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Abstract— The number of smartphone users and mobile 
application offerings are growing rapidly.  A smartphone is often 
expected to offer PC-like functionality.  In this paper, we present 
Virtual Smartphone over IP system that allows users to create 
virtual smartphone images in the mobile cloud and to customize 
each image to meet different needs.  Users can easily and freely 
tap into the power of the data center by installing the desired 
mobile applications remotely in one of these images.  Because the 
mobile applications are controlled remotely, they are not 
constrained by the limit of processing power, memory and 
battery life of a physical smartphone.  
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I.  INTRODUCTION 

The number of smartphone users and mobile application 
offerings are growing rapidly.  Smartphones are often expected 
to offer PC-like functionality, which requires powerful 
processors, abundant memory and long-lasting battery life.  
However, their hardware today is still very limited and 
application developers are forced to take these limitations into 
consideration.     

A number of service providers such Dropbox [1] and 
Zumodrive [2] provides online storage services to smartphone 
users in attempt to alleviate the limitations of smartphone 
storages.  However, to the best of our knowledge, there is still 
no service that offers full computation resources to smartphone 
users.  In this paper, we propose Virtual Smartphone over IP, 
which provides cloud computing environment specifically 
tailored for smartphone users.  It allows users to create virtual 
smartphone images in the cloud and to remotely run their 
mobile applications in these images as they would locally.  The 
motivation is to allow smartphone users to more easily tap into 
the power of the cloud and to free themselves from the limit of 
processing power, memory and battery life of a physical 
smartphone.  Using our system, smartphone users can choose 
to install their mobile applications either locally or in the cloud, 
as illustrated in Figure 1. 

Running applications remotely in the cloud has a number of 
advantages, such as avoiding untrusted applications from 
accessing local data, boosting computing resources, continuing 
to run applications on the background and opening up new 
ways to use smartphones.   

This paper presents the design and implementation of 
Virtual Smartphone over IP.  Section II describes the basic 
design of our system and Section III describes a proof-of-
concept prototype that we have implemented.  Section IV 
discuss the possible applications of our system and Section V 
reports the results of our experiments that demonstrate how we 
can leverage the performance of mobile applications in the 
cloud.  Section VI discusses the related work in the research 
community and Section VII concludes this paper. 

 

Figure 1.  Basic concept of our system 

II. BASIC DESIGN 

Our Virtual Smartphone over IP system adopts an 
architecture similar to ones  commonly used by server hosting 
providers.  As illustrated in Figure 2, the system is composed 
of a number of external smartphone clients, a front-end server, 
a virtual smartphone farm, a management server and a network 
file system (NFS).   

 Virtual smartphone farm is the most important 
component of our system.   It is a virtualization 
environment that hosts a collection of virtual 
smartphone images, each of which is dedicated to a 
smartphone user.   In Section III, we discuss in detail 
about how we have implemented a virtual smartphone 
farm. 

 The front-end server admits service requests from 
smartphone users across the Internet and establishes 
remote sessions to the appropriate virtual smartphone 
images.  The frond-end server also allows smartphone 
users to create, configure and destroy virtual 
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smartphone images.  Once a remote session is 
established, the user can install and run mobile 
applications on one of these images instead of his own 
physical smartphone.   

 The network file system is used by virtual 
smartphones for all persistent file storage, in much the 
same way that an SD card holds data for physical 
smartphones.  Since the NFS is easily scalable, it 
practically provides each virtual smartphone an 
unlimited file storage. 

 The management server is used to manage the virtual 
smartphone farm.  Typical operations of a 
management server include the creation of virtual 
images in bulk and troubleshooting individual images.  

Users control their virtual smartphone images through a 
dedicated client application installed on their smartphones.  
This client application receives the screen output of a virtual 
smartphone image and presents the screen locally in the same 
way as conventional thin-client technology.  Since we expect 
most users to access their virtual smartphone images through 
an unstable network such as 3G, the image must continue to 
run on the farm and be in the same state when the user is 
connected again after the user is disconnected in an unexpected 
manner.   
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Figure 2.  Overall system architecture 

III. IMPLEMENTATION 

We have implemented a proof-of-concept prototype using 
Android [3], an open-source mobile OS initiated by Google.  
The main reason behind our choice is that Android OS is not 
only designed for smartphone devices with an ARM processor, 
but also is being ported to the x86 platform [4].   Although 
Android-x86 is originally intended for netbooks, it gives us an 
opportunity to create a virtual image of Android using a bare-
metal hypervisor.  This allows each virtual Android-x86 image 
to tap into the power of server hardware in a data center.  The 
fact that we do not need a CPU emulator (i.e. x86-to-ARM) to 
run the virtual image is very important since such emulator 
always introduces enormous overhead and may neutralize any 
performance advantage offered by a data center. 

We have also chosen to implement our client application on 
an Android smartphone.  Although our system does not require 

the physical and the virtual smartphones to be on the same 
platform, this particular setting allows us to more tightly 
integrate both environments. 

Our prototype is depicted in Figure 3.   We have 
implemented a pair of VNC-based server and client programs.  
The server program resides in each Android-x86 image that run 
on top of VMWARE ESXi while the client program is installed 
in the physical Android device.  The client program enables a 
user to remotely interact and control Anroid-x86 images.  The 
client program transmits various events from the physical 
device to the virtual smartphone and receives graphical screen 
updates from the virtual smartphone.   

We have also implemented a virtual sensor driver in the 
Android-x86 image.  Most modern smartphones are equipped 
with various sensor devices such as GPS, accelerometer and 
thermometers.  While VNC itself supports only  keyboard and 
mouse as the primarily input devices, we have extended our 
client program to transmit sensor readings (accelerometer, 
orientation, magnetic field and temperature etc) to the virtual 
sensor driver in the Android-x86 image.  The virtual sensor 
driver is implemented in such a way that the sensor readings 
from the physical Android device would appear to come from 
the Anroid-x86 image itself.  This is an important feature as it 
allows Android applications in an Android-x86 image to obtain 
sensor readings from the physical smartphone without any 
modification.   
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Figure 3.  Prototype implementation 

Our prototype allows applications running in the cloud to 
appear like local applications on the physical device, with 
functions such as copy-and-paste between local and remote 
applications.  Our prototype also features remote shortcuts to 
remote applications in the virtual smartphone that minimize the 
number of steps required for users to launch remote 
applications, as illustrated in Figure 4.  Furthermore, each 
short-cut can point to a different virtual Android-x86 image, 
and thus allowing users instant access to remote applications 
residing in multiple Android-x86 images in one single menu. 



Figure 5 is a photo of our prototype in action.  The user in 
the photo is accessing an Android-x86 image hosted in our data 
center. 

 

Figure 4.  Shortcuts to remote apps 

 
 

Figure 5.  Our prototype in action 

IV. APPLICATIONS 

Our system allows users to customize each image to meet 
different needs.  To create a new smartphone image in the 
cloud, the user can simply select from a number of pre-
configured image templates to get up and running immediately.  
The following are some examples of how our system can be 
used. 

A. Remote Sandbox 

As smartphones begins to replace laptop PCs in some 
occasions, they will slowly become attractive targets for 
attackers.  Security threats that were once considered PC issues 
are slowly crossing the line and becoming serious concerns for 
mobile users [5][6][7][8].  In particular, [9] further studied 
Android as a potential target because of Android's design 
philosophy on openness.  The authors created a proof-of-
concept malware using undocumented Java functions and 
demonstrated the possibility to bypass the Android permission 
system using native applications.   

Users of our system can execute mobile applications from 
unverified third-parties on a virtual smartphone image that has 
only access to a tightly-controlled set of resources.  This usage 
is conventionally called "sandbox", in the sense that untrusted 
programs are contained in a confined space with very little 

freedom.   Using our system, these program do not even reside 
in the physical device at all and thus further minimize the risks 
of malware breaking out of the sandbox.  This concept is 
illustrated in Figure 6.  Such remote sandbox is particularly 
useful for Android users who would like to install the less-
trusted applications obtained outside the Android Market.  If an 
image is infected, the user can easily revert the image to its 
previous clean state. 

 

 
 

Figure 6.  Remote sandbox 

B. Data leakage prevention 

A recent study commissioned by Cisco indicated that loss 
of portable devices is one of the top 10 reasons for enterprise 
data leakage.  Our system can also be used as a viable solution 
against data leakage if the data is stored in the data center and 
accessible only through one of the virtual smartphone image, as 
illustrated in Figure 7.  Since only the graphic pixels of screen 
images are delivered to user's mobile phone, the actual data 
never leaves the secure data center.  This allows employees to 
work with the data without the privilege to retain or copy the 
data in their local device.   This practically gives enterprise 
more control over confidential and valuable corporate data.  
We can further configure an image template in such a way that 
prohibits data from leaving the image. 

 

 
Figure 7.  Data leakage prevention 

C. Performance leverage 

The fact that Android uses the same Java application 
framework on both x86 and ARM processors provides 
seamless application portability on these platforms.  We can 
boost the performance of Android applications by running 
them on x86 platforms with the vast resources of cloud 
computing.  In Section V, we present comparative benchmark 
results to provide some idea of the potential performance 
leverage one can gain by executing the same applications in the 
cloud.   

The user in Figure 5 was using his Android smartphone to 
remotely control a PDF viewer application run on a virtual 
Android-x86 image in the data center.  While the ARM-based 



Android on a HT-03A takes 14 seconds on average to open a 
10 MB file, the Android-x86 image hosted in our data center 
takes less than 1 second.  An image template configured with 
vast memory and CPU resources can be provided to assist users 
for this purpose. 

D. End-to-middle security 

In [10], we proposed an end-to-middle security model to 
defend against rogue wireless access point that appears to be 
legitimate, but is set up for the purpose of intercepting traffic 
between mobile users and the web.  We pointed out that while 
end-to-end security is the most effective countermeasure,  in 
practice it requires continuous diligence from users to ensure 
that such security does take place as expected.  It is even more 
difficult for users to verify if a mobile application that interacts 
with a web service does indeed encrypt its data traffic to 
prevent man-in-the-middle (MITM) attacks, which is most 
likely to happen at an untrusted wireless access point.   

The basic idea of end-to-middle security is to have a trusted 
middle point somewhere on the Internet.  As soon as being 
associated with an access point, a mobile user establishes a 
secure channel with this middle point first, which then relay all 
traffic from the user to the Internet.  Although the traffic may 
not be encrypted from the middle point outward, this approach 
effectively prevents any MITM attack attempted by a rogue 
access point. 

 
Figure 8.  Achieving end-to-middle security 

Our system can be used to implement end-to-middle 
security as illustrated in Figure 8.  Assuming that the physical 
smartphone establishes a secure channel with its virtual 
smartphone, a rouge access point cannot intercept the traffic 
between any mobile application installed in the virtual 
smartphone and the web even if  the application is not 
encrypted. 

E. Other possibilities 

There are also many other ways to utilize our system.  For 
example, Our system can be used to archive the less frequently 
used applications and free up the storage space on the physical 
smartphones.  Our system can help users prevent their local 
device from accumulating unwanted residual files from trial 
applications.  Android applications, for example, sometimes 
leave residual files even after they are uninstalled by the user.   

Developers may also take the advantage of the fact that 
virtual smartphones are consistently online and come up with 
server mobile applications that would be difficult to deploy on 
physical mobile smartphones. 

V. EVALUATION 

We have evaluated our prototype from a number of 
different aspects, each of which are described in the following. 

A. Computing power 

Through this paper we have argued that the performance of 
mobile applications can be drastically leveraged by executing 
them in a virtual smartphone image hosted in the cloud.  To 
confirm this argument, we conducted a series tests to compare 
the performance of the same application executed on an 
Android smartphone and on a virtual Android image hosted in 
a PC.   

In our test, we used Android Dev Phone 1 that comes with 
a Qualcomm 7210 528MHz processor and 192MB of RAM.  
We hosted the virtual Android image in a Dell Precision 
M6300 workstation that comes with an Intel Core2 Extreme 
X7900 2.80GHz processor and 4GB of RAM.  We installed 
"SmartphoneBench v1.5" [11], a benchmark application for 
Android, on both sides to evaluate their speed to draw strings, 
points, lines, polygons, PNGs and transparent PNGs in terms of 
frames per second (FPS).   

 

 

Figure 9.  Comparative benchmark results 

The result is summarized in Figure 9.  We denote the result 
obtained from the smartphone as "Android(ARM)" and that 
from the virtual image as "Android(x86)".  As shown in the 
result, the virtual image installed on our PC constantly 
outperforms Android Dev Phone 1 in a drastic manner.  The 
virtual image is at least 14 times faster when drawing lines and 
at most 60 times faster when drawing strings.   

These results suggest that our system is particular suitable 
for computation-intensive applications that are executed 
remotely on virtual smartphones, in which only the graphical 
results are transmitted to the physical device.   

B. Battery consumption 

We are also interested in how much battery usage we can 
conserve by running computation-intensive applications in a 
remote virtual image instead of the local physical smartphone.  
For the purpose of our experiment, we use a smartphone to 
resize a JPEG image from 800x600 to 640x480 and then adjust 
the sharpness of the image.  We let our smartphone perform 
this operation continuously until the battery drains out.   



In the first set of the experiment, we performed this 
operation using the local computing resources in an Android 
Dev Phone 1.  Since the operation was performed locally, no 
network traffic was generated.  In the second set of the 
experiment, we performed this operation on a remote Android-
x86 image hosted in the same PC we used in the previous 
experiment.  While computation was performed remotely, we 
use the client application on an Android Dev Phone 1 to 
continuously monitor the process over a 3G network.  Since the 
display of the Android-x86 image frequently updates itself, a 
large volume of network traffic was generated and therefore 
consumes the battery of the Android Dev Phone.  The primary 
objective of this experiment therefore is to compare the battery 
consumption of local computation with that of network access.   

Figure 10.  Comparison of battery consumption 

The result is summarized in Figure 10.  The data obtained is 
denoted as "local" for the first set of experiment and "remote" 
for the second set.  The x-axis represents the remaining battery 
while y-axis represents the number of operations performed in 
hundreds.  When we perform the operation 100 times locally, 
the battery reduces from 100% to 88% .  With the same amount 
of battery consumption, we can perform the operation 2,700 
times despite the continuous network usage.   We carry out this 
experiment until the remaining battery is only 11%, at which 
point we can perform this operation 600 times locally but 
13,800 times remotely.  The result suggests that our system 
may be helpful in conserving device batteries by moving 
computation-intensive applications to the cloud. 

C. Traffic rate 

One of the advantages of allowing users to use a remote 
virtual smartphone image is its small screen output size.  The 
smaller the screen size, the smaller the amount of data traffic 
involved in transmitting the graphic pixels of display images 
across the network.    

To confirm this argument, we conducted experiments to 
measure the actual amount of traffic involved to transmit the 
display output of an Android-x86 image with screen size of 
320x480.   For comparison purposes, we also conducted 
experiments on Windows XP with screen size of 1024x768 and 
800x600.  Although it is possible to further reduce the screen 
size of Windows XP, most applications on Windows are 
designed under the assumption that the display size is at least 
800x600.   During each experiment, we manipulated the 
remote environment in such a way that the entire screen 
continues to update itself. 

 

Figure 11.  Comparison of screen output 

Figure 11 depicts the results of our experiments.  The 
average and maximum traffic rate generated by Windows XP 
with a screen size of 1024x768 is 1.1Mbps and 5.9 Mbps 
respectively.  The average and maximum traffic rate generated 
by Windows XP with a screen size of 800x600 is 699 kbps and 
2.4 Mbps respectively.  Lastly, the average and maximum 
traffic rate generated by the Android-x86 image is only 148 
kbps and 391 kbps respectively.  The result asuggests that our 
system is particular suitable for wireless network such as 3G 
that has limited bandwidth. 

VI. RELATED WORK 

Satyanarayanan et al. [12] outlined their vision of letting 
mobile users seamlessly utilize nearby computers to obtain the 
resources of cloud computing by instantiates a "cloudlet" that 
rapidly synthesizes virtual machines on nearby infrastructure 
that can be access through WLAN.  Baratto et al presented 
MobiDesk [13], a virtual desktop computing hosting 
infrastructure that provides full featured PC desktop 
environment to mobile users.   Potter et al presented an 
extension of this infrastructure they call DeskPod [14], which 
focuses on reliability issues.  Although these literatures related 
to our work in terms of allowing mobile users to remotely 
access virtual machine images, our objective of leveraging the 
performance of mobile applications is different from theirs 
since they focus on delivering PC applications to mobile users. 

Our work is most closely related to Chun et al. [15] as we 
share similar objective and focus on mobile applications.  Chun 
recognized five categories of augmented execution to speed up 
mobile applications, namely Primary, Background, Mainline, 
Hardware and Multiplicity and presented a research agenda to 
bring the vision into reality.  At the time of this writing, it is 
not clear whether they have progressed and implemented any 
prototype.  Their project homepage can be found in [16].  Our 
Virtual Smartphone over IP system can be seen as a specific 
implementation of the Hardware augmentation.   

In Section IV, we discussed the possibility of using our 
system as a remote sandbox to test untrusted programs.  An 
increasing number of literatures propose to address the same 
security issue by detecting malware in much the same way 
adopted by PC users.  These proposals can be categorized into 
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anomaly-based [17][18][19][20], access-control-based [21] and 
signature-based [22] approaches.  Due to the limitations of 
hardware capacity, we argue that these approaches derived 
from the world of PC cannot be easily deployed on 
smartphones today.  The overhead incurred by these detection 
programs may hamper the user experience by lagging the 
overall system responsiveness and consuming battery at a 
much faster pace.  However, these approaches can be deployed 
on our virtual smartphone images to help users test untrusted 
programs.  If malware is detected in an image, its user can 
easily revert the image to its previous clean state. 

VII. CONLUSION 

In this paper, we presented Virtual Smartphone over IP 
system that allows smartphone users to create virtual images of 
smartphones in the cloud and access these images remotely 
from their physical smartphone.  The prototype we 
implemented integrates the remote environment with the local 
environment and allows users to run remote applications as 
they would locally.  Through our prototype, mobile 
applications installed in the cloud can access sensor readings 
on the physical smartphone.  Our prototype also boosts the 
performance of mobile applications by providing virtually 
unlimited computing resources at user’s fingertips, without 
draining the device battery. 

VIII. REFERENCES 

[1] “Dropbox - Home - Online backup, file sync and 
sharing made easy.,” http://www.dropbox.com/. 

[2] “ZumoDrive - Enjoy your media and documents from 
every device,” http://www.zumodrive.com/. 

[3] “Android Developers,” 
http://developer.android.com/index.html. 

[4] “Android-x86 Project - Run Android on Your PC 
(Android-x86 - Porting Android to x86 ),” 
http://www.android-x86.org/. 

[5] S. Töyssy and M. Helenius, “About malicious software 
in smartphones,” Journal in Computer Virology,  vol. 2, 
Nov. 2006, pp. 109-119. 

[6] C. Fleizach, M. Liljenstam, P. Johansson, G.M. Voelker, 
and A. Mehes, “Can you infect me now?: malware 
propagation in mobile phone networks,” Proceedings of 
the 2007 ACM workshop on Recurring malcode,  
Alexandria, Virginia, USA: ACM, 2007, pp. 61-68. 

[7] A. Schmidt and S. Albayrak, “Malicious software for 
smartphones,” Technische Universit\ät Berlin, DAI-
Labor, Tech. Rep. TUB-DAI,  vol. 2, 2008, pp. 08–01. 

[8] M. Becher, F.C. Freiling, and B. Leider, “On the Effort 
to Create Smartphone Worms in Windows Mobile,” 
Information Assurance and Security Workshop, 2007. 
IAW '07. IEEE SMC, 2007, pp. 199 -206. 

[9] A.-. Schmidt, H.-. Schmidt, L. Batyuk, J.H. Clausen, 
S.A. Camtepe, S. Albayrak, and C. Yildizli, 
“Smartphone malware evolution revisited: Android next 

target?,” Malicious and Unwanted Software 
(MALWARE), 2009 4th International Conference on, 
2009, pp. 1 -7. 

[10] E.Y. Chen and M. Ito, “Using end-to-middle security to 
protect against evil twin access points,” 2009 IEEE 
International Symposium on a World of Wireless, 
Mobile and Multimedia Networks & Workshops,  Kos, 
Greece: 2009, pp. 1-6. 

[11] “SmartphoneBench 1.5 (for Android),” 
http://www.lusterworks.co.jp/cgi-bin/tt03.pl?id=A000. 

[12] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, 
“The Case for VM-based Cloudlets in Mobile 
Computing,” IEEE Pervasive Computing, 2009. 

[13] R.A. Baratto, S. Potter, G. Su, and J. Nieh, “MobiDesk: 
mobile virtual desktop computing,” Proceedings of the 
10th annual international conference on Mobile 
computing and networking,  Philadelphia, PA, USA: 
ACM, 2004, pp. 1-15. 

[14] S. Potter and J. Nieh, “Highly Reliable Mobile Desktop 
Computing in Your Pocket,” Computer Software and 
Applications Conference, 2006. COMPSAC '06. 30th 
Annual International, 2006, pp. 247 -254. 

[15] B.G. Chun and P. Maniatis, “Augmented Smartphone 
Applications Through Clone Cloud Execution.” 

[16] “CloneCloud Project at Intel Research,” 
http://berkeley.intel-research.net/bgchun/clonecloud/. 

[17] A. Bose, X. Hu, K.G. Shin, and T. Park, “Behavioral 
detection of malware on mobile handsets,” Proceeding 
of the 6th international conference on Mobile systems, 
applications, and services,  Breckenridge, CO, USA: 
ACM, 2008, pp. 225-238. 

[18] H. Kim, J. Smith, and K.G. Shin, “Detecting energy-
greedy anomalies and mobile malware variants,” 
Proceeding of the 6th international conference on 
Mobile systems, applications, and services,  
Breckenridge, CO, USA: ACM, 2008, pp. 239-252. 

[19] A.-. Schmidt, J.H. Clausen, A. Camtepe, and S. 
Albayrak, “Detecting Symbian OS malware through 
static function call analysis,” Malicious and Unwanted 
Software (MALWARE), 2009 4th International 
Conference on, 2009, pp. 15 -22. 

[20] A. Schmidt, F. Peters, F. Lamour, C. Scheel, S.A. 
Çamtepe, and S. Albayrak, “Monitoring smartphones 
for anomaly detection,” Mob. Netw. Appl.,  vol. 14, 
2009, pp. 92-106. 

[21] L. Xie, X. Zhang, A. Chaugule, T. Jaeger, and S. Zhu, 
“Designing System-Level Defenses against Cellphone 
Malware,” Reliable Distributed Systems, 2009. SRDS 
'09. 28th IEEE International Symposium on, 2009, pp. 
83 -90. 

[22] Z. Cheng, “Mobile Malware: Threats and Prevention,” 
McAfee Avert. 

 


