
DEVELOPER ROCK STARS:

Shannon Cepeda Wendy Doerner

THE PARALLEL
UNIVERSEIssue 10

June 2012

in Six Steps

Help Future-Proof
Performance of Your Application with

by Shannon Cepeda and Wendy Doerner

Look for Intel® Cilk™ Plus in Intel® Parallel Studio XE

Intel® Cilk™ Plus

Your performance booster.
Intel® Cilk™ Plus is now available in open source and for GCC 4.7.
Three Intel Cilk Plus keywords provide a simple, yet surprisingly powerful model for parallel programming.

 › Runtime and template libraries offer a well-tuned environment for building parallel applications

 › Ideal for C++ and Fortran developers in Linux*, Windows*, open source, or GCC 4.7

©2012, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/intel-parallel-studio-xe/

Sign up for future issues | Share with a friend

Contents
Letter from the Editor
The Performance Opportunity:
How to Achieve it—from Clusters to Devices, bY JAmES REInDERS 4

Help Future-Proof Performance of Your Application with
Vectorization in Six Steps, bY WEnDY DOERnER AnD SHAnnOn CEPEDA 6
Vectorization is a key form of hardware support for data parallelism, allowing you to process
data in parallel within a single CPU core. It can provide a significant performance boost, and
also be combined with threading and/or cluster parallelism.

Pockets of Parallel Computation, Fitting in Your Pocket,
bY RObERT muELLER, nOAH CLEmOnS, AnD PAuL FISCHER 12
employing performance library functions in applications running on small form factor
devices can be a great way to streamline and unify the computational execution flow for
data-intensive tasks. this article examines the Intel® Integrated Performance Primitives
landscape for the Intel® Atom™ processor.

Tools that Boost .NET Apps’ Reliability and Performance
bY LEVEnT AKYIL AnD ASAF YAFFE 20
Read about the capabilities of the latest software tools for developers of .net code,
native code, and “mixed” (.net and native) applications during the development cycle.

Sign up for future issues | Share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

© 2012, Intel Corporation. All rights reserved. Intel, the Intel logo, Atom,
Cilk, Intel Core, VTune, and Xeon are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com
https://swdevtoolsmag.makebettercode.com/

THE PERFoRmANCE oPPoRTUNITY:

How to
Achieve it—
from Clusters
to Devices

THE PARALLEL UNIVERSE

4 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

LETTER FROm
THE EDIToR

James Reinders Chief Software Evangelist at Intel Corporation.
His articles and books on parallelism include Intel Threading Building
Blocks: Outfitting C++ for Multicore Processor Parallelism, which has
been translated into Japanese, Chinese, and Korean. Reinders is also
widely interviewed on the subject of parallelism.

This is truly a developer-to-developer issue as our
software engineers take a close look at the techniques and tips
that can increase application performance. These do not have to
be complex to achieve good outcomes—many of the basic paral-
lelism processes can be performed efficiently and successfully
with the help of Intel® tools.

Help Future-Proof Performance of Your Application with
Vectorization in Six Steps looks at exploiting a form of parallelism
known as vector parallelism, by performing certain operations on
multiple pieces of data at once. Scale-forward methods allow you
to vectorize your code without changes for future architectures
and CPus, as well.

Pockets of Parallel Computation, Fitting in Your Pocket:
The Intel® Integrated Performance Primitives Landscape for
the Intel® Atom™ Processor applies parallelism to small form-
factor devices with some very interesting ramifications for
mobile application developers.

And, Tools that Boost .NET Apps Reliability and Performance
assesses the value of two tools in Intel Parallel Studio XE, the
Intel® Inspector XE correctness tool, and the Intel® VTune™
Amplifier XE performance analysis tool, for developers of .NET
code, native code, and “mixed” (.nET and native) applications
during the development cycle.

I hope you will enjoy this issue, apply some of the code, assess
the impact on your own development process and software,
broaden your personal performance toolkit—and, most of all,
achieve a performance boost.

James Reinders

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Help Future-Proof
Performance of Your Application with

in Six Steps by Wendy Doerner
and Shannon Cepeda,
Software Technical
Consulting Engineers, Intel

THE PARALLEL UNIVERSE

6 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Help Future-Proof
Performance of Your Application with

in Six Steps Learn how to get a significant performance boost from processing data
in parallel inside a single CPu core. Then, combine with threading and/or
cluster parallelism for even more performance.

Sign up for future issues | Share with a friend

DEVELOPER ROCK STARS:

Shannon Cepeda Wendy Doerner

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Scalar Mode SIMD Processing

a[i] a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]a

b

a+b

b[i] b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

a[i]+b[i] c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

+ +

The Parallel Universe has featured many articles
about parallelism aimed at exploiting multiple cores through threading
and cluster programming. this article takes a look at exploiting an
equally important form of parallelism known as vector parallelism.
Vectorization is parallelism within a single CPU core and is a key form
of hardware support for data parallelism.

With vectorization, certain operations can be performed on multiple
pieces of data at once. It is accomplished by using special instructions
called (sIMD) single Instruction, Multiple Data operations. sIMD
instructions, and the hardware that goes along with them, has been
present in Intel® processors for over a decade. some examples of our
sIMD instructions sets are Intel® streaming sIMD extensions (Intel®
SSE), first introduced in 1999 and expanded several times, and Intel®
Advanced Vector extensions (Intel® AVX), introduced last year.

How Does Vectorization Work?
In the typical scalar (non-vectorized) case, each variable you use will
each be stored in its own CPU register. If you perform an operation on
two variables, such as addition, the two register quantities are added
and the result stored back into a register. the vectorized version of
this example would first fill a register with multiple variables to be added,
which is called "packing“ the register. For example, on processors
supporting Intel AVX, up to eight single, precision, floating-point
data elements can be packed into one register. then, using one sIMD
instruction, these data elements can be combined with another
packed register full of elements, generating multiple results at once.
Being able to do these operations in parallel rather than separately
can result in significant performance gains for suitable code.

Figure 1: A SImD addition applied to array elements

“Vectorization allows you to process data
in parallel within a single CPu core. Alone, it
can provide a significant performance boost
and it can also be combined with threading
and/or cluster parallelism… using one of our
recommended methods to vectorize your
code gives you two advantages: increased
performance now, and forward scaling
for the future.”

THE PARALLEL UNIVERSE

8 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

SEE THE REST oF RoBERT’S BLoG:

Visit Go-Parallel.com
browse other blogs exploring a range of related

subjects at Go Parallel: Translating multicore
Power into Application Performance.

Serial Equivalence of
Cilk Plus programs
RoBERT GEVA, Intel

there is a trend in the C++ community to grow capabilities

thru more libraries and as much as possible, avoid adding

language keywords. Consistent with these trends are the Intel®

threading Building Blocks and the Microsoft Parallel Patterns

Library.* the question arises, then, why implement Intel® Cilk™

Plus as language extensions rather than a library?

one of the answers is that the language is implemented by

compilers, and compilers can provide certain guarantees. one

such guarantee is serial equivalence. every Cilk Plus program

that uses the three taking keywords for parallelism has a well-

defined serial elision. The serial elision is defined by replacing

each cilk_spawn and each cilk_sync with white spaces, and

each cilk_for with the for keyword. obviously, the serial elision

of a Cilk Plus program is a valid C/C++ program.

A program has a determinacy race if two logically parallel

strands both access the same memory location and at least

one of them modifies the memory location. If a Cilk Plus

parallel program has no determinacy race, then it will produce

the same results as its serial elision. What are the compiler’s

contributions to the serial equivalence guarantees? Consider

the following code illustration …

As Figure 1 shows, vectorization is typically applied to array or
vector data elements that are processed in loops. Besides addition,
there are sIMD instructions for many mathematical functions, logical
operations, and even string operations. the sIMD instruction sets are
designed for applications that process large data sets. Applications in
the scientific, engineering, financial, media, and graphical domain areas
may be candidates for vectorization, as well as any others fitting the
description above.

How Do I Vectorize my Code?
Developers can access the sIMD instructions in their applications in a
variety of ways. traditionally, vectorization has been accomplished by
manipulating sIMD instructions and registers directly, using assembly
code or intrinsics provided by the compiler. this method required
developers to become experts in sIMD architecture and to hand-tune
the code for various CPUs. In addition to requiring significant effort to
develop and maintain the code, vectorizing using assembly or intrinsics
also has the disadvantage that code is not portable across compilers.
Because code must be written for a targeted set of sIMD hardware,
the vectorization achieved with this method would not scale forward,
meaning it must be re-implemented for new CPUs.

Fortunately, today you can choose from several other vectorization
methods that require less effort and do scale forward. the techniques
below rely on a vectorizing compiler, and we recommend our Intel®
Compiler, available for C++ or Fortran. the Intel Compiler includes an
advanced vectorizer, as well as several options, reports, and extensions
to support vectorization. our “six steps to vectorization“ process
utilizes several of these features.

methods that Scale Forward
When you vectorize your code with one of the methods below, it will
be vectorizable without changes for future architectures and CPUs as
well. When compiling on those future architectures, the Intel Compiler
(or a compiler fully supporting the method) will make the appropriate
choice about how to vectorize.

 > Using the Intel Compiler auto-vectorizer: When enabled, the compiler
auto-vectorizer will look for opportunities to vectorize loops with no
changes required to your source code. this method may be all that is
needed for vectorization-friendly code. However, the compiler will not
vectorize loops if it can’t prove that it will be safe to perform the
operations in parallel. For this reason, you may see even more vectorization
by following up this method with one of the techniques below.

 > Using a high-level construct provided by Intel® Cilk™ Plus: Cilk Plus is a
set of language extensions for C and C++ (and in one case, Fortran)
that support parallelism and vectorization. Currently Cilk Plus is fully
supported by the Intel Compiler, and partially implemented in GCC. It is an
open standard (for more details, see cilk.com). Cilk Plus provides a variety
of constructs that can be applied to your code to give the compiler
information that it needs to vectorize. Many of these constructs are
simple to add to your code—involving only a change in notation or the
addition of a pragma.

 > Using a high-level Fortran construct: Fortran includes several
vectorization-friendly features, such as array notations and the Do
ConCURRent loop. the Cilk Plus mandatory vectorization directive
(!DIR$ sIMD) is also available for Fortran. Like Cilk Plus, these constructs
are used to give information to the compiler so that it knows when it
can vectorize.

BLOG
highlights

THE PARALLEL UNIVERSE

Sign up for future issues | Share with a friend

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/blogs/2012/04/07/serial-equivalence-of-cilk-plus-programs/
http://software.intel.com/en-us/blogs/2012/04/07/serial-equivalence-of-cilk-plus-programs/
http://www.go-parallel.com
http://software.intel.com/en-us/blogs/2012/04/07/serial-equivalence-of-cilk-plus-programs/
http://software.intel.com/en-us/blogs/2012/04/07/serial-equivalence-of-cilk-plus-programs/
http://software.intel.com/en-us/blogs/author/robert-geva/
http://www.cilk.com

The Six-Step Process for Vectorizing
Your Application
the methods above, and the Intel Compiler are part of a six-step
process we have designed for vectorizing an application. You can try
this method on your entire application, or selectively on parts of it.
to help you follow the process we have documented the steps
online in our Vectorization Toolkit. the toolkit also includes links to
additional resources for each step. Check out the toolkit online at:
http://software.intel.com/en-us/articles/vectorization-toolkit/.

Step 1.
measure Baseline Release Build Performance

You need to have a baseline for performance so you know if changes
to introduce vectorization are effective. In addition, you should have
a baseline to set your ultimate performance goals, so that you know
when you have achieved them.

A release build should be used instead of a debug build. A release
build will contain all the optimizations in your final application, and may
alter the hotspots or even the code that is executed. For instance, a
release build may optimize away a loop in a hotspot that otherwise
would be a candidate for vectorization.

A release build is the default in the Intel Compiler. You have
to specifically turn off optimizations by doing a DEBUG build on
Windows* (or using the -Zi switch) or using the -od switch on Linux*
or Mac os* X. If using the Intel Compiler, ensure you are using
optimization levels 2 or 3 (-o2 or –o3) to enable the auto-vectorizer.

Step 2.
Determine Hotspots Using Intel® VTune™ Amplifier XE

You can use Intel® VTune™ Amplifier XE, our performance profiler,
to find the most time-consuming functions in your application. The
“Hotspots” analysis type is recommended; although “Lightweight
Hotspots” would work as well (it will profile the whole system, as
opposed to just your application).

Identifying which areas of your code are taking the most time
will allow you to focus your optimization efforts in the areas where
performance improvements will have the most effect. Generally you
want to focus only on the top few hotspots, or functions taking at
least 10% of your application’s total time. Make note of the hotspots
you want to focus on for the next step.

Step 3.
Determine Loop Candidates Using
Intel Compiler Vec-Report

the vectorization report (or vec-report) of the Intel Compiler can tell
you whether or not each loop in your code was vectorized. ensure that
you are using Compiler optimization level 2 or 3 (-o2 or –o3) to enable
the auto-vectorizer. Run the vec-report and look at the output for the
hotspots you determined in Step 2. If there are loops in your hotspots
that did not vectorize, check whether they have math, data processing,
or string calculations on data in parallel (for instance in an array). If
they do, they might benefit from vectorization. Move to Step 4 if any
candidates are found.

to run the vec-report, use the “-vec-report2” or “/Qvec-report2” option.

.\main.cpp(30): warning : loop was vectorized.

.\scalar_dep.cpp(80): warning : loop was vectorized.

.\main.cpp(47): warning : loop was not vectorized: not inner loop.

.): warning : loop was not vectorized: nonstandard loop is not a vectorization candidate.

.): warning : loop was not vectorized: nonstandard loop is not a vectorization candidate.

.): warning : loop was not vectorized: existence of vector dependence.

.): warning : loop was not vectorized: not inner loop.

.): warning : loop was not vectorized: existence of vector dependence.

.): warning : loop was not vectorized: not inner loop.

.): warning : loop was not vectorized: existence of vector dependence.

.): warning : loop was not vectorized: not inner loop.

 Figure 3: Output from the Intel® Compiler vec-report

Figure 2: Intel® VTune™ Amplifier XE Hotspots view

THE PARALLEL UNIVERSE

10 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.10

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friendSign up for future issues | Share with a friend

note that the Intel Compiler can be run on just a portion of the code
and will be compatible with the native compilers (gcc on Linux and
Mac os X and Microsoft Visual studio* on Windows).

Step 4.
Get Advice Using the Intel Compiler GAP Report and
Toolkit Resources

Run the Intel Compiler Guided Auto-parallelization (or GAP) report
to see suggestions from the compiler on how to vectorize your loop
candidates from Step 3. examine the advice and refer to additional
toolkit resources as needed.

Run the GAP report using the “guide“ or “/Qguide“ options for the
Intel Compiler.

note: You can run the Intel Compiler on just parts of your application
if needed.

Step 5.
Implement GAP Advice and other Suggestions
(Such as Using Elemental Functions and/or Array Notations)

now that you know the GAP report suggestions for your loop, it’s time
to implement them if possible.

the report may suggest making a code change. Make sure the
change would be “safe“ to do. In other words, make sure the change
does not affect the semantics or safety of your loop. one way to
ensure that the loop has no dependencies that may be affected is to
see if executing the loop in backwards order would change the results.
Another is to think about the calculations in your loop being in a
scrambled order. If the results would be changed, your loop has
dependencies and vectorization would not be “safe.“ You may still be
able to vectorize by eliminating dependencies in this case.

Modify your source to give additional information to the Compiler or
optimize your loop for better vectorization.

 At this point you may introduce some of the high-level constructs
provided by Cilk Plus or Fortran. You can find links to full details of the
available constructs in the online Vectorization toolkit.

Step 6:
Repeat!

Iterate through the process as needed until performance is achieved
or until there are no good candidates left in your hotspots.

scalar_dep.cpp(80): warning #30515: (vect)
assign a value to the variable(s) “b” at
the beginning of the body of the loop in
line 80. this will allow the loop to be
vectorized. [veriFY] Make sure that, in the
original program, the variable(s) “b”
read in any iteration of the loop has been
defined earlier in the same iteration.

Figure 5: GAP advice for the loop in Figure 4

for (i=0; i<n; i++) {

 if (a[i] > 0) { b=a[i]; a[i] = 1 / a[i]; }
 if (a[i] > 1) { a[i] += b;}
}

Figure 4: Example of a nonvectorizing loop

for (i=0; i<n; i++) {
 b = a[i];
 if (a[i] > 0) {a[i] = 1 / a[i];}
 if (a[i] > 1) {a[i] += b;}
}

Figure 6: The loop from Figure 4, modified to vectorize

Conclusion
Vectorization allows you to process data in parallel within a single
CPU core. Alone, it can provide a significant performance boost and it
can also be combined with threading and/or cluster parallelism. Using
vectorization is important for performance on current Intel CPUs, such
as those in the Intel® Xeon® and Intel® Core™ processor families. In the
future, it will be an even more critical component of performance for
those processors, as well as for utilizing the Intel® Many Integrated
Core architecture.

Using one of our recommended methods to vectorize your code
gives you two advantages: increased performance now, and forward
scaling for the future. Please visit our Vectorization Toolkit to see
the latest advice, processes, and resources to help with your vector-
ization effort. See the webinar: Future-Proof Your Application's
Performance › o

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/articles/vectorization-toolkit/
http://software.intel.com/en-us/articles/future-proof-your-applications-performance-with-vectorization/
http://software.intel.com/en-us/articles/future-proof-your-applications-performance-with-vectorization/

THE PARALLEL UNIVERSE

12

Sign up for future issues | Share with a friend

by Robert mueller, noah Clemons, and Paul Fischer
Software Technical Consulting Engineers, Intel

The Intel® Integrated Performance Primitives Landscape
for the Intel® Atom™ Processor

Pockets of Parallel Computation,
Fitting in Your Pocket

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Figure 1: Intel® Integrated Performance Primitives function domains for the embedded space

Aerospace and
Defense

Network
Equipment Consumer medical Industrial Automotive

Data Integrity • • •
Realistic Rendering • •
String Processing • •
matrix/Vector math • • • • • •
Speech Coding • • • •
Audio Coding • • •
Video Compression • • • •
Image Compression • • •
Computer Vision • •
Image Color Conversion • •
Image Processing • • • •
Signal Processing • • • • • •
Cryotography • • •
Data Compression • • •

Employing performance library functions in applications
running on small form-factor devices—otherwise known as intelligent
systems—based on the Intel® Atom™ processor can be a great way
to streamline and unify the computational execution flow for data-
intensive tasks. this minimizes the risk of data stream timing issues
and so called heisenbugs. Heisenbugs are hard to reproduce, and often
seemingly random, runtime issues caused by the finely orchestrated
timing of different system on Chip (soC) components and digital signal
processor (DsP) devices getting out of tune.

Performance libraries such as the Intel® Integrated Performance
Primitives (Intel® IPP) contain highly optimized algorithms and code
for common functions including signal processing, image processing,
video and audio encoding and decoding, cryptography, data compression,
speech coding, and computer vision. Advanced instruction sets help the
developer take advantage of new processor features that are specifi-
cally tailored for certain applications. one calls the Intel IPP, as if it is
a black box pocket of computation for a low-power or embedded device:
‘in’ flows the data and ‘out’ receives the result. In this fashion, using
Intel IPP can take the place of many processing units created for specific
computational tasks. Intel IPP excels in a wide variety of domains (Figure 1)
where the Intel Atom processor for intelligent systems is utilized:

Without the benefit of highly optimized performance libraries,
developers would need to carefully hand-optimize computationally
intensive functions to obtain adequate performance. this optimization
process is complicated, time consuming, and must be updated with each
new processor generation. Intelligent systems often have a long lifetime in
the field and there is a high maintenance effort to hand-optimize functions.

As seen in Figure 1, signal processing and advanced vector math
are the two function domains that are most in demand across the
different types of intelligent systems. Frequently, a digital signal
processor (DsP) is employed to assist the general purpose processor
with these types of computational tasks. A DsP may come with
its own well-defined application interface and library function set.
However, it is usually poorly suited for general purpose tasks. DsPs
are designed to quickly execute basic mathematical operations (add,
subtract, multiply, and divide). the DsP repertoire includes a set of
very fast multiply and accumulate (MAC) instructions to address matrix
math evaluations that appear frequently in convolution, dot product,
and other multi-operand math operations. the MAC instructions that
comprise much of the code in a DsP application are the equivalent
of Intel® supplemental single Instruction Multiple Data streaming
extension 3 (Intel® ssse3) instructions. Like the MAC instructions on
a DsP, these Intel ssse3 instructions perform mathematical operations
very efficiently on vectors and arrays of data. Unlike a DSP, the
single Instruction Multiple Data (sIMD) instructions on an Intel Atom
Processor are easier to integrate into applications using complex vector
and array mathematical algorithms, since all computations execute on
the same processor and are part of a unified logical execution stream.

For example, an algorithm that changes image brightness by adding
(or subtracting) a constant value to each pixel of that image must
read the RGB values from memory, add (or subtract) the offset, and
write the new pixel values back to memory. When using a DsP
coprocessor, that image data must be packaged for the DsP (placed in
a memory area that is accessible by the DsP), signaled to execute the
transformation algorithm, and finally returned to the general purpose

Discover how performance libraries, such as the Intel® Integrated Performance Primitives (Intel® IPP),
impact applications for small form-factor devices, streamlining and unifying the computational execution
flow for data-intensive tasks.

THE PARALLEL UNIVERSE

14 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

IPP

SSSE3

SIMD

CPU

ippsCopy for Intel® Core™ i7 Processors

ippsCopy for Intel® Core™ 2 Processors

ippsCopy for Intel® Atom™ 2 Processors

ippsCopy for General IA-32 Processors

ippsCopy for Intel® Pentium® 4 Processors

Application Code:
void main (void)
{ ...
 ippsCopy();
 ...
}

Figure 2: Library dispatch for processor targets

Figure 3: Intel® Integrated Performance Primitives is tuned to take
advantage of the Intel® Atom™ Processor and the Intel® Supplemental
Single Instruction multiple Data Streaming Extension 3 instruction set

Sign up for future issues | Share with a friend

processor. Using a general purpose processor with sIMD instructions
simplifies this process of packaging, signaling, and returning the data
set. the Intel IPP library primitives are optimized to match each sIMD
instruction set architecture so that multiple versions of each primitive
exist in the library.

Intel IPP can be reused over a wide range of Intel® architecture-
based processors and, due to automatic dispatching, the developer’s
code base will always pick the execution flow optimized for the
architecture in question without having to change the underlying
function call (Figure 2). this is especially helpful if an embedded
system employs both an Intel® Core™ processor for data analysis and
aggregation and a series of Intel® Atom™ processor based soCs for
data preprocessing and collection. In this scenario, the same code base
may be used in part on both the Intel Atom processor SoCs in the field
and the Intel Core processor in the central data aggregation point.

With specialized soC components for data streaming and I/o
handling, combined with a limited user interface, one may think that
there are not a lot of opportunities to take advantage of optimizations

and/or parallelism with the Intel Atom Processor line, but that is not
the case. there is room for:

 > Heterogeneous asynchronous multi-processing (AMP) based on
different architectures, and

 > synchronous multi-processing (sMP), taking advantage of the
Intel® Hyper-threading technology and dual-core design used
with the latest generation of Intel Atom processors designed for
low-power intelligent systems.

Both concepts often coexist in the same soC. Code with failsafe
real-time requirements is protected within its own wrapper (managed
by a modified round-robin real-time scheduler), while the rest of the
operating system (os) and application layers are managed using standard
sMP multiprocessing concepts. Intel Atom processors contain two Intel
Hyper-threading technology-based cores, and may contain an additional
two physical cores resulting in a quad-core system. In addition, Intel Atom
processors support the Intel ssse3 instruction set. A wide variety of
Intel IPP functions found at http://software.intel.com/en-us/articles/
new-atom-support/ are tuned to take advantage of Intel Atom
processor architecture specifics as well as Intel SSSE3 (Figure 3).

Throughput intensive applications can benefit from the ease of use
of Intel ssse3 vector instructions, and parallel execution of multiple
data streams through extra-wide vector registers for sIMD processing.
As just mentioned, modern Intel Atom processor designs provide up to
four virtual processor cores. this fact makes threading an interesting
proposition. While there is no universal threading solution that is best
for all applications, Intel IPP has been designed to be thread-safe:

 > Primitives within the library can be called simultaneously from
multiple threads within your application

 > the threading model you choose may have varying granularity

 > Intel IPP functions can take advantage of the available processor
cores directly via openMP*.

 > Intel IPP functions can be combined with os-level threading using
native threads, Intel® Cilk™ Plus, or any other member of Intel’s family
of parallel models.

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/articles/new-atom-support/
http://software.intel.com/en-us/articles/new-atom-support/

Application Thread
Continues

Intel® IPP Returns
to Application

Intel® IPP
Internal Thread

Intel® IPP
Internal Thread

Intel® IPP
Does Threading

1 of 2 Cores 2 of 2 Cores

Call Intel® IPP

Application Thread

Application Thread
Continues

Call Intel® IPP

Call Intel® IPP

Thread-Safe
Functions

Application
Does Threading

Application Thread
Continues

Call Intel® IPP

1 of 2 Cores 2 of 2 Cores

Application Thread

Application Thread 1 Application Thread 2

Call Intel® IPP

Figure 4: Function-level threading and application-level threading using Intel® Integrated Performance Primitives

P
ow

er

Time

IPP-optimized app

Non-optimized app

power = rate of performing work (supplying energy)

energy consumed = average power * ∆ time
 faster app execution time means
 returning to the idle state sooner
 resulting in less total energy consumed

Figure 5: Impact of optimized library usage on power-consumption

the quickest way to multithread an application that uses the Intel
IPP extensively is to take advantage of the openMP threading built
into the library. No significant code rework is required. However, only
about 15 to 20 percent of Intel IPP functions are threaded. In most
scenarios. It is therefore preferable to look to higher-level threading
to achieve optimum results. since the library primitives are thread safe,
the threads can be implemented directly in the application, and the
performance primitives can be called directly from within the application
threads. this approach provides additional threading control and meets
the exact threading needs of the application (Figure 4).

When applying threading at the application level, it is generally
recommended to disable the library’s built-in threading. Doing so
eliminates competition for hardware thread resources between the
two threading models, and thus avoids oversubscription of software
threads for the available hardware threads.

Besides performance and maintainability, footprint and power
consumption are also important considerations when developing a
software stack for low-power intelligent systems. on a per instruction
basis, sIMD instructions can consume slightly more energy than non-
SIMD instructions. However, because they execute more efficiently—
allowing an application to complete in less time—the net result can be
less total energy consumed to complete the job. thus, the use of sIMD
instructions allows improved performance of critical workloads, while
draining the battery less.

Intelligent systems frequently must work within confined memory
and storage limits. thus, the need to control the application footprint
on a storage device (total binary size) or in memory during execution
can be critical. If an application cannot be executed within the available
resources, the reliability of the entire system can be in jeopardy.

Intel IPP provides flexibility in linkage models to strike the right
balance between portability and footprint management (Table 1).

THE PARALLEL UNIVERSE

16 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Standard
Dynamic

Custom
Dynamic

Dispatched
Static

Non-
Dispatched
Static

optimizations All SImD sets All SImD sets All SImD sets Single SImD set

Distribution
Executable(s) and
standard Intel IPP
DLLs

Executable(s) and
custom DLLs

Executable(s) only Executable(s) only

Library Updates Redistribute as-is
Rebuild and
redistribute

Recompile
application and
redistribute

Rebuild custom
library, recompile
application, and
redistribute

Executable only
Size

Small Small Large medium

Total Binary Size Large medium medium Small

Kernel mode no no Yes Yes

Table 1: Intel® Integrated Performance Primitives linkage model comparison

Hi-level Code
Samples

API Calls

Static or Dynamic Link

Rapid
Application

Development

Compatibility and
Code Reuse

Outstanding
Performance

Cross-platform
API

Processor-
Optimized

Implementations

Application Source Code

Intel IPP Usage Code Samples
• Sample video/audio/speech codecs
• Image processing and compression
• Signal and string processing
• Data compression and encryption
• .NET and Java language integration

• Intel® Atom™ Processors
• Intel® Core™ i7/i5/i3 Processors
• Intel® Core™2 Duo and Quad Processors
• Intel® Core™ Duo and Core™ Solo Processors
• Intel® Pentium® D Dual-Core Processors
• Intel® Xeon® 64-bit Dual-Core Processors
• Intel® Pentium® M and Pentium® 4 Processors

Intel IPP Library C/C++ API

Intel IPP Processor-Optimized Binaries

• Data Compression
• Data Integrity
• Signal processing
• Matrix arithmetic
• Vector arithmetic
• String processing
• Speech coding

• Cryptography
• Image processing
• Image color conversion
• JPEG/JPEG2000/JPEGXR
• Computer Vision
• Video encode/decode
• Audio encode/decode

Figure 6: Intel® Integrated Performance Primitives overview. many domains are covered along with sample source code for rapid development.

Sign up for future issues | Share with a friend

the standard dynamic and dispatched static models are the simplest options to use in
building applications with Intel IPP. the standard dynamic library includes the full set of
processor optimizations and provides the benefit of runtime code sharing between multiple
Intel IPP-based applications. Detection of the runtime processor and dispatching to the
appropriate optimization layer is automatic.

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

• Development host
= target system

• Mainstream PC
architecture with
Windows*/Linux*

• Industrial PCs,
Automation, Kiosks, etc.

• Development host
≠ target system

• No standard PC arch.,
small screen, if any…

• IVI, smartphones, tablets,
medical, deep embedded
systems (black box)

• OS/RTOS layers,
kernel development,
hardware-near dev.

• Requires specialized
SW dev tools

• OEMs, OSVs,
System Integrators,
Embedded Developers

• Assume working OS
platform and APIs

• Standard dev tools

• Mobile app developers,
Android* community,
App Store centric,
Windows*, Linux*
developers

Native Cross System Application

Host Host

Target Applications

Middleware

OS/RTOS/Kernel

Driver

Angry Birds
4.99 USD

Figure 7: Intel® Integrated Performance Primitives can be used over a full range of development setups and software stack targets

If the number of Intel IPP functions used in your application is small,
and the standard shared library objects are too large, using a custom
dynamic library may be an alternative.

to optimize for minimal total binary footprint, linking against a
non-dispatched static version of the library may be the approach to
take. this approach yields an executable containing only the optimization
layer required for your target processor. this model achieves the
smallest footprint at the expense of restricting your optimization to
one specific processor type and one SIMD instruction set. This linkage
model is useful when a self-contained application running on only one
processor type is the intended goal. It is also the recommended linkage
model for use in kernel mode (ring 0) or device driver applications.

the development ecosystem for embedded intelligent systems
is not focused exclusively on the dominant operating systems of
the desktop and server world. Frequently a soC may use a custom
embedded Linux os based on something like Yocto Project*
(http://www.yoctoproject.org) or Wind River* Linux (http://www.
windriver.com) for the application and user interface layer, while other
parts of the chipset may be running a fail-safe, real-time operating
system (Ftos or Rtos).

Currently, Intel IPP is delivered for and validated against five
different operating systems: Microsoft Windows*, Linux, Mac os* X,
QnX neutrino*, and Wind River VxWorks*. QnX* and VxWorks* are
limited to single-threaded static variants of Intel IPP. Application of
Intel IPP to a “non-supported” operating system requires that the os
is compatible with the Application Binary Interface (ABI) defined by
one of the aforementioned five operating systems, and that memory
allocation routines can be accessed through a standard C library or
mapped via glue code using a special i_malloc interface.

the atomic nature (no locks or semaphores) of the Intel IPP
function implementation means that it is safe to use in the deterministic
environment of a Rtos. An example of the value of applying the
Intel IPP library to an Rtos would be the tenAsys Intime* Rtos for
Windows. (http://www.tenasys.com). the Intime Rtos is an os
designed to run alongside Windows, handling real-time requirements
on a Windows-based platform. the ABI used by Intime Rtos is
compatible with the Windows ABI and employs Windows compatible
function calling conventions. Using the Intel IPP in conjunction with
such an Rtos expands its appeal by providing the performance of
sIMD-based data throughput intensive processing, with determinism
usually only characteristic of DsPs.

 Intel IPP addresses the needs of the native application developer
found in the personal computing world, as well as the intelligent
system developer who must satisfy real-time system requirements
with the interaction between the application layer and the software
stack underneath. By taking Intel IPP into the world of middleware,
drivers, and os interaction, it can also be used for embedded devices
with real-time requirements and dominant execution models. the
limited dependency on OS libraries and its support for flexible linkage
models makes it simple to add to embedded cross-build environments,
whether they are RTOS-specific or follow one of the popular GNU*-
based cross-build setups like Poky-Linux* or MADDe*.

Developing for intelligent systems and small form factor devices
frequently means that native development is not a feasible option.
Intel IPP can be easily integrated with a cross-build environment and
used with cross-build toolchains that accommodate the flow requirements
of many of these real-time systems. Use of Intel IPP allows embedded
intelligent systems to take advantage of Intel ssse3 vector instructions
and extra-wide vector registers on the Intel Atom processor. Developers
can also meet determinism requirements, without increasing the risks
associated with cross-architecture data handshakes of complex
soC architectures.

THE PARALLEL UNIVERSE

18 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://www.yoctoproject.org
http://www.windriver.com
http://www.windriver.com
http://www.tenasys.com
http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

Some Performance
Advantages of using a Task-
based Parallelism model
SHANNoN CEPEDA, Intel

As part of my focus on software performance, I also support

and consult on implementing scalable parallelism in applications.

there are many reasons to implement parallelism, as well as

many methods for doing it—but this blog is not about either

of those things. this blog is about the performance advantages

of one particular way of implementing parallelism— and luckily,

that way is supported by several models available.

I am talking about task-based parallelism, which means that

you design your algorithms in terms of “tasks”(work to be

done) instead of the specifics of threads and CPU cores.

there are several parallelism models currently available

that use tasks: Intel® Threading building blocks (tBB),

Intel® Cilk Plus, microsoft* Parallel Patterns Library, and

OpenmP 3.0, to name a few. With a task-based library

(like the ones mentioned) you can use pre-coded functions,

pragmas, keywords, or templates to add parallelism to

your application …

Visit Go-Parallel.com
browse other blogs exploring a range of related

subjects at Go Parallel: Translating multicore
Power into Application Performance.

SEE THE REST oF SHANNoN’S BLoG:

BLOG
highlights

Developing for embedded small form factor devices also means that
applications with deterministic execution flow requirements have to
interface more directly with the system software layer and the os (or
Rtos) scheduler. software development utilities and libraries for this
space need to be able to work with the various layers of the software
stack, whether it is the end-user application or the driver that assists
with a particular data stream or I/o interface. Intel IPP has minimal os
dependencies and a well-defined ABI to work with the various modes
addressed in (Figure 7). one can apply highly optimized functions for
embedded signal and multimedia processing across the platform software
stack, while taking advantage of the underlying application processor
architecture and its strengths—all without redesigning and returning
the critical functions with successive hardware platform upgrades.

Getting Started with
Intel® Integrated Performance Primitives
on Intel® Atom™ Processors

 > Purchase Intel IPP, or download a trial copy (http://software.intel.com/
en-us/articles/intel-ipp/)

 > Check out the free code samples that come with Intel IPP (http://
software.intel.com/en-us/articles/intel-integrated-performance-
primitives-code-samples/), and see if any match the needs of one of
your algorithms (implemented or planned). the Intel IPP code samples
are available for the Windows, Linux, and Mac os* operating systems.
Instructions on how to build each sample can be found in sample-
specific ReadMe files located in each sample’s main directory. Some
samples include more detailed documentation in a doc directory, usually
in the form of a PDF file.

 > If no example code sample matches your needs, take a look at the
reference manual (http://software.intel.com/sites/products/docu-
mentation/hpc/composerxe/en-us/2011update/ippxe/ipp_manual_
lnx/index.htm), which is organized by function domains, including signal
processing, and then by classes of functions within that domain. see
Figure 1 for the 12k Intel IPP functions in fourteen different domains.

 > next, choose a linking option from the many described in Table 1 that
works for you, and you are ready to begin. the article located at http://
software.intel.com/en-us/articles/introduction-to-linking-with-intel-
ipp-70-library/ provides a more in depth discussion of these options. o

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/blogs/2011/12/08/some-performance-advantages-of-using-a-task-based-parallelism-model/
http://software.intel.com/en-us/blogs/2011/12/08/some-performance-advantages-of-using-a-task-based-parallelism-model/
http://software.intel.com/en-us/blogs/2011/12/08/some-performance-advantages-of-using-a-task-based-parallelism-model/
http://software.intel.com/en-us/blogs/author/shannon-cepeda/
http://threadingbuildingblocks.org/
http://software.intel.com/en-us/articles/intel-cilk-plus/
http://msdn.microsoft.com/en-us/library/dd492418.aspx
http://openmp.org/wp/
http://www.go-parallel.com
http://software.intel.com/en-us/blogs/2011/12/08/some-performance-advantages-of-using-a-task-based-parallelism-model/
http://software.intel.com/en-us/articles/intel-ipp/
http://software.intel.com/en-us/articles/intel-ipp/
http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-code-samples/
http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-code-samples/
http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-code-samples/
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/ippxe/ipp_manual_lnx/index.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/ippxe/ipp_manual_lnx/index.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/ippxe/ipp_manual_lnx/index.htm
http://software.intel.com/en-us/articles/introduction-to-linking-with-intel-ipp-70-library/
http://software.intel.com/en-us/articles/introduction-to-linking-with-intel-ipp-70-library/
http://software.intel.com/en-us/articles/introduction-to-linking-with-intel-ipp-70-library/

invalid memory access

memory leak

data race

bottleneck

memory error

threading error

THE PARALLEL UNIVERSE

20 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

bottleneck

mismatched allocation

uninitialized memory access

memory error

data race

Sign up for future issues | Share with a friendSign up for future issues | Share with a friend

 TOOLS THAT bOOST
.nET APPS reliabilitY
 AnD perForMance

now .nET developers can boost application performance and
increase the code quality and reliability needed for high-performance
computing and enterprise applications

by Levent Akyil and Asaf Yaffe, Software and Services Group, Intel Corporation

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Developer-friendly tools that find errors early in
the development cycle can have a great payoff. errors that make it
to a released product may damage the product’s reputation and are
generally very costly to fix. The earlier we can detect and correct
hard-to-find errors such as threading (data race and deadlocks) and
memory errors (memory leaks) in any application, the easier it’s likely
to fix them. The confidence and the performance tools aid developers
by attributing problems to source code lines, along with call stack
and timeline visualization of events, giving developers a clear picture
about the issues in their software. Intel® Parallel studio Xe enables
.net developers to identify critical performance problems such as the
most time-consuming functions or lines of code, scalability issues,
and time spent waiting on synchronization constructs and Io activity.
While doing this, Parallel studio Xe reveals potential micro-architectural
bottlenecks caused by issues such as branch mispredicts, cache
misses, and memory bandwidth problems.

In this article, we highlight examples of how two tools in Intel
Parallel studio Xe, the Intel® Inspector Xe correctness tool, , and the
Intel® VTune™ Amplifier XE performance analysis tool, are valuable to
developers of .net code, native code, and “mixed” (.net and native)
applications during the development cycle. After explaining the current
.NET support in Inspector XE and VTune™ Amplifier XE, we demonstrate
the key features in action on C# applications.

Current .nET support in
Intel® VTune™ Amplifier XE and
Intel® Inspector XE
Inspector XE and VTune Amplifier XE products support the analysis
of pure .net applications, as well as “mixed” applications that contain
both managed and unmanaged code.

the Inspector Xe thread analyzer can detect potential deadlocks
and data races in .net programs, in a similar way as it does for native
code. Inspector Xe monitors object allocations and accesses to shared
memory on the garbage-collected heap and the static data areas, and

flags unsynchronized accesses (at least one of which is a write operation)
of multiple threads to the same object/class data member as a potential
data race. Inspector is also aware of all the .NET 2.0 through .NET 3.5
locking APIs, and can detect deadlocks and lock hierarchy violations.

VTune Amplifier XE assists developers in fine-tuning serial and
parallel applications for optimal performance on modern processors
and makes it simple for .NET developers to quickly find performance
bottlenecks in their pure .NET or mixed applications. VTune Amplifier
Xe’s hotspot analysis highlights the functions and source locations
where the application spends most of its execution time. Concurrency
and Locks & Waits analyses visualize the work distribution between
threads as well as thread synchronization points, and helps users identify
work distribution problems and excessive threads synchronization
which prevent parallel execution. VTune Amplifier XE can also help
developers identify microarchitectural performance issues by using the
CPU’s Performance Monitoring Unit (PMU) to sample processor events
and identify the architectural bottlenecks on a given Intel® processor.

Configuring .nET analysis in
VTune Amplifier XE and Inspector XE
Users can select whether to analyze the managed parts (““managed”
mode), native parts (“native” mode) or both (“mixed” mode). these
types are supported as follows:

 > Native mode collects data on native code only and does not
attribute data to managed code.

 > managed mode collects data on managed code only and does
not attribute data to native code.

 > mixed mode collects and attributes data to both native and
managed code as appropriate. Use this option when analyzing
managed executables that make calls to native code.

 > Auto mode automatically detects the type of the target
executable. It switches to mixed mode when a managed
application is detected and to native mode when a native application
is detected.

Figure 1: microsoft Visual Studio* Debug Properties for a .nET project

THE PARALLEL UNIVERSE

22 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

The way to configure the analysis mode depends on the way one uses the tools. When using the tools from the
command line, specify the mode using the “-mrte-mode” switch. When using the tools within Microsoft Visual studio*,
the analysis mode is automatically selected based on the active project type: for native projects (C/C++ applications) the
default analysis mode in both VTune Amplifier XE and Inspector XE is set to “native.”. For .NET projects (C# applications),
the default analysis mode in VTune Amplifier XE is set to “managed”, while the default analysis mode in Inspector XE
is set to “mixed”. Users can use the Visual studio Debug Properties page to select a different mode. to enable “mixed”
analysis mode for a .net project, enable the “unmanaged code debugging” feature (Figure 1). similarly, to enable “mixed”
analysis mode for a native project, set the Debugger type property to “mixed” (Figure 2). When using the standalone
graphical interface of VTune Amplifier XE or Inspector XE, users can configure the analysis mode from the Project
Properties dialog (Figures 3 and 4).

Sign up for future issues | Share with a friend

Figure 2:
microsoft Visual
Studio* Debug
Properties for a
native project

Figure 3:
Intel® VTune™
Amplifier XE
project properties

Figure 4:
Intel® Inspector XE
project properties

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

namespace VTuneAmplifierXE.Examples
{
 public class potential_Mt
 {
 private static thread[] threads = new thread[benchmarks.gthreadcount];
 private static workerthread[] workerthreads = new workerthread[benchmarks.gthreadcount];
 private static object[] threadparams = new object[benchmarks.gthreadcount];

 //start and done signals
 static autoresetevent[] gosignals = new autoresetevent[benchmarks.gthreadcount];
 static autoresetevent[] doneevents = new autoresetevent[benchmarks.gthreadcount];

 public static double potential = 0.0;
 public double potentialtotal = 0.0;

 public class workerthread
 {
 private volatile bool stopnow = false;
 private threadparameters threadparameters;

 public void requeststop()
 {
 stopnow = true;
 }

 private void computepot_mt(int tid)
 {
 int start, end;
 double distx, disty, distz, dist;

 start = threadparameters.chunkbegin;
 end = threadparameters.chunkend;

 potential = 0.0;

 for (int i = start; i < end; i++)
 {
 for (int j = 0; j < i - 1; j++)
 {
 distx = Math.pow((r[0][j] - r[0][i]), 2);
 disty = Math.pow((r[1][j] - r[1][i]), 2);
 distz = Math.pow((r[2][j] - r[2][i]), 2);
 dist = Math.sqrt(distx + disty + distz);
 potential += 1.0 / dist;
 }
 }
 }
 …

 public void dowork(object parameter)
 {
 threadparameters = (threadparameters)parameter;
 console.writeline("thread: {0} ready to start <{1} - {2}>",
 threadparameters.tid,
 threadparameters.chunkbegin,
 threadparameters.chunkend);

 while (!stopnow)
 {
 threadparameters.gosignal.waitone();
 computepot_mt(threadparameters.tid);
 threadparameters.eventdone.set();
 }
 console.writeline("worker thread: terminating gracefully.");
 }
 } // end workerthread
 …
}// end potential_Mt

Figure 5

THE PARALLEL UNIVERSE

24 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sample Code
To demonstrate how Inspector XE and VTune Amplifier XE support
.net applications, we use a C# program computing the potential energy
of a system of particles based on the distance in three dimensions.
this is a threaded application which uses the .net thread pool to
create as many threads as the number of cores available. the goal of
this article is not to introduce C# threads or how to thread efficiently
with .net framework, but rather to demonstrate how the tools can
help to identify threading issues and significantly aid in developing
high-performing, scalable parallel applications.

the code below shows the part of the application executed by
each worker thread. the computepot method is where the action
happens. each thread uses the stored boundaries indexed by the
thread’s assigned identification number (tid). This helps to fix the start
and end range of particles to be used. After each thread initializes
its iteration space (start and end values), it starts computing the
potential energy of the particles.

Intel® Inspector XE in Action
Let’s start by running Inspector Xe on our sample code. From the
Visual Studio Tools menu, select “Intel Inspector XE 2011,” and then
“new Analysis” (Figure 6). In the Configure Analysis Type page that
opens, select “Locate Deadlocks and Data Races” (Figure 7), and click
the “start” button to start threading correctness analysis.

Running Inspector Xe on our sample code reveals that we have a
data race (Figure 8).

 the Problems pane lists individual problems. Code Locations shows
source code locations that are relevant for the selected problems. the
Filters pane allows you to filter the Problems view by severity, problem
type, module, and source files.

Sign up for future issues | Share with a friend

Figure 6: Starting a new Inspector XE analysis from Visual Studio
Figure 7: Selecting an
Inspector XE analysis type

Figure 8: A potential data race Identified by Inspector XE 2011

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Double-clicking on the problem takes us to the sources page
(Figure 9) where we can further investigate the problem.

this page shows two representative threads of execution that
perform an unsynchronized access to a shared memory location, including
a detailed call stack for each thread. Using this view we can quickly
determine that we have an unsynchronized access to the “potential”
static class member—a classic data race. We can double-click any
source line to jump directly into the source code and fix the issue.

one trivial solution to this data race is to make sure all access to the
“potential” class member is properly synchronized with a lock. However,
this solution will introduce a serial region (a critical section) into our
parallel code and will likely affect performance. A better solution is for
each thread to store a private copy of the potential in a thread local
variable, and then accumulate the results to compute the final value.
this solution reduces dependencies and synchronization between
threads and is likely to speed up the parallel code.

A Few Words about memory Checker
the Inspector Xe memory analyzer is also aware of .net code and
can be used for finding memory leaks and errors in mixed applications
that contain managed and native code. While the memory analysis is
conducted only for the native portions of the applications (as most of
the detectable errors are irrelevant for .net code), the analysis results
show complete stack traces, including the .net call chain that led to
the memory error in native code.

Combining the threading analysis and memory analysis capabilities
make Inspector Xe a powerful and invaluable tool for analyzing the
correctness of complex applications that combine .net and native
code in a single program.

Intel® VTune™ Amplifier XE in Action
now that we solved our correctness issues, let’s start analyzing the
performance of our application. Figure 10 shows how to start the
oncurrency analysis within Visual studio*. If our application is analyzed
on a quad-core Intel® 2nd generation core architecture family processor
running at 2.5GHz, we get the results summary, as shown in Figure 11.

Figure 10: Launching Intel® VTune™ Amplifier XE concurrency analysis within Visual Studio

Figure 9:
Data race
problem details

THE PARALLEL UNIVERSE

26 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time
the specific number of threads were running simultaneously. Threads are considered running if they are
either actually running on a CPU or are in the runnable state in the OS scheduler. Essentially, Thread
Concurrency is a measurement of the number of threads that were not waiting. Thread Concurrency may
be higher than CPU usage if threads are in the runnable state and not consuming CPU time.

CPU Usage Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes what percentage of the wall
time the specific number of CPUs were running simultaneously. CPU Usage may be higher than the thread
concurrency if a thread is executing code on a CPU while it is logically...

Idle OKPoor Ideal Over

0 1 2 3 4 5 6+

El
ap

se
d

T
im

e

av
er

ag
e

ta
rg

et
Simultaneously Running Threads

3s

0s

Idle OKPoor Ideal

0 1 2 3 4

El
ap

se
d

T
im

e

ta
rg

et

Simultaneously Running Threads

5s

0s

av
er

ag
e

Figure 11: Thread concurrency and CPu usage histograms for the analysis

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Figure 11shows that our threaded application is not fully utilizing all available cores.
the bottom-up view (Figure 12) gives a closer look at the results. our workerthread::
computepot_mt method is consuming most of the CPU time, and has significant amount of
time identified as poor (red) and okay (orange) CPU utilization.

 this indicates that this particular method is a hotspot (i.e., consuming most of the CPU time)
and threaded, but not fully utilizing the available cores. therefore, it makes sense to zoom in to
the timeline and look at each thread executing this particular method. Figure 13 makes it clear
that four threads, which are executing the workerthread::computepot_mt method,
consume different amount of CPU time, causing a load imbalance and sub-optimal utilization of
the cores. such load imbalance issues will prevent applications from scaling as desired on more
cores and needs to be fixed.

 even though each thread executes the outer for loop the same number of times, the
inner loop is executed more by the thread operating on the last chunk, and least by the thread
operating on the first chunk. Distributing the iteration’s cyclical offset by the thread count will
fix the load imbalance and the threads will utilize the available cores better. The concurrency
analysis and the results not only enable us to identify load imbalance issues, but also help
us speed up the application. the change below allows all the threads to stay busy and keep
running (Figure 16).

Figure 12: Hotspots by Thread Concurrency view

“Load imbalance issues will prevent
applications from scaling as desired on
more cores and need to be fixed."

THE PARALLEL UNIVERSE

28 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Original Version

chunkbegin = tid * (nparts / threadcount);
chunkend = (tid + 1) * (nparts / threadcount);
 …

start = threadparameters.chunkbegin;
end = threadparameters.chunkend;

for (int i = start; i < end; i++)
{
 for (int j = 0; j < i - 1; j++)
 {
 distx = Math.pow((r[0][j] - r[0][i]), 2);
 disty = Math.pow((r[1][j] - r[1][i]), 2);
 distz = Math.pow((r[2][j] - r[2][i]), 2);
 dist = Math.sqrt(distx + disty + distz);
 potential += 1.0 / dist;
 }
}

Load-balanced Version

for (int i = tid; i < constants.pot_nparts; i +=
threadparameters.threadcount)
{
 for (int j = 0; j < i - 1; j++)
 {
 distx = Math.pow((r[0][j] - r[0][i]), 2);
 disty = Math.pow((r[1][j] - r[1][i]), 2);
 distz = Math.pow((r[2][j] - r[2][i]), 2);
 dist = Math.sqrt(distx + disty + distz);
 potential += 1.0 / dist;
 }
}

Figure 15

Figure 14

Thread 1 (range) Thread 2 (range) Thread 3 (range) Thread 4 (range)

original version 0 –249 250 – 499 500 – 749 750 - 999

After changes 0,4,8,…,992, 996 1,5,9,..,993,997 2,6,10,…,994,998 3,7,11,…,995,999

Figure 13: Showing the thread load imbalance on the timeline and CPu time of each thread executing

Sign up for future issues | Share with a friend

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Are we done? not yet. Let’s give a try to the architectural analysis
of VTune™ Amplifier XE to check if the tool can identify more opportunities
for performance improvements. to demonstrate the architectural
analysis feature in VTune Amplifier XE, let’s use General Exploration
analysis pre-configured for 2nd Generation Core™ architecture.

 the 2nd generation Core microarchitecture is capable of reaching
Cycles Per Instructions as low as 0.25 in ideal situations. The greater
value of CPI for a given workload indicates that there are more
opportunities for code tuning to improve performance. Figure 18
shows the results of the General exploration analysis. In this case,
the invocation of the Math.pow() function consumes significant
amount of clockticks. Replacing Math.pow() with a simple
multiplication gives us much better performance and reduces the
CPI ratio to 1.5.

Figure 16: workerThread::computePot_mt method is executed by four threads, which do an equal amount of work

Figure 17: Running Intel® VTune™ Amplifier XE General

THE PARALLEL UNIVERSE

30 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Figure 18: General Exploration results highlighting problematic functions

for (int i = tid; i < constants.pot_nparts; i +=
threadparameters.threadcount)
{
 for (int j = 0; j < i - 1; j++)
 {
 distx = Math.pow((r[0][j] - r[0][i]), 2);
 disty = Math.pow((r[1][j] - r[1][i]), 2);
 distz = Math.pow((r[2][j] - r[2][i]), 2);
 dist = Math.sqrt(distx + disty + distz);
 potential += 1.0 / dist;
 }
}

for (int i = tid; i < constants.pot_nparts; i +=
threadparameters.threadcount)
{
 for (int j = 0; j < i - 1; j++)
 {
 distx = (r[0][j] - r[0][i]) * (r[0][j] - r[0][i]);
 disty = (r[1][j] - r[1][i]) * (r[1][j] - r[1][i]);
 distz = (r[2][j] - r[2][i]) * (r[2][j] - r[2][i]);
 dist = Math.sqrt(distx + disty + distz);
 potential += 1.0 / dist;
 }
}

Figure 19

Figure 20

original Version (sec) Load Imbalance Fixed (sec) math.Pow() replaced with * (sec)

5.4 4.65 0.39

“Intel® Parallel Studio XE enables .nET developers
to identify critical performance problems such
as the most time-consuming functions or lines of
code, scalability issues, and time spent waiting
on synchronization constructs and IO activity.
While doing this, Parallel Studio XE reveals potential
micro-architectural bottlenecks caused by issues
such as branch mispredicts, cache misses, and
memory bandwidth problems.”

Sign up for future issues | Share with a friend

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

For advanced and deeper microarchitectural analysis, the tool is
equipped with predefined analysis types, which use Performance
Monitoring Unit (PMU) to sample processor events to identify
microarchitectural issues such as cache misses, stall cycles, branch
mispredictions, and many more. the advanced analysis types are
defined for processor architectures such as Intel® Core 2™ microarchi-
tecture, Intel® Core™ microarchitecture (aka nehalem and Westmere)
and Intel® 2nd Generation Core™ microarchitecture (aka sandy Bridge).
When these advanced predefined analysis types are used, the tool
gives hints and suggestions by highlighting the problematic functions.

Supported .nET Versions
VTune Amplifier XE and Inspector XE support the basic synchronization
mechanisms available in .NET versions 2.0 to 3.5. The tools do not
support the new synchronization APIs introduced in .NET 4.0 and the
new task Parallel Library.

Summary
Inspector XE and VTune Amplifier XE provide valuable technologies to
.net developers. these tools combine error checking and performance
profiling tools under Intel Parallel Studio XE. They help boost application
performance and increase the code quality and reliability needed
by high-performance computing and enterprise applications. At the
same time, the suite eases the procurement of all the necessary tools
for high performance, and simplifies the transition from multicore to
manycore processors for the future. View the source code › o

Performance Tuning metric
Cycles Per Instruction retired, or CPI, is a fundamental

performance metric indicating approximately how

much time each executed instruction took, in units of

cycles. modern superscalar processors issue up to four

instructions per cycle, suggesting a theoretical best CPI

of .25. Various effects (long-latency memory, floating-

point, or SImD operations; non-retired instructions due

to branch mispredictions; instruction starvation in the

front-end) tend to pull the observed CPI up. nonetheless,

CPI is an excellent metric for judging an overall potential

for application performance tuning.

THE PARALLEL UNIVERSE

32 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/sites/products/web2010/DPDdownloads/Benchmarks.zip
http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

RESOuRCES AnD SITES OF InTEREST

The mission of Go Parallel is to assist developers in
their efforts toward “translating Multicore Power into
Application Performance.” Robust and full of helpful
information, the site is a valuable clearinghouse of
multicore-related blogs, news, videos, feature stories,
and other useful resources.

Check out a range of resources on a wide variety
of software topics for a multitude of developer
communities ranging from manageability to parallel
programming to virtualization and visual computing.
this content-rich collection includes Intel® software
network tV, popular blogs, videos, tools, and downloads.

See these products in use, with video overviews that
provide an inside look into the latest Intel® software. You
can see software features firsthand, such as memory
check, thread check, hotspot analysis, locks and waits
analysis, and more.

Intel® Inspector XE

Intel® VTune™ Amplifier XE

What if you could experiment with Intel’s advanced
research and technology implementations that are still
under development? And then what if your feedback
helped influence a future product? It’s possible here.
test drive emerging tools, collaborate with peers,
and share your thoughts via the What If blogs and
support forums.

Go Parallel

Intel® Software Network
“What If” Experimental
Software

Step Inside the Latest Software
Intel® Software
Evaluation Center

The Intel® Software Evaluation Center
makes 30-day evaluation versions of Intel® Software
Development Products available for free download.
For high-performance computing products, you can get
free support during the evaluation period by creating
an Intel® Premier support account after requesting the
evaluation license, or via Intel® software network Forums.
For evaluating Intel® Parallel studio, you can access free
support through Intel® software network Forums onLY.

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com
http://www.youtube.com/watch?v=Bx7M-NGuelg&NR=1
http://www.youtube.com/watch?v=n4z5p8f5L-A
http://www.go-parallel.com/
http://software.intel.com/en-us/
http://software.intel.com/en-us/whatif/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/

Sign up for future issues | Share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets
and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Take your software to a new world of possibilities. Jumpstart your apps
with forward-looking strategies from mobile to the cloud—and beyond.

Join us: softwareadrenaline.intel.com

THE PARALLEL UNIVERSE

34 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

https://swdevtoolsmag.makebettercode.com/
https://web.software-dispatch.intel.com/isdsubscription.jsp?source=PU0612
http://software.intel.com/en-us/articles/optimization-notice

THE PARALLEL
UNIVERSEIssue 8

September 2011

Intel® Parallel Studio XE SP1 by Michael D’Mello

The Intel® Threading Building Blocks
Flow Graph by Michael J. Voss, Ph.D.

HPC Study:
Biophysicists and Mathematicians Embrace
Parallelism with Intel® Parallel Advisor
by Zakhar A. Matveev

Video
building Parallel Applications with Cilk
Plus and Threading building blocks,
Chris Yeich, Intel

Evaluation Guides
Intel® Cilk™ Plus

Tutorials
using Intel® Tbb in network
applications: network Router emulator

Tech Documents
The Parallel universe magazine

Blogs
Wellington and Austin:
Programming Lots of Cores
James Reinders, Intel

White Papers
Optimizing VLife* molecular
Design Suite using
Intel® Parallel Studio XE

THE PARALLEL
UNIVERSEIssue 7

June 2011

DEVELOPER ROCK STAR:

Robert Geva

Intel® Cilk™ Plus:
A C/C++ Language Extension
for Parallel Programming
By Robert Geva

Easing the Performance Analysis
of Serial and Parallel Applications
by Levent Akyil

Three Flavors of ‘for’ Loops with
Intel® Parallel Building Blocks
by Noah Clemons

THE PARALLEL
UNIVERSEIssue 9

February 2012

Parallelizing
DreamWorks
Animation* Fur Shader
By Sheng Fu

Letter from the Editor
By James Reinders

New Analysis Tools in
Intel® Cluster Studio XE
By David Mackay, Ph.D. and Krishna Ramkumar

Translating multicore performance into application power.

Announcing a refresh to your online portal for all things parallel.
Get the latest industry insights, news, blogs, videos, how-tos, and technical documentation on parallelism. Contributors include
game-changing developers Jeff Cogswell and John Jainschigg, and leading subject matter experts like Intel’s James Reinders,
Heinz bast, and Levent Akyil, as well as Geeknet’s Stephen Wellman and Chris Yeich.

Go Parallel Has New Attitude

©2012, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

http://www.go-parallel.com
http://software.intel.com/en-us/articles/network-router-emulator/
http://goparallel.sourceforge.net/introducing-parallel-building-blocks/
http://goparallel.sourceforge.net/wellington-and-austin-programming-lots-of-cores/
http://software.intel.com/en-us/articles/intel-cilk-plus/
http://software.intel.com/en-us/articles/intel-parallel-universe-magazine/?wapkw=%28parallel+universe%29
http://software.intel.com/sites/products/Whitepaper/MeasureApplicationPerformanceScalability_013012.pdf

TAKE PERFoRmANCE
To THE

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.
© 2012, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Core, and VTune are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

INTEL® PARALLEL STUDIo XE
From one-person startups to enterprises with thousands of developers working on a single application,
Intel® Parallel Studio XE 2011 extends industry-leading development tools for unprecedented
application performance and reliability.

Get a free 30-day trial of Intel Parallel Studio XE today at www.intel.com/software/products.

Advanced compilers
and libraries

Intel® Composer XE

Advanced memory,
threading, and security
analyzer

Intel® Inspector XE

Advanced
performance profiler

Intel® VTune™ Amplifier XE

EXTREmE.

http://www.intel.com/software/products

