
Eliminate Threading

Errors and Improve

Program Stability
with Intel® Parallel Studio XE

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

 2

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

Can running one simple tool make a difference?
Yes, in many cases. You can find errors that cause complex, intermittent bugs and improve yourcustomers confidence in the stability of your

application.

This guide describes how to use the Intel® Inspector XE analysis tool to find threading errors before they happen. The following information walks

you through the steps using a sample application.

Three Easy Steps to Better Performance

Step 1. Install and Set Up Intel® Parallel Studio XE

Estimated completion time: 15-30 minutes

1 Download an evaluation copy of Intel Parallel Studio XE.

2. Install Intel Parallel Studio XE by clicking on the

parallel_studio_xe_2011_setup.exe (can take 15 to 30

minutes depending on your system).

Step 2. Install and View the Adding_Parallelism

Sample Application

Install the sample application:

1. Download the Tachyon+Sample.zip sample file to your local

machine. This is a C++ console application created with

Microsoft* Visual Studio* 2005.

2. Extract the files from the Tachyon_conf.zip file to a

writable directory or share on your system, such as My

Documents\Visual Studio 20xx\Intel\samples folder.

Step 3. Find Threading Errors Using Intel® Inspector XE

Intel® Inspector XE is a serial and multithreading error-checking

analysis tool. It is available for both Linux* and Windows*

including integration with Microsoft* Visual Studio*. It supports

applications created with the C/C++, C#, .NET, and Fortran

languages. Intel Inspector XE detects challenging memory leaks

and corruption errors as well as threading data races and

deadlock errors. This easy, comprehensive developer-productivity

tool pinpoints errors and provides guidance to help ensure

application reliability and quality.

NOTE: Samples are non-deterministic. Your screens may vary

from the screen shots shown throughout these tutorials.

http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/file/27097/

 3

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

Identify, Analyze, and Resolve Threading Errors
You can use Intel Inspector XE to identify, analyze, and resolve threading errors in parallel programs by performing a series of steps in a

workflow. This tutorial guides you through these workflow steps while using a sample program named tachyon_conf

Choose a Target

1. Open the sample in Microsoft Visual Studio. Go to File > Open > Project/Solution and open the tachyon_conf\vc8\

tachyon_conf.sln solution file:

Figure 1

This will display the tachyon_ conf solution

in the Solution Explorer pane. Figure 1

2. In the Solution Explorer pane, right-click

the find_and_fix_ threading_errors

project and select Set as Startup Project.

3. Build the application using Build > Build

Solution. Figure 2

4. Run the application using Debug > Start

Without Debugging. Figure 3

Figure 2

Figure 3

 4

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

Compiler/Linker Options Correct Setting Impact If Not Set Correctly

Debug information Enabled (/Zi or /ZI) Missing file/line information

Optimization Disabled (/Od) Incorrect file/line information

Dynamic runtime library Selected (/MD or /MDd) False positives or missing observations

Build the Target

Verify the Microsoft Visual Studio project is set to produce the most accurate, complete results. Then, build it to create an executable

that Intel Inspector XE can check for threading errors.

You can use Intel Inspector XE on both debug and release modes of binaries containing native code; however, targets compiled/linked in

debug mode using the following options produce the most accurate, complete results. Figure 4

Figure 4

Build the Target

To verify that debug mode is configured:

1. In the Solution Explorer pane, right-click the

find_and_fix_threading_errors project and

select Properties.

2. Check that the Configuration drop-down list

is set to Debug, or Active(Debug). Figure 5

3. In the left pane, choose Configuration

Properties > C/C++ > General. Verify the

Debug Information Format is set to Program

Database (/Zi) or Program Database for

Edit & Continue (/ZI). Figure 6

Figure 6

Figure 5

 5

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

4. Choose Configuration Properties > C/C++ > Optimization. Verify the Optimization field is set to Disabled (/Od).

Figure 7

Figure 7

Figure 8

Figure 9

5. Choose Configuration Properties > C/C++ > Code Generation. Verify the Runtime Library field is set to Multi-threaded DLL

(/MD) or Multi-threaded Debug DLL (/MDd).

6. Choose Configuration Properties > Linker >

Debugging. Verify the Generate Debug Info field is

set to Yes (/Debug).

To verify the target is set to build in debug

mode:

1. In the Properties dialog box, click the Configuration

Manager button. Figure 8

2. Verify the Active solution configuration drop-down list

is set to Debug. Figure 9

3. Click the Close button to close the Configuration

Manager dialog box.

4. Click the OK button to close the Property Pages dialog

box.

 6

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

 Build the Target

1. Choose Debug > Start Without Debugging. When the application starts, you should see a display similar to this:

Notice the discolored dots in the image. Figure 10

If this application had no errors, the output would look like Figure 11.

Figure 10

Figure 11

 7

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

 Configure Analysis

Choose a preset configuration to influence threading error analysis scope and running time.

To configure a threading error analysis:

1. From the Microsoft Visual Studio menu, choose Tools > Intel Inspector XE 2011 > New Analysis… to display an Analysis Type

window.

Choose the Detect Deadlocks and Dataraces analysis type to display a window similar to the following. Figure 12

Use the Navigation toolbar to navigate among the Intel

Inspector XE windows. The buttons on the toolbar vary

depending on the displayed window.

Use the checkbox(es) and drop-down list(s) to fine-tune

some, but not all, analysis type settings. If you need to fine-

tune more analysis type settings, choose another preset

analysis type or create a custom analysis type.

This tutorial covers threading error analysis types, which

you can use to search for these kinds of errors: data race,

deadlock, lock hierarchy violation, and cross-stack thread

access.

Use memory error analysis types to search for these kinds

of errors: GDI resource leak, kernel resource leak, incorrect

memcpy call, invalid deallocation, invalid memory access,

invalid partial memory access, memory leak, mismatched

allocation/deallocation, missing allocation, uninitialized

memory access, and uninitialized partial memory access.

You can also use the New button to create custom

analysis types from existing analysis types.

The Details region shows all current analysis type settings.

Try choosing a different preset analysis type or

checkbox/drop-down list value to see the impact on the

Details region.

Use the Command toolbar to control analysis runs and

perform other functions. For example, use the Project

Properties button to display the Project Properties dialog

box, where you can change the default result directory

location, set parameters to potentially speed up analysis,

and perform other project configuration functions.

Figure 12

 8

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

Run the Analysis

Run a threading error analysis to detect threading issues that may need handling.

To run a threading error analysis:

Click the Start button to:

> Execute the find_and_fix_threading_errors.exe target.

> Identify threading issues that may need handling.

> Collect the result in a directory in the tachyon_conf/vc8/My Inspector Results XE – find_and_fix_threading_errors directory.

> Finalize the result (convert symbol information into file names and line numbers, perform duplicate elimination, and form problem sets).

During collection, Intel Inspector XE displays a Collection Log window similar to the following. Figure 13

Figure 13

 9

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

Choose a Problem Set

Choose a problem set on the Summary window to explore a detected threading issue. Figure 14

To choose a problem set:

1. Click the data row for the Data Race problem in the find_and_fix_threading_errors.cpp source file.

2. Double-click the data row for the X1 Write code location to display the Sources window, which provides more visibility into the cause

of the error.

3. You started exploring a Data Race problem set in the Sources window that contains one or more problems composed of Read and

Write code locations in the find_and_fix_threading_errors.cpp source file. Figure 15

Figure 14

Figure 15

 10

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

Like the pane on the Summary window, the Code

Locations pane shows all the code locations in one Write -

> Write Data race problem and three Write -> Read Data

race problems in the Data race problem set.

The Write -> Write Data race problem contains two code

locations:

• The X1 Write code location represents the

instruction and associated call stack of the thread

responsible for a memory write.

• The X12 Write code location represents the

instruction and associated call stack of the thread

responsible for a concurrent memory write.

 Each Write -> Read Data race problem also contains

two code locations:

• The X1 Write code location represents the

instruction and associated call stack of the thread

responsible for a memory write.

• The X2, X3, and X4 Read code locations represent

the instructions and associated call stacks of the

threads responsible for a concurrent memory read.

Notice the X1 Write code location is in all problems.

 The Related Code Location pane shows the source code in

the find_and_fix_threading_errors.cpp source file

surrounding the X2 Read code location. (Notice the icon in

the pane title matches the icon on the X2 Read code

location data row in the Code Locations pane.) The source

code corresponding to the Read code location is highlighted.

The Focus Code Location pane shows the source code in

the find_and_fix_threading_errors.cpp source file

surrounding the X1 Write code location. (Notice the icon in

the pane title matches the icon on the X1 Write code

location data row in the Code Locations pane.) The source

code corresponding to the Write code location is highlighted.

The Timeline pane is a graphic visualization of relationships

among dynamic events in a problem

Interpret the Result Data

Interpret data on the Sources window to determine the cause of the detected threading issue. Figure 16

Figure 16

 11

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

To interpret result data:

You must first understand the following:

• A Write -> Write Data race problem occurs when multiple

threads write to the same memory location without proper

synchronization.

• A Write -> Read Data race problem occurs when one

thread writes to, while a different thread concurrently reads

from, the same memory location.

The commenting in the Focus Code Location window identifies

the cause of the Data race problems: Multiple threads are

concurrently accessing the global variable col. One possible

correction strategy: Change the global variable to a local

variable.

To access more information on interpreting and resolving

problems:

1. Right-click any code location in the Code Locations pane.

2. Choose Explain Problem to display the Intel Inspector XE

Help information for the Data race problem type.

Figure 17

You determined the cause of a Data race problem set in the

find_and_fix_threading_errors.cpp source file: Multiple threads

are concurrently accessing the global variable col.

Resolve the Issue

Access the Microsoft Visual Studio editor to fix the threading

issue.

To resolve the issue:

1. Scroll to this source code near line 80 in the Focus Code

Location pane: color col;:

2. Double-click the line to open the

find_and_fix_threading_errors.cpp source file in a separate

tab where you can edit it with the Visual Studio* editor.

3. Comment color col; and uncomment //color col; near line 89

to localize the variable col to the function render_one_pixel ,

Figure 17

 12

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

Rebuild and Rerun the Analysis

Rebuild the target with your edited source code, and then run another threading error analysis to see if your edits resolved the threading

error issue.

To rebuild the target:

In the Solution Explorer pane, right-click the find_and_fix_threading_errors project and choose Build from the pop-up menu.

To rerun the same analysis type configuration as the last-run analysis:

Choose Tools > Intel Inspector XE 2011 > New Analysis… and follow the steps above to execute the

find_and_fix_threading_errors.exe target and display the following: Figure 18

Figure 18

Notice that the image now displays correctly

Success

In this example, we had a bug and the program was not behaving correctly. After running Intel Inspector XE, we found the bug, and

now the graphics render correctly. Often, you will be able to obtain the same results on your own application by running Intel Inspector

XE right out of the box.

However, as you have seen, the time dilation can be significant; this is just the nature of the technology. In the next section, you will

find tips for running large applications on Intel Inspector XE.

Intel Inspector XE also has a command-line interface that you can use to automate the testing of your application on multiple

workloads and test cases by running it overnight in batch mode or as part of a regression test suite.

 13

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

Tips for Larger/Complex

Applications
Key Concept: Choosing Small, Representative Data

Sets

When you run an analysis, Intel Inspector XE executes the

target against a data set. Data set size has a direct impact on

target execution time and analysis speed.

For example, it takes longer to process a 1000x1000 pixel

image than a 100x100 pixel image. One possible reason could

be that you have loops with an iteration space of 1...1000 for

the larger image, but only 1...100 for the smaller image. The

exact same code paths may be executed in both cases. The

difference is the number of times these code paths are

repeated.

You can control analysis cost, without sacrificing completeness,

by removing this kind of redundancy from your target. Instead

of choosing large, repetitive data sets, choose small,

representative data sets. Data sets with runs in the time range

of seconds are ideal. You can always create additional data sets

to ensure all your code is inspected.

Managing Memory Errors

Intel Inspector XE can also identify, analyze, and resolve memory

errors, such as memory leaks and corruption errors in serial and

parallel programs. These errors can manifest intermittently and

may decrease application performance and reliability.

Using the Command-line to Automate Testing

As you can see, Intel Inspector XE has to execute your code

path to find errors in it. Thus, run Intel Inspector XE on multiple

versions of your code, on different workloads that stress

different code paths, as well as on corner cases. Furthermore,

given the inherent time dilation that comes with code-

inspection tools, it would be more efficient to run these tests

overnight or as part of your regression testing suite and have

the computer do the work for you; you just examine the results

of multiple tests in the morning.

The Intel Inspector XE command-line version is called inspxe-cl,

and is available by opening a command window (Start > Run,

type in “cmd” and press OK) and typing in the path leading to

where you installed Intel Inspector XE. Figure 19

To get help on inspxe-cl, use the –help command line option.

> c:\Program Files\Intel\Inspector XE 2011\bin32\inspxe-cl -help

Figure 19

 14

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Eliminate Threading Errors and Improve Program Stability

© 2011, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel compilers, associated libraries and associated development tools may include or utilize options that optimize for instruction sets that

are available in both Intel and non-Intel microprocessors (for example SIMD instruction sets), but do not optimize equally for non-Intel

microprocessors. In addition, certain compiler options for Intel compilers, including some that are not specific to Intel micro-architecture,

are reserved for Intel microprocessors. For a detailed description of Intel compiler options, including the instruction sets and specific

microprocessors they implicate, please refer to the “Intel Compiler User and Reference Guides” under “Compiler Options." Many library

routines that are part of Intel compiler products are more highly optimized for Intel microprocessors than for other microprocessors. While

the compilers and libraries in Intel compiler products offer optimizations for both Intel and Intel-compatible microprocessors, depending on

the options you select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel compilers, associated libraries and associated development tools may or may not optimize to the same degree for non-Intel

microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include Intel® Streaming SIMD

Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel

SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use

with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on Intel and non-Intel

microprocessors, Intel recommends that you evaluate other compilers and libraries to determine which best meet your requirements. We

hope to win your business by striving to offer the best performance of any compiler or library; please let us know if you find we do not.

Notice revision #20110307

Additional Resources
Learning Lab – Technical videos, whitepapers,

webinar replays and more.

Intel Parallel Studio XE product page – How to videos,

getting started guides, documentation, product

details, support and more.

Evaluation Guide Portal – Additional evaluation guides

that show how to use various powerful capabilities.

Intel® Software Network Forums – A community for

developers.

Intel® Software Products Knowledge Base – Access

to information about products and licensing,

Download a free 30 day evaluation

http://software.intel.com/en-us/articles/intel-learning-lab/
http://software.intel.com/en-us/articles/intel-parallel-studio-xe/
http://software.intel.com/en-us/articles/evaluation-guides/
http://software.intel.com/en-us/forums/
http://software.intel.com/en-us/articles/tools/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/

