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The preprojective algebra of a quiver

Claus Michael Ringel

ABSTRACT. The preprojective algebra Pi(Q) of a quiver Q plays an impor-
tant role in mathematics. We are going to present some descriptions of these
algebras and their module categories which seem to be well-accepted by some
experts, but for which we were unable to find complete proofs in the literature.
In particular, we determine the fibre of the forgetful functor from the category
of Py (Q)-modules to the category of kQ-modules in terms of the orbit algebra
of a kQ-module with respect to the Auslander-Reiten translation.

1. Introduction

Let & be a field. The algebras which we consider will be k-algebras, modules
are usually left modules. If 4 is a k-algebra, we denote by Mod A the category of
all A-modules, by mod A the full subcategory of all finite dimensional A-modules.

Quivers. Let Q = (Qo, @1, 5,1) be a finite quiver; here, Qp, Q are finite sets,
and s,t: Q1 — Qo are maps; the elements of Qg are called vertices, those of @)y are
called arrows; given an arrow o € Q4, one writes a: sa — to (or also sa «— ta)
and calls sa its starting vertex and to its terminal vertex. A path of length [ > 1is
a sequence (ai,...,q;) with sa; = ta;. 1, for 1 < i < [; the vertex say s called its
starting vertex and fa is called its terminal vertex; in addition, one also considers
paths of length 0, they correspond bijectively to the vertices of Q. We denote by
kQ the path algebra of the quiver @ with coefficient field k; here, the product of two
paths is given by concatenation, whenever this is possible, and by zero otherwise.
Note that the path algebra k@ has global dimension at most 1. Of course, k() is
finite dimensional if and only if there are no cyclic paths in Q (a cylic path is a
path of length at least 1 with same starting and terminal vertex). Let QT be the
subspace of £Q) with basis the set of all paths of length at least 1; it is the idea] of
kQ generated by the arrows.

The preprojective algebra of the quiver Q. Let { be obtained from Q@ by
adding for every arrow a: z — y a formal inverse a*: y — z, the set of new arrows
will be denoted by Q7. If Q has loops, then, by construction, the nurmber of loops
of @ is twice the number of loops of . (We may characterize Q as follows: it is
a finite quiver with a fixpoint free involution & on the set of arrows, such that for
every arrow (3 of Q) the starting point of 1(8) is the endpoint of 8 or, equivalently,
the compositions 3¢(8) and (38)3 are defined; the quiver Q contains precisely one
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arrow in each t-orbit of Q. Here, 1(a) = * and ((a*) = a, for any arrow o € Q1.)
We consider the following element

p= E: kﬁ,a]

aeQ:

in kQ and the ideal (p) generated by p (here, the summands of p are just the usual
commutators [a*,a] = a*a — aa*). The algebra Pp(Q) = kQ/(p) will be called
the preprojective algebra of the guiver Q.

Tensor algebras of bimodules. If A is a ring and ) a A-bimodule, let A(€2)
denote the corresponding tensor algebra; it is the direct sum

Ay = P %,
‘ >0
where Q®? is the t-fold tensor power of §), with 2% = A, and Q&0+ = 08t g O,
the product of a € 2% and b € Q%! in the tensor algebra is just a @ b € Q&L+ =
Q% @ 1% provided s,t > 1, and the scalar product ab otherwise. Note that A is
a subring of A(02), thus there is a forgetful functor from the category of all A(§2)-
modules to the category of A-modules. The ideal of A(()) generated by (1 is called
the augmentation tdeal.

We denote by D = Homy(—, k) the usual k-duality: for example, starting with
the right module kQyq, we obtain the dual module D(kQrg), and we may consider
e = ExtiQ(D(kaQ), kokQ@); since the endomorphism ring of both kQ-modules
D(kQrq), rok@ is just kQ, we see that © is a kQ-bimodule (the left module
structure of @ comes from the canonical action of k@ on the right of D(kQrg),
whereas the right module structure of & comes from the canonical action of k(J on
the right of xokQ).

THEOREM A. Let ¢ be a quiver without cyclic paths. Let
O = Exto(D(kQkq), ok Q).
The algebras Pr(Q) and kQ(O) are isomorphic.

There exists an isomorphism whose restriction to k@ 1s the identity and which
maps the ideal of Pr(Q) generated by the errows of Q" onte the augmentation ideal
of kQ{©).

Both algebras P (Q) and kQ(©) have been studied by many mathematicians.
The aim of Gelfand and Ponomarev [R] was to construct an algebra A with the
following property (x): it contains k@) as a subalgebra and when considered as a
left kQ-module, A decomposes as a direct sum of the indecomposable ‘preprojec-
tive’ k@-modules, one from each isomorphism class (the definition of preprojective
modules will be recalled in section 5 of the paper). Qur joint paper [DR] with Dlab
had the same aim in mind, but dealt with the more general case of a given species
instead of a quiver. Since the algebra P, (Q) has the property (x), it became cus-
tomary to call it the preprojective algebra of the quiver @. But let us stress that
for a fixed quiver ), there may be several isomorphism classes of algebras A with
property (x), see the remark at the end of the paper. Algebras of the form Py(Q)
appear quite naturally in very diverse situations: Special cases of such algebras
were considered by Kronheimer [K] when dealing with problems in differential ge-
ometry, and all of them play an important role in Lusztig’s perverse sheaf approach
to quantum groups {L1,L2,L3].
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On the other hand, Baer, Geigle and Lenzing [BGL] have considered the al-
gebras kQ)(O) under the name of preprojective algebras (see [BGL], Proposition
3.1); implicitly (and rightly) they assume that these are the algebras of interest.
The assertion of Theorem A is well-accepted by the experts, but no complete proof
seems to be available in the literature. Since this result will be needed in the se-
quel, our first aim is to provide a proof. We are going to derive it as a consequence
of the Brenner-Butler-Gabriel theorem which describes the relationship between
the Auslander-Reiten translation and the Coxeter functors of Bernstein-Gelfand-
Ponomarev. This strategy of proof will not be surprizing, but we were astonished
about the amount of additional calculations which seem to be necessary. In order to
obtain a different (and perhaps shorter) proof, one may consider the kQ-bimodule
generated in Pi(Q) by the arrows of Q* and one should try to show directly that
this bimodule is isomorphic to ©; but we found it difficult to establish such an

isomorphism directly. A short conceptual proof has recently been presented by W.
Crawley-Boevey [CB].

If kQ is finite dimensional, then the Auslander-Reiten translations + = DTr
and 77 = Tr D on the category mod kQ of all finite dimensional kQ-modules are
defined; since k() has global dimension at most 1, these are endofunctoss of mod kQ:

7= DExtig(—kokQ) and 77 = Extlo(D(kQko), ).

Given categories C, D and two functors F,G: C — D we denote by C(F,G)
the following category: its objects are the pairs (C,d) where C is an object in C
and d: F(C) — G(C) is a morphism in D; given two objects (C,d) and (C",d'), a
morphism (C,d) — (C',d’) is a morphism f: C — C' in C such that 4’ o F(f) =
G(f) od. In the following, we always will deal with the case C = D, thus F and @@
are endofunctors.

THEOREM B. Let Q be a finite quiver without cyclic paths. The categories
mod P (Q), (modkQ)(77,1) and (mod kQ)(1,7) are isomorphic. Similarly, the
categories Mod Pi (@), (Mod kQ)(F, 1) and (Mod kQ)(1, F), where F = ©® — and
G = Hom(O, —), are isomorphic.

This follows directly from Theorem A using Lemma } and Lemma 2 of section 3.
All these considerations are quite obvious. First of all, there are natural equivalences

Mod kQ(8) = (Mod kQ)(F, 1) ~ (Mod Q) (1, G).

The restrictions of F, G to mod kQ are just the Auslander-Reiten translations v~
and 7, respectively. This shows in which way Theorem A implies Theorem B. But
the reader should be aware that actually our method of proof is the reverse one:
first, we are going to establish the assertion of Theorem B. In section 3, we derive
Theorem A from Theorem B.

Representations of quivers. Let us consider for a moment an arbitrary finite
quiver, possibly with cyclic paths. The category of £Q-modules may be described
as the category of representations of Q. Recall that a representation (V) z) of Q
is given by a QJo-graded vector space V and a family 2 = (z,)q of k-linear maps
Zo: Via = Vig. The family (dim Vi)ic, is called the dimension vector of (V,z)

3

the sum > dim V; is called the dimension of (V,z). For every vertex i € Qq, we may
consider the one-dimensional representation E(i) with E(3) = (V,z) where V; = k,
Vi =0 for j # 4 and z, = 0 for all arrows a. A finite dimensional representation
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(V, ) is said to be nilpotent provided it has a filtration whose factors are of the
form E(i;) with iy € Q. The usual identification of the category of representations
of Q with the category Mod kQ of kQ-modules attaches to the representation (V,z)
of @ a corresponding kQ-module with underlying vector space Dicg, Vi s0 that
the action of kQ is given by z. The (finite dimensional) representation (V,z) is
nilpotent if and only if some power of the ideal kQT annihilates the corresponding
kQ-module. It is easy to see that all the finite dimensional representations of () are
nilpotent if and only if there are no cyclic paths in Q.

The affine space of representations with fixed dimension vector. If we
fix a finite dimensional Qg-graded vector space V, the set of all representations of
Q of the form (V, z) forms the set

R(Q;V) = @) Homg(Via, Via);

€@

of course, this is an affine space. The group

G(v) =[] crv)
1€Q0o

operates on R(Q;V) via

(g * iL‘)a = Qtamags—al:
for g = (gi); € G(V) and 7 = (z4)a € R(Q; V), and two elements z,y € RV
belong to the same G(V)-orbit if and only if the representations (V,z) and (V,y
are isomorphic. If I is an ideal of the path algebra kQ, we denote by R(Q,I;V
the subset of R(Q; V) of all elements x such that the kQ-module given by (V,z) i
annihilated by I.

We denote by Ro(Q; V) the subset of R(Q; V) of all elements z such that (V. z)
is a nilpotent representation. An element z belongs to Ro(Q; V) if and only if the
zero element belongs to the closure of the orbit of z. Also, let Ro(Q,I;V) be the
intersection of R(Q,; V) and Ro(@; V).

[ RN NN

The projection 7. Given a quiver Q with preprojective algebra PL(Q), the
path algebra k@ can be considered as a subalgebra of Pr(Q@), thus the restriction
vields a functor from the category of Pi(Q)-modules to the category of k@-modules.
We write any representation of @ in the form (V, z,£) = (V, Za, £o)aco,; here, (V1)
is a representation of @ and (V,§) is a representation of Q*. The restriction functor
Mod Px(Q) — Mod k@ sends the representation (V, z,) of @ to the representation
(V.z) of @. Our interest lies in the corresponding map

! RO(Q) (p>~ V) I RO(Qa V)a

we want to determine the fibers of this map. The varieties Ro(@, (p); V) play an
important role in Lusztig’s approach to quantum groups [L1,L2,L3].

The orbit ring of an object in an additive category with respect to an
endofunctor. Let A be an additive category. Let F be an (additive) endofunctor
of A and let X be an object of \A. The orbit ring OF(X) is given by the graded
abelian group

OF (X) = @G Hom(F™"(X), X)

n>0
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with the multiplication
frg=1FoF(g)

for f € Hom(F*(X), X) and ¢ € Hom{F*(X), X). It is a graded associative algebra
with 1 (this construction is similar to that considered in [BGL]). The situation we
are interested in, will be the following: A will be the category of representations of
the quiver (J and F' = 7~ will be the inverse of the Auslander-Reiten translation.
We will consider homogeneous elements of degree 1 which are nilpotent; thus it will
be convenient to introduce the following notation:

NF(X) = {f € Hom(F(X),X) | f is nilpotent in OF(X)}.

THEOREM C. Let Q) be a quiver without cyclic paths. Let V be a finite dimen-
stonal Qo-graded vector space and let x be an element of R(V;Q). Then n~(z)
may be identified with N7 (V,z).

It will be shown in [R4] that Theorem C may be used very effectively in order
to construct the irreducible components of the varieties Ro(Q, (p); V), at least in
the case of a tame quiver (. Theorem C and its consequences have been presented
first at ICRA VI, Ottawa 1992 and in lectures at Brandeis university in the same
year. We are indebted to comments and suggestions by M. Auslander, Th. Briistle
and G. Lusztig.

2. Proof of Theorem B

In the following, we fix a quiver @ without cyclic paths, and C will denote
the category of all (not necessarily finitely generated) kQ-modules. We denote by
®~, T the Coxeter functors (as introduced by Bernstein, Gelfand and Ponomarev);
note that these functors are defined for all £Q-modules, not just the finitely gener-
ated ones (the definition of ®* will be recalled in the next proof). We denote by
T the endofunctor of C which sends (V, z) to (V, —z).

In case categories C',C” with ‘canonical’ functors I'V: ' — C and T7: C"” —
C are given, an isomorphism of categories W: C’ —.C” will be said to be a C-
isomorphism provided we have IV = I'W. For example, if £, G are endofunctors of
C, the forgetful functor which sends (C, ¢) to C will be considered as the canonical
functor C(F, G) — C. Similarly, for the category Mod P, (Q), the canonical functor
Mod P (Q) — C is the one induced by the canonical algebra homomorphism kQ —

Pi(@)-

THEOREM B’. There is a C-isomorphism ¥ from the category of all Pr(Q)-
modules to the category C(1,T®T).

Proor. We will have to consider various summations where the index sets are
sets of arrows. Usually, we will distinguish the arrows from @ and from Q*. It will
be convenient to consider as index sets only sets of arrows from @Q, for example, the
element p will be used in the form

p= > a‘a- Y pF

a€Q1 Be

This convention allows us to delete the reference to Q.
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We assume that the quiver @ has n vertices. Then p can be written as the sum
of n elements, namely of the elements

pi=Y BB~ aa
sf=1 ta=i
with 7 € Qo.

A Pi(Q)-module may be considered as a representation of the quiver Q sat-
isfying the relation p. We write any representation of Q in the form (V,z,£) =
(Vy Za»€a)acq, ; here, (V,z) is a representation of @ and (V,§) is a representation
of @Q*. '

Recall that &1 denotes one of the Coxeter functors for the quiver ¢ as intro-
duced by Bernstein, Gelfand and Ponomarev. Given a representation (V,z) of @,
the representation ®*(V, z) is constructed as follows: Since we assume that @ has no
oriented cycles, we may assume that we use as vertex set the set Qo = {1,2,...,n}
such that for any arrow 8 we have s8 > t§. Inductively, we define vector spaces
W,, for any vertex %, and linear maps yg: Wig — Vip and zg: Wes — Wi such
that the sequences .

0 —— W L G Vi@ B Wes TV ()

are exact. Let us fix some vertex ¢. By induction, we may assume that the vector
spaces W; with j < i, the maps yg: Wi — V,p for all arrows B with sf < i and
the maps zo: Wea — Wi for all arrows o with ta < ¢ are already defined. In
particular, the right map of () is defined; we denote this map by &;. We define
W; as the kernel of e;, in this way, we obtain corresponding maps yo: Wi — Vi,
for every arrow a with ta = i and z5: W; — Wyg for every arrow 3 with sf = .
Then, by definition, ®*(V, z) = (W, 2), and therefore T®* (V,z) = (W, —2).

Consider now an object of C(1,T®*). It is of the form ((V,z),¢) where (V, z)
belongs to C and % is a map ¢: (V,z) — (W, —z). We define {5 = ygiPrp, this is
a linear map Vig — Vg In order to show that the representation (V,z,&) of Q
satisfies the relation p, we calculate:

Z Toba— Z £pT5 = Z ZTaYoalta — Z Ys¥pTp

ta=i sfB=i ta=1i sfi=i
= > Talathia — ¥ Yo(—26)0ss
ta=i sfB=1
= Z ZoYa + Z ypzs | ¥ =0
tor=1 sf=1i
Here, we have used that iz = —2atsg, since ¢ = (¢;); is a homomorphism

between representations of 7, and the exactness of ().

Conversely, assume that the representation (V,z, §) of Q satisfies the relation p.
Inductively, we are going to define linear maps 1;: V; — W, such that the conditions
Yipzs = —zpsp and £ = ygisg are satisfied for all arrows . Assume that the
maps 1; with j < 1 have been constructed satisfying 11575 = —25%sg for all arrows
B with s8 < i and €4 = YaPia for all arrows a with ta < 1. Consider the map

(éav _wtﬁzﬁ)aﬁ: Vi — @ Ve @ @ Vvtﬁ-
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Its composition with €; is zero, as the following calculation shows:

Z ZToba — Z YsWipTg = Z ZToba — Z §azg = 0.

to=1 sfB=1 to==1i sB3=1

As a consequence, we can factor it through the kernel W; of ;. We obtain a map
;1 Vi — W, such that, on the one hand, we have £, = yo1:, for all arrows a with
ta = 1, and, on the other hand, we have 1515 = —z31,s for all arrows 8 with s8 =
i. This shows that ¥ = (¢;); is a kQ-module homomorphism (V,z) — (W, —z). If
we want to stress that ¢ has been derived from &, we write ¢ = v. Starting with
Py(Q)-module (V, z,¢), let ¥(V,z,£) = (V, z), ¥e).

Altogether, we see that U furnishes, for every representation (V,z) of Q, a
bijection between the Py (Q)-modules (V, z,£) and the maps ¥: (V,z) — (W, —2).

Consider now two Py (Q)-modules (V,z,£) and (V/,2/,£') with corresponding
maps ¥ = s (V,z) — (W, —~2) and ' = e : (V' 1)) — (W', ~2'). Since these
are k(J-module homomorphisms, the equations

(1) ViaTa = ~2aVWsa

(2) ViaTa = ~ZoWss

are satisfied for all arrows o of Q. According to the definition of ¥, we have
(3) §s = Ys¥s

(4) &5 = Ya¥is

for any arrow .
Let us start with an arbitrary kQ-homomorphism f: (V,z) — (V’,2), thus
f={(f):, where f;: V; — V! are k-linear maps such that

(5) ftaxoz = xlafsa

for any arrow a € (1. Inductively, we construct maps g;: W; — W/ such that the
following diagram commutes:

(Yar28)a (Ta,¥8)a
0 VVI R @ta:i ‘/50‘ & @sﬁ:i Wtﬁ .—_ﬂ—l’) V'L
lgi l@fwéBEng lf:‘
0 m, (ya:zﬁ)aﬁ @ta:i V.s/a ® @S,B:i t/ﬂ (zcwy,@>aﬁ ‘/Z

The maps g; which we obtain in this way satisfy the following conditions:

(6) fsala = y;gtou
(7) Gtala = z:lgsa-
Of course, the last equality just expresses the fact that g = (g;) is a kQ-module
homomorphism (W, z) — (W, 2’). But then g is also a kQ-module homomorphism
(W, —~z) — (W', —2'). Note that by construction g = ®¥(f).

First, let us assume that f is a P;(Q)-module homormorphism, thus

(3‘) fsafoz = E(/;xfta
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for all arrrows a. By induction on 7, we want to show that g;¢; = i fi. In order to
show this equality, it is sufficient to see that both

Ya¥ifi = Yogithi,

2o fi = Zpgis
for all arrows o with ta = 4 and all arrows 8 with s8 = i are satisfied (since
(Yors 28) ap 18 & monomorphism). Fix some 4, and let us assume that

(b) 955 = ¥ f; for j < i
holds. Now, using (4), (a), (3), (6) we have

y/awéafta = g(’}fta = fsata = fsaValia = y;gm?ﬁm

Next, consider an arrow § with sf = i. Since {8 < i, we can use (b) for j = t4.
Altogether, we use (2), (5), (b), (1) and (7):

2gWepfop = —YipTsfsp = —Vigfiaza
= —9tpYipTs = ip2atss = 250s6%sp-
This shows that g;4); = ¢} f; holds for all 7, thus f: ((V,),%) — (V',2),4') is
a morphism in the category C(1,79™).

Conversely, assume that f is a morphism ((V,z),4) — ((V',2'),4). in the
category C(1,7®7). This means that

(c) gt = U, fs
for all vertices 4 of Q. Using (3), (6), (c), (4), we see ﬁhat
fsp8p = Fopypibes = Ypgiptes = yptipfis = Epfis,
thus f: (V,z,8) — (V',2/,£') is a homomorphism of kQ-modules. O

Theorem B follows immediately from Theorem B’, using the Brenner-Butler-
Gabriel theorem: the restriction of the functor 7®™ to the finitely generated kQ-
modules ist just the Auslander-Reiten translation 7, see [G], Proposition 5.3.

3. Proof of Theorem A

We are going to use some additional C-isomorphisms of categories. Let us
formulate the corresponding results as Lemma 1 and Lemma 2. These assertions
are obvious. :

LEMMA 1. Let F,G be a pair of adjoint endofunctors of the category C. Then
there is a C-isomorphism from C(F,1) to C(1,G).

LEMMA 2. Let A be a ring and 0 a A-bimodule. Let C be the category of all
A-modules and F the tensor functor Q ® —. Then there is a C-isomorphism from
C(F,1) to the category of all A{Q)-modules.

For later reference, let us write down such a C-isomorphism in detail. An ob ject
of C(F, 1) is of the form (C,c), where C is a A-module and ¢: Q®, C — C is 2 A-
module homomorphism. In order to consider C as a A{§2)-module, we have to define
a bilinear map p: A(Q) ® C' — C. Since A(f) is the direct sum of the A-bimodules
Q% it is sufficient to define maps p:: 2%t @ C — C. We do this inductively. The
map po: A ® C' — C is by definition the scalar multiplication of the A-module C,
if w¢ is already defined, let pyy1 = g o (1g: ® ¢). In this way, we define a functor
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from C(F, 1) to the category Mod A(Q2). Conversely, given a A(Q)-module M, then
we take the restriction of the scalar multiplication to Q ® M.

Let us consider now again the case where @ is a quiver without cyclic paths and
C = Mod kQ. We consider the image ©' = T3~ (;,0kQ) of the ‘regular representa-
tion’ M = ;okQ of kQ under the functor T7®~. Of course, &', as an object in C, is
a left kQ-module; the endomorphisms of M are mapped under the functor 70~ to
endomorphisms of ©. The endomorphism ring of M is just the opposite algebra of
kQ, via the right multiplication; in this way, ©’ becomes also a right kQ-module.
Thus, © is a kQ-bimodule. We have noted already in the introduction that also
Extyo(D(kQrg), xokQ) is a kQ-bimodule.

LemMAa 3 (Brenner-Butler-Gabriel). The kQ-bimodules
T® (rokQ) and Ext,lcQ(D(kaQ%kaQ)

are isomorphic,

Proor. According to the Brenner-Butler-Gabriel theorem, the restriction of
the functor T®~ to the finitely generated kQ-modules ist just the Auslander-Reiten
translation 77. But the endofunctor 7~ may be identified with Ext,ng (D(kQrg), —)-

' O

Recall that the functor @~ is left adjoint to the functor ®*, thus T®~ is left
adjoint to T®*. Also, since the functor T®~ has an adjoint functor, it is a tensor
product functor, namely © ® —, where © is the kQ-bimodule © = 79~ (;,0kQ).
But according to lemma 3, this bimodule is just Ext,ﬁQ(D(kaQ), s0kQ).

Altogether, we see that there are C-isomorphisms

Mod P;(Q) — C(1,T®T) — C(T®~, 1) — Mod kQ(O);

let us denote the composition by ¥’'. We want to see that ¥’ is induced by some
algebra isomorphism 7: kQ(6) — Pr(Q). We may compose the cancnical functors
Mod Px(Q) — C and Mod kQ(©) — C with the forgetful functor C — Mod k and
apply the following Lemma. :

LEMMA 4. Let R, R be k-algebras and let
I': ModR — Modk and I': ModR — Modk

be the forgetful functors. Assume that there exists an equivalence ¥: Mod R —
Mod R’ such that I' = I"W. Then there is an algebra isomorphism R — R which
induces V.

PrOOF. The image ¥(rR) is a progenerator of the category Mod R, in par-
ticular a faithful and balanced module (this means that the canonical map from R’
into the ‘double centralizer’ is bijective). On the other hand, the underlying vector
space ["W(rR) of the module ¥(rR) is the same as the underlying vector space
I'(rR) of R, since we assume that I' = I"U. Given r € R, let p,: ['(gR) — I'(rR)
be the right multiplication by 7. The endomorphism ring of g R is just the set of el-
ements p, with r € R. The set of elements of R has to be considered here in various
ways; in order to avoid confusion, we denote by E the set of right multiplications
pr with r € R (of course, £ = End(gR), and this endomorphism ring is isomorphic
to the opposite ring R° of R). Since I"¥(p,) = I'(p,), we see that the image of
the endomorphism ring of R under the functor ¥ is again the set E. Since ¥ is a
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full functor, E is the set of all endomorphisms of ¥(gR). The double centralizer of
¥(rR) is the endomorphism ring of the E-module I'(x R). But the endomorphism
ring of the E-module I'(gR) is just the given ring R operating on I'(gR) via left
multiplication. This shows that the double centralizer of ¥(gR) is the ring R. On
the other hand, since ¥(gR) is a balanced R'-module, its double centralizer is also
isomorphic to R’. Therefore the rings R and R’ are isomorphic. (Actually, our
proof gives an identification of R with the double centralizer of ¥(gR) and thus a
fixed isomorphism R’ — R.) O

Let n: kQ{®) — P,(Q) be the algebra isomorphism which induces the C-
isomorphism
¥’ Mod P (Q) — Mod kQ(6)

Let us consider first the isomorphism ¥: Mod Pr(Q) — C(1,7®") with ¥(V,z,§) =
((V,z),%¢). We have £ = 0 if and only if ¢¢ = 0. There are corresponding asser-
tions for the isomorphisms C(1,7®") — C(T®,1) and C(T®~,1) — Mod kQ(8).
Altogether, we see: if (V,z,€) is a Pr(Q)-module, then ¢ = 0 if and only if the
kQ(®)-module ¥ (V,z,£) is annihilated by the augmentation ideal. As a conse-
quence, the augmentation ideal of kQ(O) is mapped under n onto the ideal of
Pr(Q) generated by the arrows of Q*. Also, since ¥’ is a C-isomorphism, it follows
that the restriction of 1 to kQ is the identity.

This completes the proof of Theorem A.

4. Proof of Theorem C

Let I be the ideal of Py (Q) generated by the arrows of @*. A finite dimensional
Pr(Q)-module M is nilpotent if and only if M is annihilated by some power I°® of
I. Namely, the simple modules E (i) with ¢ € Qg are annihilated by I, thus any
module having a filtration of length { with factors of the form E(i;) is annibilated
by I'. On the other hand, if M is annihilated by I°, then any composition factor
of M is annihilated by / and therefore a simple kQ-module. But since k@ is finite
dimensional, the only simple k@-modules are those of the form E(4;).

Consider now the general case of a ring A and a A-bimodule 3. The A(Q)-
modules are just of the form (M, f) where M is a A-module and f: Q@ M — M
is a A-homomorphism. Of course, such a map f may also be considered as an
element of the orbit ring OF (M) for the functor F = Q® —. There is the following
relationship: :

PROPOSITION 1. Let M be o A-module and let f: Q@ @y M — M be a A-
homomorphism. The map f is nilpotent as an element of the orbit ring OF (M) if
and only if the A{Y)-module (M, f) is annihilated by some power of the augmenta-
tion ideal.

PROOF. The s-fold power of f in the orbit ring OF (M) is the composition of
the following maps

0®s @ M 2278, qes-1 g s QoM —— M.

But this is also the restriction p, of the scalar multiplication of the A(Q)-module
(M, f) to Q®¢ ® M. Thus, we see that the s-fold power f** of f in the orbit ring
OF (M) is zero if and only if the map u, is the zero map. The inductive definition
of the maps ps shows that ps = 0 implies y; = 0 for all ¢ > s. This shows that
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f*° =0 in the orbit ring OF (M) if and only if the s-fold power of the augmentation
ideal annihilates the A(Q2)-module (M, f).

Theorem C is an immediate consequence of Proposition 1 and the previous
considerations. O

5. Application

We want to give some indications in which way Theorem C can be used. Let
() be a connected quiver without cyclic paths and let us consider only finite di-
mensional kQ-modules. Given such a module M, let O(M) = O7 (M) denote the
orbit ring with respect to the Auslander-Reiten translation 77. Recall that O(M)
is a graded ring and we are mainly interested in the set O(M); = Hom(r~ M, M)
of elements of degree 1. Also, we denote the subset N7 (M) just by N (M). We
are going to derive some recipes for calculating N (M).

First of all, observe the following: if we consider two k(J-modules M, N, then
we can write O(M @ N); in matrix form as follows:

_ |Hom(r~M, M) Hom(r N, M)
" |Hom(7~"M,N) Hom(r™N, N)} )

Let M be a k()-module. Recall that M is said to be preprojective provided
there exists some n > 0 such that 77(M) = 0. Similarly, M is said to be preinjec-
tive provided there exists some n > 0 such that 77(M) = 0. Finally, M is said
to be regular provided no indecomposable direct summand of M is preprojective
or preinjective. In case k() is representation finite, all the modules are both pre-
projective and preinjective, otherwise the only module which is both preprojective
and preinjective is the zero module. Any module M is isomorphic to a module of
the form P @ R ® I, where P is preprojective, R is regular and I is preinjective,
and in case k() is representation infinite, such a decomposition is unique up to
isomorphism. ‘

O(M e N

PROPOSITION 2. Let P be preprojective, R regular and I preinjective. If kQ is
representation finite, we assume in addition that I = 0. Then

’-Hom(T—P, P) 0 0
OFP®ReI); = |Hom(r~P,R) Hom(r~R,R) 0
[_HOIII(T_P, Iy Hom(r~R,I) Hom(r~I,I)
and
Hom(r~ P, P) 0 0
N(P® R®I)= |Hom(r~ P, R) N(R) 0

Hom(r~P,I) Hom(r~R,I) Hom(r~I,I)

ProoF. The first assertion follows directly from the well-known structure of
the module category of a finite dimensional hereditary algebra. The triangular form
of these matrices implies that the nilpotency of elements has to be checked only
for P, R and I separately. Now assume that 7="] = 0 for some n > 0. Then,
for any f € Hom(r71,I), the n-fold power f*" in the orbit ring O(I) is zero.
Similarly, let us assume that 7P = 0 for some n > 0. Since 77" is left adjoint to
7", it follows that Hom(r~"P, P) ~ Hom(P,7"P) = 0. Thus for any element in
f € Hom(7~ P, P), we also have f** =0 in O(P). O

This shows that it remains to consider the case of a regular module R. In
general, the problem of determining N (R) inside O(R); seems to be difficult. The
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case a tame quiver will be treated in [R4]. For a representation finite quiver there
is the following consequence:

COROLLARY. Let Q be a representation finite quiver. Then N (M) = O(M);
for all kKQ-modules M .

6. Final remark

As we have mentioned in the introduction, the early investigations of Gelfand
and Ponomarev, and of Dlab and myself, were aiming at algebras A which contain
a quiver algebra k() as a subalgebra and such that A when considered as a left
k@-module, decomposes as a direct sum of the indecomposable preprojective kQ-
modules, each occurring with multiplicity one. The problem whether there are
several possible choices was not discussed explicitly. The construction presented
in [DR] starts with what is called a ‘modulated graph’, but any non-trivial quiver
@ gives rise to a wealth of modulated graphs (the bilinear forms needed may be
chosen quite arbitrarily). A suitable choice will always produce the preprojective
algebra Py (Q) as considered in the present paper, but other choices may yield
algebras which are not isomorphic to Py (Q). We are going to exhibit a corresponding
example.

The problem considered here may be phrased differently, as follows: in the
definition of Py (Q), we have used the ordinary commutators [a*, a]. Instead of
working with commutators, one may also deal with the general concept of the g(a)-
commutator [a”, aya) = a*a — g(a) - ac*, where g(a) is an element of k. Thus,
given an arbitary function ¢: Q1 — k one may consider

Piq(Q) = kQ/(ps) where po= > [a,0]g(a)-

a€Qh
Here, we want to look at the special case where g is the constant function with value
—1, thus we deal with the (—1)-commutators o*a + aa*, and we write ¢ = —1 in
this case.

The same calculations as above show that the category of all Py _;(Q)-modules
is equivalent to the category C(1, @) and therefore to the category C(®7, 1), where,
as before, C = Modk(Q). As a consequence, Pj _1(@) is isomorphic to the tensor
algebra of the kQ-bimodule &~ (5,0 kQ) (where the right kQ-module structure comes
from the canonical action of kQ on the right of yok@). The algebra Py _;(Q) is
one of those which have k(J embedded as a subalgebra and which decompose as left
kG}-module into a direct sum of all the indecomposable preprojective kQ-modules.
It is easy to see that for Q a tree, the algebras Pr(Q) = Pi,1(Q) and Pk, -1(Q) will
be isomorphic. However; in general this is no longer true, as we are going to show.

The example to be considered is the case of the affine quiver @ of type glg.

Q
o] e}
Y
As Gabriel [G] has pointed out, this is the typical (and smallest) example of a quiver
where the endofunctors @~ and 7~ are not equivalent, provided the characteristic
of k is different from 2: then there exists a 3-dimensional kQ-module S such that
the images @7 (S) and 77 (5) are not isomorphic. We will use such a module S in

order to prove that the algebras P = P (Q) and P’ = Py _1(Q) are not isomorphic.
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For A € k, let Sy be the following representation of kQ

On the one hand, a direct (and easy) calculation shows that ®7(S,) = S_. On the
other hand, Sy is clearly simple regular. Since its dimension vector is h = (1 1 1),
we conclude that S is homogeneous. As a consequence, 7~ (S5)) is isomorphic to
S. This shows that for A # 0 (and characteristic different from 2), the kQ-modules
®~(Sx) and 77(S,) are not isomorphic. We fix some A # 0 and let § = S,.

Recall that the P’-modules can be considered as pairs (C,¢), where C is a
kQ-module and ¢: @~ (M) — M is a k@Q-module homomorphism. We consider
S = (8,0) as a P'-module and claim that Exth (S, S) = k. In order to see this,
consider an exact sequence

0= (5,0) — (C, ) — (S,0) — 0.

Since 0 — § — € — § — 0 is an exact sequence of k(Q)-modules, we see that
C is either isomorphic to S[2] or to S & S. But then ¢: ®(C) — C has to be
the zero map. Namely, it follows from @~ (S5,) = S, that ®7(S,\[2]) = S_.[2],
and therefore we have both Hom(®(5),S) = 0 and Hom(®~(S[2]), S[2]) = 0.
Consequently, we can identify Ext%;,(S, S) with Ext,lcQ(S, S) = k. Note that the
module S is indecomposable, has length 3 and dimension 3.

On the other hand, we are going to show that for every indecomposable P-
module M of dimension 3 and length 3, the vector space Ext%;(]\/f , M) is at least 2-
dimensional. First, we have to analyse the possibilities for M. Its dimension vector
has to be h, since otherwise we would deal with a module for the preprojective
algebra of a quiver of type As, however such an algebra has no indecomposable
modules of dimension 3. Also, for any arrow « of @, at .most one of the elements
@, a* acts non-trivially on M, since otherwise the length of M is at most 2. For
the same reason, it is impossible that all the elements «, 3,v" act non-trivially; and
similarly, not all the elements o*, 8*,v act non-trivially. It follows that there is a
subquiver @’ of @ which again is of the form A;, such'that all the arrows outside
of Q' operate trivially on M. This shows that without loss of generality, we may
assume that M is a kQ-module with dimension vector (11 1).

In particular, we see that M as a kQ-module is an indecomposable regular
module with dimension vector h. We want to show that Exth (M, M) has dimension
at least 2. First of all, since Ext}cQ(A/I, M) # 0, there is a non-split exact sequence

0-M-—-M —-M-—0

of k@-modules. Second, there is a non-zero homomorphism ¢: 7~ (M) — M, thus
we may construct the following object in the category C(77, 1)

" _ 0 ¢
M ~<M€BM{0 OD

and there is an obvious exact sequence
0—M—-M —-M-—0.

Since M" is indecomposable, this sequence also does not split. Clearly, the objects
M' and M" are not isomorphic. This completes the proof.




480

[BGL)
(BGP]

[CB]
[DR]

CLAUS MICHAEL RINGEL

References

D. Baer, W. Geigle, H. Lenzing: The preprojective algebra of a tame hereditary Artin
algebra. Comm. Algebra 15 (1987), 425-457.

I N. Bernstein, I. M. Gelfand, V. A. Ponomarev: Coxeter functors and Gabriel’s theorem.
Russian Math. Surveys 28 (1973), 17-32.

W. Crawley-Boevey. Lecture given at Bielefeld. September 1997.

V. Dlab, C. M. Ringel: The preprojective algebra of a modulated graph. In: Springer LNM
832 (1980), 216-231.

P. Gabriel: Auslander-Reiten sequences and representation-finite algebras. In: Represen-
tation Theory I. Springer LNM 831 (1980), 1-71.

P. B. Kronheimer: The construction of ALE spaces as hyper-Kahler quotients. Jour. Diff.
Geom. 29 (1989), 665-683.

G. Lusztig: Quivers, perverse sheaves, and quantized enveloping algebras. J. Amer. Math.
Soc. 4 (1991), 365-421.

G. Lusztig: Affine quivers and canonical bases. Publ. Math. IHES 76 (1992), 111-163.

G. Lusztig: Introduction to Quantumn Groups. Birkhiuser Progress Math. (1993).

A. V. Rojter: Gelfand-Ponomarev algebra of a quiver. Abstract, 2nd ICRA (Ottawa 1979).
C. M. Ringel: Tame algebras and integral quadratic forms. Springer LNM 1099 (1984).
C. M. Ringel: The composition algebra of a cyclic quiver. Towards an explicit description
of the quantum group of type A,,. Proceedings London Math. Soc. (3) 66 (1993), 507-537.
C. M. Ringel: From representations of quivers via Hall and Loewy algebras to quantum
groups. Proceedings Novosibirsk Conference 1989, Contemporary Mathematics 131 (Part
2) (1992), 381-401.

C. M. Ringel: The preprojective algebra of a tame quiver. In preparation.

FAKULTAT FUR MATHEMATIK, UNIVERSITAT BIELEFELD, POBox 100131, D-33501 BIsLe-

E-mail address: ringel@umathematik.uni-bielefeld.de

Canadian Ma
Conference P1
Volume 24, 1!

Let A b
ALGEBR2A
A is calle
P, the s
A modul
every i.

We denc
A-modul

1991
This



