7.1.4. ShaderPerf

http://developer.nvidia.com/ShaderPerf

NVIDIA ShaderPerf is a
command-line shader profiling
utility and C API that reports
detailed shader performance
metrics for a wide range of
GPUs.

A graphical user interface (GUI)
for shader performance analysis
is available in FX Composer 2.5,
and was built using the
ShaderPerf API.

ShaderPerf 2.0 includes several new features:

• GeForce 8 series support

• Pixel Shader Differencing

• Vertex Shader Analysis

ShaderPerf outputs the following for any shader that you analyze:

• Cycle count

• Register usage

• Driver-optimized shader instruction list

• Vertex and pixel throughput estimates

7.2. Shader Debugger

http://developer.nvidia.com/object/nv_shader_debugger_home.html

Modern shaders are growing in complexity, making them harder to understand
and debug. To help developers address this problem, NVIDIA offers a full-

GeForce 8 and 9 Series GPU Programming Guide

 64

featured pixel shader debugger that allows shaders to be debugged just like CPU
code.

The NVIDIA Shader Debugger is a plug-in for FX Composer 2.5 that supports
debugging of pixel shaders in the following shading languages:

• Microsoft DirectX 10 HLSL

• Microsoft DirectX 9 HLSL

• CgFX

• COLLADA FX Cg

7.3. FX Composer

http://developer.nvidia.com/FXComposer

FX Composer empowers
developers to create high-
performance shaders for
DirectX and OpenGL in an
integrated development
environment with unique
real-time preview and
optimization features. FX
Composer was designed with
the goal of making shader

Performance Tools Overview

 65

development and optimization easier for programmers while providing an
intuitive GUI for artists customizing shaders for a particular scene.

FX Composer allows you to tune your shader performance with advanced
analysis and optimization:

• DirectX 10 support, including geometry shaders and stream out.

• Visual Styles - the ability to create, define, and export multiple looks for
a model.

• Particle systems

• Support for the NVIDIA Shader Debugger
o Enables performance tuning workflow for vertex and pixel

shaders
o Optimization hints notify you of performance bottlenecks

• Capture of pre-calculated functions to texture look-up table

• Remote control over TCP/IP

• Unified Importing of Models

Developer Tools
Questions and Feedback

We would like to receive your feedback on our tools. Please visit our Developer
Forums at http://developer.nvidia.com/forums.

