High-Performance F
Computing using GPUs

Is that a Weave? &

Mike Anderson \

- Chief Scientist
Embedded Linux The PTR Group, Inc.

[:UﬂfE[EﬂCE” http://www.theptrgroup.com

What We Will Talk About

#Some processor basics

$#Parallelism in computing

#The GPU as a compute engine
#CUDA vs. OpenCL

#GPU computing in embedded systems
#Summary

#Demos

Copyright 2011, The PTR Group, Inc. \K PTR
e,

Current Processing Trends

#Since 2004, multi-core processing has
become relatively common place
» Seen as the best way to get more

performance with reasonable power and
thermal limits

» Dual-core, ARM Cortex A9 platforms will
achieve some critical mass this year

3¢ Heterogeneous processors are also more
common
» IBM Cell, TI OMAP and others mix a “main”

processor with attached, special-purpose
processors

SF-ELC11-GPU-3 Copyright 2011, The PTR Group, Inc. \K DT
—t

Video and Gaming Trends

#Users want 3D gaming, streaming media
and voice/image recognition

» The smartphone is the gaming platform of
choice

» This forces devices to be more sophisticated
¥Even TV sets are now Internet aware

» Gaming platforms, Facebook, streaming
media ala NetFlix

#Many applications require high-end
graphics capabilities
» E.g., Android’s support of OpenGL ES

SF-ELC11-GPU-4 Copyright 2011, The PTR Group, Inc. \K DT
—t

Scalability of Algorithms

#If an algorithm is perfectly scalable then
adding N processors increases the speed
N times

#This is represented in Amdahl’s Law:
S, =T,/T,

where S is the speed up, T is the time to execute
an algorithm and p is the number of processors

#Unfortunately, most code is rarely
perfectly scalable due to IPCs,
synchronization primitives and bus
contention

SF-ELC11-GPU-5 Copyright 2011, The PTR Group, Inc. \K DT
—t

Increasing Performance via Parallelism

#Multi-core processors can Core 0
increase performance
assuming that your
application fits a thread-
parallel model

» Multiple, concurrent threads of
control

» This is also known as multiple-
instruction/multiple-data
(MIMD) parallelism

DIDDEDD‘99

2
I
2 o |
2 o o |
H O
[
2

Core 1

DIDDEDD‘99

2
I
2 o |
2 o o |
H O
[
2

Source: ARS Technica

SF-ELC11-GPU-6 Copyright 2011, The PTR Group, Inc. \K DT
—t

Data Parallelism

#However, there is another Core 0
type of parallelism known as
data-parallelism

» Single-Instruction/Multiple-
Data (SIMD)

» E.g., create the dot-product or GPU
sum of 2 or more vectors Q&
- Also known as vector processing
» Very common in graphics
applications

DIDDEDD‘Q?

2
I
2 o |
2 o o |
H O
[
2

O ArH

I
I |
LI LI e
BRRRRRERN

Source: ARS Technica

SF-ELC11-GPU-7 Copyright 2011, The PTR Group, Inc. \K DT
—t

Data Parallel Applications

#There are many applications that exhibit
data parallelism
» Software defined radio, medical imaging,
computational fluid dynamics, machine
vision, video CODECs, edge detection, video
noise reduction and many more
#Very similar application space to
traditional DSP work

» Very computationally intensive

SF-ELC11-GPU-8 Copyright 2011, The PTR Group, Inc. \K DT
—t

GPUs as General-Purpose Computers

#GPUs are actually “many-core” processors
» Some have as many

as 448 cores = I

#GPUs are typically [EON ¢
optimized for data EEEEES FEEE———
parallel work

» More transistors working on a given problem
#Early efforts for GPGPU computing tried to
use APIs like OpenGL for computing

» Had to trick the GPU into thinking the data
was actually graphics

SF-ELC11-GPU-9 Copyright 2011, The PTR Group, Inc.

N ~mT=

Comparing CPU and GPU

#GPUs have many more cores
» CPUs: 2-64 GPUs: 16-448+
#GPUs have more memory bandwidth

» GPUs use DDR5 RAM with 10x bandwidth of CPU
front-side bus

#GPU floating point is much faster than CPU
FP

» 1 TFLOPs GPU vs. 50 GFLOPs for CPU

- Nvidia Tesla 2070 vs. Intel Core i7 975 (single precision
IEEE 754)

#The personal super-computer is born
» The Cray-1 was only 80 MFLOPs!

SF-ELC11-GPU-10 Copyright 2011, The PTR Group, Inc.

N _~mT=

Different Flavors of Memory

GPUs have many different
implementations of memory
» Host memory

Private Private Private Private
Memory Memory Memory Memory

Work-Ttem Work-Ttem Work-Ttem Work-Ttem
- Can be “pinned” to facilitate DMA S
transfers Loca Memory | Coca Memory
> GI Obal mem Ol’y Workgroup Workgroup
- On the GPU and shared between Siche Coreran Wemeny

compute blocks Compute Device
» Local memory
- Shared within a block
» Constant memory

- Cache-locked, read-only memory i p
» Private memory
- Local scratchpad storage
3 The data flow is always from host —>
global -> local and back
» You’re responsible for handling the
data movement
SF-ELC11-GPU-11 Copyright 2011, The PTR Group, Inc. \K PTR
Device/Block/Thread Relations
$#I1t’s possible to have Device
more than one GPU .
(device) in a given B [l e
SyStem Block Block l Block
» The GPU may have many N | N | @
sequencing engines

#The sequencing engines | [seea.1
allow for multiple
kernels (blocks) to run in
parallel |

» Each block can have

multiple threads running
in parallel

SF-ELC11-GPU-12 Copyright 2011, The PTR Group, Inc.

N ~mT=

Asynchronous Computation

#O0ne of the more difficult concepts with
GPU computing is that the blocks can
execute in any order

» Much like processing a mosaic

- The order is immaterial as long as everything is
processed

#The APIs provide facilities to synchronize
threads, blocks and the host to ensure
that everything is complete before moving
to the next stage

» There are queues of blocks and events to
signal between them

SF-ELC11-GPU-13 Copyright 2011, The PTR Group, Inc. \K DT
—t

New APIs

#GPU manufacturers started to realize
there was another market for their parts

» They started developing language extensions
more focused on data movement and
manipulation

+#NVIDIA introduced the CUDA™
in November of 2006

» Compute Unified Device Architecture
» The CUDA™ C SDK is a C/C++ extension

#AMD followed suit with their GPUs

SF-ELC11-GPU-14 Copyright 2011, The PTR Group, Inc. \K DT
—t

CUDA™ and OpenCL

#NVIDIA’s CUDA™ is a proprietary extension
of C/C++

» The SDK includes a special compiler (nvcc) that
extracts out the “kernel” and CUDA™ intrinsics
and compiles them separately from host code

#Apple(!) wanted a more vendor neutral
implementation

» They created the open compute language
“OpenCL” and turned it over to a consortium (the
Khronos Group) to promote it

- NVIDIA, AMD, Apple, ARM, Qualcomm, Samsung and
many others are members

SF-ELC11-GPU-15 Copyright 2011, The PTR Group, Inc. \K PTR
—t e,

CUDA™ GPU Code

#GPU programming requires you to
restructure/rethink your code:

Standard C Code CUDA C Code

void __global__ void
saxpy_serial(int n, float a, saxpy_parallel(int n, float a, float *x, float *y)
float *x, float *y)
{ int i = blockldx.x*blockDim.x +
for (inti=0; i < n; ++i) threadldx.x;

ylil = a*xi] + yil; if (i<n) yfi]: 1+ yli]
} }

saxpy_serial(n, 2.0, x, y); int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, X, y);

Source: NVIDIA

#But, the performance increase can be as
much as 100x the CPU

SF-ELC11-GPU-16 Copyright 2011, The PTR Group, Inc. \K PTR
—t e,

Example OpenCL Vector Multiply
#O0penCL looks very much like CUDA™:

Traditional loops Data Parallel OpenCL
void kernel void
trad mul(int n, dp_mul (global const float *a,
const float *a, global const float *b,
const float *b, global float *c)

float *c) {
{ int id = get_global_id(O) 3

int i;
for (i=0; i<n; i++) cl[id] = alid] * b[id]:
c[i] = a[i] * b[i]; }

} // execute over “n” work-items

#Computation can be performed in mano;’
different configurations

»E.g., 1 1024x1024 block or 1,048,576
invocations of 1 block or anything in between

SF-ELC11-GPU-17 Copyright 2011, The PTR Group, Inc.

e: Khronos Grou

P

N ~mT=

OpenCL and OpenGL

#0penCL and OpenGL have direct
interoperability

» OpenCL objects can be created from OPenGL
textures, buffer objects and render-buftfers

#The OpenCL execution model is very similar
to CUDA™

» Execute a kernel at each point in a problem
domain

#Kernels (functions) can be split into blocks
comprised of threads

» 32 threads constitutes a “weave”

#Thread parallelism can be expressed as a
sequence of kernels

SF-ELC11-GPU-18 Copyright 2011, The PTR Group, Inc.

N _~mT=

Building Programs

CUDA™ and OpenCL are similar in their approaches
» The program source contains both host and GPU code

» The preprocessor separates the two code bases and compiles
them separately only to be linked back together at the end

4 The run time then loads the GPU code on demand and
coordinates with the host

Kernel Code

. GPU
kernel void Compile for)
horizontal reflect(read only image2d t src, coae

- ite i 'd t ds GPU
i x

Program

Compile for
CPU

CPU
code

write imagef(dst, (int2)(x, y), src val);

Source: Khronos Group

SF-ELC11-GPU-19 Copyright 2011, The PTR Group, Inc. \K DT
—t

Debugging on GPUs

#Debugging is currently performed using
good ol’ gdb

» NVIDIA’s version is known as CUDA-GDB

- This version also includes additional memory leak
and profiling tools

#Front-ends like Eclipse and DDD work
just fine

#Allows setting breakpoints in GPU or host
application

» Includes memory inspection as well as
thread/block debugging on GPU

SF-ELC11-GPU-20 Copyright 2011, The PTR Group, Inc. \K DT
—t

10

Embedded Processor GPUs

+# Because OpenCL is related to OpenGL,
conceivably any GPU that supports OpenGL could
run OpenCL
» Useful for dozens of applications requiring video or
image processing
NVIDIA Tegra 3 processors
are rumored to be CUDA™
enabled
» Used for H.264 decoding
and 1080p video support
- Quad-core ARM Cortex A9
+# The NVIDIA ION processors e e
are also CUDA™ enabled

VIA EH1 graphics solution for pico & nano-ITX
supports OpenCL

NVIDIA Tegra 2

SF-ELC11-GPU-21 Copyright 2011, The PTR Group, Inc.

N ~mT=

CUDA™ or OpenCL?

Given two standards which should you choose?
CUDA™ is proprietary to NVIDIA

» It’s a couple of years ahead of OpenCL in terms of
maturity

» Supported by many commercial vendors like MatLAB and
AutoCAD

+# OpenCL has just recently released V 1.1

» Many new enhancements to make it more comparable to
CUDA™

» However, OpenCL is still a little cumbersome
OpenCL does run on both NVIDIA and AMD

- Presumably, Intel will support OpenCL as well

+# So, assuming that support for open platforms is what
turns your crank, OpenCL should be your focus

» It’s the same reason you’re likely using Linux ©

SF-ELC11-GPU-22 Copyright 2011, The PTR Group, Inc.

N ~mT=

11

Summary

Continuing demands for sophisticated applications

on mobile or consumer computing platforms will
force more parallelism

» Thread parallelism is fairly obvious
» Data parallelism requires more thought

#Mobile devices with GPUs are becoming
common

» There are extra processor cycles in there for the
adventurous

#Many Linux applications are already GPU-
aware

» Xine and many others
#The SDKs are free
» Download and take a look

SF-ELC11-GPU-23 Copyright 2011, The PTR Group, Inc.

N ~mT=

Demo time...

#We’ll now look at a couple of examples...

SF-ELC11-GPU-24 Copyright 2011, The PTR Group, Inc.

N _~mT=

12

