
Virtual Smartphone over IP

Eric Y. Chen Mistutaka Itoh
NTT Information Sharing Platform Laboratories,

NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585, Japan

eric.chen@lab.ntt.co.jp

Abstract— The number of smartphone users and mobile
application offerings are growing rapidly. A smartphone is often
expected to offer PC-like functionality. In this paper, we present
Virtual Smartphone over IP system that allows users to create
virtual smartphone images in the mobile cloud and to customize
each image to meet different needs. Users can easily and freely
tap into the power of the data center by installing the desired
mobile applications remotely in one of these images. Because the
mobile applications are controlled remotely, they are not
constrained by the limit of processing power, memory and
battery life of a physical smartphone.

Keywords-Smartphone; Android; virtualization; cloud

I. INTRODUCTION

The number of smartphone users and mobile application
offerings are growing rapidly. Smartphones are often expected
to offer PC-like functionality, which requires powerful
processors, abundant memory and long-lasting battery life.
However, their hardware today is still very limited and
application developers are forced to take these limitations into
consideration.

A number of service providers such Dropbox [1] and
Zumodrive [2] provides online storage services to smartphone
users in attempt to alleviate the limitations of smartphone
storages. However, to the best of our knowledge, there is still
no service that offers full computation resources to smartphone
users. In this paper, we propose Virtual Smartphone over IP,
which provides cloud computing environment specifically
tailored for smartphone users. It allows users to create virtual
smartphone images in the cloud and to remotely run their
mobile applications in these images as they would locally. The
motivation is to allow smartphone users to more easily tap into
the power of the cloud and to free themselves from the limit of
processing power, memory and battery life of a physical
smartphone. Using our system, smartphone users can choose
to install their mobile applications either locally or in the cloud,
as illustrated in Figure 1.

Running applications remotely in the cloud has a number of
advantages, such as avoiding untrusted applications from
accessing local data, boosting computing resources, continuing
to run applications on the background and opening up new
ways to use smartphones.

This paper presents the design and implementation of
Virtual Smartphone over IP. Section II describes the basic
design of our system and Section III describes a proof-of-
concept prototype that we have implemented. Section IV
discuss the possible applications of our system and Section V
reports the results of our experiments that demonstrate how we
can leverage the performance of mobile applications in the
cloud. Section VI discusses the related work in the research
community and Section VII concludes this paper.

Figure 1. Basic concept of our system

II. BASIC DESIGN

Our Virtual Smartphone over IP system adopts an
architecture similar to ones commonly used by server hosting
providers. As illustrated in Figure 2, the system is composed
of a number of external smartphone clients, a front-end server,
a virtual smartphone farm, a management server and a network
file system (NFS).

 Virtual smartphone farm is the most important
component of our system. It is a virtualization
environment that hosts a collection of virtual
smartphone images, each of which is dedicated to a
smartphone user. In Section III, we discuss in detail
about how we have implemented a virtual smartphone
farm.

 The front-end server admits service requests from
smartphone users across the Internet and establishes
remote sessions to the appropriate virtual smartphone
images. The frond-end server also allows smartphone
users to create, configure and destroy virtual

Copyright © 2010 IEEE. Reprinted from IEEE WoWMoM 2010.
This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
Android-x86 Project's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works
for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.
By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

smartphone images. Once a remote session is
established, the user can install and run mobile
applications on one of these images instead of his own
physical smartphone.

 The network file system is used by virtual
smartphones for all persistent file storage, in much the
same way that an SD card holds data for physical
smartphones. Since the NFS is easily scalable, it
practically provides each virtual smartphone an
unlimited file storage.

 The management server is used to manage the virtual
smartphone farm. Typical operations of a
management server include the creation of virtual
images in bulk and troubleshooting individual images.

Users control their virtual smartphone images through a
dedicated client application installed on their smartphones.
This client application receives the screen output of a virtual
smartphone image and presents the screen locally in the same
way as conventional thin-client technology. Since we expect
most users to access their virtual smartphone images through
an unstable network such as 3G, the image must continue to
run on the farm and be in the same state when the user is
connected again after the user is disconnected in an unexpected
manner.

Virtual Smartphone Farm
Internet

Smartphones Front-end
server

NFS

Management server

Figure 2. Overall system architecture

III. IMPLEMENTATION

We have implemented a proof-of-concept prototype using
Android [3], an open-source mobile OS initiated by Google.
The main reason behind our choice is that Android OS is not
only designed for smartphone devices with an ARM processor,
but also is being ported to the x86 platform [4]. Although
Android-x86 is originally intended for netbooks, it gives us an
opportunity to create a virtual image of Android using a bare-
metal hypervisor. This allows each virtual Android-x86 image
to tap into the power of server hardware in a data center. The
fact that we do not need a CPU emulator (i.e. x86-to-ARM) to
run the virtual image is very important since such emulator
always introduces enormous overhead and may neutralize any
performance advantage offered by a data center.

We have also chosen to implement our client application on
an Android smartphone. Although our system does not require

the physical and the virtual smartphones to be on the same
platform, this particular setting allows us to more tightly
integrate both environments.

Our prototype is depicted in Figure 3. We have
implemented a pair of VNC-based server and client programs.
The server program resides in each Android-x86 image that run
on top of VMWARE ESXi while the client program is installed
in the physical Android device. The client program enables a
user to remotely interact and control Anroid-x86 images. The
client program transmits various events from the physical
device to the virtual smartphone and receives graphical screen
updates from the virtual smartphone.

We have also implemented a virtual sensor driver in the
Android-x86 image. Most modern smartphones are equipped
with various sensor devices such as GPS, accelerometer and
thermometers. While VNC itself supports only keyboard and
mouse as the primarily input devices, we have extended our
client program to transmit sensor readings (accelerometer,
orientation, magnetic field and temperature etc) to the virtual
sensor driver in the Android-x86 image. The virtual sensor
driver is implemented in such a way that the sensor readings
from the physical Android device would appear to come from
the Anroid-x86 image itself. This is an important feature as it
allows Android applications in an Android-x86 image to obtain
sensor readings from the physical smartphone without any
modification.

Virtual Smartphone Farm

Virtual Smartphone

Virtual Smartphone

Physical Smartphone

Hypervisor

Virtual Smartphone

Android OS (ARM) Android OS(x86)

Application Framework
Application
Framework

アプリ
アプリ
App

アプリ
アプリ 4. images

アプリ
アプリ
App

アプリ
アプリ
AppClient

Server

Sensor driver Virtual sensor driver

1. sensor readings

2. sensor readings

3. sensor readings

Intel x86 CPUARM CPU

Figure 3. Prototype implementation

Our prototype allows applications running in the cloud to
appear like local applications on the physical device, with
functions such as copy-and-paste between local and remote
applications. Our prototype also features remote shortcuts to
remote applications in the virtual smartphone that minimize the
number of steps required for users to launch remote
applications, as illustrated in Figure 4. Furthermore, each
short-cut can point to a different virtual Android-x86 image,
and thus allowing users instant access to remote applications
residing in multiple Android-x86 images in one single menu.

Figure 5 is a photo of our prototype in action. The user in
the photo is accessing an Android-x86 image hosted in our data
center.

Figure 4. Shortcuts to remote apps

Figure 5. Our prototype in action

IV. APPLICATIONS

Our system allows users to customize each image to meet
different needs. To create a new smartphone image in the
cloud, the user can simply select from a number of pre-
configured image templates to get up and running immediately.
The following are some examples of how our system can be
used.

A. Remote Sandbox

As smartphones begins to replace laptop PCs in some
occasions, they will slowly become attractive targets for
attackers. Security threats that were once considered PC issues
are slowly crossing the line and becoming serious concerns for
mobile users [5][6][7][8]. In particular, [9] further studied
Android as a potential target because of Android's design
philosophy on openness. The authors created a proof-of-
concept malware using undocumented Java functions and
demonstrated the possibility to bypass the Android permission
system using native applications.

Users of our system can execute mobile applications from
unverified third-parties on a virtual smartphone image that has
only access to a tightly-controlled set of resources. This usage
is conventionally called "sandbox", in the sense that untrusted
programs are contained in a confined space with very little

freedom. Using our system, these program do not even reside
in the physical device at all and thus further minimize the risks
of malware breaking out of the sandbox. This concept is
illustrated in Figure 6. Such remote sandbox is particularly
useful for Android users who would like to install the less-
trusted applications obtained outside the Android Market. If an
image is infected, the user can easily revert the image to its
previous clean state.

Figure 6. Remote sandbox

B. Data leakage prevention

A recent study commissioned by Cisco indicated that loss
of portable devices is one of the top 10 reasons for enterprise
data leakage. Our system can also be used as a viable solution
against data leakage if the data is stored in the data center and
accessible only through one of the virtual smartphone image, as
illustrated in Figure 7. Since only the graphic pixels of screen
images are delivered to user's mobile phone, the actual data
never leaves the secure data center. This allows employees to
work with the data without the privilege to retain or copy the
data in their local device. This practically gives enterprise
more control over confidential and valuable corporate data.
We can further configure an image template in such a way that
prohibits data from leaving the image.

Figure 7. Data leakage prevention

C. Performance leverage

The fact that Android uses the same Java application
framework on both x86 and ARM processors provides
seamless application portability on these platforms. We can
boost the performance of Android applications by running
them on x86 platforms with the vast resources of cloud
computing. In Section V, we present comparative benchmark
results to provide some idea of the potential performance
leverage one can gain by executing the same applications in the
cloud.

The user in Figure 5 was using his Android smartphone to
remotely control a PDF viewer application run on a virtual
Android-x86 image in the data center. While the ARM-based

Android on a HT-03A takes 14 seconds on average to open a
10 MB file, the Android-x86 image hosted in our data center
takes less than 1 second. An image template configured with
vast memory and CPU resources can be provided to assist users
for this purpose.

D. End-to-middle security

In [10], we proposed an end-to-middle security model to
defend against rogue wireless access point that appears to be
legitimate, but is set up for the purpose of intercepting traffic
between mobile users and the web. We pointed out that while
end-to-end security is the most effective countermeasure, in
practice it requires continuous diligence from users to ensure
that such security does take place as expected. It is even more
difficult for users to verify if a mobile application that interacts
with a web service does indeed encrypt its data traffic to
prevent man-in-the-middle (MITM) attacks, which is most
likely to happen at an untrusted wireless access point.

The basic idea of end-to-middle security is to have a trusted
middle point somewhere on the Internet. As soon as being
associated with an access point, a mobile user establishes a
secure channel with this middle point first, which then relay all
traffic from the user to the Internet. Although the traffic may
not be encrypted from the middle point outward, this approach
effectively prevents any MITM attack attempted by a rogue
access point.

Figure 8. Achieving end-to-middle security

Our system can be used to implement end-to-middle
security as illustrated in Figure 8. Assuming that the physical
smartphone establishes a secure channel with its virtual
smartphone, a rouge access point cannot intercept the traffic
between any mobile application installed in the virtual
smartphone and the web even if the application is not
encrypted.

E. Other possibilities

There are also many other ways to utilize our system. For
example, Our system can be used to archive the less frequently
used applications and free up the storage space on the physical
smartphones. Our system can help users prevent their local
device from accumulating unwanted residual files from trial
applications. Android applications, for example, sometimes
leave residual files even after they are uninstalled by the user.

Developers may also take the advantage of the fact that
virtual smartphones are consistently online and come up with
server mobile applications that would be difficult to deploy on
physical mobile smartphones.

V. EVALUATION

We have evaluated our prototype from a number of
different aspects, each of which are described in the following.

A. Computing power

Through this paper we have argued that the performance of
mobile applications can be drastically leveraged by executing
them in a virtual smartphone image hosted in the cloud. To
confirm this argument, we conducted a series tests to compare
the performance of the same application executed on an
Android smartphone and on a virtual Android image hosted in
a PC.

In our test, we used Android Dev Phone 1 that comes with
a Qualcomm 7210 528MHz processor and 192MB of RAM.
We hosted the virtual Android image in a Dell Precision
M6300 workstation that comes with an Intel Core2 Extreme
X7900 2.80GHz processor and 4GB of RAM. We installed
"SmartphoneBench v1.5" [11], a benchmark application for
Android, on both sides to evaluate their speed to draw strings,
points, lines, polygons, PNGs and transparent PNGs in terms of
frames per second (FPS).

Figure 9. Comparative benchmark results

The result is summarized in Figure 9. We denote the result
obtained from the smartphone as "Android(ARM)" and that
from the virtual image as "Android(x86)". As shown in the
result, the virtual image installed on our PC constantly
outperforms Android Dev Phone 1 in a drastic manner. The
virtual image is at least 14 times faster when drawing lines and
at most 60 times faster when drawing strings.

These results suggest that our system is particular suitable
for computation-intensive applications that are executed
remotely on virtual smartphones, in which only the graphical
results are transmitted to the physical device.

B. Battery consumption

We are also interested in how much battery usage we can
conserve by running computation-intensive applications in a
remote virtual image instead of the local physical smartphone.
For the purpose of our experiment, we use a smartphone to
resize a JPEG image from 800x600 to 640x480 and then adjust
the sharpness of the image. We let our smartphone perform
this operation continuously until the battery drains out.

In the first set of the experiment, we performed this
operation using the local computing resources in an Android
Dev Phone 1. Since the operation was performed locally, no
network traffic was generated. In the second set of the
experiment, we performed this operation on a remote Android-
x86 image hosted in the same PC we used in the previous
experiment. While computation was performed remotely, we
use the client application on an Android Dev Phone 1 to
continuously monitor the process over a 3G network. Since the
display of the Android-x86 image frequently updates itself, a
large volume of network traffic was generated and therefore
consumes the battery of the Android Dev Phone. The primary
objective of this experiment therefore is to compare the battery
consumption of local computation with that of network access.

Figure 10. Comparison of battery consumption

The result is summarized in Figure 10. The data obtained is
denoted as "local" for the first set of experiment and "remote"
for the second set. The x-axis represents the remaining battery
while y-axis represents the number of operations performed in
hundreds. When we perform the operation 100 times locally,
the battery reduces from 100% to 88% . With the same amount
of battery consumption, we can perform the operation 2,700
times despite the continuous network usage. We carry out this
experiment until the remaining battery is only 11%, at which
point we can perform this operation 600 times locally but
13,800 times remotely. The result suggests that our system
may be helpful in conserving device batteries by moving
computation-intensive applications to the cloud.

C. Traffic rate

One of the advantages of allowing users to use a remote
virtual smartphone image is its small screen output size. The
smaller the screen size, the smaller the amount of data traffic
involved in transmitting the graphic pixels of display images
across the network.

To confirm this argument, we conducted experiments to
measure the actual amount of traffic involved to transmit the
display output of an Android-x86 image with screen size of
320x480. For comparison purposes, we also conducted
experiments on Windows XP with screen size of 1024x768 and
800x600. Although it is possible to further reduce the screen
size of Windows XP, most applications on Windows are
designed under the assumption that the display size is at least
800x600. During each experiment, we manipulated the
remote environment in such a way that the entire screen
continues to update itself.

Figure 11. Comparison of screen output

Figure 11 depicts the results of our experiments. The
average and maximum traffic rate generated by Windows XP
with a screen size of 1024x768 is 1.1Mbps and 5.9 Mbps
respectively. The average and maximum traffic rate generated
by Windows XP with a screen size of 800x600 is 699 kbps and
2.4 Mbps respectively. Lastly, the average and maximum
traffic rate generated by the Android-x86 image is only 148
kbps and 391 kbps respectively. The result asuggests that our
system is particular suitable for wireless network such as 3G
that has limited bandwidth.

VI. RELATED WORK

Satyanarayanan et al. [12] outlined their vision of letting
mobile users seamlessly utilize nearby computers to obtain the
resources of cloud computing by instantiates a "cloudlet" that
rapidly synthesizes virtual machines on nearby infrastructure
that can be access through WLAN. Baratto et al presented
MobiDesk [13], a virtual desktop computing hosting
infrastructure that provides full featured PC desktop
environment to mobile users. Potter et al presented an
extension of this infrastructure they call DeskPod [14], which
focuses on reliability issues. Although these literatures related
to our work in terms of allowing mobile users to remotely
access virtual machine images, our objective of leveraging the
performance of mobile applications is different from theirs
since they focus on delivering PC applications to mobile users.

Our work is most closely related to Chun et al. [15] as we
share similar objective and focus on mobile applications. Chun
recognized five categories of augmented execution to speed up
mobile applications, namely Primary, Background, Mainline,
Hardware and Multiplicity and presented a research agenda to
bring the vision into reality. At the time of this writing, it is
not clear whether they have progressed and implemented any
prototype. Their project homepage can be found in [16]. Our
Virtual Smartphone over IP system can be seen as a specific
implementation of the Hardware augmentation.

In Section IV, we discussed the possibility of using our
system as a remote sandbox to test untrusted programs. An
increasing number of literatures propose to address the same
security issue by detecting malware in much the same way
adopted by PC users. These proposals can be categorized into

0

20

40

60

80

100

120

140

160

100 88 72 57 47 34 11

N
u
m
b
e
r
o
f
o
p
e
ra
ti
o
n
s
(x
1
0
0
)

Remaining battery (%)

Battery Consumption

Local

remote

anomaly-based [17][18][19][20], access-control-based [21] and
signature-based [22] approaches. Due to the limitations of
hardware capacity, we argue that these approaches derived
from the world of PC cannot be easily deployed on
smartphones today. The overhead incurred by these detection
programs may hamper the user experience by lagging the
overall system responsiveness and consuming battery at a
much faster pace. However, these approaches can be deployed
on our virtual smartphone images to help users test untrusted
programs. If malware is detected in an image, its user can
easily revert the image to its previous clean state.

VII. CONLUSION

In this paper, we presented Virtual Smartphone over IP
system that allows smartphone users to create virtual images of
smartphones in the cloud and access these images remotely
from their physical smartphone. The prototype we
implemented integrates the remote environment with the local
environment and allows users to run remote applications as
they would locally. Through our prototype, mobile
applications installed in the cloud can access sensor readings
on the physical smartphone. Our prototype also boosts the
performance of mobile applications by providing virtually
unlimited computing resources at user’s fingertips, without
draining the device battery.

VIII. REFERENCES

[1] “Dropbox - Home - Online backup, file sync and
sharing made easy.,” http://www.dropbox.com/.

[2] “ZumoDrive - Enjoy your media and documents from
every device,” http://www.zumodrive.com/.

[3] “Android Developers,”
http://developer.android.com/index.html.

[4] “Android-x86 Project - Run Android on Your PC
(Android-x86 - Porting Android to x86),”
http://www.android-x86.org/.

[5] S. Töyssy and M. Helenius, “About malicious software
in smartphones,” Journal in Computer Virology, vol. 2,
Nov. 2006, pp. 109-119.

[6] C. Fleizach, M. Liljenstam, P. Johansson, G.M. Voelker,
and A. Mehes, “Can you infect me now?: malware
propagation in mobile phone networks,” Proceedings of
the 2007 ACM workshop on Recurring malcode,
Alexandria, Virginia, USA: ACM, 2007, pp. 61-68.

[7] A. Schmidt and S. Albayrak, “Malicious software for
smartphones,” Technische Universit\ät Berlin, DAI-
Labor, Tech. Rep. TUB-DAI, vol. 2, 2008, pp. 08–01.

[8] M. Becher, F.C. Freiling, and B. Leider, “On the Effort
to Create Smartphone Worms in Windows Mobile,”
Information Assurance and Security Workshop, 2007.
IAW '07. IEEE SMC, 2007, pp. 199 -206.

[9] A.-. Schmidt, H.-. Schmidt, L. Batyuk, J.H. Clausen,
S.A. Camtepe, S. Albayrak, and C. Yildizli,
“Smartphone malware evolution revisited: Android next

target?,” Malicious and Unwanted Software
(MALWARE), 2009 4th International Conference on,
2009, pp. 1 -7.

[10] E.Y. Chen and M. Ito, “Using end-to-middle security to
protect against evil twin access points,” 2009 IEEE
International Symposium on a World of Wireless,
Mobile and Multimedia Networks & Workshops, Kos,
Greece: 2009, pp. 1-6.

[11] “SmartphoneBench 1.5 (for Android),”
http://www.lusterworks.co.jp/cgi-bin/tt03.pl?id=A000.

[12] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies,
“The Case for VM-based Cloudlets in Mobile
Computing,” IEEE Pervasive Computing, 2009.

[13] R.A. Baratto, S. Potter, G. Su, and J. Nieh, “MobiDesk:
mobile virtual desktop computing,” Proceedings of the
10th annual international conference on Mobile
computing and networking, Philadelphia, PA, USA:
ACM, 2004, pp. 1-15.

[14] S. Potter and J. Nieh, “Highly Reliable Mobile Desktop
Computing in Your Pocket,” Computer Software and
Applications Conference, 2006. COMPSAC '06. 30th
Annual International, 2006, pp. 247 -254.

[15] B.G. Chun and P. Maniatis, “Augmented Smartphone
Applications Through Clone Cloud Execution.”

[16] “CloneCloud Project at Intel Research,”
http://berkeley.intel-research.net/bgchun/clonecloud/.

[17] A. Bose, X. Hu, K.G. Shin, and T. Park, “Behavioral
detection of malware on mobile handsets,” Proceeding
of the 6th international conference on Mobile systems,
applications, and services, Breckenridge, CO, USA:
ACM, 2008, pp. 225-238.

[18] H. Kim, J. Smith, and K.G. Shin, “Detecting energy-
greedy anomalies and mobile malware variants,”
Proceeding of the 6th international conference on
Mobile systems, applications, and services,
Breckenridge, CO, USA: ACM, 2008, pp. 239-252.

[19] A.-. Schmidt, J.H. Clausen, A. Camtepe, and S.
Albayrak, “Detecting Symbian OS malware through
static function call analysis,” Malicious and Unwanted
Software (MALWARE), 2009 4th International
Conference on, 2009, pp. 15 -22.

[20] A. Schmidt, F. Peters, F. Lamour, C. Scheel, S.A.
Çamtepe, and S. Albayrak, “Monitoring smartphones
for anomaly detection,” Mob. Netw. Appl., vol. 14,
2009, pp. 92-106.

[21] L. Xie, X. Zhang, A. Chaugule, T. Jaeger, and S. Zhu,
“Designing System-Level Defenses against Cellphone
Malware,” Reliable Distributed Systems, 2009. SRDS
'09. 28th IEEE International Symposium on, 2009, pp.
83 -90.

[22] Z. Cheng, “Mobile Malware: Threats and Prevention,”
McAfee Avert.

