
The Trip Scheduling Problem

Claudia Archetti

Department of Quantitative Methods, University of Brescia

Contrada Santa Chiara 50, 25122 Brescia, Italy

Martin Savelsbergh

School of Industrial and Systems Engineering, Georgia Institute of Technology

Atlanta, GA 30332-0205, U.S.A.

Abstract

The hours of service regulations of the department of transportation severely restrict
the set of feasible driver schedules. So much so that establishing whether a sequence of
full truckload transportation requests, each with a dispatch window at the origin, can
feasibly be executed by a driver is no longer a matter of simple forward simulation. We
consider this problem and prove that the feasibility of a driver schedule can be checked
in polynomial time by providing an O(n3) algorithm for establishing whether a sequence
of full truckload transportation requests, each with a dispatch window at the origin, can
be executed by a driver.

1 Introduction

Truckload transportation represents a significant portion of all land-based freight trans-
portation. In truckload transportation, full truckloads have to be picked up at an origin
location and delivered at a destination location. A load dispatch window specifies the ear-
liest time a load is ready for pickup at the origin location and the latest time that the load
can be picked up at the origin location and still reach the destination location at a desired
time. The challenge in truckload transportation is minimizing the (empty) repositioning
of vehicles between a delivery location and a subsequent pickup location, because no rev-
enues are generated on such a deadhead move, only costs are incurred. Demand uncertainty
(transportation requests become available dynamically over time) makes minimizing repo-
sitioning especially challenging. A body of literature exists on truckload transportation,
see for example Powell ([5, 6]), Powell et al. ([7]), Yang et al. ([8]), Regan et al. ([9]),
and Powell et al. ([10]). Unfortunately, most of the literature ignores a crucial real-life
complexity: driver restrictions. Governments impose restrictions on truck drivers to ensure
their safety as well as the safety of other drivers. In the United States, for example, the
Hours of Service (HOS) regulations ([2]) of the Federal Motor Carrier Safety Administration
mandate that a driver cannot drive for more than 11 hours and cannot be on duty for more
than 14 hours before a mandatory rest period of at least 10 hours (there are additional

1

restrictions, but these two are the most relevant and most restrictive). It is obvious, es-
pecially given the fact that truckload transportation often involves loads moving over long
distances, that decision technology for scheduling truckload transportation requests which
ignores driver restrictions is of limited, if any, value. A truckload transportation company
has to consider HOS rules whenever it prepares a driver schedule for a trip taking more than
one day (which is common, especially in the US, where individual moves often take more
than a day). One of the few papers explicitly acknowledging the importance and complexity
of handling driver restrictions is Xu et al. ([4]). The paper contains illustrative examples
of how HOS rules impact the timing of a trip (i.e., arrival and departure times at pickup
and delivery locations). The authors observe, among other things, that due to the presence
of dispatch windows at origin locations of loads and the HOS regulations governing drivers,
it is not necessarily optimal for a truck to depart from its home base as early as possible
in order to complete a trip as early as possible. In fact, they conjecture that the “trip
scheduling” problem, i.e., determining a departure time that results in the earliest return
time, is NP-hard. Their trip scheduling problem is more complex than the one we consider
in this paper, as it considers HOS regulations as well as multiple time windows at both
pickup and delivery locations (and a complex cost function involving fixed costs, mileage
costs, waiting costs and layover costs), but our results indicate that their conjecture may
not be true. More specifically, we show that it is possible to establish in polynomial time
whether a given sequence of transportation requests with a single dispatch window at the
origin of the request (but no delivery window at the destination) can be feasibly executed
by a driver that is available during a certain time period, i.e., respecting HOS regulations.

There are several other non-trivial scheduling problems involving just a single route.
In the context of inventory routing problems, Campbell and Savelsbergh ([1]) develop a
linear time algorithm for determining a delivery schedule for a route, i.e., a given sequence
of customer visits, that maximizes the total amount of product that is delivered on the
route. The algorithm has to properly account for the two dueling effects of increased
inventory holding capacity at customers as time progresses and increased delivery times as
more product is delivered at customers. In the context of dial-a-ride problems, Hunsaker
and Savelsbergh ([3]), develop a linear time algorithm for determining whether a feasible
schedule exists for a route, i.e., for a given sequence of pickups and deliveries, in the presence
of maximum wait time and maximum ride time restrictions.

The remainder of the paper is organized as follows. In Section 2, we formally introduce
the Trip Scheduling Problem and we provide a few examples illustrating the complexities
encountered when solving the Trip Scheduling Problem. In Section 3, we present a poly-
nomial algorithm for the Trip Scheduling Problem, prove its correctness, and derive its run
time complexity. In Section 4, we analyze more general cases and prove that the algorithm
proposed in Section 3 can be adapted to handle these generalizations. In Section 5, we
investigate a variant of the Trip Scheduling Problem. Finally, in Section 6, we offer some
final remarks.

2

2 Problem Definition

Truckload transportation problems are characterized by a set of transportation requests I,
with for each transportation request i ∈ I a pickup location i+, a delivery location i−, and
a dispatch window at the pickup location [ei+ , ℓi+]. If a truck arrives before the opening of
the dispatch window, it has to wait. A truck must arrive before the closing of the dispatch
window, because otherwise it will not reach the delivery location in time. A truck can serve
one transportation request at a time. We assume that pickup and delivery of a load happen
instantaneously, i.e., loading and unloading times are ignored. A truck driver can drive at
most τdrive hours and can be on duty at most τduty hours before a mandatory rest of at
least τrest hours. Duty time includes driving time and waiting time.

The Trip Scheduling Problem (TSP) is to determine, given a sequence of transportation
requests S, whether a trip exists that feasibly executes the transportation requests in S,
i.e., whether or not dispatch times at the origins of the transportation requests in S can
be found that correspond to a driver schedule respecting the HOS regulations. The ideas
and techniques presented can easily be adapted to handle a central facility where the driver
starts and ends. Since the sequence of transportation requests is given and there are no time
restrictions at the delivery locations, it is possible to focus completely on dispatch times at
the origin locations of the loads. In the absence of driver restrictions, the arrival time at
the origin location of the next load is completely determined by the departure time at the
origin of the current load (departure time plus travel time to the destination location plus
the relocation time from the destination location to the origin location of the next load).
Therefore, in the remainder when we refer to the driving time between two locations j and
k, denoted by tjk, we mean the driving time from the pickup location j+ to the delivery
location j− plus the driving time from the delivery location j− to the pickup location k+.

The following examples illustrate that in the presence of driver restrictions it is unlikely
that simple dispatching rules, such as “always departing as early as possible” and “always
rest as late as possible,” will allow us to establish the existence of a feasible trip.

Consider the situation depicted in Figure 1. Each horizontal line in the figure repre-
sents a time-line for the origin location of a transportation request. A set of consecutive
transportation requests is represented by a set of consecutive time-lines with the first trans-
portation request at the bottom and the last transportation request at the top. A pair
of square brackets on a time-line represents the dispatch window associated with the cor-
responding request. The numbers above or below a square bracket represent the opening
or closing time of the dispatch window. The numbers next to the double arrows on the
right of the figure indicate the driving time between two locations. The colored path from
the first to the last location represent a driver schedule: a slanted segment (blue segment)
represents that the vehicle is driving, whereas a horizontal segment represents waiting time
(red segment) or rest time (green segment). Numbers along the path represent either an
arrival or a departure time at a location or the start or end time of a rest. The values of the

3

parameters of the HOS regulations are: τduty = 14 hours, τdrive = 11 hours and τrest = 10
hours. The top part of Figure 1 shows that when we depart as early as possible and rest as
late as possible, we arrive at the origin of the third transportation request too late. (Note
that the rest between the second and third location is a result of the duty time limit τduty.)
At first, we may think that departing later from the first location, thereby avoiding the
waiting time at the second location, may help, but we soon find that it does not, as it will
not eliminate the rest between the second and third location. The only way to feasibly visit
all three locations is to rest early, as soon as we arrive at the second location, as shown in
the bottom part of the Figure 1.

Figure 1: Rest earlier

Next, consider the situation depicted in Figure 2. The top part of Figure 2 shows that,
again, departing as early as possible and resting as late as possible leads to a late arrival at
the origin of the third transportation request. However, resting immediately upon arrival
at the origin of the second transportation request, which lead to a feasible solution in the
previous situation, does not produce a feasible solution. A feasible solution does exist
though. Because the travel time between the second and third location is smaller than
in the previous example, it is possible to eliminate the rest between the second and third

4

location by departing later, as shown in the bottom part of the Figure 2.

Figure 2: Depart later

Finally, consider the situation depicted in Figure 3. As before, the top part of Figure
3 shows that, departing as early as possible and resting as late as possible leads to a late
arrival at the origin of the third transportation request. However, because of the tight
dispatch window at the second location and the travel times between the different locations
“resting earlier” (as shown in the middle part of Figure 3) and “departing later” (as shown
in the bottom part of Figure 3) do not lead to a feasible solution either.

3 A Polynomial-Time Algorithm for the Trip Scheduling Prob-

lem

In this section, we present a polynomial-time algorithm for the Trip Scheduling Problem, i.e.,
an algorithm, called SMARTRIP, that produces a feasible dispatch schedule in polynomial
time if one exists. For ease of presentation, we initially focus on the variant in which a rest
takes exactly τrest hours.

Discussion
Before presenting the details of the algorithm, we provide the intuition behind it. Observe
that the trip time is the sum of the travel time, the waiting time, and the rest time. The
travel time, of course, is fixed as the sequence of transportation requests is given. Therefore,
the challenge is to determine when to rest (and thus when to wait). Among the set of feasible
dispatch schedules there is one that has a minimum number of rests. Furthermore, among

5

Figure 3: Infeasible

the set of feasible dispatch schedules with a minimum number of rests there is one where the
rests are taken as early as possible. Our algorithm finds such a dispatch schedule, if it exists.
We construct the dispatch schedule in reverse order, i.e., we start from the last location
visited in the trip. The reason for this is that dispatch window feasibility is determined by
the closing of the window and therefore we know that the last time we can visit the last
location is at the closing of its dispatch window. We work backwards from there.

The key component of the algorithm is a backward search through the trip that starts
from the last location and constructs a path respecting the dispatch windows and the driving
and duty time limits in which rests are taken as late as possible (and thus as early as possible
in a forward direction). If by doing so, we reach the first location, then we have found the
feasible dispatch schedule we are looking for; simply traverse the constructed path in the
opposite direction. On the other hand, if we encounter an infeasibility, i.e., we arrive at
a location before the opening of the dispatch window, we conclude that we have been too
aggressive and backtrack. If a feasible path exists, then at least one of the rests should have
been taken earlier (and thus later in a forward direction). Therefore, we backtrack, adjust
the start time of a rest, and start the backward search again. This process is repeated until
either a feasible path has been found (and thus a feasible dispatch schedule) or we have
established that no feasible path, and thus no feasible dispatch schedule, exists.

6

Algorithm
As mentioned above, the key component of the algorithm is a backward search through the
trip. Assume that the trip is given by a sequence of (origin) locations (1, 2, ..., n, n+1). For
each i, the backward search attempts to construct a path from n+1 to i respecting driving
and duty time limits, with a minimum number of rests, and with maximum remaining duty
and drive time upon arrival at i. The latter implies that we have taken rests as late as
possible. Such a path may not be unique, as the same path may be feasible for different
start times; we say there is slack on the path. Slack occurs as a result of the width of
the dispatch windows and the difference between the duty time and driving time limits.
For convenience, we choose to work with the path that starts as early as possible at every
location (among those feasible paths with a minimum number of rests and with maximum
remaining duty and drive time upon arrival at i), which can be done by monitoring and
using the slack appropriately.

A detailed description of SMARTRIP is given in Algorithm 1 where the following vari-
ables are used:

• t: the arrival time,

• remDuty: the remaining duty time,

• remDrive: the remaining driving time,

• slack: the amount by which the arrival time can be adjusted without affecting the
remaining duty and remaining driving time.

In the discussion below, which focuses on the backward search, notation and terminology
are consistent with the backward nature of the search. Thus, the arrival time t at location
i is with respect to the path from n + 1 to i. Similarly, the departure time at location i is
the departure from i to i− 1.

Since the slack is used extensively to avoid waiting time along the path, we elaborate
on it before explaining the details of the backward search. Its initial value at location n + 1
is ln+1 − en+1; we can change the departure time ln+1 by as much as ln+1 − en+1 without
affecting the remaining duty and remaining driving time (the driver always departs fresh
from n + 1). We cannot change the departure time more than ln+1− en+1 because then we
would no longer depart within the dispatch window. The slack on the path may grow when
the driver takes a rest. A driver starts a rest as soon as he reaches his maximum driving
time limit. If there is any remaining duty time, then that remaining duty time has to be
added to the slack. Postponing the start of the rest (up to the remaining duty time) does
not affect the remaining duty and remaining driving time at the next location. The slack on
the path may decrease for two reasons. First, we may use the slack to avoid waiting time.
This occurs when we arrive at a location after the closing of the dispatch window (t > li).
We exploit slack on the path, if any, to reduce the waiting time. Second, we may have to

7

adjust the slack because of the opening of the dispatch window. We can never adjust the
departure time at a location beyond the opening of the dispatch window. Therefore, the
slack can never be more than the difference between the departure time and the opening
of the dispatch window. Consider the instance depicted in Figure 4. The top part of the

Figure 4: Exploiting slack

figure shows the path constructed by the backward search if we would not exploit slack
along the path. The driver starts fresh from location n + 1 at time ln+1 = 36. After 7
hours of driving, he reaches location n at time 29 and has to wait until ln = 26 to serve
location n. He departs location n at time ln = 26 and drives for 4 hours before reaching
his maximum driving time limit. He starts his rest immediately at time 22. At the end of
his rest, at time 12, the driver continues to location n− 1 which is reached at time 9. Here
again the driver has to wait until ln−1 = 5 before being able to serve location n − 1. At
the time of departure from location n − 1, the path has one rest, 7 hours of waiting time,
and the remaining driving time and the remaining duty time are 7 hours. By exploiting
slack, we can do much better. This is shown in the bottom part of the figure. By departing
from location n + 1 at time 30, we reach location n at time en = 23. After departing from
location n at time en = 23, we reach the maximum drive time limit at time 19, but instead
of going to rest immediately, we postpone the start of the rest until time 18. After ending
the rest at time 8, we drive for three hours and reach location n − 1 at time ln−1 = 5.
At the time of departure from location n − 1, the path has one rest, no waiting time, the

8

remaining driving time is 8 hours, and the remaining duty time is 11 hours. The backward
search obtains this path by making the necessary adjustments to slack at each location.
The middle part of the figure shows the adjustments that are made by the backward search
at location n, where 3 hours of slack time were used to avoid waiting time. Table 1 shows
the slack at the arrival time and at the departure time for the three locations in the above
example.

Table 1: Slack computations for the example

arrival departure

n + 1 - 16
n 16 3

n− 1 6 2

The details of the backward search are given in Algorithm 2. Even though it is not
necessary to explicitly keep track of the waiting time between two consecutive locations to
establish feasibility of the path during the backward search, this information is necessary
in Algorithm 3 when we try to restore feasibility. Therefore, we do compute and store
waiti, the waiting time on the constructed path between i + 1 and i. (Waiting is handled
properly in the backward search either by reducing the slack (avoid waiting) or by reducing
the remaining duty time (account for waiting)).

Before proving an invariant property of the backward search, we describe its main steps.
Given the initializations in SMARTRIP (lines 1-5 of Algorithm 1), a fresh driver starts at
location n+1 at time t = ln+1, i.e., the remaining duty time and the remaining driving time
of the driver are equal to τduty and τdrive, respectively. The slack of the path is initialized
at ln+1 − en+1, since the driver can depart location n + 1 at any time between ln+1 and
en+1 without affecting the remaining driving and duty time at n + 1. The backward search
is called with parameters j = n and k = 1. Parameter j is the next location on the path to
be built and parameter k is the location where the construction stops (if no infeasibility is
detected along the way). In each iteration of the backward search, we start by computing
the arrival time at (the next) location i. Once the arrival time t at i has been determined, we
analyze it with respect to the dispatch window at i. If the arrival time is before the opening
of the dispatch window (t < ei), then the algorithm stops; we have failed to establish a
time-feasible dispatch schedule from i to n + 1. If, on the other hand, the arrival time is
greater than or equal to the opening of the dispatch window (t ≥ ei), then a time-feasible
dispatch schedule from i to n + 1 exists and the algorithm attempts to extend it to a time-
feasible dispatch schedule from i − 1 to n + 1. Two situations have to be considered. If
the arrival time falls within the dispatch window at i, then the algorithm simply proceeds
to the next iteration. Otherwise, waiting time may be incurred. As we want to rest as

9

Algorithm 1 SMARTRIP

1: ***** Initialization *****
2: t← ln+1, remDuty ← τduty, remDrive← τdrive, slack ← (ln+1 − en+1)
3: ***** Start backward search *****
4: Done← False

5: j ← n

6: repeat

7: i← BackwardSearch(j, 1)
8: if i = 1 then

9: Done← True // A feasible trip has been found
10: else

11: Restored← Restore(i)
12: if Restored = Success then

13: j ← i− 1
14: else

15: Done← True // No feasible trip exists
16: end if

17: end if

18: until Done

late as possible, we want to avoid waiting time along the path because waiting time, which
counts towards duty time, may cause us to rest earlier. The algorithm exploits any slack
in the path from i to n + 1 to eliminate waiting time (exploiting slack time does not affect
remaining duty and drive time). While exploiting slack, two cases can occur. First, there
is enough slack in the path to avoid waiting time altogether. This happens if the slack to
move the path earlier in time is greater than the difference between the arrival time and
the closing of the dispatch window (slack ≥ t − li). In that case, necessary updates are
made and the algorithm proceeds to the next iteration. Second, waiting time is unavoidable.
This situation requires more complex updating before the algorithm can proceed to the next
iteration, as the waiting time may be larger than the remaining duty time, which forces the
driver to rest (maybe more than once).

A more elaborate discussion of the steps of the backward search is presented below.
Given the input parameters j and k, for each location i = j, j− 1, ..., k the backward search
performs the following steps:

1. Calculate the arrival time at location i: lines 3-11.

Given the driving time from location i + 1 to i (ti,i+1) and the departure time t from
location i + 1, the arrival time at i is calculated. Two cases have to be distinguished:

• The remaining driving time at i + 1 is sufficient to cover the entire driving time

10

from i+ 1 to i. In this case, the arrival time at i is simply given by t− ti,i+1 and
the remaining driving and duty time are also updated as remDrive− ti,i+1 and
remDuty − ti,i+1.

• The remaining driving time at i + 1 is less than ti,i+1. In this case, at least one
rest has to be taken going from i+ 1 to i. The number of rests nRests needed is
1+⌊

ti,i+1−remDrive

τdrive
⌋; the first when remDrive = 0 and the other ⌊

ti,i+1−remDrive

τdrive
⌋

to cover the remainder of the driving time. To calculate the arrival time at i, we
have to consider both the driving time ti,i+1 and the time spent resting. Thus,
the arrival time is t− (ti,i+1 + nRests× τrest). The remaining driving and duty
time have to be calculated with respect to the last rest (lines 9-10). Also, each
time a rest is taken (with possibly the exception of the first), the start can be
delayed by any remaining duty time, i.e., τduty−τdrive. The rest is taken because
the driving time limit is reached; not because the remaining duty time limit has
been reached. Any remaining duty time introduces additional slack (line 8).

2. Evaluate the arrival time t at location i and calculate the departure time from i: lines
13-53.

Three cases have to be distinguished:

• The arrival time t is before the opening of the dispatch window of location i, i.e.,
t < ei (lines 13-14). In this case, a dispatch window violation is detected: the
backward search stops returning the index i.

• The arrival time is inside the dispatch window of location i, i.e., ei ≤ t ≤ li (lines
16-17). In this case, the driver can immediately continue to the next location.
The slack may have to be updated, since the slack can be no more than t− ei at
location i.

• The arrival time t is after the closing of the dispatch window of location i, i.e.,
t > li (lines 19-52). Two situations have to be distinguished: no rest is needed
to reach the closing of the dispatch window li and at least one rest is needed
to reach the closing of the dispatch window li. A rest is needed if there is not
enough slack and remaining duty time to reach li, i.e., if t−slack−remDuty > li
(line 19).

(a) In the first situation, i.e., no rest is needed, slack is exploited first before
using up any remaining duty time (lines 22-29). That is, the remaining
duty time is only affected if t − slack > li (lines 23-25). If necessary, the
remaining duty time (and eventually the remaining driving time) is decreased
by (t− slack)− li (line 25).

(b) In the second situation, i.e., at least one rest is needed, the driver exploits all
slack and consumes all remaining duty time before taking a rest. If another

11

rest is needed, this additional rest can be taken after consuming an entire
duty period τduty. Thus, the (minimum) number of rests needed to reach li

is equal to ⌈ (t−slack−remDuty)−li
τrest+τduty

⌉ (line 32). If the last rest ends after li, the

driver has to wait to reach li. This waiting time will affect the remaining
driving and duty time (lines 48-49). The departure time will be li (line 47). If
instead the last rest ends before li (lines 34-45), in all but one case the driver
can depart from location i at t = li completely fresh (line 45). By adjusting
the duty time between the second to last and the last rest, we can ensure
that the driver comes off rest at exactly li. Of course, if there is only one
rest, we have to be more careful (lines 35-40). If the arrival time t at location
i minus the rest time τrest is less than ei, then a dispatch window violation
is detected (lines 36-37). (A rest is needed, since t− slack − remDuty > li,
but even taking the rest immediately upon arrival causes a dispatch window
violation.) If the single rest can be taken feasibly and t − τrest < li, then
the driver cannot depart at li, but can only leave at t − τrest (line 39). All
this has to be accounted for in the slack as well, which, thus, is equal to the
minimum between t and the earliest departure time, on one hand, and t− ei

on the other hand (line 44).

If the index i returned by the backward search is equal to k then the backward search
succeeded in finding a feasible schedule from j to k. If instead i is greater than k this means
that a dispatch window violation has been encountered at location i.

The theorem below establishes an important invariant property of the path constructed by
Algorithm 2.

Theorem 1 The path from n+1 to i constructed by Algorithm 2 has the minimum possible
number of rests. Among the paths with a minimum number of rests, the remaining duty
time and the remaining driving time at the departure from i on the constructed path are
as large as possible. Moreover, among the paths with the minimum number of rests and
maximum remaining duty and driving time, the slack on the path constructed is as large as
possible.

Proof: By induction. The claim is trivially true for i = n + 1. Suppose that the claim is
true for i = k + 1. We will prove that it is also true for i = k.

In the first step, i.e., Calculate the arrival time at location i, Algoritm 2 calculates the
time needed to reach k. If no rest is needed to reach k, the number of rests does not change
and thus the path still has the minimum number of rests. Moreover, since we started with
maximum values for remDuty and remDrive and we decrease these values only by the
driving time between k + 1 and k, they are still at their maximum values. Since, all time

12

between k + 1 and k was taken up by driving, no additional slack can be introduced in
the path. If at least one rest is needed, the number of rests taken is the minimum possible
to reach k, because each rest is taken only when remDrive = 0. At the same time, this
ensures that k is reached with maximum values remDrive and remDuty. Because at least
one rest occurs between k +1 and k, there may be additional slack. Any difference between
the remaining duty and the remaining driving time at the departure from k + 1 can be
converted to slack and, for every rest but the first, the difference between the duty time
and driving time limits can be converted to slack. As all these conversions are carried out,
the slack is still as large as possible.

In the second step, i.e., Evaluate the arrival time at location i and calculate the departure
time from i, the arrival time t at k is analyzed and three cases have to be considered. In
the first case, i.e. t < ek, the backward search stops because it has failed to construct a
time-feasible path between k and n + 1. In the second case, i.e. ek ≤ t ≤ lk, as the path
has the minimum number of rests, remDuty and remDrive have maximum possible values,
and slack is as large as possible, the backward search proceeds to the next iteration. In
the third case, i.e., t > lk, as we need to depart at a time that falls inside the dispatch
window, waiting time and even rest time may occur. To avoid rest time and waiting time
as much as possible, we exploit any slack on the path. Two cases have to be considered:
additional rests can be avoided and additional rests are unavoidable. When no additional
rest is needed, i.e., when t− (slack + remDuty) ≤ lk, the number of rests on the path does
not change and thus is still minimum. Furthermore, if it is necessary to decrease remDuty

(and thus maybe remDrive) to reach lk, i.e., when slack < t − lk, then remDuty and
remDrive are decreased by the minimum possible quantity (line 25). Therefore, they are
still at their maximum values. When at least one rest is needed, i.e., when t − (slack +
remDuty) > lk, rests need to be (and are) taken as late as possible. The first rest can
start at time tBest = t − (slack + remDuty). After a rest, it is possible to wait for a
maximum of τduty before making another rest. Thus, the minimum number of additional

rests nRests needed to reach lk is given by ⌈ tBest−lk
τrest+τduty

⌉ (line 32). The total time covered

by the minimum number of rests is nRests × τrest + (nRests− 1) × τduty. Let t′ be equal
to tBest− nRests× τrest − (nRests− 1)× τduty. Since we want to depart from k as early
as possible in order to maximize the remaining duty and remaining driving time as well as
the slack, i.e., preferably at lk, we need to distinguish two cases: t′ ≤ lk and t′ > lk. In the
former case, with the exception of a single rest that causes a dispatch window violation, we
depart from k at the end of a rest and thus remDrive and remDuty have maximum values.
In the latter case, i.e., t′ > lk, we have to wait until lk, i.e., consume duty time. Regardless,
we have added only the minimum number of necessary rests on the path and thus the total
number of rests is still minimum. Furthermore, we only decrease remDuty (and thus maybe
remDrive) when absolutely necessary, because we always exploit slack in the path first, so
remDuty and remDrive have maximum values at departure from k. Finally, the minimum

13

amount of slack necessary to maintain maximum remaining duty and maximum remaining
driving time is consumed, so the slack is still as large as possible. Therefore, the claim is
true.

The complexity of Algorithm 2 is O(n) since it simply goes backward through the n

locations.
When the algorithm stops prematurely, it has identified a location i for which the

constructed path does not provide a time-feasible dispatch schedule from i to n + 1. The
constructed path is made up of driving time, waiting time, and rest time. Since the path
has a minimum number of possible rests, a feasible path from i to n + 1 has to have less
waiting time; the driving time and the rest time cannot be reduced. The first idea that may
come to mind is that to reduce waiting time along the path, we should simply depart later
as this will result in arriving later at locations that have waiting time and thus reduce this
waiting time. Unfortunately, this “adjusting the departure time” is already embedded in
the algorithm in the form of exploiting the slack of the path. Slack precisely captures our
ability to adjust the departure time to reduce waiting time along the path. The only way
to reduce waiting time is to convert waiting time into rest time by taking rests earlier in
time (“by pushing up rests”). An example of reducing waiting time by taking rests earlier
is depicted in Figure 5. The top part of Figure 5 shows a portion of a path that might be
constructed by the backward search. The bottom part of Figure 5 shows how that portion
of the path can be converted to a time-feasible dispatch schedule by pushing up the rest.
Instead of taking the rest between the first and second location, the rest is taken later at

Figure 5: Converting waiting time to rest time (“pushing up” the rest).

14

the second location.
This suggests that if the backward search stops prematurely at i, an attempt should

be made to restore feasibility by pushing up the nearest possible rests (when traversing
the constructed path forward in time). That is, when a location j with waiting time is
encountered and when there is at least one rest between i and j, then an attempt is made
to push up a rest to j. The rationale behind this scheme is provided by the fact that if the
rest(s) between i and j are not pushed up, then the arrival time at i does not change and
thus feasibility will not be restored. In fact, the driver already leaves from location j (on
the backward path) as early as possible, i.e., at t = lj . Thus, the arrival time at i will not
change unless at least one rest is pushed up. On the other hand, if there is no rest between
i and j (the first location with waiting time), then there exists no time-feasible dispatch
schedule. The (backward) path arrives at i as early as possible (i.e., the latest possible
feasible dispatch time at i has been identified).

Thus, to restore feasibility, it is necessary to push up the rest(s) between i and j. Once
the rest(s) between i and j is (are) pushed up to j, we revert to the backward search to see
if i can now be reached feasibly.

These ideas are more formally captured in Algorithm 3, which determines a time-feasible
dispatch schedule between i and n+1 or establishes that no such schedule exists. The input
parameter i represents the location where a dispatch window violation occurred. Before
describing the algorithm in detail, we need to introduce some new notation. Consider the
path constructed by the backward search. Let

• ti be the time of arrival at location i,

• remDutyi be the remaining duty time upon arrival at location i,

• slacki be the slack upon arrival at location i,

• nRestsi be the number of rests between the time of arrival at i and the time of
departure from i,

• nRestsij be the number of rests between the time of departure at i and the time of
arrival at j.

This information can be easily captured in Algorithm 2. We did not include the relevant
statements in the description of Algorithm 2 in order to keep it as clear and readable as
possible.

When pushing up a rest to location j, we need to determine the proper values to initiate
the backward search, i.e., t, remDrive, remDuty, and slack. We want to depart from
j as early as possible (in order for the slack to be as large as possible). To determine
the departure time, we consider the time of arrival at j (tj) and the number of rests at
j (nRestsj + 1; the original number of rests at j plus the rest being pushed up to j). If

15

tj − (nRestsj + 1)× τrest < ej , then waitj + (lj − ej) < τrest. As a consequence, performing
a “wait-to-rest” conversion at location j would lead to a dispatch window violation at j.
This does not imply that no time-feasible path exists, as it may be possible to push up
the rest further and convert waiting time at locations j and k (k > j) to rest time. An
example is depicted in Figure 6. The top part of the figure shows the dispatch window
violation that causes a forward search to restore feasibility. When the rest is pushed-up to
the first location with waiting time, shown in the middle part of the figure, the wait-to-rest
conversion causes a dispatch window violation at the location where the waiting time is
converted into rest time. However, when pushing the rest up even further, shown in the
bottom part of the figure, then the wait-to-rest conversion does lead to a feasible path.
Thus, in case a wait-to-rest conversion at location j leads to a dispatch window violation
at j, Algorithm 3 simply pushes the rest up to the next location with waiting time and
performs a wait-to-rest conversion there. If instead tj − (nRestsj +1)× τrest ≥ ej, then two

Figure 6: Conversion of two waiting times into rest time.

cases need to be considered: tj−(nRestsj +1)×τrest ≤ lj and tj−(nRestsj +1)×τrest > lj .
In the first case (lines 7-11), the waiting time at j is less than τrest and the driver departs
at tj − (nRestj + 1) × τrest. To depart as early as possible, the driver takes all rests
consecutively. The driver starts fresh, i.e., remDrive = τdrive and remDuty = τduty. The

16

slack of the path is the minimum between t− ej and slackj + remDutyj + nRestj × τduty,
where the first two terms represent the slack already present in the original path and
the last term captures the duty time between consecutive rests, if any. This situation is
depicted in Figure 7. In the second case (lines 12-16), the waiting time at j is greater

10

15

35

25

16

restrest

10

35

29

16

rest

19

flexibility +

rem aining duty
duty tim e

Figure 7: Pushing up a rest when the waiting time is less than the rest time.

than τrest and the driver can depart at lj . The driver starts fresh, i.e., remDrive =
τdrive and remDuty = τduty. The slack of the path is the minimum between lj − ej and
slackj + remDutyj + nRestj × τduty − (tj − (nRestj + 1)× τrest − lj), where the last term
captures the fact that some of the existing slack of the path has to be “consumed.” This
situation is depicted in Figure 8.

The main steps of Algorithm 3 are the following:

• Find a location j to which we can push up a rest : line 3. The algorithm searches
forward from i + 1 and stops as soon as a location j is found with waiting time on
the backward path and at least one rest on the backward path between i and j (the
location where a dispatch window violation was detected).

• Push up a rest to location j: lines 5-17. This step has already been described.

17

10

41

26

16

restrest

10

41

29

16

rest

19

flexibility +

rem aining duty
duty tim e

36

rem aining duty

(+ flexibility)

Figure 8: Pushing up a rest when the waiting time is larger than the rest time.

• Initiate a backward search from j to i: line 19. Once a rest has been pushed up, the
backward search parameters are initiated, and backward search is used to constructed
a path from i to j.

• Check feasibility : lines 20-21. If the path constructed by the backward search is
feasible, i.e., the path reaches i at time t ≥ ei, the algorithm stops: a time feasible
schedule to location i has been found. Otherwise, the forward search is resumed to
find the next location to which we can push up a rest (line 25). If location n + 1
is reached without restoring feasibility, then the algorithm stops: no time-feasible
dispatch schedule exists (line 27).

It is important to realize that after a rest has been pushed up, it can never be pushed
down again, because that would reintroduce infeasibility.

Theorem 2 Algorithm 3 determines a time-feasible (backward) path from n + 1 and i or
establishes that no such path exists. The path has the minimum possible number of rests.

18

Among the paths with a minimum number of rests, the remaining duty time and the remain-
ing driving time at the departure from i on the constructed path are as large as possible.
Moreover, among the paths with the minimum number of rests and maximum remaining
duty and driving time, the slack on the path constructed is as large as possible.

Proof: Suppose Algorithm 3 does not return a time-feasible (backward) path from n+1 to
i, i.e., it terminates without restoring the dispatch window violation at i. If the constructed
path between n + 1 and i has no waiting time, then clearly no time-feasible path exists,
because the path has a minimum number of possible rests.

Thus, we consider the case where there is waiting time at at least one location along
the constructed path.

First, consider the case where there is a single location with waiting time, say j. The
fact that there is waiting time at j means that Algorithm 3 is not able to push up rests
between i and j and convert waiting time at j into rest time. Either there were no rests
between i and j, or τrest > waitj + (lj − ej) in which case converting waiting time to rest
time at j results in a dispatch window violation at j. In both cases, we conclude that there
does not exist a time-feasible path between j and i (the path starts at lj , has the minimum
number of possible rests, has no waiting time, and arrives at i before ei) and thus that there
exists no time-feasible path between n + 1 and i.

The case where there are multiple locations with waiting time is dealt with similarly.
Consider the first location with waiting time encountered when traversing the path from i

to n + 1, say location j. Using the same arguments as for the case with a single location
with waiting time, we conclude that there does not exist a time-feasible path between j and
i and thus that there exists no time-feasible path between n + 1 and i.

On the other hand, if a rest can be pushed up feasibly to location j, then the backward
search is re-started with appropriately set parameters (lines 7-17) in an attempt to construct
a feasible path from j to i. If successful, i.e., the path arrives at i at or after ei, then
feasibility has been restored. Otherwise, Algorithm 3 attempts to push up rests beyond j

along the path to n + 1, to explore whether that results in a different arrival time at j and
thus a new chance to restore the infeasibility. Iteratively, either a time-feasible path from
n + 1 to i is found, or it is demonstrated that wait-to-rest conversions cannot lead to a
time-feasible path from n + 1 to i.

As Algorithm 3 relies on the backward search to determine a time-feasible path from
n + 1 and i the path has the desired properties.

The complexity of Algorithm 3 is O(n2) since each wait-to-rest conversion attempt
takes linear time (as it involves a backward search from j to i) and no more than n wait-
to-rest conversions are performed during a feasibility recovery action (as there are at most
n locations on the path from i to n + 1).

We are now in a position to revisit the main algorithm, SMARTRIP, and present the main

19

theorem of the paper.
First, SMARTRIP initializes the parameters assuming that a fresh driver departs from

location n+1 at time ln+1 (line 2). Then a backward search is initiated attempting to reach
location 1 (line 7). If the location i returned is 1, then a feasible path from n + 1 to 1 has
been found and the algorithm stops (lines 8-9). Otherwise (the location i returned is greater
than 1), a dispatch window violation has been detected at location i. Thus, SMARTRIP
attempts to restore feasibility, i.e., find a time feasible path from n + 1 to i (line 11). If
successful, then a backward search is initiated to extend the path to 1, i.e., from i− 1 to 1
(lines 12-13). Otherwise, no time feasible dispatch schedule exists and the algorithm stops
(line 15).

Theorem 3 Given a sequence of transportation requests S = {1, 2, ..., n}, SMARTRIP
determines in O(n3) time whether a time-feasible dispatch schedule exists.

Proof: SMARTRIP runs in polynomial time because at most n feasibility recovery actions
are needed (there are only n locations on the path), thus Algorithm 3 is called at most n

times (each call taking at most O(n2) time).

Example. We illustrate the algorithms presented above on a small instance with n = 6.
The instance is depicted in Figure 9. Algorithm 2 constructs the path depicted in Figure 10.
Table 2 shows the values of the variables at the beginning and end of each iteration. The

Table 2: Values of Variables

arrival departure
i t slack remDrive remDuty tBest t slack remDrive remDuty waiti
7 - - - - - 100 25 11 14 -
6 75 28 7 10 - 75 0 7 10 -
5 55 3 8 11 41 45 0 4 4 10
4 25 0 5 8 - 25 0 5 8 -
3 21 0 1 4 17 18 0 1 1 3
2 6 0 10 13 - 6 0 10 13 -
1 0 0 4 7 - - - - - -

driver departs fresh from location 7 at t = l7 = 100. The slack is initialized at l7− e7 = 25.
He has to drive 15 hours to reach location 6 and therefore rests after 11 hours. At the start
of the rest the difference between the remaining duty time and remaining driving time is
3, so the slack increases from 25 to 28. Location 6 is reached within the dispatch window
at time t = e6 = 75 with 7 hours of remaining driving time and 10 hours of remaining
duty time. Because location 6 is reached at t = e6, the slack of the path has to be set to
zero. Next, the driver continues on to location 5 making a rest after 7 hours of driving. At
the start of the rest the difference between the remaining duty time and remaining driving

20

Figure 9: An instance of the TSP problem

time is 3, so the slack increases from 0 to 3. Location 5 is reached after the closing of the
dispatch window at t = 55 (l5 = 45) with 8 hours of remaining drive time and 11 hours of
remaining duty time. Consequently, the driver has to wait. Fortunately, we can exploit the
3 hours of slack on the path by departing 3 hours later at location 6 (at time 72). Thus, the
“real” waiting time at location 5 is 7 hours (which count towards duty time). Therefore, at
the departure at location 5 (at time l5 = 45), there are only 4 hours of remaining duty time
(and thus also only 4 hours of remaining drive time). On his way to location 5, the driver
has to make a rest after 4 hours of driving at time 41. At the start of the rest the difference
between the remaining duty time and remaining driving time is 0, so the slack remains
unchanged at 0. Location 4 is reached within the dispatch window at time t = 25 with 5
hours of remaining driving time and 8 hours of remaining duty time. The driver immediately
continues to location 3, which is reached after the closing of the dispatch window at time
t = 21 (l3 = 18) with 1 hour of remaining driving time and 4 hours of remaining duty time.
The driver has to wait 3 hours. There is no slack on the path, so these hours have to come
out of the remaining duty time. Thus, the driver departs location 3 at time t = l3 = 18
with 1 hour of remaining drive time and 1 hour of remaining duty time. On his way to

21

Figure 10: Path constructed by Algorithm 1

location 2, the driver has to take a rest after 1 hour of driving at time 17. At the start of
the rest the difference between the remaining duty time and remaining driving time is 0,
so the slack remain unchanged at 0. Location 2 is reached within the dispatch window at
time t = 6 with 10 hours of remaining driving time and 13 hours of remaining duty time.
The driver immediately continues to location 1, which is reached before the opening of the
dispatch window at time t = 0 (e1 = 10); a dispatch window violation is detected.

At this point, Algorithm 3 is called which pushes up the rest between location 2 and
3 to location 3, where there is a waiting time of 3 hours. Thus, these 3 hours of waiting
time are converted into rest hours. Because of the wait-to-rest conversion, the driver now
leaves location 3 at time t = 11 and, after 8 hours of driving, reaches location 1 at time
t = 3. Since that still implies a dispatch window violation, Algorithm 3 continues and it
pushes up the rest between location 4 and 5 to location 5, where there is a waiting time
of 10 hours. Thus, these 10 hours of waiting are converted into rest hours. Because of the
wait-to-rest conversion, the driver leaves location 5 at time t = 45. He arrives at location 4
at time t = 35, continues to location 3, making a rest after 1 hour of driving. (Note that
this rest was previously pushed up to location 3 and is now pushed up even further between
location 3 and location 4). Location 3 is reached at time t = 21, where the driver has to
wait 3 hours. The driver leaves location 3 at time t = 18. After 8 hours of driving, the

22

driver reaches location 1 at time t = 10. Thus, a time-feasible dispatch schedule has been
found (see Figure 11).

Figure 11: Final solution

4 The General Case

Up to now, we have assumed that the rest time is exactly τrest hours and that a rest can
start at any time during a duty. As a consequence of the latter assumption, it is possible
for a driver to take two consecutive rests, i.e., without any duty time in between.

Next, we show that the algorithms presented above can be easily modified to handle
more realistic situations in which we have a minimum and maximum rest time, τmin

rest and
τmax
rest , as well as a minimum and maximum duty time, τmin

duty and τmax
duty . The situation

considered previously corresponds to τmin
rest = τmax

rest and τmin
duty = 0.

First, we consider the case of variable rest time. To handle this situation, Algorithm 2
and Algorithm 3 need to be modified as follows:

• Whenever a rest is taken, the minimum possible rest time is assumed (τrest is replaced
by τmin

rest).

23

• Whenever the flexibility of the path is updated, the difference between τmax
rest and τmin

rest

is properly accounted for (τmax
rest − τmin

rest is included in slack).

The reason for these modifications is as follows: the option to choose the length of a rest
adds flexibility to the construction of a time-feasible path. The two suggested modifications
exploit his flexibility: each time a rest is made its duration is set to the minimum possible,
i.e., τmin

rest . To account for the fact that the rest can take up to τmax
rest , we adjust slack

accordingly. That is, instead of committing to a particular rest time, we set the rest time
to the minimum required and capture the opportunity to rest longer in the slack in the
path. Thus, to handle variable rest time only requires a change in the calculation of slack;
nothing else changes in Algorithm 2 and Algorithm 3. Thus, Theorem 1, Theorem 2, and
Theorem 3 still hold.

Next, we consider the case with a minimum duty time greater than zero. To handle this
situation, the following changes need to be made:

• In Algorithm 2 and Algorithm 3 τduty corresponds with τmax
duty .

• In the backward search, when we arrive at location i and find that at least one
additional rest is required, two changes have to be made. First, “unused duty time”
between consecutive rests is now at most τmax

duty − τmin
duty. Therefore, the updating of

slack at line 44 of Algorithm 2 has to change to

slack ← min(t− ei, [t− (tBest− (nRests× τmax
rest + (nRests− 1)× (τmax

duty − τmin
duty)))]).

Second, we may not be able to go to rest immediately upon arrival, because we
have not reached the minimum duty hour limit yet. The additional duty time that
has to be expended before a driver can go to rest is [τmin

duty − (τmax
duty − remDuty)]+.

Therefore, at lines 35, 36 and 39 of Algorithm 2, t − τrest has to be replaced by
t− [τmin

duty − (τmax
duty − remDuty)]+ − τmin

rest .

• When trying to restore feasibility, similar issues arise. When we push up a rest, we
have to ensure that this rest starts at the proper time and when there are multiple rests
we have to ensure that the minimum duty time between rests is properly captured.
Therefore, at lines 6 and 7 of Algorithm 3, tj − nRestsj × τrest has to be replaced by

tj − [τmin
duty − (τmax

duty − remDutyj)]
+ − nRestsj × τmin

rest − (nRestsj − 1)× τmin
duty.

Moreover, the updating of slack at line 8 of Algorithm 3 has to change to

slack ← min(lj − ej, slackj + remDutyj − [remDutyj − (τmax
duty − τmin

duty)]
+)

+(nRestsj − 1)× (τmax
duty − τmin

duty)

24

and at line 13 of Algorithm 3 to

slack ← min(lj − ej , slackj + remDutyj − [remDutyj − (τmax
duty − τmin

duty)]
+

+(nRestsj − 1)× (τmax
duty − τmin

duty) + nRests× (τmax
rest − τmin

rest)

−(tj − [τmin
duty − (τmax

duty − remDutyj)]
+ − nRestsj × τmin

rest − (nRestsj − 1)× τmin
duty − lj)).

Notice that the introduction of a minimum duty time has the opposite effect compared to
the introduction of a variable rest time, i.e., it reduces the flexibility. Flexibility is reduced
since a minimum amount of time (equal to the minimum duty time) has to take place
between two consecutive rests. This reduction in flexibility has to be taken into account
when updating slack and when deciding on when to take a rest (a minimum amount of time
has to have elapsed since the last rest). The modifications listed above take into account
this decrease in the flexibility of constructing a feasible path. No other changes are needed
to Algorithm 2 and Algorithm 3 since these are the only parts where the introduction of
a minimum duty time has an influence. Thus, with these changes Theorem 1, Theorem 2,
and Theorem 3 still hold.

5 Service Times

In this section, we consider the simpler variant of the trip scheduling problem in which there
are no dispatch windows, but there is a service time at the locations. The analysis of this
simple case is justified by its practical relevance.

In this setting, a service time si is incurred, when the truck visits a location i. The
driver has to decide whether to wait for the service to be completed and then continue,
or whether to commence his rest as soon he arrives and continue only after resting. It is
assumed that the service times are less than the rest time and that service can be performed
while the driver is resting. We want to find a time-feasible dispatch schedule of minimum
length that accounts for service time at locations and respects the HOS regulations.

We propose a forward dynamic programming algorithm. Let di denote the departure
time at location i (after service has taken place). The aim of the algorithm is to minimize
dn+1.

A fresh driver starts at location 0. It is easy to see that, while driving from one location
to another, it is optimal to always rest as late as possible in order to arrive as early as
possible at the next location. (Recall that there are no dispatch windows.) A decision has
to be made upon arrival. If the driver decides to wait and leave as soon as the service is
completed, then the departure time is equal to the arrival time plus the service time, but
remaining duty time at the departure time and the remaining drive time at the departure
time depend on the decisions at earlier locations. If instead, the driver decides to rest as

25

soon as he arrives, then the departure time is equal to the arrival time plus the rest time,
and the remaining duty time is τduty and the remaining drive time is τdrive. Consequently,
in the latter case, only the path that arrives as early as possible has to be considered.

Let pi be the number of different paths constructed by the dynamic program to reach
i. Then pi+1 is pi + 1. Each of the existing pi paths has to be extended for the decision to
wait and leave immediately after service has been completed, and one new path has to be
constructed for the decision to rest as soon as the driver arrives, choosing among the existing
paths, the one that minimizes di. A more formal description of the steps taken at location
i is presented in Algorithm 4, where d

j
i , remDutyj, and remDrivej are, respectively, the

departure time, the remaining duty time, and the remaining drive time for path j.
Since p1 = 0, we have pn+1 = n. Among the n final paths, we choose the one that

minimizes dn+1. The algorithm is clearly polynomial.
Suppose now that si is greater than τrest for at least one location i′. Then, upon arrival

at i′, a rest has to be made independently of the path considered. For each path, the rest is
made at the most suitable time, i.e., the time which maximizes the values of remDuty and
remDrive at the departure from i′. If remDuty + τrest ≤ si, then the rest is made as late
as possible. Otherwise, the driver waits for si − τrest and then goes to rest. No new paths
have to be created for location i′ because each path already includes a rest at i′.

6 Final Remarks

Hours of service regulations have a significant impact on the feasibility of truckload trans-
portation trips, especially when long distances have to be traveled and trips last several
days. Therefore, carriers have to be concerned with these regulation when they plan trips
for their drivers. We have developed technology that can (and should) be part of this
planning process.

References

[1] A. Campbell and M.W.P. Savelsbergh. “Delivery Volume Optimization.” Transporta-
tion Science 38, 210-223, 2004.

[2] Federal Motor Carrier Safety Administration. “Hours-Of-Service Regulations”
http://www.fmcsa.dot.gov/rules-regulations/topics/hos/hos-2005.htm

[3] B. Hunsaker and M.W.P. Savelsbergh. “Efficient Feasibility Testing for Dial-a-Ride
Problems.” Operations Research Letters 30, 169-173, 2002.

[4] H. Xu, Z.-L. Chen, S. Rajagopal, and S. Arunapuram. “Solving a Practical Pickup
and Delivery Problem.” Transportation Science 37, 347-356, 2003.

26

[5] W.B. Powell. “A Stochastic Model of the Dynamic Vehicle Allocation Problem,” Trans-
portation Science 20, 117-129, 1986.

[6] W.B. Powell. “An Operational Planning Model for the Dynamic Vehicle Allocation
Problem with Uncertain Demands,” Transportation Research 21B, 217-232, 1987.

[7] W.B. Powell, A. Marar, J. Gelfand, S. Bowers. “Implementing Real-Time Optimization
Models: A Case Application From The Motor Carrier Industry.” Operations Research
50, 571-581, 2002.

[8] J. Yang, P. Jaillet, and H. Mahmassani. “Real-Time Multi-vehicle Truckload Pickup
and Delivery Problems.” Transportation Science 38, 135-148, 2004.

[9] A. Regan, H. Mahmassani, and P. Jaillet. “Evaluation of Dynamic Fleet Management
Systems.” Transportation Research Record 1645, 176-184, 1998.

[10] W.B. Powell, Y. Sheffi, K. Nickerson, K. Butterbaugh, and S. Atherton. “Maximizing
Profits for North American Van Lines’ Truckload Division: A New Framework for
Pricing and Operations,” Interfaces 18, 21-41, 1988.

27

Algorithm 2 BackwardSearch(j, k)
1: for i = j, j − 1, . . . , k do

2: ***** Phase I: Compute arrival at customer *****
3: if ti,i+1 ≤ remDrive then

4: t← t− ti,i+1, remDrive← remDrive− ti,i+1, remDuty ← remDuty − ti,i+1

5: else

6: nRests← 1 + ⌊
ti,i+1−remDrive

τdrive
⌋

7: t← t− (ti,i+1 + nRests× τrest)
8: slack ← slack + (remDuty − remDrive) + (nRests− 1)× (τduty − τdrive)
9: remDrive← τdrive − (ti,i+1 − remDrive) mod τdrive

10: remDuty ← τduty − (ti,i+1 − remDrive) mod τdrive

11: end if

12: ***** Phase II: Analyze arrival at customer *****
13: if t < ei then

14: return i // Dispatch window violation at location i

15: else

16: if ei ≤ t ≤ li then

17: slack ← min(slack, t− ei)
18: else

19: tBest← t− (slack + remDuty)
20: if tBest ≤ li then

21: ***** Case a: No additional rest required *****
22: waiti ← t− li
23: if t− li > slack then

24: t← t − slack, slack ← 0
25: remDuty ← remDuty − (t − li), remDrive← min(remDrive, remDuty)
26: else

27: slack ← min(slack − (t − li), li − ei)
28: end if

29: t = li
30: else

31: ***** Case b: At least one additional rest required *****

32: nRests← ⌈ tBest−li
τrest+τduty

⌉

33: waiti ← [t− li − (nRest× τrest)]+

34: if tBest − (nRests× τrest + (nRests− 1)× τduty) < li then

35: if t− τrest < li then

36: if t− τrest < ei then

37: return i // Dispatch window violation at location i

38: else

39: t← t− τrest

40: end if

41: else

42: t← li
43: end if

44: slack ← min(t − ei, [t− (tBest − (nRests× τrest + (nRests− 1) × τduty))])
45: remDuty ← τduty , remDrive← τdrive

46: else

47: t← li, slack← 0
48: remDuty ← τduty − [(tBest− (nRests× τrest + (nRests− 1)× τduty))− t]
49: remDrive← min(remDuty, τdrive)
50: end if

51: end if

52: end if

53: end if

54: end for

55: return i

Algorithm 3 Restore(i)
1: j ← i + 1 // i is the node with a dispatch window violation
2: while j ≤ n + 1 do

3: if waitj > 0 and nRestsji > 0 then

4: ***** Move rests up to restore feasibility *****
5: nRestsj ← nRestsj + 1
6: if tj − nRestsj × τrest ≥ ej then

7: if tj − nRestsj × τrest ≤ lj then

8: remDuty ← τduty, remDrive← τdrive

9: waitj ← 0
10: t← tj − nRestsj × τrest

11: slack ← min(t − ej , slackj + remDutyj + (nRestsj − 1)× τduty)
12: else

13: slack ← min(lj − ej , slackj + remDutyj + (nRestsj − 1)× τduty − (tj − nRestsj × τrest − lj))
14: remDuty ← τduty , remDrive← τdrive

15: waitj ← tj − nRestsj × τrest − lj
16: t← lj
17: end if

18: ***** Check feasibility *****
19: BackwardSearch(j − 1, i)
20: if t ≥ ei then

21: return Success

22: end if

23: end if

24: end if

25: j ← j + 1
26: end while

27: return Failure

29

Algorithm 4 Decision at location i

1: for j = 1, 2, . . . , |pi| do

2: if ti−1,i < remDrive then

3: d
j
i ← d

j
i−1 + ti−1,i, remDrive← remDrive− ti−1,i, remDuty ← remDuty − ti−1,i

4: else

5: nRests← 1 + ⌊
ti−1,i−remDrivej

τdrive
⌋

6: d
j
i ← d

j
i−1 + (ti−1,i + nRest× τrest)

7: remDrivej ← τdrive − (ti−1,i − remDrive) mod τdrive

8: remDuty ← τduty − (ti−1,i − remDrive) mod τdrive

9: end if

10: if remDutyj ≥ si then

11: d
j
i ← d

j
i + si

12: remDuty ← remDuty − si

13: remDrive← min(remDuty, remDrive)
14: else

15: // If remDutyj < si a rest has to be made
16: // The path becomes equivalent to path pi + 1
17: // Thus it can be eliminated
18: end if

19: end for

20: // Construction of path pi + 1
21: j∗ ← j : d

j
i = min1,2,...,|pi| d

i
j

22: d
|pi+1|
i ← d

j∗

i + τrest

23: remDrive|pi+1| ← τdrive

24: remDuty|pi+1| ← τduty

30

