Jirlt Adamek
Horst Herrlich
George E. Strecker

Abstract and Concrete Categories
The Joy of Cats

Dedicated to
Bernhard Banaschewski



The newest edition of the file of the present book can be downloaded from

http://katmat.math.uni-bremen.de/acc

The authors are grateful for any improvements, corrections, and remarks, and can be
reached at the addresses

Jit{ Addmek, email: adamek@iti.cs.tu-bs.de
Horst Herrlich, email: horst.herrlich@t-online.de
George E. Strecker, email: strecker@math.ksu.edu

All corrections will be awarded, besides eternal gratefulness, with a piece of delicious
cake! You can claim your cake at the KatMAT Seminar, University of Bremen, at any
Tuesday (during terms).

Copyright (©) 2004 Jiti Adédmek, Horst Herrlich, and George E. Strecker.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”. See p. 512 ff.



PREFACE to the ONLINE EDITION

Abstract and Concrete Categories was published by John Wiley and Sons, Inc, in 1990,
and after several reprints, the book has been sold out and unavailable for several years.
We now present an improved and corrected version as an open access file. This was made
possible due to the return of copyright to the authors, and due to many hours of hard
work and the exceptional skill of Christoph Schubert, to whom we wish to express our
profound gratitude. The illustrations of Edward Gorey are unfortunately missing in the
current version (for copyright reasons), but fortunately additional original illustrations
by Marcel Erné, to whom additional special thanks of the authors belong, counterbalance
the loss.

Open access includes the right of any reader to copy, store or distribute the book or
parts of it freely. (See the GNU Free Documentation License at the end of the text.)

Besides the acknowledgements appearing at the end of the original preface (below),
we wish to thank all those who have helped to eliminate mistakes that survived the
first printing of the text, particularly H. Bargenda, J. Jiirjens W. Meyer, L. Schroder,
A. M. Torkabud, and O. Wyler.

January 12, 2004
J.A., H. H,, and G. E. S.



PREFACE

Sciences have a natural tendency toward diversification and specialization. In particular,
contemporary mathematics consists of many different branches and is intimately related
to various other fields. Each of these branches and fields is growing rapidly and is itself
diversifying. Fortunately, however, there is a considerable amount of common ground
— similar ideas, concepts, and constructions. These provide a basis for a general theory
of structures.

The purpose of this book is to present the fundamental concepts and results of such a
theory, expressed in the language of category theory — hence, as a particular branch of
mathematics itself. It is designed to be used both as a textbook for beginners and as a
reference source. Furthermore, it is aimed toward those interested in a general theory of
structures, whether they be students or researchers, and also toward those interested in
using such a general theory to help with organization and clarification within a special
field. The only formal prerequisite for the reader is an elementary knowledge of set
theory. However, an additional acquaintance with some algebra, topology, or computer
science will be helpful, since concepts and results in the text are illustrated by various
examples from these fields.

One of the primary distinguishing features of the book is its emphasis on concrete cat-
egories. Recent developments in category theory have shown this approach to be par-
ticularly useful. Whereas most terminology relating to abstract categories has been
standardized for some time, a large number of concepts concerning concrete categories
has been developed more recently. One of the purposes of the book is to provide a refer-
ence that may help to achieve standardized terminology in this realm. Another feature
that distinguishes the text is the systematic treatment of factorization structures, which
gives a new unifying perspective to many earlier concepts and results and summarizes
recent developments not yet published in other books.

The text is organized and written in a “pedagogical style”, rather than in a highly
economical one. Thus, in order to make the flow of topics self-motivating, new concepts
are introduced gradually, by moving from special cases to the more general ones, rather
than in the opposite direction. For example,

e equalizers (§7) and products (§10) precede limits (§11),

e factorizations are introduced first for single morphisms (§14), then for sources
(§15), and finally for functor-structured sources (§17),

e the important concept of adjoints (§18) comes as a common culmination of three
separate paths: 1. via the notions of reflections (§4 and §16) and of free objects
(§8), 2. via limits (§11), and 3. via factorization structures for functors (§17).

Each categorical notion is accompanied by many examples — for motivation as well as
clarification. Detailed verifications for examples are usually left to the reader as implied
exercises. It is not expected that every example will be familiar to or have relevance



for each reader. Thus, it is recommended that examples that are unfamiliar should
be skipped, especially on the first reading. Furthermore, we encourage those who are
working through the text to carry along their favorite category and to keep in mind
a “global exercise” of determining how each new concept specializes in that particular
setting. The exercises that appear at the end of each section have been designed both as
an aid in understanding the material, e.g., by demonstrating that certain hypotheses are
needed in various results, and as a vehicle to extend the theory in different directions.
They vary widely in their difficulty. Those of greater difficulty are typically embellished
with an asterisk ().

The book is organized into seven chapters that represent natural “clusters” of topics,
and it is intended that these be covered sequentially. The first five chapters contain
the basic theory, and the last two contain more recent research results in the realm of
concrete categories, cartesian closed categories, and quasitopoi. To facilitate references,
each chapter is divided into sections that are numbered sequentially throughout the
book, and all items within a given section are numbered sequentially throughout it. We
use the symbol [ to indicate either the end of a proof or that there is a proof that is
sufficiently straightforward that it is left as an exercise for the reader. The symbol [D]
means that a proof of the dual result has already been given. Symbols such as
are used to indicate that no proof is given, since a proof can be obtained by analogy
to the one referenced (i.e., to item 19 in Section 4). Two tables of symbols appear
at the end of the text. One contains a list (in alphabetical order) of the abbreviated
names for special categories that are dealt with in the text. The other contains a list
(in order of appearance in the text) of special mathematical symbols that are used. The
bibliography contains only books and monographs. However, each section of the text
ends with a (chronologically ordered) list of suggestions for further reading. These lists
are designed to aid those readers with a particular interest in a given section to “strike
out on their own” and they often contain material that can be used to solve the more
difficult exercises. They are intended as merely a sampling, and (in view of the vast
literature) there has been no attempt to make them complete! or to provide detailed
historical notes.
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Chapter O

INTRODUCTION

There’s a tiresome young man in Bay Shore.
When his fiancée cried, ‘I adore
The beautiful sea’,
He replied, ‘I agree,
It’s pretty, but what is it for?’
Morris Bishop
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1 Motivation

Why study categories? Some reasons are these:

1.1 ABUNDANCE

Categories abound in mathematics and in related fields such as computer science. Such
entities as sets, vector spaces, groups, topological spaces, Banach spaces, manifolds,
ordered sets, automata, languages, etc., all naturally give rise to categories.

1.2 INSIGHT INTO SIMILAR CONSTRUCTIONS

Constructions with similar properties occur in completely different mathematical fields.
For example,

(1) “products” for vector spaces, groups, topological spaces, Banach spaces, automata,
etc.,

(2) “free objects” for vector spaces, groups, rings, topological spaces, Banach spaces,
etc.,

(3) “reflective improvements” of certain objects, e.g., completions of partially ordered
sets and of metric spaces, Cech-Stone compactifications of topological spaces, sym-
metrizations of relations, abelianizations of groups, Bohr compactifications of topo-
logical groups, minimalizations of reachable acceptors, etc.

Category theory provides the means to investigate such constructions simultaneously.

1.3 USE AS A LANGUAGE

Category theory provides a language to describe precisely many similar phenomena that
occur in different mathematical fields. For example,

(1) Each finite dimensional vector space is isomorphic to its dual and hence also to its
second dual. The second correspondence is considered “natural”, but the first is
not. Category theory allows one to precisely make the distinction via the notion
of natural isomorphism.

(2) Topological spaces can be defined in many different ways, e.g., via open sets, via
closed sets, via neighborhoods, via convergent filters, and via closure operations.
Why do these definitions describe “essentially the same” objects? Category theory
provides an answer via the notion of concrete isomorphism.

(3) Initial structures, final structures, and factorization structures occur in many dif-
ferent situations. Category theory allows one to formulate and investigate such
concepts with an appropriate degree of generality.

11



12 Introduction [Chap. 0
1.4 CONVENIENT SYMBOLISM

Categorists have developed a symbolism that allows one quickly to visualize quite com-
plicated facts by means of diagrams.

AN
/N

o4—— 0 —» O

1.5 TRANSPORTATION OF PROBLEMS

Category theory provides a vehicle that allows one to transport problems from one area
of mathematics (via suitable functors) to another area, where solutions are sometimes
easier. For example, algebraic topology can be described as an investigation of topolog-
ical problems (via suitable functors) by algebraic methods.

1.6 DUALITY

The concept of category is well balanced, which allows an economical and useful duality.
Thus in category theory the “two for the price of one” principle holds: every concept is
two concepts, and every result is two results.

The reasons given above show that familiarity with category theory will help those who
are confronted with a new field to detect analogies and connections to familiar fields, to
organize the new field appropriately, and to separate the general concepts, problems and
results from the special ones, which deserve special investigations. Categorical knowledge
thus helps to direct and to organize one’s thoughts.

18th January 2005



2 Foundations

Before delving into categories per se, we need to briefly discuss some foundational as-
pects. In §1 we have seen that in category theory we are confronted with extremely
large collections such as “all sets”, “all vector spaces”, “all topological spaces”, or “all
automata”. The reader with some set-theoretical background knows that these entities
cannot be regarded as sets. For instance, if U were the set of all sets, then the subset
A={z|xz €U and z ¢ z} of U would have the property that A € A if and only if A ¢ A
(Russell’s paradox). Someone working, for example, in algebra, topology, or computer
science usually isn’t (and needn’t be) bothered with such set-theoretical difficulties. But
it is essential that those who work in category theory be able to deal with “collections”
like those mentioned above. To do so requires some foundational restrictions. Neverthe-
less, certain naturally arising categorical constructions should not be outlawed simply
because of the foundational safeguards. Hence, what is needed is a foundation that, on
the one hand, is sufficiently flexible so as not to unduly inhibit categorical inquiry and, on
the other hand, is sufficiently rigid to give reasonable assurance that the resulting theory
is consistent, i.e., does not lead to contradictions. We also require that the foundation be
sufficiently close to those foundational systems that are used by most mathematicians.
Below we provide a brief outline of the features such a foundation should have.

The basic concepts that we need are those of “sets” and “classes”. On a few occasions
we will need to go beyond these and also use “conglomerates”.

2.1 SETS

Sets can be thought of as the usual sets of intuitive set theory (or of some axiomatic
set theory). In particular, we require that the following constructions can be performed
with sets.

(1) For each set X and each “property” P, we can form the set {x € X | P(x)} of all
members of X that have the property P.

(2) For each set X, we can form the set P(X) of all subsets of X (called the power
set of X).

(3) For any sets X and Y, we can form the following sets:
(a) the set {X,Y} whose members are exactly X and Y,

(b) the (ordered) pair (X,Y') with first coordinate X and second coordinate Y,
[likewise for n-tuples of sets, for any natural number n > 2],

(¢) the union X UY ={z|z € X or z € Y},

(d) the intersection X NY = {z|z € X and z € Y},

e) the cartesian product X xY = {(z,y) |z € X and y € Y},
)

(
(

f) the relative complement X \Y ={z|z € X and z ¢ Y},

13



14 Introduction [Chap. 0

(g) the set YX of all functions® f : X — Y from X to Y.
(4) For any set I and any family® (X;);cs of sets, we can form the following sets:
(a) the image {X;|i € I} of the indexing function,
) the union | J;.; X; = {z |z € X; for some i € I},
(c) the intersection (,.; X; = {x|x € X; for all i € I'}, provided that I # (),
) the cartesian product [[,.; X; = {f : I — U;c; Xi| f(i) € X; for each
iel},
(e) the disjoint union |4, ; X; = U, ;(Xi x {i}).
(5) We can form the following sets:
N of all natural numbers,
Z of all integers,
Q of all rational numbers,
R of all real numbers, and

C of all complex numbers.

The above requirements imply that each topological space is a set. [It is a pair (X, 1),
where X is its (underlying) set and 7 is a topology (that is the set of all open subsets
of X);ie., 7€ P(P(X)).] Analogously, each vector space and each automaton is a set.
However, by means of the above constructions, we cannot form “the set of all sets”, or
“the set of all vector spaces”, etc.

2.2 CLASSES

The concept of “class” has been created to deal with “large collections of sets”. In
particular, we require that:

(1) the members of each class are sets,
(2) for every “property” P one can form the class of all sets with property P.

Hence there is the largest class: the class of all sets, called the universe and denoted
by U. Classes are precisely the subcollections of U. Thus, given classes A and B, one
may form such classes as AUB, AN B, and A x B. Because of this, there is no problem
in defining functions between classes, equivalence relations on classes, etc. A family”
(Aj)ier of sets is a function A: I — U (sending i € I to A(i) = A;). In particular, if I
is a set, then (A;);cs is said to be set-indexed [cf. 2.1(4)].

For convenience we require further

2A function with domain X and codomain Y is a triple (X, f,Y), where f C X x Y is a relation such
that for each « € X there exists a unique y € Y with (x,y) € f [notation: y = f(z) or x — f(z)].
Functions are denoted by f : X — Y or X S, ¥. Given functions X 2~ YV and v % Z, the
composite function X 222 Z is defined by x +— g(f(z)).

3For a formal definition of families of sets see 2.2(2).

4One should be aware that a family and its image are different entities and that, moreover, a family
is not determined by its image for essentially the same reason that a sequence (i.e., an N-indexed
family) is not determined by its set of values. A family (A;)icr is sometimes denoted by (A;);.

18th January 2005



Sec. 2] Foundations 15

(3) if X1, Xo,..., X, are classes, then so is the n-tuple (X7, Xo,...,X,), and
(4) every set is a class (equivalently: every member of a set is a set).

Hence sets are special classes. Classes that are not sets are called proper classes. They
cannot be members of any class. Because of this, Russell’s paradox now translates into
the harmless statement that the class of all sets that are not members of themselves
is a proper class. Also the universe U, the class of all vector spaces, the class of all
topological spaces, and the class of all automata are proper classes.

Notice that in this setting condition 2.1(4)(a) above gives us the Axziom of Replacement:
(5) there is no surjection from a set to a proper class.
This means that each set must have “fewer” elements than any proper class.

Therefore sets are also called small classes, and proper classes are called large classes.
This distinction between “large” and “small” turns out to be crucial for many categorical
considerations.’

The framework of sets and classes described so far suffices for defining and investigating
such entities as the category of sets, the category of vector spaces, the category of
topological spaces, the category of automata, functors between these categories, and
natural transformations between such functors. Thus for most of this book we need not
go beyond this stage. Therefore we advise the beginner to skip from here, go directly to
63, and return to this section only when the need arises.

The limitations of the framework described above become apparent when we try to per-
form certain constructions with categories; e.g., when forming “extensions” of categories
or when forming categories that have categories or functors as objects. Since members
of classes must be sets and U is not a set, we can’t even form a class {{/} whose only
member is U, much less a class whose members are all the subclasses of U or all functions
from U to U. In order to deal effectively with such “collections” we need a further level
of generality:

2.3 CONGLOMERATES

The concept of “conglomerate” has been created to deal with “collections of classes”. In
particular, we require that:

(1) every class is a conglomerate,

(2) for every “property” P, one can form the conglomerate of all classes with property
P,

(3) conglomerates are closed under analogues of the usual set-theoretic constructions
outlined above (2.1); i.e., they are closed under the formation of pairs, unions,
products (of conglomerate-indexed families), etc.

5See, for example, Remark 10.33.
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16 Introduction [Chap. 0

Thus we can form the conglomerate of all classes as well as such entities as functions
between conglomerates and families of conglomerates.

Furthermore, we require

(4) the Aziom of Choice for Conglomerates; namely for each surjection between con-
glomerates f : X — Y, there is an injection g : Y — X with f o g =1idy.

In other words, every equivalence relation on a conglomerate has a system of represen-
tatives. Notice that this Axiom of Choice implies an Aziom of Choice for Classes and
also the familiar Aziom of Choice for Sets.

Conglomerates

Classes =
subcollections of
the universe U

Sets =
small classes =
elements of U

The hierarchy of “collections”

A conglomerate X is said to be codable by a conglomerate Y provided that there exists
a surjection Y — X (equivalently: provided that there exists an injection X — Y).
Conglomerates that are codable by a class (resp. by a set) are called legitimate (resp.
small) and will sometimes be treated like classes (resp. sets). For example, {{} is a small
conglomerate, and U U {U} is a legitimate one. Conglomerates that are not legitimate
are called illegitimate. For example, P(Uf) is an illegitimate conglomerate.

Since our main interest lies with such categories as the category of all sets, the category
of all vector spaces, the category of all topological spaces, the category of all automata,
and possible “extensions” of these, no need arises to consider any “collections” beyond
the level of conglomerates, such as the entity of “all conglomerates”.

For a set-theoretic model of the above foundation, see e.g., the Appendix of the mono-
graph of Herrlich and Strecker (see Bibliography), where, in view of the requirement
2.2(3), the familiar Kuratowski definition of an ordered pair (A, B) = {{A},{A, B}}
needs to be replaced by a more suitable one; e.g., by (A,B) = {{{a},{a,0}}|a €

AU {{{o}, {b,1}} [0 € B}

18th January 2005
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Chapter I

CATEGORIES, FUNCTORS, AND
NATURAL TRANSFORMATIONS

In this chapter we introduce the most fundamental concepts of category theory, as well
as some examples that we will find to be useful in the remainder of the text.
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3 Categories and functors

CATEGORIES

Before stating the formal definition of category, we recall some of the motivating exam-
ples from §1. The notion of category should be sufficiently broad that it encompasses

(1) the class of all sets and functions between them,
(2) the class of all vector spaces and linear transformations between them,

)

)
(3) the class of all groups and homomorphisms between them,
(4) the class of all topological spaces and continuous functions between them, and
)

(5) the class of all automata and simulations between them.

3.1 DEFINITION
A category is a quadruple A = (O, hom, id, o) consisting of

(1) aclass O, whose members are called A-objects,

(2) for each pair (A, B) of A-objects, a set hom(A, B), whose members are called
A-morphisms from A to B — [the statement “f € hom(A, B)” is expressed
more graphically® by using arrows; e.g., by statements such as “f: A — B is a

morphism” or “A g, B is a morphism”],

(3) for each A-object A, a morphism A _da, A, called the A-identity on A,

(4) a composition law associating with each A-morphism A L, B and each A-mor-
phism B 2, C an A-morphism A o7, C, called the composite of f and g,

subject to the following conditions:

(a) composition is associative; i.e., for morphisms A g, B, B g, C, and C N D, the
equation ho (go f) = (hog)o f holds,

(b) A-identities act as identities with respect to composition; i.e., for A-morphisms
AL B wehaveidgo f=fand foida = f,

(c) the sets hom(A, B) are pairwise disjoint.

3.2 REMARKS

If A = (O,hom,id, o) is a category, then

(1) The class O of A-objects is usually denoted by Ob(A).

Notice that although we use the same notation f : A — B for a function from A to B (2.1) and for a
morphism from A to B, morphisms are not necessarily functions (see Examples 3.3(4) below).

21
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(2) The class of all A-morphisms (denoted by Mor(A)) is defined to be the union of all
the sets hom(A, B) in A.

(3) If A L, Bisan A-morphism, we call A the domain of f [and denote it by dom(f)]
and call B the codomain of f [and denote it by cod(f)]. Observe that condition
(c) guarantees that each A-morphism has a unique domain and a unique codomain.
However, this condition is given for technical convenience only, because whenever all
other conditions are satisfied, it is easy to “force” condition (c) by simply replacing
each morphism f in hom(A, B) by a triple (A, f, B) (as we did when defining func-
tions in 2.1). For this reason, when verifying that an entity is a category, we will
disregard condition (c).

(4) The composition, o, is a partial binary operation on the class Mor(A). For a pair
(f, g) of morphisms, fo g is defined if and only if the domain of f and the codomain
of g coincide.

(5) If more than one category is involved, subscripts may be used (as in homa (A4, B))
for clarification.

3.3 EXAMPLES

(1) The category Set whose object class is the class of all sets; hom(A, B) is the set
of all functions from A to B, id4 is the identity function on A, and o is the usual
composition of functions.

(2) The following constructs; i.e., categories of structured sets and structure-preserving
functions between them (o will always be the composition of functions and id4 will
always be the identity function on A):

(a)

Vec with objects all real vector spaces and morphisms all linear transformations
between them.

Grp with objects all groups and morphisms all homomorphisms between them.

Top with objects all topological spaces and morphisms all continuous functions
between them.

Rel with objects all pairs (X, p), where X is a set and p is a (binary) relation
on X. Morphisms f: (X,p) — (Y,0) are relation-preserving maps; i.e., maps
f: X — Y such that zpa’ implies f(z)of(2').

Alg(Q) with objects all Q-algebras and morphisms all 2-homomorphisms
between them. Here Q = (n;);er is a family of natural numbers n;, indexed by
a set I. An Q-algebra is a pair (X, (w;);es) consisting of a set X and a family of
functions w; : X™ — X, called n;-ary operations on X. An {2-homomorphism
fo (X, (wi)ier) — (X, (&i)ieg) is a function f: X — X for which the diagram

fri o
wi

Js

X—>f X
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commutes (i.e., fow; = @; o f) for each i € I. In case n; =1 for each i € I,
the symbol ¥ = (n;);cr is usually used instead of €.

Y-Seq with objects all (deterministic, sequential) ¥-acceptors, where ¥ is a
finite set of input symbols. Objects are quadruples (Q, d, qo, F'), where @ is a
finite set of states, § : ¥ x @ — Q@ is a transition map, gy € @ is the initial state,
and F' C (@ is the set of final states.

A morphism f : (Q,9,q, F) — (Q, 0, ¢}, F') (called a simulation) is a function
f: Q — @ that preserves

(i) transitions, i.e., ¢'(o, f(q)) = f((0,q)),
(ii) the initial state, i.e., f(go) = ¢(, and
(iii) the final states, i.e., f[F] C F".

(3) For constructs, it is often clear what the morphisms should be once the objects are
defined. However, this is not always the case. For instance:

(a)

there are at least three natural constructs each having as objects all metric
spaces; namely,

Met with morphisms all non-expansive maps (= contractions),”

Met,, with morphisms all uniformly continuous maps,

Met,. with morphisms all continuous maps.

there are at least two natural constructs each having as objects all Banach
spaces; namely,

Ban with morphisms all linear contractions,”

Ban;, with morphisms all bounded linear maps (= continuous linear maps =
uniformly continuous linear maps).

(4) The following categories where the objects and morphisms are not structured sets
and structure-preserving functions:

(a)

Mat with objects all natural numbers, and for which hom(m,n) is the set of
all real m x n matrices, id, : n — n is the unit diagonal n x n matrix, and
composition of matrices is defined by Ao B = BA, where BA denotes the usual
multiplication of matrices.

Aut with objects all (deterministic, sequential, Moore) automata. Objects are
sextuples (@, 3,Y,0,qo,y), where @ is the set of states, X and Y are the sets of
input symbols and output symbols, respectively, § : X x @@ — (@ is the transition
map, qo € @ is the initial state, and 3y : Q — Y is the output map. Morphisms
from an automaton (Q,X%,Y,d,qo,y) to an automaton (Q', ¥, Y’ ¢, q),vy') are
triples (fg, fs, fy) of functions fo: Q@ - @', fx: ¥ — ¥, and fy : ¥ - Y’
satisfying the following conditions:

7AA function f: (X,d) — (Y,d) is called non-expansive (or a contraction) provided that
d(f(a), f(b)) < d(a,b), for all a,b € X.
8For Banach spaces the distance between a and b is given by || a — b ||.
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(i) preservation of transition: ¢'(fx(0), fo(q)) = fo(d(o,q)),
(i) preservation of outputs: fy(y(q)) =v'(fo(q)),

(ili) preservation of initial state: fg(qo) = ¢

Classes as categories:

Every class X gives rise to a category C(X) = (O, hom,id, o) — the objects of
which are the members of X, and whose only morphisms are identities — as
follows:

0 if x#uy,

] idy, =2, and zox =x.
{z} if z=y,

O =X, hom(z,y) = {

C(0) is called the empty category. C({0}) is called the terminal category
and is denoted by 1.

Preordered classes as categories:

Every preordered class, i.e., every pair (X, <) with X a class and < a reflexive
and transitive relation on X, gives rise to a category C(X, <) = (O, hom,id, o)
— the objects of which are the members of X — as follows:

{(z,y)} if z<y,

id, = (x,2),
0 otherwise, e = (,2)

O =X, hom(x,y)= {
and (y, z) o (z,y) = (z, 2).
Monoids as categories:
Every monoid (M, e, e), i.e., every semigroup (M, e) with unit, e, gives rise to a

category C'(M,e,¢e) = (O, hom,id,0) — with only one object — as follows:

O:{M}, hOl’Il(M,M):M, isze, and Yyoxr =yex.

Set x Set is the category that has as objects all pairs of sets (A, B), as morphisms

from (4, B) to (A’, B’) all pairs of functions (f,g) with A L, A and B L B,
identities given by id(4 p) = (ida,idp), and composition defined by

(f2,92) o (f1,91) = (f2 0 f1,92 0 g1).

Similarly, for any categories A and B one can form A x B, or, more generally, for
finitely many categories C1,Ca,...,C,,, one can form the product category
Ci xCyx---xC,.

3.4 REMARKS

(1) In the cases of classes, preordered classes, and monoids, for notational convenience
we will sometimes not distinguish between them and the categories they determine
in the sense of Examples 3.3(4)(c), (d), and (e) above. Thus, we might speak of a
preordered class (X, <) or of a monoid (M, e, e) as a category.
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(2) Morphisms in a category will usually be denoted by lowercase letters, with uppercase
letters reserved for objects. The morphism h = g o f will sometimes be denoted by

A £, B2 Cor by saying that the triangle

AL>B

N

C

commutes. Similarly, the statement that the square

ALB

h g

CT>D

commutes means that go f =k o h.

(3) The order of writing the compositions may seem backwards. However, it comes
from the fact that in many of the familiar examples (e.g., in all constructs) the
composition law is the composition of functions.

(4) Notice that because of the associativity of composition, the notation

Al B2, c™Dis unambiguous.

THE DUALITY PRINCIPLE

3.5 DEFINITION

For any category A = (O,homa,id, o) the dual (or opposite) category of A is the
category A° = (O, homapop,id, 0°P), where homaor (A, B) = homa (B, A) and f o°P g =
go f. (Thus A and A°P have the same objects and, except for their direction, the same
morphisms.)

3.6 EXAMPLES
(1) If A = (X, <) is a preordered class, considered as a category [3.3(4)(d)], then
A°P = (X, >).

(2) If A = (M, e, e) is a monoid, considered as a category [3.3(4)(e)], then
A°P = (M, e, e), where a ¢ b="bea.

3.7 REMARK

Because of the way dual categories are defined, every statement Saop(X) concerning an
object X in the category A°P can be translated into a logically equivalent statement
S¥(X) concerning the object X in the category A. This observation allows one to
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associate (in two steps) with every property P concerning objects in categories, a dual
property concerning objects in categories, as demonstrated by the following example:

Consider the property of objects X in A:

Pa(X) = For any A-object A there exists exactly one A-morphism f: A — X.

Step 1: In Pa(X) replace all occurrences of A by AP, thus obtaining the property
Paor (X) = For any A°P-object A there exists exactly one A°P-morphism f: A — X.
Step 2: Translate Paop(X) into the logically equivalent statement

PRP(X) = For any A-object A there ezists exactly one A-morphism f: X — A.

Observe that, roughly speaking, Py’ (X) is obtained from Pa(X) by reversing the di-
rection of each arrow and the order in which morphisms are composed. Naturally, in
general, PR’ (X) is not equivalent to P4 (X). For example, the above property Pget(X)
holds if and only if X is a singleton set, whereas the dual property Pgry (X) holds if and
only if X is the empty set.

In a similar manner any property about morphisms’ in categories gives rise to a dual
property concerning morphisms in categories, as demonstrated by the following example:

Consider the property of morphisms A N Bin A:

QA (f) = There exists an A-morphism B <> A with A LT.pga=4a4, 4y (i.e.,
gof=idy)in A.

Step 1: Replace in Qa(f) all occurrences of A by A°P, thus obtaining the property

Qaen(f) =There exists an A°°-morphism B - A with A T.BfA=4a,y
(i.e., go f =idy) in A°P.

Step 2: Translate Qaop(f) into the logically equivalent statement
QW (f) = There exists an A-morphism A S BuwithA LB Lo A=4 4, 4 (i.e.,
f 0g= idA) mn A.

For example, the above property QOget(f) holds if and only if f is an injective function
with nonempty domain or is the identity on the empty set, whereas the dual property
Q%o (f) holds if and only if f is a surjective function.

More complex properties Pa (A, B, ..., f,g,...) that involve objects A, B, ... and mor-
phisms f,g,... in a category A can be dualized in a similar way.

If P = Pa(AB,...,f,g,...) holds for all A-objects A,B,... and all A-morphisms
fs9, ..., then we say that A has the property P or that P(A) holds.

90bserve that if a property concerns morphisms A £, B, then its dual concerns morphisms B EANyY
In particular if a property concerns dom(f), then its dual concerns cod(f).
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The Duality Principle for Categories states

Whenever a property P holds for all categories,
then the property P°P holds for all categories.

The proof of this (extremely useful) principle follows immediately from the facts that
for all categories A and properties P

(1) (A°P)°P = A  and

(2) P°P(A) holds if and only if P(A°P) holds.

For example, consider the property R = Ra(f) = if Pa(dom(f)), then Qa(f), where
P and Q are the properties defined above. One can easily show that R(A) holds for

all categories A, so that by the Duality Principle R°P(A) holds for all categories A,
where!? R (f) = if PR (cod(f)) then QX (f).

HOM

The duality principle

Because of this principle, each result in category theory has two equivalent formulations
(which at first glance might seem to be quite different). However, only one of them needs
to be proved, since the other one follows by virtue of the Duality Principle.

Often the dual concept P°P of a concept P is denoted by “co-P” (cf. equalizers and
coequalizers (7.51 and 7.68), wellpowered and co-wellpowered (7.82 and 7.87), products
and coproducts (10.19 and 10.63), etc.). A concept P is called self-dual if P = P°P.
An example!! of a self-dual concept is that of “identity morphism”.

108ee footnote 4.
1«7 jve dual, laud evil” — E.H.
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Formulation of the duals of definitions and results will be an implied exercise throughout
the remainder of the book. However, we find that it is sometimes instructive to provide
such formulations. When we do so for results, we usually will conclude with the symbol
D] to indicate that the dual result has been stated and proved at an earlier point, so
that (by the Duality Principle) no proof is needed.

ISOMORPHISMS
3.8 DEFINITION

A morphism f: A — B in a category'? is called an isomorphism provided that there
exists a morphism g: B — A with go f =id4 and f o g = idp. Such a morphism g is
called an inverse of f.

3.9 REMARK

It is clear from the above definition that the statement “f is an isomorphism” is self-dual;
i.e., f is an isomorphism in A if and only if f is an isomorphism in A°P.

3.10 PROPOSITION
If f: A— B, g: B— Aand h: B — A are morphisms such that go f = ids and
foh=1idp, then g = h.

Proof: h=idgoh=(gof)oh=go(foh)=goidp=g. 0

3.11 COROLLARY
If g1 and go are inverses of a morphism f, then g = go. O

3.12 REMARK

Due to the above corollary we may speak of the inverse of an isomorphism f. It will be
denoted by f~L.

3.13 EXAMPLES
(1) Every identity id4 is an isomorphism and 1'1121 =idy.

(2) In Set the isomorphisms are precisely the bijective maps, in Vec they are precisely
the linear isomorphisms, in Grp they are precisely the group-theoretic isomorphisms,
in Top they are precisely the homeomorphisms, and in Rel they are precisely the
relational isomorphisms. Observe that in all of these cases every isomorphism is a
bijective morphism, but that the converse to this statement, namely, “every bijective
morphism is an isomorphism”, is true for Set, Vec, and Grp, but not for Rel or
Top.

12From now on, when making a definition or stating a result that is valid for any category, we will
not name the category. Also whenever we speak about morphisms or objects without specifying a
category, we usually mean that they belong to the same category. When more than one category
is involved and confusion may occur, we will use a hyphenated notation, such as A-identity or A-
isomorphism.

18th January 2005



Sec. 3] Categories and functors 29

(3) In Bany[3.3(3)] the isomorphisms are precisely the linear homeomorphisms, whereas
in Ban isomorphisms are precisely the norm-preserving linear bijections.

(4) In Mat the isomorphisms are precisely the regular matrices; i.e., the square matrices
with nonzero determinant.

(5) A morphism (fg, fs, fy) in Aut is an isomorphism if and only if each of the maps
fo, fx, and fy is bijective.

(6) In a monoid, considered as a category, every morphism is an isomorphism if and
only if the monoid is a group.

3.14 PROPOSITION B
(1) If A L, B is an isomorphism, then so is B T A and (fFHt=r.

(2) If A L. Band BL C are isomorphisms, then so is A s, C, and
(gof)t=f"log™"
Proof:

(1). Immediate from the definitions of inverse and isomorphism (3.8).

(2). By associativity and the definition of inverse, we have: (go f)o (f~tog™!) =
go(fofHog™! = goidgog™! = gog™! =idc. Similarly, (ftog= 1 )o(gof) =ida.0

3.15 DEFINITION

Objects A and B in a category are said to be isomorphic provided that there is an
isomorphism f: A — B.

3.16 REMARK

For any category, A, “is isomorphic to” clearly yields an equivalence relation on Ob(A).
[Reflexivity follows from the fact that identities are isomorphisms, and symmetry and
transitivity are immediate from the proposition above.] Isomorphic objects are fre-
quently regarded as being “essentially” the same.

FUNCTORS

In category theory it is the morphisms, rather than the objects, that have the primary
role. Indeed, we will see that it is even possible to define “category” without using the
notion of objects at all (3.53). Now, we take a more global viewpoint and consider cate-
gories themselves as structured objects. The “morphisms” between them that preserve
their structure are called functors.

3.17 DEFINITION

If A and B are categories, then a functor F' from A to B is a function that assigns
to each A-object A a B-object F'(A), and to each A-morphism A YU B-morphism
F(A) FU), F(A’), in such a way that
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(1) F preserves composition; i.e., F(fog) = F(f)o F(g) whenever f o g is defined, and

(2) F preserves identity morphisms; i.e., F(ida) = idp(4) for each A-object A.

3.18 NOTATION

Functors F' from A to B will be denoted by F': A — Bor A L. B. We frequently use
the simplified notations F'A and F'f rather than F(A) and F(f). Indeed, we sometimes
denote the action on both objects and morphisms by

FAL By =ra L FB.

3.19 REMARK

Notice that a functor F': A — B is technically a family of functions; one from Ob(A) to
Ob(B), and for each pair (A, A") of A-objects, one from hom(A4, A") to hom(FA, FA’).
Since functors preserve identity morphisms and since there is a bijective correspondence
between the class of objects and the class of identity morphisms in any category, the
object-part of a functor actually is determined by the morphism-parts. Indeed, we will
see later that if we choose the “object-free” definition of category (3.53), then a functor
between categories can be defined simply as a function between their morphism classes
that preserves identities and composition (3.55).

3.20 EXAMPLES
(1) For any category A, there is the identity functor ida : A — A defined by

(2) For any categories A and B and any B-object B, there is the constant functor
Cp: A — B with value B, defined by

Cp(ALs ay=pB P B

(3) For any of the constructs A mentioned above [3.3(2)(3)] there is the forgetful
functor (or underlying functor) U : A — Set, where in each case U(A) is the
underlying set of A, and U(f) = f is the underlying function of the morphism f.

(4) For any category A and any A-object A, there is the covariant hom-functor
hom(A, —) : A — Set, defined by

hom(A, —)(B - €) = hom(4, B) 22 yom(4, 0)

where hom(A, f)(g) = fog.
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(5) For any category A and any A-object A, there is the contravariant'® hom-functor
hom(—, A) : A° — Set defined on any A°P-morphism'* B RIS by

f

hom(—, A)(B 2= €) = homa (B, 4) 22204,

homay (C, A)

with hom(f, A)(g) = g o f, where the composition is the one in A.

v
B

A forgetful functor

(6) If A and B are monoids considered as categories [3.3(4)(e)], then functors from A
to B are essentially just monoid homomorphisms from A to B.

(7) If A and B are preordered sets considered as categories [3.3(4)(d)], then functors
from A and B are essentially just order-preserving maps from A to B.

(8) The covariant power-set functor P : Set — Set is defined by
PAL B =Pra L. pB

where P A is the power-set of A; i.e., the set of all subsets of A; and for each X C A,
Pf(X) is the image f[X] of X under f.

13Functors are sometimes called covariant functors. A contravariant functor from A to B means a
functor from A°P to B.

1Recall that A°P-objects are precisely the same as A-objects, and B L, Cisan A°P-morphism means

that C' <> B is an A-morphism.
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The contravariant® power-set functor Q : Set®® — Set is defined by
oA L. By=04 2L 0B

where QA is the power-set of A, and for each X C A, Qf(X) is the preimage f~![X]
of X under the function f: B — A.

For any positive integer n the nth power functor 5" : Set — Set is given by

srx Loyy=xn L yn,

where f™"(x1,...,2,) = (f(x1),..., f(zn)).

The Stone-functor S : Top®® — Boo (where Boo is the construct of boolean
algebras and boolean homomorphisms) assigns to each topological space the boolean

algebra of its clopen subsets, and for any continuous map X N Y, i.e., for any
morphism ¥ 1> X in Top®, Sf: S(Y) — S(X) is given by Sf(2) = f~'[Z].

The duality functor for vector spaces (") : Vec®® — Vec associates with any
vector space V' its dual V' (i.e., the vector space hom(V,R) with operations defined

pointwise) and with anyAVec‘)p—morphiAsm v L W, i.e., any linear map W 4, V,
the morphism f : V — W, defined by f(g) =go f.

If M = (M,e,e) is a monoid, then functors from M (regarded as a one-object
category) into Set are essentially just M-actions; i.e., pairs (X, x), where X is a set
and # is a map from M x X to X such that exxz =z and (mem)xx = m=* (Mmx*x).

[Associate with any such M-action (X, x*) the functor F': M — Set, defined by

F(M&M):XMX, where F(m)(x) = m * z.]

PROPERTIES OF FUNCTORS

3.21 PROPOSITION

All functors F: A — B preserve isomorphisms; i.e., whenever A kLA s an A-
isomorphism, then F(k) is a B-isomorphism.

Proof: F(k)oF(k™1) = F(kok™) = F(idy/) = idp . Similarly, F(k~)oF(k) = idp.0

3.22 REMARKS

(1)

Although the above proposition has a trivial proof, it has interesting consequences.
In particular, it can be used to show that certain objects in a category are not
isomorphic. For example, the fundamental group functor can be used to prove that
certain topological spaces are not homeomorphic by showing that their fundamental
groups are not isomorphic.
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(2) Even though all functors preserve isomorphisms, they need not reflect isomor-
phisms (in the sense that if F'(k) is an isomorphism, then k& must be an isomor-
phism). For example, consider the forgetful functor U : Top — Set. The identity
function from the set of real numbers, with the discrete topology, to R, with its
usual topology, is not a homeomorphism (i.e., isomorphism in Top), although its
underlying function is an identity, and thus is an isomorphism in Set.

3.23 PROPOSITION

If F: A — B and G: B — C are functors, then the composite Go F': A — C

defined by

(Ff)

(Gor)a L &)= ara) “HL ara)

. 4
is a functor.”® O

3.24 DEFINITION

(1) A functor F': A — B is called an isomorphism provided that there is a functor
G: B — A suchthat Go F =1ida and F oG = idg.

(2) The categories A and B are said to be isomorphic provided that there is an iso-
morphism F: A — B.

3.25 REMARKS

(1) Obviously the functor G in the above definition is uniquely determined by F'. It will
be denoted by F~!.

(2) Clearly, “is isomorphic to” is an equivalence relation on the conglomerate of all
categories. Isomorphic categories are considered to be essentially the same.

3.26 EXAMPLES

(1) For any pair of classes (X,Y), the categories C(X) and C(Y) [3.3(4)(c)] are isomor-
phic if and only if there exists a bijection from X to Y. A category is isomorphic
to a category of the form C(X) if and only if each of its morphisms is an identity.
Such categories are called discrete.

(2) For any pair ((X,<),(Y,<)) of preordered classes, the categories C(X,<) and
C(Y, <) [3.3(4)(d)] are isomorphic if and only if (X, <) and (Y, <) are order-isomor-
phic. A category is isomorphic to a category of the form C(X, <) if and only if for
each pair of objects (A, B), hom(A, B) has at most one member. Such categories
are called thin.

(3) For any pair (M, N) of monoids, the categories C(M) and C(N) [3.3(4)(e)] are
isomorphic if and only if M and N are isomorphic monoids. A category is isomorphic
to a category of the form C(M) if and only if it has precisely one object.

15Qccasionally, for typographical efficiency, we will use juxtaposition to denote composition of functors,
i.e., GF rather than Go F. When F is an endofunctor, i.e., when its domain and codomain are the
same, we may even use F2 or F to denote F o F or F o F o F, respectively.
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(4) The construct Boo of boolean algebras [3.20(11)] is isomorphic to the construct
BooRng of boolean rings'® and ring homomorphisms.

(5) For any commutative ring R let R-Mod (resp. Mod-R) denote the construct of left
(resp. right) R-modules, and module homomorphisms.'” Then:

(a) R-Mod is isomorphic to Mod-R, for any ring R.

(b) If Z denotes the ring of integers, then Z-Mod is isomorphic to the construct
Ab of abelian groups and group homomorphisms.

(6) For any monoid, M, let M-Act be the category of all M-actions [3.20(13)] and
action homomorphisms [f(m * ) = m * f(x)]. If £* is the free monoid of all words
over ¥, then ¥*-Act is isomorphic to Alg(X) [3.3(2)(e)].

3.27 DEFINITION
Let FF: A — B be a functor.

(1) F is called an embedding provided that F' is injective on morphisms.

(2) F is called faithful provided that all the hom-set restrictions
F: homa (A4, A") — homp(FA,FA)

are injective.
(3) F is called full provided that all hom-set restrictions are surjective.
(4) F is called amnestic provided that an A-isomorphism f is an identity whenever

Ff is an identity.

3.28 REMARK
Notice that a functor is:

(1) an embedding if and only if it is faithful and injective on objects, and

(2) an isomorphism if and only if it is full, faithful, and bijective on objects.

3.29 EXAMPLES

(1) The forgetful functor U : Vec — Set is faithful and amnestic, but is neither full nor
an embedding. This is the case for all of the constructs mentioned above (except, of
course, for Set itself).

(2) The covariant power-set functor P : Set — Set and the contravariant power-set
functor Q : Set°® — Set [3.20(8)(9)] are both embeddings that are not full.

16 A boolean ring is a ring, with unit, in which each element is idempotent with respect to multiplica-
tion.
"Notice that for the ring R of real numbers, R-Mod = Vec.

18th January 2005



Sec. 3] Categories and functors 35

e functor U : et. — Top define
(3) The f U:M Top defined by
U((X,d) L (X, d) = (X, 79) L5 (X', 7a0)
(where 74 denotes the topology induced on X by the metric d) is full and faithful,

but not an embedding.

(4) For any category A, the unique functor from A to 1[3.3(4)(c)] is faithful if and only
if A is thin.

(5) The discrete space functor D : Set — Top defined by
f _ f
DX —Y)=(X,0x) — (Y,dy)

(where 0z denotes the discrete topology on the set Z) is a full embedding.

(6) The indiscrete space functor N : Set — Top defined by
f _ f
NX —=Y)=(X,tx) — (Y,y)

(where 1z denotes the indiscrete topology on the set Z) is a full embedding.

3.30 PROPOSITION
Let F: A — B and G: B — C be functors.

(1) If F and G are both isomorphisms (resp. embeddings, faithful, or full), then so is
GolF.

(2) If Go F is an embedding (resp. faithful), then so is F.
(8) If F is surjective on objects and G o F is full, then G is full.

3.31 PROPOSITION
If F: A — B is a full, faithful functor, then for every B-morphism f: FA — FA',
there exists a unique A-morphism g: A — A’ with Fg = f.

Furthermore, g is an A-isomorphism if and only if f is a B-isomorphism.

Proof: The morphism exists by fullness, and it is unique by faithfulness. Since by
Proposition 3.21 functors preserve isomorphisms, f is an isomorphism if g is. If
f: FA — FA'is a B-isomorphism, let ¢’ : A’ — A be the unique A-morphism with
F(¢) = f~'. Then F(gog) = FgoFg = f~lof = idpa = F(ida), so that by
faithfulness ¢’ o g = id4. Likewise g o ¢’ = id ». Hence ¢ is an isomorphism. O

3.32 COROLLARY

Functors F: A — B that are full and faithful reflect isomorphisms; i.e., whenever g is
an A-morphism such that F(g) is a B-isomorphism, then g is an A-isomorphism. [
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Recall that isomorphic categories are considered as being essentially the same. This
concept of “sameness” is very restrictive. The following slightly weaker and more flexible
notion of “essential sameness” called equivalence of categories is much more frequently
satisfied. It will turn out that equivalent categories have the same behavior with respect
to all interesting categorical properties.

3.33 DEFINITION

(1) A functor F': A — B is called an equivalence provided that it is full, faithful,
and isomorphism-dense in the sense that for any B-object B there exists some
A-object A such that F'(A) is isomorphic to B.

(2) Categories A and B are called equivalent provided that there is an equivalence
from A to B.

3.34 REMARK

It is shown in Proposition 3.36 that “is equivalent to” is an equivalence relation on the
conglomerate of all categories.

3.35 EXAMPLES

(1) Each isomorphism between categories is an equivalence. Hence isomorphic categories
are equivalent.

(2) The category Mat [3.3(4)(a)] is equivalent to the construct of finite-dimensional
vector spaces (and linear transformations), but is not isomorphic to it. The fact
that there is no isomorphism can be deduced from the observation that in Mat
different objects cannot be isomorphic. An equivalence is given by the functor that
assigns to each natural number n € Ob(Mat) the vector space R™ and to each
n X m matrix A € Mor(Mat) the linear map from R" to R™ that assigns to each
(x1,x2,...,2,) € R™ the 1 Xm matrix [z122 ... 2,]A (given by matrix multiplication)
considered as an m-tuple in R™.

(3) The constructs Met,. of metric spaces and continuous maps and Top,,, of metrizable
topological spaces and continuous maps are equivalent. The functor that associates
with each metric space its induced topological space is an equivalence that is not an
isomorphism.

(4) Posets,'® considered as categories, are equivalent if and only if they are isomorphic.
However, preordered sets, considered as categories, can be equivalent without being
isomorphic (cf. Exercise 3H).

(5) The category of all minimal acceptors (i.e., those with a minimum number of states
for accepting the given language), as a full subcategory of ¥-Seq, is equivalent to
the poset of all recognizable languages (ordered by inclusion and considered as a
thin category). In fact, for two minimal acceptors A and A’ there exists at most
one simulation A — A’, and such a simulation exists if and only if A’ accepts each
word accepted by A.

'8 A poset (or partially ordered set) is a pair (X, <) that consists of a set X and a transitive, reflexive,
and antisymmetric relation < on X.
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3.36 PROPOSITION

(1) If A L. Bisan equivalence, then there exists an equivalence B CLA.

HoF

(2) If A L. B and B C are equivalences, then so is A —— C.

Proof:

(1)

For each object B of B, choose an object G(B) of A and a B-isomorphism
ep: F(G(B)) — B. Since F is full and faithful, for each B-morphism g : B — B’
there is a unique A-morphism G(g) : G(B) — G(B’) with

F(G(9)) =ep ocgoep: F(G(B)) — F(G(B)).
Hence G(g) is the unique A-morphism for which the diagram

F(G(g)
—

F(GJB)) F(GjB’)) ()
B . B

commutes. That G preserves identities follows immediately from the uniqueness
requirement in the above diagram. That G preserves composition follows from the
uniqueness, the commutativity of the diagram

FG(B) 2, pas) 2, pasmy)

EBJ J/EB/ lsB”

B g B/ . B//

and the fact that F' preserves composition. Thus G is a functor. G is full because
for each A-morphism f: G(B) — G(B'), the morphism ep/ o F(f)oeyz': B — B’
(which we denote by g) has the property that g oep = ep/ o F(f), and this implies

g
uniqueness for (x)| that f = . is faithful since given B : B’ with
[by for ()] that f = G(g). G is faithful since g =
2
G(g1) = G(g2) = f, an application of (x) yields

g1 =¢€p o F(G(gl)> @] Egl =€p’ o F(f) o Eél — &g’ o F(G(gQ)) Oﬁél = g2.

Finally, GG is isomorphism-dense because in view of Proposition 3.31 for each A-
object A, the B-isomorphism epy : F(G(FA)) — FA is the image of some A-iso-
morphism GFA — A.

By Proposition 3.30 it suffices to show that H o F' is isomorphism-dense. Given a
C-object C, the fact that both F' and H are isomorphism-dense gives a B-object
B, an isomorphism h: H(B) — C, and an A-object A, with an isomorphism
k: F(A) — B. Thus ho H(k) : (H o F)(A) — C is an isomorphism. O
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3.37 REMARK

The concept of equivalence is especially useful when duality is involved. There are
numerous examples of pairs of familiar categories where each category is equivalent to
the dual of the other.

3.38 DEFINITION

Categories A and B are called dually equivalent provided that A°? and B are equiv-
alent.

3.39 EXAMPLES

(1) The construct Boo of boolean algebras is dually equivalent to the construct BooSpa
of boolean spaces (i.e., to the construct of zero-dimensional compact Hausdorff spaces
and continuous maps). An equivalence can be obtained by associating with each
boolean space its boolean algebra of clopen subsets (Stone Duality).

(2) The category of finite-dimensional real vector spaces is dually equivalent to itself.
An equivalence can be obtained by associating with each finite-dimensional vector
space its dual space [cf. 3.20(12)].

(3) Set is dually equivalent to the category of complete atomic boolean algebras and
complete boolean homomorphisms. An equivalence can be obtained by associating
with each set its power-set, considered as a complete atomic boolean algebra.

(4) The category of compact Hausdorff abelian groups is dually equivalent to Ab. An
equivalence can be obtained by associating with each compact Hausdorff abelian
group G its group of characters hom(G, R/Z) (Pontrjagin Duality).

(5) The category of locally compact abelian groups is dually equivalent to itself. An
equivalence can be obtained as in (4) above.

(6) The category HComp of compact Hausdorff spaces (and continuous functions) is
dually equivalent to the category of C*-algebras and algebra homomorphisms. An
equivalence can be obtained by associating with each compact Hausdorff space X
the C*-algebra C (X, C) of complex-valued continuous functions (Gelfand-Naimark
Duality).

3.40 REMARK

Recall that we have formulated a duality principle related to objects, morphisms, and
categories (3.7). We now extend this to functors; i.e., we introduce for any functor
F: A — B, the concept of its dual functor that can be used to formulate the duals of
categorical statements involving functors. The reader may guess as to what the dual
of a categorical statement involving a functor might be. Two common mistakes are to
either do too little (by dualizing just one of the categories A or B) or to do too much
(by even reversing the arrow representing the functor F'). In either of these cases, one
generally does not obtain a new functor. The proper dual concept is the following:
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3.41 DEFINITION

Given a functor F': A — B, the dual (or opposite) functor F°P : A°® — B°P is the

functor defined by

rrA LAy =pa L pa.

3.42 REMARK

Obviously (F°P)°P = F. To form the dual of a categorical statement that involves
functors, make the same statement, but with each category and each functor replaced
by its dual. Then translate this back into a statement about the original categories and
functors.

3.43 PROPOSITION

Each of the following properties of functors is self-dual: “isomorphism”, “embedding”,
“faithful”, “full”, “isomorphism-dense”, and “equivalence”. O

CATEGORIES OF CATEGORIES

We have seen above that functors act as morphisms between categories; they are closed
under composition, which is associative (since it is just the composition of functions be-
tween classes) and the identity functors act as identities with respect to the composition.
Because of this, one is tempted to consider the “category of all categories”. However,
there are two difficulties that arise when we try to form this entity. First, the “category
of all categories” would have objects such as Vec and Top, which are proper classes,
so that since proper classes cannot be elements of classes, the conglomerate of all ob-
jects would not be a class (thus violating condition 3.1(1) in the definition of category).
Second, given any categories A and B, it is not generally true that the conglomerate
of all functors from A to B forms a set. This violates condition 3.1(2) in the definition
of category. However, if we restrict our attention to categories that are sets, then both
problems are eliminated.

3.44 DEFINITION

A category A is said to be small provided that its class of objects, Ob(A), is a set.
Otherwise it is called large.

3.45 REMARK

Notice that when Ob(A) is a set, then Mor(A) must be a set, so that the category
A = (Ob(A), hom, id, o) must also be a set (cf. Exercise 3M).

3.46 EXAMPLES

Mat is small; so are all preordered sets considered as categories, and all monoids con-
sidered as categories. However, Mon, the category of all monoids and monoid homo-
morphisms between them, is not small.

18th January 2005



40 Categories, Functors, and Natural Transformations [Chap. I

3.47 DEFINITION

The category Cat of small categories has as objects all small categories, as morphisms
from A to B all functors from A to B, as identities the identity functors, and as com-
position the usual composition of functors.

3.48 REMARKS
(1) That Cat is indeed a category follows immediately from the facts that

(a) since each small category is a set, the conglomerate of all small categories is a
class, and

(b) for each pair (A,B) of small categories, the conglomerate of all functors from
A to B is a set.

(2) Cat itself is not small. In fact, there are full embeddings from each of the constructs
Set and Mon into Cat (3.3(4)(c) and 3I).

Since (because of size restrictions) we can’t form the category of all categories, and
other naturally occurring entities that we will want to investigate later, we introduce
the concept of “quasicategories”. This is done by freeing the concept of category from
its set-theoretical restrictions:

3.49 DEFINITION

A quasicategory is a quadruple A = (O, hom,id, o) defined in the same way as a
category except that the restrictions that O be a class and that each conglomerate
hom(A, B) be a set are removed. Namely,

(1) O is a conglomerate, the members of which are called objects,

(2) for each pair (A, B) of objects, hom(A, B) is a conglomerate called the conglomerate
of all morphisms from A to B (with f € hom(A, B) denoted by f: A — B),

(3) for each object A, ids : A — A is called the identity morphism on A,

(4) for each pair of morphisms (f : A — B, g: B — C) there is a composite morphism
gof: A—C,

subject to the following conditions:
(a) composition is associative,
(b) identity morphisms act as identities with respect to composition,

(c) the conglomerates hom(A, B) are pairwise disjoint.

3.50 DEFINITION

The quasicategory'® CAT of all categories has as objects all categories, as morphisms
from A to B all functors from A to B, as identities the identity functors, and as com-
position the usual composition of functors.

9Frequently proper quasicategories (see 3.51(2)) will be denoted by all capital letters to distinguish
them from categories.
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3.51 REMARK
(1) Clearly each category is a quasicategory.

(2) CAT is a proper quasicategory in the sense that it is not a category. [Notice that
hom(Set, Set) is not a set.]

(3) Virtually every categorical concept has a natural analogue or interpretation for qua-
sicategories. The names for such quasicategorical concepts will be the same as those
of their categorical analogues. Thus we have, for example, the notions of functor
between quasicategories, equivalence of quasicategories, discrete and thin quasicat-
egories, etc. Because the main object of our study is categories, most notions will
only be specifically formulated for categories. However, we will freely make use of
implied quasicategorical analogues, especially when it allows clearer or more conve-
nient expression. For example, at this point it is clear that an isomorphism between
categories (3.24) is precisely the same as an isomorphism in CAT (3.8). Not every
categorical concept has a reasonable quasicategorical interpretation. An outstand-
ing example of this is the fact that quasicategories in general lack hom-functors into
Set.

(4) Dealing with quasicategories and forming CAT gives us the possibility of applying
category theory to itself. There are advantages to doing this (some of which are
indicated above) as well as certain dangers. One danger is the tendency to want
to form something like the “quasicategory of all quasicategories”. However, to do
so causes a Russell-like paradox that cannot be salvaged within our foundational
system, as outlined in §2. Because our main interest is in categories, as opposed to
quasicategories, we will never need to consider such an entity as the “quasicategory
of all quasicategories”.

OBJECT-FREE DEFINITION OF CATEGORIES

Because of the bijection between the class of objects and the class of identity morphisms
in any category (given by A +— idy) and the fact that identities in a category can be
characterized by their behavior with respect to composition, it is possible to obtain an
“object-free” definition of category. This definition, given below, is formally simpler
than the original one and is “essentially” equivalent to it (3.55). The reason for choosing
the definition given in 3.1 is that it is more closely associated with standard examples
of categories.

3.52 DEFINITION

(1) A partial binary algebra is a pair (X, *) consisting of a class X and a partial
binary operation * on X; i.e., a binary operation defined on a subclass of X x X.
[The value of *(x,y) is denoted by z * y.]

(2) If (X, %) is a partial binary algebra, then an element u of X is called a unit of (X, *)
provided that x * u = & whenever x * u is defined, and u *x y = y whenever u * y is
defined.
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3.53 DEFINITION

An object-free category is a partial binary algebra C = (M, o), where the members
of M are called morphisms, that satisfies the following conditions:

(1) Matching Condition: For morphisms f, g, and h, the following conditions are equiv-
alent:

(a) go f and ho g are defined,
(b) ho(go f) is defined, and
(¢) (hog)o fis defined.

(2) Associativity Condition: If morphisms f, g, and h satisfy the matching conditions,
then ho(go f)=(hog)o f.

(3) Unit Existence Condition: For every morphism f there exist units uc and up of
(M, o) such that uc o f and f oup are defined.

(4) Smallness Condition: For any pair of units (uy, us) of (M, o) the class hom(ug,us) =
{f €M | fou; and ug o f are defined} is a set.

3.54 PROPOSITION
If A is a category, then

(1) (Mor(A),o) is an object-free category, and
(2) an A-morphism is an A-identity if and only if it is a unit of (Mor(A),o).

Proof: (Mor(A),o) is clearly a partial binary algebra, where fog is defined if and only
if the domain of f is the codomain of g. Thus each A-identity is a unit. If A - B is a
unit in (Mor(A),o), then u = woidy = id4, where the first equality holds since id4 is
a A-identity and the second one holds since u is a unit. Thus (2) is established. From
this, (1) is immediate. O

3.55 REMARK

We now have two versions of the concept of category, the “standard” one (3.1), which
is more intuitive and is more easily associated with familiar examples, and the “object-
free” one (3.53), which is more succinctly stated and so, in many cases, more convenient
to use. Next we will see that these two concepts are equivalent. Proposition 3.54 shows
that with every category we can associate an object-free category. Even though this
correspondence is neither injective nor surjective, it provides an equivalence between
the “standard” and the “object-free” definitions of category. This claim can be made
precise as follows:

(1) One can define functors between object-free categories to be functions between their
classes of morphisms that preserve both units (= identities) and composition.

(2) Parallel to the definition of the quasicategory CAT of all categories one can define
the quasicategory CAT,; of all object-free categories and functors between them.
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(3) The correspondence from Proposition 3.54 is the object part of a functor between
the quasicategories CAT and CAT,; that can be shown to be an equivalence in the
sense of Definition 3.33.

In this sense the two concepts of category are essentially the same; i.e., essentially the
same “category theory” will result if one proceeds from either of the two formulations.

EXERCISES

3A. Graphs of Categories

A graph is a quadruple (V, E,d,c) consisting of a set V' (of vertices), a set E (of
(directed) edges), and functions d,c: E — V (giving the domain and codomain of an
edge). A large graph is the same concept except that V and E are allowed to be
classes. The graph G(A) of a category A is the obvious large graph with V"= Ob(A)
and E = Mor(A).

(a) Verify that a thin category is determined up to isomorphism by its graph.
(b) Find two non-isomorphic categories with the same graph.

(¢) Determine which of the following graphs are of the form G(A) for some category A
(where vertices and identity edges are indicated by dots, and non-identity edges are
indicated by arrows).

(1) ¢ —~

(3) o\%/.

(d) Show that for each of the following graphs G there exists up to isomorphism precisely
one category A with G(A) = G.

2 <2>-§8

(e) The free category generated by a graph (V, E, d, ¢) is the category A with Ob(A) =
V, Mor(A) = all paths (= all finite sequences in E in which the domain of each
edge is the codomain of the preceding one), composition is the obvious composition
of paths, and identity morphisms are the empty paths. Verify that A is indeed a
category.
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3B. Pointed Categories

(a) Show that there is a category whose objects are all pairs of the form (A, a), where
Ais aset and a € A and

hom((4,a), (B,b)) = {f|f: A— Band f(a)=b}.

This is called the category of pointed sets (and base-point-preserving functions).
It is denoted by pSet.

(b) Show that there is a faithful functor U : pSet — Set with the property that U(f) =
f for each base-point-preserving function, f. Does U reflect isomorphisms?

(c) Prove that Set and pSet are not equivalent.

(d) Mimic the above construction of the category of pointed sets to obtain the categories
pTop of pointed topological spaces and pGrp of pointed groups. Determine
whether or not Top and pTop (resp. Grp and pGrp) are equivalent or isomorphic.

3C. Alternative Definition of Category

Define a category of type 2 to be a quintuple A = (O, M, dom, cod, o) consisting of
(1) a class O, of A-objects,

(2) a class M, of A-morphisms,

(3) functions dom : M — O and cod : M — O, assigning to each morphism its domain
and codomain, and

(4) a function o from D = {(f,g9)| f,g € M and dom(f) = cod(g)} to M [with o(f, g)
written f o g|,

subject to the following conditions:
(a) If (f,g) € D, then dom(f o g) = dom(g) and cod(f o g) = cod(f).
(b) If (f,g) and (h, f) belong to D, then ho (fog)= (ho f)og.
(c) For each A € O there exists a morphism e such that dom(e) = A = cod(e) and
(1) foe= f whenever (f,e) € D, and
(2) eog =g whenever (e,g) € D.
(d) For any (A, B) € O x O, the class
{f1feM,dom(f)=A, and cod(f)= B}

is a set.

Compare the definition of category of type 2 with that of category (3.1) and object-
free category (3.53) and determine in which sense these definitions can be considered
“equivalent”.

If functors between categories of type 2 are defined to be functions between their mor-
phism classes that preserve identities and composition, show that the quasicategory
CAT; of categories of type 2 and functors between them is equivalent to CAT and to
CAT,;.
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3D. Identities
(a) Show that whenever A = (O,hom,id, o) and A* = (O, hom,id*, o) are categories,
then A = A*.

(b) A functor F is said to reflect identities provided that if F'(k) is an identity then
k must be an identity. Show that every isomorphism between categories reflects
identities, but that not every equivalence does.

3E. Duality
(a) Show that none of the following categories is dually equivalent to itself: Set, Vec
(but compare 3.39(2)), Grp, Top, Rel, Pos.

(b) Determine whether or not the category of finite sets is dually equivalent to itself.

(c) Establish the following consequence of the duality principle:
If § is a categorical statement, then S holds for all categories satisfying
property P if and only if S°P holds for all categories satisfying PP.

3F. Isomorphisms

(a) Describe the isomorphisms in each of the categories Met, Met,,, and Met,.

(b) Show that a monoid is a group if and only if, considered as a category, each of its
morphisms is an isomorphism.

3G. Functors

(a) Consider the category A with exactly one object A, with hom(A, A) = {a,b}, and
with composition defined by aoa =a and aob=boa =bob =b. Consider further
the category B with exactly one object B, with hom(B, B) = {b}, and with bob = b.
Let F be defined by F(B) = A, F(b) =b. Is F: B — A a functor?

(b) Show that a category A is thin (resp. empty) if and only if every functor with domain
A is faithful (resp. full).

3H. Equivalences

(a) Show that none of the following categories is equivalent to any of the others: Set,
Vec, Grp, Top, Rel, Pos.

(b) Show that two posets (resp. monoids), considered as categories, are equivalent if and
only if they are isomorphic.

(c) Show that, considered as categories, every preordered set is equivalent to a poset,
and that a preordered set is isomorphic to a poset if and only if it is a poset itself.

(d) Show that an equivalence is an embedding if and only if it reflects identities.

(e) Prove that categories A and B are isomorphic if and only if there exists an equiva-
lence E : A — B such that for each A-object A the number of isomorphic copies of
A in A coincides with the number of isomorphic copies of E(A) in B.
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31
Show that there is a full embedding from the category Mon of monoids into Cat.

3J.

Show that there is a covariant power-set functor R : Set — Set that is different from
the one given in Example 3.20(8): such that on objects A, RA is the power set of A,

and on functions A 1> B, (Rf)(X) = {be B|f~'(b) C X }.

3K. Comma Categories

AL Cand B-% C are functors, then the comma category (F | G) is the
category whose objects are triples (A, f,B) with A € Ob(A), B € Ob(B), and

FA L. cBe Mor(C); whose morphisms from (A, f, B) to (4’, f’, B") are pairs (a,b)
with A %+ A’ € Mor(A), and B 2. Be Mor(B) such that the square

FA-I% par

T

GB—5 GB’

commutes; whose identities are id(4 r ) = (idg,idp); and whose composition is defined
componentwise, i.e., by (@,b) o (a,b) = (@oa,bob).

(a) Verify that (F' | G) is indeed a category.

(b) For any category A and any A-object K, denote by Cx : 1 — A the constant

functor with value K. Give explicit descriptions of

e the comma category (ida | Ck), also denoted by (A | K) and called the
category of objects over K,

e the comma category (Ck | ida), also denoted by (K | A) and called the
category of objects under K,

e the comma category (ida | ida), also denoted by A2 and called the arrow
category of A.

(c) Show that (A | K)°P = (K | A°P).

(d) Show that if P is a singleton set, then (P | Set) is isomorphic with pSet (cf.
Exercise 3B).

3L. Quasicategories as Objects

Show that one may not form the “quasicategory of all quasicategories”. [Hint: Russell’s
paradox].

3M. Small Categories

Let A be a category whose object-class is a set. Show that (a) — (d) below are true.
[Hint: see 2.1.]
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a) Mor(A) ={hom(A, B)|(A,B) € Ob(A) x Ob(A)} is a set.
b) hom : Ob(A) x Ob(A) — P(Mor(A)) is a set.
(¢) o C Mor(A) x Mor(A) x Mor(A) is a set.

(d) A is a set.

(
(

3N. Decompositions of Functors

Let A - B be a functor. Show that

(a) There exist functors A ¢, Cand ¢ 2 B with the following properties:
(1) F=HoQG,
(2) G is full and bijective on objects,

(3) H is faithful,

(4) whenever A £, B A5 C L Band His faithful, then there exists a

unique functor C X, C, such that the diagram

A—%scC (%)
At
C—B

commutes, i.e., G = KoG and H=Ho K.
(b) There exist functors A 9, C and C 2 B with the following properties:
(1) F=HoQG,
(2) G is bijective on objects,
(3) H is full and faithful,
(4) whenever A LB =A -5 C - Band T is full and faithful, then there

exists a unique functor C X, T such that the diagram (x) above commutes.
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4 Subcategories

In §3 we have seen several instances where one category is included in another (Ab
in Grp, HComp in Top, etc.). In this section we investigate this phenomenon more
thoroughly.

4.1 DEFINITION

(1) A category A is said to be a subcategory of a category B provided that the
following conditions are satisfied:

(a) Ob(A) C Ob(B),

(b) for each A, A’ € Ob(A), homa (A, A") C homp(A, A"),

(c) for each A-object A, the B-identity on A is the A-identity on A,
)

(d) the composition law in A is the restriction of the composition law in B to the
morphisms of A.

(2) A is called a full subcategory of B if, in addition to the above, for each
A, A" € Ob(A), homa (A, A") = homp (A, 4').

4.2 REMARKS

(1) Because of the nature of full subcategories, a full subcategory of a category B can
be specified by merely specifying its object class within B.

(2) Notice that conditions (a), (b), and (d) of part (1) of the definition do not imply
(c). (See Exercise 4A.)

(3) If F: A — B is a full functor or is injective on objects, then the image of A under
F' is a subcategory of B. However, for arbitrary functors F': A — B, the image of

A under F need not be a subcategory of B. Consider, e.g., a functor from :::
o — e
to \(J.
[

4.3 EXAMPLES
(1) For any category A, the empty category and A itself are full subcategories of A.

(2) The class of all Hausdorff spaces specifies the full subcategory Haus of Top; likewise,
all Tychonoff spaces (i.e., completely regular 77 spaces) yields a full subcategory
Tych of Haus; and HComp is a full subcategory of Tych.

(3) The class of all preordered sets (i.e., all sets supplied with a reflexive and transitive
relation) determines a full subcategory Prost of Rel. The class of all partially
ordered sets (i.e., all sets supplied with a reflexive, transitive and antisymmetric
relation) determines a full subcategory Pos of Prost. The category Lat that consists
of all lattices (i.e., all partially ordered sets for which each pair of elements has a
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()
(6)

meet and a join) together with all lattice homomorphisms (i.e., all maps preserving
meets and joins of pairs) is a nonfull subcategory of Pos. The category JCPos of
complete lattices and join-preserving maps is a nonfull subcategory of Pos. The
category CLat of complete lattices and meet- and join-preserving maps is a nonfull
subcategory of JCPos that has the same objects as JCPos.

The category Grp of groups is a full subcategory of the construct Mon that con-
sists of all monoids (i.e., semigroups with unit) and monoid homomorphisms (i.e.,
unit-preserving semigroup homomorphisms). Mon is a nonfull subcategory of the
construct Sgr of all semigroups and semigroup homomorphisms.

Ban is a nonfull subcategory of Bany, that has the same class of objects.

The subcategories of a monoid M, considered as a category, are precisely the empty
category and the submonoids of M.

4.4 REMARK

For every subcategory A of a category B there is a naturally associated inclusion
functor F : A — B. Moreover, each such inclusion is

(1)
(2)

an embedding;

a full functor if and only if A is a full subcategory of B.

As the next proposition shows, inclusions of subcategories are (up to isomorphism)
precisely the embedding functors and (up to equivalence) precisely the faithful functors.

o0¢—po

T/

A full embedding

4.5 PROPOSITION
(1) A functor F: A — B is a (full) embedding if and only if there exists a (full)

subcategory C of B with inclusion functor E: C — B and an isomorphism
G: A—Cuwith F=FEo(G.

(2) A functor F: A — B is faithful if and only if there exist embeddings E1 : D — B

and Ey: A — C and an equivalence G : C — D such that the diagram

A-—L5B

CTD
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commutes.

Proof:
(1). One direction is immediate and the other is a consequence of the fact that (full)
embeddings are closed under composition.

(2). One direction follows from the compositive nature of faithful functors. To show,
conversely, that every faithful functor can be decomposed as stated, let £ : D — B
be the inclusion of the full subcategory D of B that has as objects all images (under
F) of A-objects. Let C be the category with Ob(C) = Ob(A), with

homg(A, A') = hompg(FA, FA),

and with identities and composition defined as in B. C is easily seen to be a
category. Now define functors Fo: A — Cand G: C — D by

ByAL A=A 4 and G(c L) =FC L RO
Then Fs is an embedding, G is an equivalence, and F' = Fj o GG o FEs. O

4.6 DEFINITION

A category A is said to be fully embeddable into B provided that there exists a full
embedding A — B, or, equivalently, provided that A is isomorphic to a full subcategory
of B.

4.7 EXAMPLES

Although it is far from easy to prove (see the monograph Pultr-Trnkova in the Refer-
ences), each category of the form Alg(Q) is fully embeddable into each of the following
constructs:

(a) Sgr,
(b) Rel,
(c) Alg(1,1), i.e., the construct of unary algebras on two operations.

Under an additional set-theoretical hypothesis (the non-existence of measurable cardi-
nals), every construct is fully embeddable into Sgr (or Rel or Alg(1,1)).

4.8 REMARK

Because full subcategories are determined by their object classes, they are often regarded
as “properties of objects”. Since most of the interesting properties P satisfy the condition
that whenever an object A has property P then every object isomorphic to A also has
P, we often require that full subcategories have the property (defined below) of being
isomorphism-closed.

4.9 DEFINITION
A full subcategory A of a category B is called
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(1) isomorphism-closed provided that every B-object that is isomorphic to some
A-object is itself an A-object,

(2) isomorphism-dense provided that every B-object is isomorphic to some A-object.

4.10 REMARK

If A is a full subcategory of B, then the following conditions are equivalent:
(1) A is an isomorphism-dense subcategory of B,

(2) the inclusion functor A — B is isomorphism-dense,

(3) the inclusion functor A — B is an equivalence.

4.11 EXAMPLE

The full subcategory of Set with the single object N (of natural numbers) is neither
isomorphism-closed nor isomorphism-dense in Set. It is equivalent to the isomorphism-
closed full subcategory of Set consisting of all countable infinite sets.

There are instances when one wishes to consider full subcategories in which different
objects cannot be isomorphic:

4.12 DEFINITION

A skeleton of a category is a full, isomorphism-dense subcategory in which no two
distinct objects are isomorphic.

4.13 EXAMPLES
(1) The full subcategory of all cardinal numbers is a skeleton for Set.

(2) The full subcategory determined by the powers R™, where m runs through all
cardinal numbers, is a skeleton for Vec.

4.14 PROPOSITION
(1) Every category has a skeleton.

(2) Any two skeletons of a category are isomorphic.

(8) Any skeleton of a category C is equivalent to C.

Proof:
(1). This follows from the Axiom of Choice [2.3(4)] applied to the equivalence relation
“is isomorphic to” on the class of objects of the category.

(2). Let A and B be skeletons of C. Then each A-object A is isomorphic in C to a
unique B-object. Denote the latter by F(A) and choose for each A-object A a
C-isomorphism f4 : A — F(A). Then the functor F': A — B defined by:

1

hoAy=FA A I ey

F(A—

is an isomorphism.
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. The inclusion of a skeleton of C into C is an equivalence. (See 4.10(2).) O

4.15 COROLLARY
Two categories are equivalent if and only if they have isomorphic skeletons. O

REFLECTIVE AND COREFLECTIVE SUBCATEGORIES

4.16 DEFINITION
Let A be a subcategory of B, and let B be a B-object.

(1)

(2)

An A-reflection (or A-reflection arrow) for B is a B-morphism B — A from B
to an A-object A with the following universal property:

for any B-morphism B 7, A’ from B into some A-object A’, there exists a unique

A-morphism f’: A — A’ such that the triangle
B—— A
N
A
commutes.

By an “abuse of language” an object A is called an A-reflection for B provided that
there exists an A-reflection B — A for B with codomain A.

A is called a reflective subcategory of B provided that each B-object has an
A-reflection.

4.17 EXAMPLES

Several familiar constructions in mathematics such as certain “completions”, certain
formations of “quotients”, and certain “modifications” of structures can be regarded in
a natural way as reflections. Here we list a few such examples of reflective subcategories
A of categories B. In every example except the last two, A is a full subcategory of B.

A.

Modifications of the Structure

(1) Making a relation symmetric: B = Rel, A = Sym, the full subcategory of sym-

metric relations. (X, p) x, (X,pUp 1) is an A-reflection?’ for (X, p).

(2) Making a topological space completely regular: B = Top, A = the full subcategory

of completely regular (not necessarily 77) spaces. If (X, 7) is a topological space,
then the collection of all cozero sets?! in (X, 7) is a base for a topology 7. on X.

(X,7) x, (X, 7.) is an A-reflection for (X, 7).

20p

“t=A{(y,2)| (x,y) € p}.

21 4 is called a cozero set in (X, 7) provided that there is a continuous map f: (X,7) — R with

A=X— fH{o}.
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B. Improving Objects by Forming Quotients

(3)

Making a preordered set partially ordered: B = Prost (preordered sets and order-
preserving maps), A = Pos. If (X, <) is a preordered set, define an equivalence
relation . on X by: z~y < (r<y and y<x). Let p: X — X/ = be the
canonical map. Then (X, <) 2 (X/ ~, (p x p)[<]) is an A-reflection for (X, <).

Making a group abelian: B = Grp, A = Ab. Let G be a group and let G’ be the
commutator subgroup of G. Then the canonical map G — G/G’ is an A-reflection
for G.

Making a topological space Tj: B = Top, A = Top,, the full subcategory con-
sisting of all Ty spaces. Let X be a topological space, and let ~ be the equivalence
relation on X, given by: z &y < the closure of {x} = the closure of {y}. Then
the canonical map X — X/ & is an A-reflection for X.

Making an abelian group torsion-free: B = Ab, A = TfAb, the full subcategory
of torsion-free abelian groups. Let G be an abelian group and let T'G be the torsion
subgroup of G. Then the canonical map G — G /TG is an A-reflection for G.

Making a reachable acceptor minimal: B = the full subcategory of ¥-Seq consist-
ing of all reachable acceptors (i.e., those for which each state can be reached
from the initial one by an input word), A = the full subcategory of B consisting of
all minimal acceptors (i.e., those reachable acceptors with the property that no
two different states are observably equivalent. The observability equivalence =
on a reachable acceptor B is given by: ¢ &~ ¢’ provided that whenever the initial
state of B is changed to ¢, the resulting acceptor recognizes the same language as it
does when the initial state is changed to ¢'). Then the canonical map B — B/ =,
where B/ = is the induced acceptor on the set of all ~-equivalence classes of states
of B, is an A-reflection for B.

C. Completions

(8)

(9)

(10)

B = Met,(metric spaces and uniformly continuous maps) or Met(metric spaces
and non-expansive maps), A = the full subcategory of complete metric spaces. In
either case the metric completion (X, d) — (X*,d*) is an A-reflection for (X, d).

B = Tych, A = HComp. If X is a Tychonoff space, then the Cech-Stone com-
pactification X — (X is an A-reflection for X.

B = JPos (posets and join-preserving maps), A = JCPos. Let (B, <) be a poset,
and let B* be the collection of all subsets S of B that satisfy

(a) S is an lower-set, i.e., be Sand bt/ <b=1¥b €S,

(b) S is closed under the formation of all existing joins, i.e., if A C S and b is the
join of A in (B, <), then b€ S.

Then (B*,C) is a complete lattice, and the function

(B,<) — (B*,C), defined by b+ {x € B|z <b}
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is an A-reflection for (B, <). Note that these A-reflections differ, in general, from
the Mac Neille completions. For example, an A-reflection for a 3-element discrete
poset is an 8-element complete lattice, whereas the Mac Neille completion is a
5-element one.

(11) B = Pos, A = the nonfull (!) subcategory JCPos. Let (B, <) be a poset and let
B be the collection of all lower-sets S of B [cf. (10)(a)]. Then (B, C) is a complete
lattice and the function (B, <) — (B, C) defined as in (10) is an A-reflection.

(12) B = Sgr, A = the nonfull (!) subcategory Mon. If (X,e) is a semigroup, then
the extension (X,e) — (X U {e}, e, e), obtained by adding a unit element e ¢ X
of the operation e, is an A-reflection for (X, e).

4.18 REMARK

Observe that in the last two examples given above, the reflection arrows are never
surjective. This fact may seem surprising since in each of the other examples each
A-reflection arrow for an A-object is an isomorphism. It is not surprising, however, in
view of Proposition 4.20.

4.19 PROPOSITION

Reflections are essentially unique, i.e.,

(1) if B s Aand B A are A -reflections for B, then there exists an A-isomorphism
k: A — A such that the triangle

commutes,

(2) if B = A is an A-reflection for B and A k., A s an A-isomorphism, then

kor

B A s an A-reflection for B.

Proof:
(1). The existence of a morphism k with # = kor follows from the definition of reflection

and the fact that A is an A-object. Similarly there is a morphism & with r = k o 7.
Now (/%ok:) or =r =1d4or, so that by the uniqueness requirement in the definition
of reflection, ko k = id4. Analogously, one can see that ko k= id 5, so that k is an
isomorphism.

(2). Obvious. O

4.20 PROPOSITION

If A is a reflective subcategory of B, then the following conditions are equivalent:

(1) A is a full subcategory of B,
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(2) for each A-object A, A A, A s an A -reflection,

(8) for each A-object A, A-reflection arrows A LA, A* are A-isomorphisms,

(4) for each A-object A, A-reflection arrows A LA, A* are A-morphisms.

Proof: That (1) = (2) = (3) = (4) is clear. To see that (4) = (1), let A L, A bea
B-morphism between A-objects. By the definition of reflection there is an A-morphism
A* L A" with f = fors. Thus f is the composite of A-morphisms, and so must be

an A-morphism. O

4.21 REMARK

There exist nonfull reflective subcategories A of B such that every A-reflection arrow is
a B-isomorphism; e.g., let A=e — e and B=e Z e.

4.22 PROPOSITION

Let A be a reflective subcategory of B, and for each B-object B let rg: B — Ap be
an A-reflection arrow. Then there exists a unique functor R: B — A such that the
following conditions are satisfied:

(1) R(B) = Ap for each B-object B,
(2) for each B-morphism f: B — B’, the diagram

B—24 R(B)
fl JR(f)
B’ — R(B’)
commutes.

Proof: There exists a unique function R on objects satisfying (1) and (by the definition
of A-reflection arrows) a unique function R on morphisms satisfying (2). It remains to
be shown that R is a functor, i.e., that R preserves identities and composition. The first
fact follows from the commutativity of the diagram

B
B—RB

B—-*RB
and the second one from the commutativity of the diagram

B—24+RB

gofl leoRf

B// N RB//

B

obtained by pasting together the corresponding diagrams for B L, B and B' 4 B'.0
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4.23 DEFINITION

A functor R: B — A constructed according to the above proposition is called a reflec-
tor for A.

4.24 REMARK

If A is a reflective subcategory of B, then a reflector for A depends upon the choice
of the reflection arrows. Hence, there are usually many different reflectors for A. In
Proposition 6.7 we will see that any two such reflectors are essentially the same; i.e.,
they will turn out to be “naturally isomorphic”.

The dual of the concept reflective subcategory is coreflective subcategory. That is, A
is a coreflective subcategory of B if and only if AP is a reflective subcategory of B°P.
Although each of the above statements is an adequate definition, to aid the reader
we provide a detailed dual formulation that doesn’t involve the dual categories. We
occasionally provide such explicit dual formulations although, strictly speaking, to do so
is redundant.

4.25 DEFINITION
Let A be a subcategory of B and let B be a B-object.

(1) An A-coreflection (or A-coreflection arrow) for B is a B-morphism A < B
from an A-object A to B with the following universal property:

for any B-morphism A’ ., B from some A-object A’ to B there exists a unique
A-morphism f’: A’ — A such that the triangle

commutes.

By an “abuse of language” an object A is called an A-coreflection for B provided
that there exists an A-coreflection A — B for B with domain A.

(2) A is called a coreflective subcategory of B provided that each B-object has an
A-coreflection.

4.26 EXAMPLES

Several mathematical constructions such as certain “modifications” of structures and
certain “selections” of convenient subobjects can be regarded in a natural way as core-
flections. Here we list a few examples of full coreflective subcategories A of categories
B.

A. Modifications of the Structure
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(1) Making a relation symmetric: B = Rel, A = Sym. (X,pNp™1) x, (X,p) is
an A-coreflection for (X, p).
This example shows one of the rare instances where a subcategory is simultaneously
reflective and coreflective [cf. 4.17(1)].

(2) Making a topological space sequential: B=Top, A= the full subcategory of sequen-
tial spaces (i.e., spaces in which every sequentially closed set is closed). If (X, 7)
is a topological space, then 7/ = {A C X | X \ A is sequentially closed in (X, 7)}

is a topology on X and (X, 1) Hx, (X, 7) is an A-coreflection for (X, 7).
B. Sorting Out Convenient Subobjects

(3) Making an abelian group a torsion group: B = Ab, A = the full subcategory of
abelian torsion groups. For any abelian group G the canonical embedding TG — G
of the torsion-subgroup T'G of G into G is an A-coreflection for G.

(4) Making a sequential acceptor reachable: B = ¥-Seq, A = the full subcategory of
reachable acceptors. For any acceptor A the canonical embedding RA — A of the
acceptor RA, formed by removing from the state set of A all states that cannot be
reached from the initial state, is an A-coreflection for A. Thus a minimalization
of sequential acceptors is obtained in two steps: first the coreflection, which yields
a reachable acceptor, and then the reflection, which gives the minimal quotient of
the reachable part [cf. 4.17(7)].

4.27 PROPOSITION

If A is a coreflective subcategory of B and for each B-object B, Ag —2+ B is an A-
coreflection arrow, then there exists a unique functor C': B — A (called a coreflector
for A) such that the following conditions are satisfied:

(1) C(B) = Ap for each B-object B,
(2) for each B-morphism f: B — B’ the diagram

C(B)-2 B
c(f) Jf
C(B) o, — B
commutes. @ 22

Suggestions for Further Reading

Herrlich, H. Topologische Reflexionen und Corefiexionen. Lecture Notes in Mathemat-
ics, Vol. 78, Springer, Berlin—Heidelberg—New York, 1968.

223ee Remark 3.7.
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Banaschewski, B., and E. Nelson. Completions of partially ordered sets. SIAM J.
Comp. 11 (1982): 521-528.

Kelly, G. M. On the ordered set of reflective subcategories. Bull. Austral. Math. Soc.
36 (1987): 137-152.

Tholen, W. Reflective subcategories. Topol. Appl. 27 (1987): 201-212.

EXERCISES

4A. Subcategories and Identities

Consider the categories A and B described in Exercise 3G(a). If A = B, then is B a
subcategory of A?

4B. Isomorphism-Closed Subcategories

A (not necessarily full) subcategory A of a category B is called isomorphism-closed
provided that every B-isomorphism with domain in A belongs®® to A. Show that every
subcategory A of B can be embedded into a smallest isomorphism-closed subcategory
A’ of B that contains A. The inclusion functor A — A’ is an equivalence iff all B-
isomorphisms between A-objects belong to A.

4C. Full Subcategories

(a) Show that a category is discrete if and only if each of its subcategories is full.

(b) Show that in a poset, considered as a category,
e every subcategory is isomorphism-closed,
e every (co)reflective subcategory is full.

4D. Reflective Subcategories of Special Categories

* (a) Show that Set has

e precisely three full, isomorphism-closed, reflective subcategories,
e precisely two full, isomorphism-closed, coreflective subcategories,
e infinitely many reflective subcategories,
e infinitely many coreflective subcategories.

*(b) Show that HComp has precisely two full, isomorphism-closed, coreflective subcat-
egories.

(c) Show that a full subcategory A of a poset B, considered as category, is reflective
in B if and only if for each element b of B the set {a € A|b < a} has a smallest
element.

Z30Observe that if a morphism belongs to A, so does its domain and its codomain.
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(d) Consider the poset of natural numbers as a category, B. Verify that a subset A of
B, considered as full subcategory of B, is

e reflective in B if and only if A is infinite,
e coreflective in B if and only if 0 € A.

(e) Show that no finite monoid, considered as a category, has a proper reflective sub-
category. However, if A is the monoid of all maps from N into N, considered as
a category, then the subcategory of A, consisting of all maps f: N — N with
f(0) =0, is reflective in A.

(f) Show that the (nonfull) subcategory A of Pos, consisting of those posets for which
every nonempty subset has a meet, and those morphisms that preserve meets of

nonempty subsets, is reflective in Pos. For a poset A, A . Ais an A-reflection if
and only if A is well-ordered.

(g) Verify that the category e — e has no proper reflective subcategory.

4E. Subcategories That Are Simultaneously Reflective and Coreflective

(a) Show that in Rel the full subcategory of symmetric relations is both reflective and
coreflective. What about the full subcategory of reflexive relations, ..., or of transi-
tive relations?

(b) Verify that in Alg(1), the category of unary algebras on one operation, all idempo-
tent algebras form a full subcategory that is both reflective and coreflective.

(c) Show that the poset of natural numbers, considered as a category, has infinitely many
isomorphism-closed subcategories that are simultaneously reflective and coreflective.
[Cf. 4D(c).]

*(d) Show that neither Set nor Top has a proper isomorphism-closed full subcategory
that is both reflective and coreflective. What about nonfull isomorphism-closed
subcategories of Set?

4F. Intersections of Reflective Subcategories

(a) Show that in the poset of natural numbers, considered as a category B, the fol-
lowing hold:

e the intersection of any nonempty family of coreflective subcategories of B is
coreflective in B,

e every full subcategory of B is an intersection of two reflective full subcate-
gories of B.

*(b) Let BiTop be the construct of bitopological spaces (i.e., triples (X, 71, 72), where 7
and 79 are topologies on X) and bicontinuous maps (i.e., maps that are separately
continuous with respect to the first topologies and with respect to the second
topologies). Verify that the full subcategory B; that consists of all bitopological
spaces with 7 compact Hausdorff is reflective in BiTop. By symmetry the full
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subcategory Bs that consists of all bitopological spaces with 7 compact Hausdorff
is also reflective in BiTop. Show, however, that BiComp = B; N B, is not
reflective in BiTop. [Hint: A space (X, 71, 72), where X is infinite and 71 and 7
are discrete, has no reflection arrow.|

*(c) Let PsTop be the construct of pseudotopological spaces (i.e., pairs (X, ), where
X is a set and « is a function that assigns to each ultrafilter on X a subset of
X, in such a way that for each point z € X, x € a(z) [where z is the ultrafilter

of all supersets of {z}]) and continuous maps (i.e., functions (X, a) EN (Y, 5)
having the property that for each x € o(F) it follows that f(x) € B(f(F)), where
f(F) ={M C Y|f}[M] € F}). Verify that the full subcategory of PsTop
consisting of all compact Hausdorff spaces, i.e., all spaces (X, a) with the property
that each «(F) is a singleton set, is not reflective even though it is an intersection
of a class of full reflective subcategories. [Hint: Let By be the subcategory that
consists of all (X, «) such that «(F) is a singleton whenever some member of F is
a set of cardinality less than k.]

4G. Subcategories of Subcategories

Let A be a subcategory of B and B be a subcategory of C. Prove that

(a) A is a subcategory of C,

(b) if A is reflective in B and B is reflective in C, then A is reflective in C,

(c) if A is reflective in C and B is a full subcategory of C, then A is reflective in B,

(d) if A is reflective in C, then A need not be reflective in B. [Construct an example.]

4H. Reflectors

(a) Let A be a reflective subcategory of B. Show that if A is full in B, then there exists
a reflector R: B — A with Ro E o R = R. Does the converse hold?

(b) Let A be the full subcategory of Vec consisting of all one-element vector spaces.
Verify that A is simultaneously reflective and coreflective in Vec, and every functor
from Vec to A is simultaneously a reflector and a coreflector.

41. Skeletons

Given two skeletons of a category A, show that there is an isomorphism A — A that
restricts to an isomorphism between the skeletons.

4J. Universal Categories

Does there exist a category A such that every category can be fully embedded into A?

4K. Full Embeddability

Show that

(a) Prost is fully embeddable into Top as a coreflective subcategory,
(b) Alg(1) is fully embeddable into Rel as a reflective subcategory,
(c) ¥-Seq is fully embeddable into Aut.
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5 Concrete categories and concrete func-
tors

As we have seen, many familiar categories such as Vec and Top are constructs (i.e.,
categories of structured sets and structure-preserving functions between them). If we
regard such constructs as purely abstract categories (as we have done so far), some
valuable information (concerning underlying sets of objects and underlying functions of
morphisms) is lost. Fortunately, category theory enables us to retain this information by
providing a means for a formal definition of construct — a construct being a pair (A, U)
consisting of a category A and a faithful functor U : A — Set. A careful analysis reveals
that, for instance, many of the interesting properties of the constructs of vector spaces
and topological spaces are not properties of the corresponding abstract categories Vec
and Top but rather of the corresponding constructs (Vec,U) and (Top, V'), where U
and V denote the obvious underlying functors. In fact, they are often properties of just
the underlying functors U and V. For example, the facts that the construct of vector
spaces is “algebraic” and the construct of topological spaces is “topological” are very
conveniently expressed by specific properties of the underlying functors, rather than by
properties of the abstract categories Vec and Top (see Chapter VI).

If, instead of vector spaces or topological spaces, we want to investigate objects with more
complex structures, e.g., topological vector spaces, we may supply the corresponding
abstract category TopVec with forgetful functors not only into Set (forgetting both
the topology and the linear structure), but also into Top (just forgetting the linear
structure) or into Vec (just forgetting the topology). Hence we can consider TopVec
as a concrete category over Set or over Top or over Vec. This leads to the concept of
concrete categories over a category X as pairs (A, U) consisting of a category A and a
faithful functor U : A — X. In this way we may decompose complex structures into
simpler ones, or, conversely, construct more complex structures out of simpler ones by
composing forgetful functors. The concept of concrete categories over arbitrary base
categories provides a suitable language to carry out such investigations.

5.1 DEFINITION

(1) Let X be a category. A concrete category over X is a pair (A,U), where A
is a category and U: A — X is a faithful functor. Sometimes U is called the
forgetful (or underlying) functor of the concrete category and X is called the
base category for (A,U).

(2) A concrete category over Set is called a construct.

5.2 EXAMPLES

(1) Every category A can be regarded via the identity functor as a concrete category
(A,ida) over itself.
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If A is a construct in the sense of Example 3.3(2) and U is its naturally associated
underlying functor [3.20(3)], then the pair (A,U) is a construct in the sense of
Definition 5.1. Frequently we will denote the construct (A,U) (by an “abuse of
notation”) by A alone. For example, the abstract category of vector spaces and the
construct of vector spaces will both be denoted by Vec. It will always be clear from
the context which of these entities is being considered.

Ban [3.3(3)(b)] can be considered as a construct in two natural ways:

(a) via the obvious forgetful functor U : Ban — Set,

(b) via the less obvious but useful “unit ball” functor O : Ban — Set, where
OX)={zxze X | || | <1} and O(f) is the corresponding restriction of
U(f)-

[It will turn out that, as constructs, (Ban,O) has more pleasant properties than
(Ban,U).]

Whenever (A,U) is a construct, then (A°P, Q o U°P) is also a construct (where
Q: Set’® — Set is the contravariant power-set functor [cf. 3.20(9)]). In particular,
(Set°?, Q) is a construct.

The category TopVec of topological vector spaces and continuous linear transfor-
mations can be regarded naturally via the obvious forgetful functors as

(a) an abstract category,

(b) a construct,

(

c) a concrete category over Top,
(d) a concrete category over Vec.

A similar situation occurs for TopGrp, the category of topological groups (and
continuous homomorphisms).

The category Aut of deterministic sequential Moore automata [3.3(4)(b)] can natu-
rally be considered as a concrete category over Set x Set x Set [cf. 3.3(4)(f)]. This
is the case since for any object (Q,%,Y, 9, qo,y) of Aut, each of @, ¥, and Y is a set
and Aut-morphisms (i.e., simulations) are triples of functions that carry @, X, and
Y into the corresponding sets of the codomain.

Since for any category A the unique functor A — 1 is faithful if and only if A is
thin, the concrete categories over 1 are essentially just the thin categories; i.e., the
preordered classes [3.26(2)].

5.3 REMARK
We adopt the following conventions:

(1)

Since faithful functors are injective on hom-sets, we usually assume [in view of 3.2(3)]
that homa (A4, B) is a subset of homx (UA, UB) for each pair (A, B) of A-objects.
This familiar convention allows one to express the property that “for A-objects A and
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B and an X-morphism U A L, UB there exists a (necessarily unique) A-morphism
A— BwithU(A— B)=UA ., UB” much more succinctly, by stating

«UA-LUB isan A-morphism (from A to B)”.**

Observe, however, that since U doesn’t need to be injective on objects, the expression

“UA 2, UB is an A-morphism (from A to B)”

does not imply that A = B or that idx = id4, although it does imply that UA =
UB = X. (This is the case, for example, for the morphism in Pos from ({0,1},=)
to ({0,1}, <) that is the identity function on {0, 1}.) To avoid possible confusion in

such a circumstance, we call an A-morphism A 7, B identity-carried if U f = idx.

(2) Sometimes we will write simply A for the concrete category (A, U) over X, when U
is clear from the context; e.g., in the example above. In these cases the underlying
object of an A-object A will sometimes be denoted by |A[; i.e., “| |” will serve as a
standard notation for underlying functors.

(3) If P is a property of categories (or of functors), then we will say that a concrete
category (A,U) has property P provided that A (or U) has property P.

FIBRES IN CONCRETE CATEGORIES
5.4 DEFINITION
Let (A,U) be a concrete category over X.

(1) The fibre of an X-object X is the preordered class consisting of all A-objects A
with U(A) = X ordered by:

(2) A< Bifandonlyifidx: UA — UB is an A-morphism.
(3) A-objects A and B are said to be equivalent provided that A < B and B < A.

(4) (A,U) is said to be amnestic provided that its fibres are partially ordered classes;
i.e., no two different A-objects are equivalent.

(5) (A,U) is said to be fibre-small provided that each of its fibres is small, i.e., a
preordered set.

5.5 EXAMPLES
If A is a construct in the sense of 3.3(2)(3) and X is a set, then the A-fibre of X is (up
to order-isomorphism) the class of all A-structures on X, ordered appropriately, e.g.,

24Observe that analogues of this expression are frequently used in “concrete situations”, e.g., in saying
that a certain function between vector spaces “is linear” or that a certain function between topological
spaces “is continuous”, etc.
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(1) if A = Rel, then for relations p; and py on X

p1<p2 & p1 < p,

(2) if A = Met, then for metrics d; and ds on X

dy <dy & V(.fU,y) € X X X7 dQ(xvy) < dl(x)y)v

(3) if A = X-Seq, then for acceptors (Q,d,qo, F') and (Q, 9, g, F') on a set Q

(5aq07F)§(5/7Q67F/) ~ 6:5,7 QOZQ67 anngF,)

(4) if A = Top, then for topologies 71 and 75 on X

nM<m < 1Cmn,

(5) if A = Vec, then for vector space structures v; and o on X

<y & Vv =1

Observe that for Top the fibres are complete lattices (with smallest element the discrete
topology and largest element the indiscrete topology), whereas for Vec the fibres are
ordered by the equality relation, i.e., no two different vector space structures on the
same set are related to each other. These properties of the fibres of Top (resp. Vec) are
typical for “topological” (resp. “algebraic”) constructs. See Chapter VI.

5.6 REMARKS

A concrete category (A, U) is anmestic if and only if the functor U is amnestic (cf. 3.27(4)).
Most of the familiar concrete categories are both amnestic and fibre-small. However:

(1) No proper class, considered as a concrete category over 1, is fibre-small. Fibres
of the quasiconstruct®® of quasitopological spaces®® are not even preordered classes,
but rather are proper conglomerates. The latter statement follows from the fact that
for each set X with at least two points, the fibre of X cannot be put in bijective
correspondence with any subclass of the universe U.

(2) The constructs Banp, and Met. are not amnestic. In Proposition 5.33 we will see
that each concrete category (A, U) over X has an associated “amnestic modification”
that in most respects behaves like (A, U).

%5 A quasiconstruct is a pair (A, U), where A is a quasicategory and U is a faithful functor from U to
Set.
26See, e.g., B. Spanier, Quasi-topologies, Duke Math. J. 30 (1963): 1-14.
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5.7 DEFINITION
A concrete category is called
(1) fibre-complete provided that its fibres are (possibly large) complete lattices,?”

(2) fibre-discrete provided that its fibres are ordered by equality.

5.8 PROPOSITION

A concrete category (A, U) over X is fibre-discrete if and only if U reflects identities
(i.e., if U(k) is an X-identity, then k must be an A-identity). O

CONCRETE FUNCTORS

Just as functors can be considered as the natural “morphisms” between abstract cat-
egories, and are a useful tool for investigating them, concrete functors are the natural
“morphisms” between concrete categories.

5.9 DEFINITION

If (A,U) and (B,V) are concrete categories over X , then a concrete functor from
(A,U) to (B,V) is a functor F': A — B with U = V o F. We denote such a functor
by F: (A,U)— (B,V).

5.10 PROPOSITION
(1) Every concrete functor is faithful.

(2) Every concrete functor is completely determined by its values on objects.
(8) Objects that are identified by a full concrete functor are equivalent.

(4) Every full concrete functor with amnestic domain is an embedding.

Proof: Let F': (A,U) — (B, V) be a concrete functor.
(1). This follows from Proposition 3.30(2).

(2). Suppose that G: (A,U) — (B,V) is a concrete functor with G(A) = F(A) for
each A-object A. Then for any A-morphism A L, A’ we have the B-morphisms

rf
GA = FA%}}FA’ =GA

with V(Ff) =U(f) = V(Gf). Since V is faithful, F'f = Gf. Hence F = G.

(3). Let A and A’ be A-objects with FA = FA' (= B). Then, by using Proposition
3.31, ddp : FA — FA’ can be lifted to an A-isomorphism g: A — A’. Hence A
and A’ are equivalent.

27 A partially ordered class (X, <) is called a large complete lattice provided that every subclass of
X has a join and a meet.
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(4). F is full, faithful, and injective on objects; hence it is an embedding. O

5.11 EXAMPLES

Because of part (2) of the above proposition, when specifying concrete functors, we need
only describe how they map objects.

(1) The forgetful functor Rng — Ab that “forgets” multiplication is a concrete functor
from the category of rings (and ring homomorphisms) to the category of abelian
groups, where both categories are considered as constructs. In a similar way, the
forgetful functors Met — Top (that assigns to each metric space (X, d) the topolog-
ical space determined by the distance function d ) and TopVec — Vec (that assigns
to each topological vector space its underlying vector space) are concrete functors.

(2) There are many functors from Set to itself, but there is only one concrete functor
between the construct (Set,idget) and itself — namely, the identity functor.

(3) The “discrete-space functor” and the “indiscrete-space functor” [3.29(5),(6)] are ex-
amples of concrete functors from Set to Top.

(4) Any functor between concrete categories over 1 is already concrete.

5.12 REMARK

A concrete isomorphism F: (A ,U) — (B, V) between concrete categories over X is
a concrete functor that is an isomorphism of categories. All of the isomorphisms given
in Examples 3.26(2), (4), (5), and (6) are concrete. That such a concrete isomorphism
exists means, informally, that each structure in A, i.e., each object A of A, can be
completely substituted by a structure in B, namely F(A) (keeping, of course, the same
morphisms). For example, the standard descriptions of topological spaces by means of

e neighborhoods,

e open sets,

e closure operators, or
e convergent filters,

give technically different constructs, all of which are concretely isomorphic. This is why
the differences between the various descriptions are regarded as inessential and we can
in good conscience call each of them “Top”. The concept of concretely isomorphic
concrete categories gives rise to an equivalence relation that is stronger than the relation
of isomorphism of categories. For example, assuming that no measurable cardinals
exist, Top (and, indeed, any construct) can be thought of as being isomorphic to a
full subcategory of Rel (cf. 4.7). However, Top is not concretely isomorphic to such
a subcategory, because there are more topologies on N (namely, 22N0) than there are
binary relations on N (namely, 2%0).

18th January 2005



Sec. 5] Concrete categories and concrete functors 67

5.13 REMARK

If F: (A,U) — (B,V) is a concrete isomorphism, then its inverse F~!: B — A
is concrete from (B,V) to (A,U). Unfortunately, the corresponding result does not
hold for concrete equivalences (i.e., concrete functors that are equivalences) since if
F: (A, U) — (B,V) is a concrete equivalence, then it may happen that there is no
concrete equivalence from (B, V) to (A,U) even though there are equivalences from
B to A; cf. Proposition 3.36. For example, the embedding of the skeleton of cardinal
numbers into Set is such a concrete equivalence of constructs that is not invertible. Thus,
even though it makes sense to say that two concrete categories over X are concretely
isomorphic, it makes little sense to say that they are concretely equivalent since the
relation between concrete categories of being concretely equivalent is not symmetric.

The following proposition provides the basis for forming the quasicategory of all concrete
categories over a given base category.

5.14 PROPOSITION

(1) The identity functor on a concrete category is a concrete isomorphism.

(2) Any composite of concrete functors over X is a concrete functor over X. O

5.15 DEFINITION

The quasicategory that has as objects all concrete categories over X and as mor-
phisms all concrete functors between them is denoted by CAT(X). In particular,
CONST = CAT(Set) is the quasicategory of all constructs.

5.16 REMARK

Notice that even when X is small, CAT(X) is never an actual category (unless X is the
empty category). CAT(1) is essentially the quasicategory of all preordered classes and
order-preserving functions.

5.17 EXAMPLE

There is a natural embedding F': Mon°® — CONST that assigns to any monoid M
the category M-Act. If f: M — N is a monoid homomorphism, then

F(f): N-Act — M-Act is the concrete functor that assigns to any N-action (X, *y)
the M-action (X, *ys), where m *p; z is defined to be f(m) xy x.

5.18 DEFINITION

If F and G are both concrete functors from (A,U) to (B, V), then F is finer than G
(or G is coarser than F'), denoted by: F < G, provided that F(A) < G(A) for each
A-object A [5.4(1)].

5.19 EXAMPLES

(1) For order-preserving functions considered as concrete functors over 1, f < g if and
only if this relation holds pointwise.
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(2) Among the concrete functors from Set to Top there is a finest one (the discrete-space
functor), and a coarsest one (the indiscrete-space functor).

DUALITY FOR CONCRETE CATEGORIES

5.20 REMARK

For every concrete category (A,U) over X, its dual (A°P,U°P) is a concrete category
over X°P. Moreover, for every concrete functor F': (A, U) — (B,V) over X its dual
functor F°P : (A°P,U°P) — (B°P,V°P) is a concrete functor over X°P. Thus, there is a
duality principle for concrete categories and concrete functors. Observe, however, that
unless X = X°P there is no duality for concrete categories over a fixed base category X.
In particular, we don’t have a duality principle for constructs. However, since 1 = 1°P,
there is a duality principle for concrete categories over 1 (i.e., for preordered classes).
This is indeed a familiar duality.

CONCRETE SUBCATEGORIES
5.21 CONVENTION

If (B,U) is a concrete category over X and A is a subcategory of B with inclusion
E: A — B, then A will often be regarded (via the functor U o E') as a concrete category
(A, UoFE) over X. In such cases we will call (A, UoFE) a concrete subcategory of
(B,U). In the case that the base category is Set, we will call (A, UoE) a subconstruct
of (B,U).

5.22 DEFINITION

(1) A concrete subcategory (A,U) of (B,V) is called concretely reflective in (B, V)
(or a reflective modification of (B,V)) provided that for each B-object there
exists an identity-carried A-reflection arrow.

(2) Reflectors induced by identity-carried reflection arrows are called concrete reflec-
tors.?®

DuAL NoTions: Concretely coreflective subcategory (or coreflective modifica-
tion); concrete coreflectors.

5.23 EXAMPLES

(1) The construct of symmetric relations is simultaneously a concretely reflective and
a concretely coreflective subconstruct of the construct Rel of (binary) relations
[cf. 4.17(1) and 4.26(1)].

(2) The construct of completely regular spaces is a concretely reflective subconstruct of
Top [cf. 4.17(2)].

2CAuUTION: Concrete functors that are reflectors need not be concrete reflectors. See 5.23(6).
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(3) The construct of sequential topological spaces is a concretely coreflective subcon-
struct of Top [cf. 4.26(2)].

(4) None of the reflective subconstructs described in Examples 4.17(3)—(12) is concretely
reflective.

(5) None of the coreflective subconstructs described in Examples 4.26(3) and (4) is
concretely coreflective.

(6) Let X be a category consisting of a single object X and two morphisms idx and s
with sos = idx. Let A be the concrete category over X, consisting of two objects
Ap and A; and the morphism sets

{idx} if 1=
{s} if i#7j.
Consider A as a concretely reflective subcategory of itself. Then ida: A — A is a

concrete reflector, and the concrete functor R: A — A, defined by R(A;) = A1, is
a reflector that is not a concrete reflector.

hOmA(Ai, AJ) = {

5.24 PROPOSITION
Every concretely reflective subcategory of an ammnestic concrete category is a full subcat-
egory.

Proof: Let (A,U) be a concretely reflective subcategory of an amnestic (B, V), let A
be an A-object, and let » : A — A* be an identity-carried A-reflection arrow for A. We
wish to show that r = id4 so that Proposition 4.20 can be applied. By reflectivity there
exists a unique A-morphism s : A* — A such that the diagram

A—"— A*

)

A
commutes.

Since r is identity-carried, V(r) = idya. Since also V(ida) = idya, we conclude that
V(s) = idy4 as well. Faithfulness of V' gives us r o s = id 4+. Hence r is a B-isomorphism
with V(r) = idya. Amnesticity of (B, V) yields r = id 4. Therefore, by Proposition 4.20,
A is full in B. O

5.25 REMARK

A concretely reflective subcategory of a nonamnestic concrete category need not be full,
as Example 4.21 shows. (The categories given there should be considered as concrete
categories over 1).

5.26 PROPOSITION

For a concrete full subcategory (A,U) of a concrete category (B, V') over X, with inclu-
sion functor E: (A,U) — (B,V), the following are equivalent:
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(1) (A,U) is concretely reflective in (B,V),
(2) there exists a concrete functor R: (B,V) — (A,U) that is a reflector with

RoE =ida and idg §EOR,29
(3) there exists a concrete functor R: (B,V) — (A,U) with Ro E <ida and

dg < EFoR.
Proof: (1) = (2). For each B-object B choose a reflection arrow B —2- Ap such that
rp is identity-carried, and in case that B is an A-object B —2» Ap = B 5, B (4.20).
The associated reflector (4.23) has the properties required in (2).
(2) = (3). Immediate.
(3) = (1). If R is a concrete functor that satisfies the requirements of (3), then for each
B-object B, we have B < RB; i.e., there is an identity-carried B-morphism B 5, RB.
To show that rp is an A-reflection arrow for B, let A be an A-object and B L, A be
a B-morphism. Since R is a concrete functor, RB £, RA is an A-morphism. In view

of the fact that RA < A, this implies that RB 7, Aisan A-morphism. Hence it is the
unique A-morphism that makes the triangle

B—25RB

N

A

commute. O

5.27 REMARK

By the above proposition every full concretely reflective subcategory has a reflector that
is a concrete functor. The converse holds (Proposition 5.31) for isomorphism-closed full
concrete subcategories of transportable concrete categories, defined below. However, for
nonfull subcategories [cf. Exercise 5E(d)] or non-transportable categories [cf. Exercise
5E(c)] the converse need not hold.

TRANSPORTABILITY

We have seen that many of the familiar constructs have the extra property of being
amnestic. Another frequently encountered convenient property is that of transportabil-

ity.

5.28 DEFINITION

A concrete category (A,U) over X is said to be (uniquely) transportable provided
that for every A-object A and every X-isomorphism U A ., X there exists a (unique)
A-object B with UB = X such that A *, Bisan A-isomorphism.

290Observe that Ro E = ida just means that RA = A for each A-object A and that idg < F o R just
means that B < RB for each B-object B [5.4(1)].
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AY

{

)&

Transportability

5.29 PROPOSITION

A concrete category is uniquely transportable if and only if it is transportable and amnes-
tic.

Proof: Let (A,U) be uniquely transportable and let f: A — A’ be an A-isomorphism
such that Uf = idy. Since id4 is also an A-isomorphism with domain A and U(idy) =
idx, by uniqueness it follows that f = id4.

Conversely, if (A,U) is transportable and amnestic, A is an A-object, and A N Aq

ookt
and A LI As are A-isomorphisms with Uk; = Uky, then A i SN Ao is an identity-
carried A-isomorphism. Hence, by amnesticity k3 o ki V—id A, so that k1 = ka. O

5.30 EXAMPLES

(1) For a preordered class (A, <) considered as a concrete category over 1 [cf. 5.2(7)],
the following conditions are equivalent:

(a) (A, <) is uniquely transportable,
(b) (A, <) is amnestic,
(¢) < is antisymmetric, i.e., < is a partial-order on A.
(2) Familiar constructs such as Vec, Rel, Grp, and Top are uniquely transportable.

(3) The skeleton of Vec formed by all spaces R™ [see 4.13(2)] is amnestic, but not
transportable.

5.31 PROPOSITION

If (A,U) is an isomorphism-closed full concrete subcategory of a transportable concrete
category (B, V') over X | then the following are equivalent:

1. (A,U) is concretely reflective in (B, V),
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2. there exists a reflector R: B — A that is concrete from (B,V) to (A,U).

Proof: (1) = (2). Immediate (cf. 5.26).

(2) = (1). Let R be as in (2) and for each B-object B, let B 2+ RB be an A-reflection
arrow. Then the diagram

B
B——RB

RB—— R(RB)

commutes (cf. 4.22). This implies (by uniqueness in the definition of reflection arrows)
that Rrg = rrp. Since RB is an A-object and A is full in B, rgp is an A-iso-

morphism (4.20). Hence U(RB TrRE=ATB, R(RB)) is an X-isomorphism. By the

T‘71
concreteness of R, V(B —2+ RB) = U(RB -2+ R(RB)). Hence VRB —2— VB

is an X-isomorphism. By the transportability of (B, V') there exists an isomorphism
-1

RB —2 Bin B, so that since A is isomorphism-closed in B, B is an A-object. Con-
-1

sequently, the composite B T2, RB 2 Bis an identity-carried A-reflection arrow
for B. O

5.32 REMARK

For concretely reflective subcategories there usually exist (even in the uniquely trans-
portable cases) several reflectors that are concrete functors [see Example 5.23(6)]. How-
ever, in the amnestic case there exists only one concrete reflector.

Although transportability and amnesticity are quite useful and convenient properties for
concrete categories, they are not especially strong ones. The next propositions show that
if a concrete category fails to have one of them, it can be replaced via slight modifications
by concrete categories that do have them.

5.33 PROPOSITION

For every concrete category (A,U) over X , there exists an amnestic concrete category
(B, V) over X that has the following properties:

(1) there exists an (injective) concrete equivalence E : (B,V) — (A, U),
(2) there exists a surjective concrete equivalence P: (A, U) — (B, V).

Moreover, if (A,U) is transportable, then so is (B, V).

Proof: The relation for A-objects, given by “A is equivalent to A if and only if
A < Aand A < A7, is an equivalence relation on the class of A-objects. If B is a
full subcategory of A that contains, as objects, precisely one member from each equiv-
alence class, F: B < A is the inclusion, and V = U o E, then (B, V) is an amnestic
concrete category and E : (B,V) — (A, U) satisfies condition (1).
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If (B,V) is constructed as above, then the unique concrete functor (A,U) £, (B,V)

that sends each A-object A to its unique equivalent B-object satisfies condition (2).

That transportability is not destroyed is obvious from the construction. O

5.34 REMARK
The construction of (A, U) 2, (B, V), given above, is unique in the sense that for every

surjective concrete equivalence (A,U) £, (B,V) with (B, V) amnestic, there exists a
concrete isomorphism K : (B, V) — (B, V) such that P = K o P. In view of this the
above (B, V') can be called “the” amnestic modification of (A,U). With respect to
almost every interesting categorical property®’ a concrete category is indistinguishable
from its amnestic modification. If one takes the view that in non-amnestic categories
there are “too many objects floating around in the fibres”, then the amnestic modifica-
tions can be considered to be more natural than the concrete categories that give rise
to them. For an example of this phenomenon, notice that the amnestic modification of
the construct Met,. of metric spaces and continuous maps is®*' the construct Top,,, of

metrizable topological spaces and continuous maps.

5.35 LEMMA

For every concrete category (A, U) over X, there exists a transportable concrete category
(B,V) over X and a concrete equivalence E : (A,U) — (B,V).

Proof: Define B as follows: Each B-object is a triple (A,a,X), with A € Ob(A),
X € Ob(X), and a: UA — X an X-isomorphism.

homp((4,a,X),(4,a,X)) =homa (4, A).
Identities and composition are as in A. Define V : B — X by

aoUf oa~1 5
_

V((A.a, X)L (4,6, %) = X X;

i.e., such that the square
UA—— X

"

UA % X
commutes.

Clearly, V is a faithful functor, and if V(A,a, X) L, v is an X-isomorphism, then

ida: (A,a,X) — (A, foa,Y) is a B-isomorphism with V(id4) = f. Hence (B,V) is
transportable. E: (A,U) — (B,V), defined by: E(A) = (A,idya,UA), is a concrete
equivalence. O

30 Amnesticity obviously is not one of them.
3lwith respect to the canonical forgetful functor Met.— Top,,
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5.36 PROPOSITION

For every concrete category (A,U) over X there exists a uniquely transportable concrete
category (B, V) over X and a concrete equivalence E : (A,U) — (B, V) that is uniquely
determined® up to concrete isomorphism.

Proof: According to Lemma 5.35 there is a transportable concrete category (C, W)
over X and a concrete equivalence F': (A,U) — (C,W). By Proposition 5.33 there
is an amnestic concrete category (B, V) over X and a surjective concrete equivalence
P: (C,W) — (B,V). Consequently, E = Po F: (A,U) — (B,V) is a concrete
equivalence, and by Proposition 5.33 (B, V) is uniquely transportable.

To show the essential uniqueness, let (A,U) — (B, V) be a concrete equivalence,
with (B,V) uniquely transportable. For each B-object B choose an A-object Ap

and a B- isomorphism EAp h—B> B such that whenever B € E[Ob(A)] then hp is a
B-identity, FAp hs, g B H5, B Then V(EAp C:IN B) = UAp N VB =
V(EAB) 2B, VB is an X-isomorphism. Since (B, V) is uniquely transportable, there
is a unique B-isomorphism EAp — Cp with V(EAp — Cp) = V(EAR) s, VB.
A simple computation establishes that there exists a unique full concrete functor

H: (B,V) — (B,V) with HB = Cp for each B-object B. By Proposition 5.10, H is a
concrete embedding. To show that E = HoFE, let A be an A-object and let B = EA. By

our construction FApg M5, Bisa B-identity, which implies that FAgp = EA. Hence,
by Proposition 5.10, Ap and A are equivalent A-objects. Consequently, FAp and FA
are equlvalent B-objects. Since (B, V) is amnestic, this implies that EAg = EA. Hence

EAp A, FAis aB- isomorphism with
V(EAp 4 BA) = V(EAp) 225 VB,

so that by the definition of Cz we have Cg = EA; i.e., (Ho EYA= HB = Cp = FA.

It remains to be shown that H is surjective. Let C be a B-object. Since E is isomorphism-
dense, there exists some A-object A and some B-isomorphism EA M, C. Then
V(EA R C)=UA Ve = V(EA) ", VC is an X-isomorphism, so that by
the unique transportability of (B, V'), there exists a unique B-isomorphism EA — B,

with V(FA — B) = V(FEA) L, VC. We claim that HB C. To see this, con-

sider the chosen B-isomorphism EAp 5. B. Since EA > B is a B- isomorphism,
E A is a B-isomorphism. By the fullness and faithfulness of E, this im-

EAB h— OhB
—1q — —14 I
plies that Ap OB A s an A-isomorphism (3.31), and hence EAp hTohs L FA s

a B-isomorphism. Consequently,

FAp M2, 0 = Fap M Fa s o

32That is, whenever (A,U) —— (B,V) is a concrete equivalence to a uniquely transportable concrete
category over X, then there exists a concrete isomorphism H : (B, V) — (B, V) such that £ = HoE.
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is a B-isomorphism with

V(EAp 225 C) =V(EAp) 22 VC = VB,
which, by the definition of H B, implies that HB = C. Thus H : (B,V) — (B,V) is a
concrete isomorphism with £ = H o E. O

FUNCTORS “INDUCING” CONCRETE CATEGORIES

Many familiar constructs of an “algebraic” or “topological” nature have natural descrip-
tions that can be accomplished in two steps. The first step, which will be formalized
below (separately for algebraic and topological cases), consists of defining algebraic (resp.
topological) categories by means of certain functors. The second step consists of singling
out full, concrete subcategories by imposing certain axioms on the objects (cf. 16.11 and
22.1).

5.37 DEFINITION

Let T: X — X be a functor. Alg(T) is the concrete category over X, the objects of
which (called T-algebras) are pairs (X, h) with X an X-object and h: T(X) — X
an X-morphism. Morphisms f: (X,h) — (X',h’) (called T-homomorphisms) are
X-morphisms f: X — X’ such that the diagram

T(X) - x

T(f)l Jf

T(X’)T>X/

commutes. The underlying functor to X is given by: |(X,h) 7, (X', W) =X L, x.

5.38 EXAMPLES

(1) Consider the squaring functor [3.20(10)] S? : Set — Set. The construct Alg(S?)
is obviously the construct of binary algebras Alg(€y), where g consists of the
singleton natural number 2 [3.3(2)(e)]. Observe that such familiar constructs as Sgr,
Mon, Grp, and Ab can be considered as subcategories of Alg(S?). [Later we shall
see that each Alg(2) is isomorphic to Alg(T") for some T' (10U).]

(2) A unary Y-algebra [3.3(2)(e)] (X,0(—))sex gives rise to a function X x X hox
that maps (x,0) to o(z). Define a functor (— x X): Set — Set as follows. On
objects: (— x ¥)(X) = X x X, and on morphisms: (— x X)(f) = f x idy. Then the
passage from (X, 0(—))sex to (X, h) defines a concrete isomorphism

F: Alg(X) — Alg(— x %)

that is the identity function on morphisms.
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(3) Let 52 : Pos — Pos be the squaring functor for Pos; i.e., 52(X, <) = (X x X, <),
where the order relation on X x X is defined coordinatewise, and 5’2( f)=[fxf,
for any order-preserving map f. Then the concrete category Alg(S’z) over Pos is
concretely isomorphic to the category of ordered binary algebras, considered as a
concrete category over Pos.

(4) For any category X and X-object, X, the constant functor C'x : X — X [3.20(2)]
yields the category Alg(C'x) which is the comma category (X | X) of objects under
X (see Exercise 3K).

5.39 PROPOSITION
FEach concrete category of the form Alg(T) is fibre-discrete. O

5.40 DEFINITION

Let T: X — Set be a functor. Spa(7) is the concrete category over X, the objects of
which (called T-spaces) are pairs (X, «) with a C T(X). Morphisms (X, «) SN (Y, 5)
(called T-maps) are X-morphisms f: X — Y such that T'(f)[a] C 8. The underlying

functor to X is given by: ‘(X, a) 7, (Y, ﬁ)‘ — x L. v, Concrete categories of the form
Spa(T) are called functor-structured categories.

5.41 EXAMPLES

(1) Consider the squaring functor S?: Set — Set [3.20(10)]. Then the construct
Spa(S?) is equal to the construct Rel. Observe that such familiar constructs as
Prost and Pos can be considered as full subcategories of Spa(5?).

(2) Any functor T': 1 — Set consists of choosing a distinguished set A, and so, for this
case, Spa(T) is just the power-set of A regarded as a poset or as a concrete category
over 1.

5.42 PROPOSITION
FEach concrete category of the form Spa(T) is fibre-complete. O

5.43 REMARK

We will see later (22.3) that every small-fibred “topological” category (A,U) over X
is isomorphic to a full concrete subcategory of Spa(ff’) for a suitable 7: X — Set.
A more natural representation of (A,U) is often obtained in terms of a full concrete
subcategory of (Spa(7'))°" considered as a concrete category over X = (X°P)°P for
some functor T': X°P — Set. Concrete categories of the form (Spa(7))°P are called
functor-costructured categories.

5.44 EXAMPLE

Consider the contravariant power-set functor Q : Set°® — Set. Then the construct
(Spa(Q))°P has as objects all pairs (X, 7) consisting of a set X and a set 7 of subsets of
X, where a morphism f: (X,7) — (Y,0) is a function f: X — Y such that Qf[o] C 7.
In particular, Top is a full subconstruct of (Spa(Q))°P.
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5.45 REMARK

Concrete categories of the form Spa(7’) can be very large. In fact, every construct A
can be fully embedded in

(a) Spa(P), where P is the covariant power-set functor;
(b) (Spa(Q))°P, where Q is the contravariant power-set functor;
(c) the concrete category of topological spaces and open, continuous functions.

These and related results can be found in the monograph Pultr-Trnkova (see References).
However, the corresponding embeddings usually will not be concrete.
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EXERCISES

5A. Fibres

(a) Show that the category TopGrp, as a concrete category over Top, is fibre-discrete
and, as a concrete category over Grp, is fibre-complete. What about the construct
TopGrp? What about the constructs HComp and Comp (of compact spaces)?

(b) Which concrete categories have the property that each fibre is a singleton?
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Non-concrete Isomorphisms

Show that there is an illegitimate conglomerate of isomorphisms of Set onto itself, al-
though the only concrete isomorphism of the construct Set onto itself is id.

5C.

Categories of Concrete Categories

Verify that for each small category X there is a category whose objects are all fibre-small
concrete categories over X and whose morphisms are all concrete functors. Nevertheless,
show that the conglomerate of all fibre-small constructs is illegitimate. [In fact, the
conglomerate of all full subcategories of Set is illegitimate.]

5D. Concrete Functors Between Constructs

(a)

Show that there is precisely one concrete functor from Rel to Set (the forgetful
functor) and that there are precisely three concrete functors from Set to Rel, the
discrete functor, the diagonal functor (FX = (X, A), where A = {(z,z) |z € X }),
and the indiscrete functor.

Show that there is precisely one concrete functor from Set to Pos.

Show that there is no concrete functor from Set to Vec. Generalize this to other
algebraic constructs, and to »-Seq.

Show that there are precisely two concrete functors from Set to Top, but a proper
class of concrete functors from Top into itself. [Hint: For each cardinal number «
let F,, : Top — Top assign to each topological space X the space F,, X generated
by intersections of a-indexed families of X-open sets.]

. Concrete Reflections

Show that no proper subconstruct of Grp is concretely reflective (or coreflective).
Generalize this to all fibre-discrete concrete categories.

Show that the full subconstruct of Rel formed by all objects (X, p) without proper
cycles (i.e., if x1pxa, Topxs, -+, Tp_1pTy, and 1 = Ty, then 1 = x9 = -+ - = x,) is
reflective, but not concretely reflective.

Show that a reflective, isomorphism-closed, full concrete subcategory (A,U) of

a (non-transportable) concrete category (B,V) over X with a reflector functor

(B,V) &, (A,U) that is concrete need not be concretely reflective. [Hint: Con-

sider the additive monoid of integers as base category X; let B be the category with
0, ifm=0<n

Ob(B) = N and homg(n,m) = ; let the functor
{(n,m)}, otherwise

B Y5 X be defined by V(n,m) = n — m; and let (A,U) be the full concrete
subcategory of (B, V') obtained by deleting the object 0.] Cf. Proposition 5.31.

Show that a reflective (nonfull) concrete subcategory (A, U) of a transportable con-

crete category (B, V) over X with a reflector (B, V) A, (A,U) that is a concrete
functor need not be concretely reflective. [Hint: Consider the compositive monoid
of all order-preserving endomorphisms of the set IN, with its natural order, as base
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category X, and let (A,U) (resp. (B,V)) be the concrete category over X with
objects all pairs (N,n), with n € N, and whose morphisms (N, n) EiN (N, m)
are all X-morphisms N L, N that satisfy f(n +p) = m + p for all p € N
(resp. f(n+p) =m+p for all p>1 and f(n) < m).] Cf. Proposition 5.31.

5F. Amnestic Modification

(a) Describe the amnestic modification of the construct Met, of metric spaces and
uniformly continuous maps.

(b) What are the amnestic modifications for concrete categories over 17

5G. Categories of T-Algebras

(a) Describe Alg(T') for the constant functor T : Set — Set
(1) with value 0,

(2) with value 1 = {0}.

(b) Find a functor T': Set — Set such that Alg(T) is concretely isomorphic to the
category of commutative binary algebras (i.e., algebras with a binary operation -
satisfying x -y = y - x).

(c) Describe Alg(id).

(d) Let T: Pos — Pos be the functor that assigns to each poset (X, <) the discretely
ordered set, and is defined on morphisms by: T'f = f. Describe Alg(T).

5H. Categories of T-Spaces

(a) Describe Spa(T') for the constant functor T : Set — Set
(1) with value 0,

(2) with value 1 = {0}.

(b) Find a functor T': Set — Set such that Spa(T') is concretely isomorphic to the
construct of symmetric binary relations (i.e., if x is related to y, then y must be
related to x).

(c) Show that there is no functor T': Set — Set such that Spa(7’) is concretely iso-
morphic to the construct of reflexive binary relations.
5I. Cat as a Concrete Category

Cat can be viewed in various ways as a concrete category. Depending on the chosen
definition of category (cf. 3.1, 3.53 and 3C) and on the chosen forgetful functor, various
situations arise:

(a) Show that by assuming any of the two definitions of categories 3.1 or 3C, Cat can
be considered as a concrete category over Set x Set via the functor
U: Cat — Set x Set, defined by

UA £ B) = (0b(A) 225 Ob(B) , Mor(A) 222 Mor(B)),

18th January 2005



80

5J.

Categories, Functors, and Natural Transformations [Chap. I

(where Fp is the restriction of F' to objects and Fy is its restriction to morphisms),
and that in both cases U is uniquely transportable.

Show that by assuming any of the three definitions of categories, Cat can be con-
sidered as construct via the functor U : Cat — Set, defined by U(A £, B) =

Mor(A) L, Mor(B). In the cases of Definition 3.1 and of Exercise 3C, U is
transportable, but not amnestic; and in the case of Definition 3.53, U is amnestic
and transportable. [Thus, when considered as a construct, Cat, is usually preferred
to Cat.]

Concretizable Categories

A category A is called concretizable over X provided that there exists a faithful
functor from A to X. Verify that

(a)
(b)

()
*(d)
()
(f)

A is concretizable over 1 if and only if A is thin.
Set®? is concretizable over Set.
If A is concretizable over Set, then so is A°P.

There exist categories that are not concretizable over Set, e.g., the category hTop,
whose objects are topological spaces and whose morphisms are homotopy equivalence
classes of continuous maps.

A is concretizable over Set if and only if A is embeddable into Set.

There exist categories A that are not concretizable over A°P.

* 5K. Subconstructs That Are Simultaneously Reflective and

Coreflective Modifications

Show that the construct Rel has precisely six subconstructs that are simultaneously
reflective and coreflective modifications and that the five proper ones can be described
by the following implications:

zpy = ypz (symmetry),
Tpy = xpr,

TPy = Ypy,

zpy = (zpx and ypy),
xpy = (xpr and ypr).

. The Constructs Topy® and Fram

If Top, denotes the construct of T topological spaces, show that T0p8p can be
considered as a construct via the functor L : Top,” — Set that forgets not the
“structure” but rather the underlying set; i.e., for a continuous function

v,0) L (X, 7), L(X,7) L (V,0)) = 7 2L o, where Lf(A) = f1[Al
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(b) Let Fram be the construct whose objects are frames, i.e., complete lattices that sat-
isfy the law a A \,c;0i = V,cr(a A b;), and whose morphisms are frame-
homomorphisms, i.e., functions that preserve finite meets and arbitrary joins.

Show that there is a unique concrete functor Topg” L. Fram over Set that sends
each topological space to its set of open subsets, ordered by inclusion.

[Loc=Fram®? is called the category of locales. The functor T°P : Top, — Loc is a
nonfull coreflective embedding, and its restriction to sober spaces is a full coreflective
embedding].

5M. HComp®P as a Construct

Show that HComp®P can be considered as a construct via the contravariant hom-functor
hom(—, [0,1]) : HComp®°? — Set.

5N. Concrete Isomorphisms

(a) Show that the following constructs are concretely isomorphic:
(1) MCPos (complete lattices and meet-preserving maps),
(2) JCPos,

(3) the full subconstruct of Alg(P) consisting of those P-algebras (X, h) that satisfy
the following two conditions:

(i) h({z}) = x for each = € X,
(ii) h(UA) = h({h(A) | A € A}) for each A C PX.

(b) Show that the three constructs defined below are pairwise concretely isomorphic and
therefore provide three different approaches to topology.

(1) Approach via closure; the construct Clos:

Objects are closure spaces; i.e., pairs (X, cl) with ¢/ : P(X) — P(X) a func-
tion that satisfies:

(i) cl(0) =0,
(ii) A Ccl(A) for each A € P(X),
(iii) cl(AUB) =cl(A)Ucl(B) for each A,B C X.

Morphisms are closure-preserving maps; i.e., functions (X, cl) N (X', el
such that f[cl(A)] C cl'(f[4]) for each A C X.

(2) Approach via convergence; the construct PrTop:

Objects are pretopological spaces; i.e., pairs (X, conv), where conv is the
relation that shows which filters converge to which points of X, subject to the
following conditions:

(i) for every x € X the fixed ultrafilter at x (&) converges to x,

(ii) if a filter converges to z, then so does every finer filter,
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(iii) if each member of a family of filters converges to z, then so does the
intersection of the family.

Morphisms are convergence-preserving maps; i.e., functions

(X, conv) 7, (X', conv’) such that whenever F converges to x, then the filter
generated by f[F] converges to f(z).

(3) Approach via neighborhoods; the construct Neigh:

Objects are neighborhood spaces; i.e., pairs (X, ), where N associates with
any z € X a filter (), the neighborhood filter of x, subject to the condition
that if U is a neighborhood of x then x is a member of U.

Morphisms are all functions (X, ) RN (X', N') such that whenever U is a
neighborhood of f(x), then f~1[U] is a neighborhood of z.

50. Realizations

Full concrete embeddings are called realizations. Show that

(a) There are precisely two realizations from Pos to Rel.

)
)
)
e) For each €, there is a realization from Alg(Q2) to some functor-structured category.
) There is a realization from Prost to Top.
) There is no realization from Rel to Sgr.
) There is a proper class of realizations from Tych to Spa(Q)°P.

)

There are at least two realizations from Haus to Spa(Q)°P. [It is unknown whether
there are more than two.]

(j) There is a no fibre-small construct (A, U) such that every fibre-small construct has
a realization to (A, U).

* (k) There is a construct (A, U) such that every construct has a realization to (A, U).

5P. Amnesticity

Show that a concrete category (A,U) over X is amnestic if and only if each A-iso-
morphism f is an A-identity whenever U f is an X-identity.
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6 Natural transformations

Let V be a finite-dimensional real vector space and let V be its dual (i.e., the set of
all linear functionals V' — R with vector-space operations defined pointwise). V and

V are known to be isomorphic. Hence V and its second dual V are isomorphic as
well. However, there is a fundamental difference between these two situations. There

is a “natural” isomorphism 7: V — V which to every vector x assigns the “evaluate
at 2’ functional 7(z): V — R. But there is no “natural” isomorphism between V
and V. This section provides a formal definition for the intuitive notion of “natural
isomorphism” and (more generally) of “natural transformation”.

6.1 DEFINITION
Let F,G: A — B be functors. A natural transformation 7 from F' to G (denoted

by 7: F — G or F 5 @) is a function that assigns to each A-object A a B-morphism
74 : FA — GA in such a way that the following naturality condition holds: for each

A-morphism A RNy , the square

FA—5GA

| e

FA TGA/

commutes.

6.2 EXAMPLES

(1) Let A be a reflective subcategory of B with inclusion functor E, let B —2+ RB be
an A-reflection arrow for each B-object B, and let R: B — A be the associated
reflector (4.23). Then 7 = (75) peop(B) is @ natural transformation: idg ~ EoR.

(2) Let U: Grp — Set be the forgetful functor, and let S: Grp — Set be the

2
“squaring-functor”, defined by S(G ANy, ) = G? L7, H2. For each group G, its
multiplication is a function 7¢ : G2 — G. The family 7 = (7¢) is a natural transfor-
mation from S to U. The naturality condition simply means that f(z-y) = f(z)-f(y)

for any group homomorphism G L, H and any z,y € G. Thus “multiplication” in
groups can be regarded as a natural transformation. Likewise, for any type of alge-
bras, each of the defining operations can be considered as a natural transformation
between suitable functors.

(3) Let (7) : Vec — Vec be the second-dual functor for vector spaces defined by

Vee L Vec = (VecP)°P )

O, Vec®”® —— Vec,
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where (7)° is the dual of the duality functor for vector spaces (cf. 3.20(12)
and 3.41), and let idvyec be the identity functor on Vec. Then the linear transfor-

mations 7y : V — V, defined by (1v(x))(f) = f(x), yield a natural transformation

idvec — ( )

(4) The assignment of the Hurewicz homomorphism m,(X) — H,(X) to each topo-
logical space X is a natural transformation from the nth homotopy functor
7, : Top — Grp to the nth homology functor H,, : Top — Grp.

(5) If B L, Cis an A-morphism, then
homa (C, —) 1, homa (B, —),
defined by 7¢(g) = g o f, and
homa (—, B) X homa (—, C),

defined by of(g) = f o g, are natural transformations.

(6) Let U : ¥-Seq — Set be the forgetful functor. For each o € ¥, and each acceptor
A=(Q,0,q0, F), let 64 be the function 6(—,0): Q@ — Q. Then 6 = (64): U - U
is a natural transformation.

6.3 DEFINITION
If G,G': A — B are functors and G — G is a natural transformation, then

(1) for each functor F': C — A, the natural transformation 7F: Go F — G' o F is
defined by

(TF)c = Trc,

(2) for each functor H : B — D, the natural transformation Hr: Ho G — H o G’ is
defined by
(HT)a = H(Ta).
Likewise the natural transformation G’ -~ G°P is defined by
op _

Ty = TA,

6.4 EXAMPLE

If S?2: Set — Set is the squaring functor [3.20(10)] and A : id — S? is the natural
transformation that associates with every set X the diagonal map Ay : X — X2 given
by x +— (z,x), then

(1) S?A: 8% — 8208 is given by (2,y) = ((z,2), (4, ),
(2) AS?: S? — S?0 52 is given by (z,y) — ((z,v), (z,v)).
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NATURAL ISOMORPHISMS

6.5 DEFINITION
Let F,G: A — B be functors.

(1) A natural transformation F' —— G whose components 74 are isomorphisms is called
a natural isomorphism from F to G.

More generally, a natural transformation from F' to G whose components belong to
some specified class M of B-morphisms is called an M-transformation.

(2) F and G are said to be naturally isomorphic (denoted by F' = G) provided that
there exists a natural isomorphism from F to G.%3

6.6 EXAMPLES

(1) For each functor F': A — B we have the identity natural transformation on F,
idp : F'— F given by (idp) 4 = idpa, which is clearly a natural isomorphism.

(2) Let F': Set — Vec be a functor that assigns to each set X a vector space F'X with

basis X, and to each function X N Y the unique linear extension F'X i FY

of f. This actually is not a correct definition of a functor, since there are many
different vector spaces with the same basis. However, the definition is “correct up to
natural isomorphism”. Whenever we choose, for each set X, a specific vector space
FX with basis X, we do obtain a functor F': Set — Vec (since the above condition
determines the action of F' on functions uniquely). Furthermore, any two functors
that are obtained in this way are naturally isomorphic.

(3) The natural transformation 7 : idyec — ( : ) from the identity functor on Vec to
the second-dual functor for vector spaces () given in Example 6.2(3) becomes a
natural isomorphism when the above functors are restricted to the full subcategory

of finite-dimensional vector spaces.

(4) For any 2-element set A, hom(A, —) is naturally isomorphic to the squaring functor
S? [3.20(10)] and hom(—, A) is naturally isomorphic to the contravariant power-set
functor Q [3.20(9)].

(5) If f is a morphism and 7 and o are the associated natural transformations for the
hom-functors [6.2(5)], then the following are equivalent:

(a) f is an isomorphism,
(b) oy is a natural isomorphism,
(c) 7y is a natural isomorphism.

Thus, if A and B are isomorphic objects, then hom(A, —) and hom(B, —) are natu-
rally isomorphic functors, and so are hom(—, A) and hom(—, B). The converse holds
as well (cf. Exercise 6M).

33Observe that the relation 2 is an equivalence relation on the conglomerate of all functors from A to
B.
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6.7 PROPOSITION

If A is a reflective subcategory of B, then any two reflectors for A are naturally isomor-
phic.

Proof: Let R and S be reflectors for A with associated reflection arrows B —2— RB
and B 25 SB. Then there exist A-morphisms RB J2, 9B and SB Y2+ RB such
that the diagrams

B—2RB B—2,9B
% lf wooond X PB
SB RB

commute. Uniqueness in the definition of reflection arrows implies that gg o fp = idgrp
and fp o gp = idsp. Hence the fp’s are A-isomorphisms. That (fB)pecona) is a
natural transformation (hence a natural isomorphism) follows from the fact that for any

B-morphism B L, B the following diagrams [1] and [2] — hence, by the uniqueness
property for B —2- RB, also [3] — commute:

B—2,9B B—2pp-1" 5B

fJ JSf - fl lRf le

B —— SB' B'—— RB SB’
B! B! frr

In Proposition 3.36 we have seen that if A L. Bisan equivalence, then there is an

equivalence B “, A. Now that we have the notion of natural isomorphism, we are able
to sharpen this result:

6.8 PROPOSITION

A functor A L. Bisan equivalence if and only if there exists a functor B G, A such
that idpa £ Go F and F oG = idg.

Proof: Let F be an equivalence. By following the proof of Proposition 3.36 we see
that there is a functor G and a natural isomorphism € : F'o G — idg. Now for each
A-object A, 8}}4 : FA— (FoGoF)(A) is an isomorphism. Since F is full and faithful,
Proposition 3.31 implies that there is a unique isomorphism 74 : A — (G o F')(A) such
that Fi(na) = 6}_7}4. The naturality of 7 follows from that of e~! (cf. Exercise 61.) and
the faithfulness of F.

Conversely, let G: B — A be a functor and let ida 2, GoF and FoG - idg be
natural isomorphisms. Since F(GB) ~E, B is an isomorphism for any B-object B,

f
it follows that F' is isomorphism-dense. F' is faithful, since for any pair 4 —= A’ of
g

B-morphisms the equality F'f = Fg implies naro f = GFfona = GFgona =nu og;
hence f = g. F is full, since for any B-morphism f: FA — FA/, 77;,1 oGfony is an
A-morphism g : A — A’ with Fg = f. O
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6.9 DEFINITION

A functor F': A — Set is called representable (by an A-object A) provided that F
is naturally isomorphic to the hom-functor hom(A,—) : A — Set.

6.10 REMARK

Objects that represent the same functor (or two naturally isomorphic functors) are iso-
morphic. (Cf. Exercise 6M.) O

6.11 EXAMPLES
(1) Forgetful functors are often representable. For example,

(a) Vec — Set is represented by the vector space R,
(b) Grp — Set is represented by the group of integers Z,
(¢c) Top — Set is represented by any one-point topological space.

(2) The underlying functor U for the construct Ban [5.2(3)] is not representable (see
Exercise 10J). However, the faithful unit ball functor O : Ban — Set is represented
in the complex case by the Banach space C of complex numbers.

(3) The forgetful functor for ¥-Seq is not representable (since for each (finite) acceptor
A there exists a nonempty acceptor B with hom(A, B) = ).

6.12 REMARK

For constructs (A,U) the forgetful functor is represented by an object A if and only
if A is a free object over a singleton set [see Definition 8.22(2)]. This provides many
additional examples of representations.

FUNCTOR CATEGORIES

6.13 DEFINITION

If F,G,H : A — B are functors and F - G and G - H are natural transformations,
then the composition of natural transformations 7 oo : FF — H is the natural
transformation that assigns to each A-object A the morphism 74004 : F(A) — H(A).

6.14 REMARK

It is obvious that the composition of natural transformations is a natural transformation,
that this composition is associative, and that the identity natural transformations act
as units.

6.15 DEFINITION

For categories A and B the functor quasicategory [A, B]| has as objects all functors
from A to B, as morphisms from F' to G all natural transformations from F' to G, as
identities the identity natural transformations, and as composition the composition of
natural transformations given above.
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6.16 REMARKS

(1) If A and B are small categories, then [A,B] is a category. If A is small and
B is large, then [A,B], though being a proper quasicategory, is isomorphic to a
category. Quasicategories that are isomorphic to categories are called legitimate
quasicategories and are treated as categories. If A and B are both large, then
[A,B] will generally fail to be isomorphic to a category. Such quasicategories are
called illegitimate.

(2) A natural transformation between functors from A to B is a natural isomorphism

if and only if it is an isomorphism in [A, B].

6.17 EXAMPLES
(1) If A is a discrete category with one object, then [A,B] is isomorphic to B.

(2) If A is a discrete category with two objects, then [A, B] is isomorphic to B x B.

(3) If 2 is a category of the form ¢ — e with two objects and one non-identity morphism,
then [2, B] is isomorphic to the arrow category of B (cf. Exercise 3K).

(4) If M is a monoid, considered as a category, then [M,Set] is isomorphic to the

category M-Act of M-actions.

6.18 PROPOSITION

For any functor F : A — Set, any A-object A and any element a € F(A), there exists
a unique natural transformation 7 : hom(A, —) — F with 74(id4) = a.

Proof: Let 75(f) = (F(f))(a). Pointwise evaluations establish that 7 is a natural
transformation. If § : hom(A, —) — F is such that d4(id4) = a, then by the naturality

of 0, 6p(f) = dp(foida) = (dpohom(A, f))(ida) = (F(f)eda)(ida) = F(f)(a) = 75(f).0
6.19 COROLLARY (YONEDA LEMMA)
If F: A — Set is a functor and A is an A-object, then the following function

Y : [hom(A, —), F| — F(A) defined by Y (o) =oc4(ids),

is a bijection (where [hom(A, —), F] is the set of all natural transformations from hom(A, —)
to F). O

6.20 THEOREM
For any category A, the functor E : A — [A°P, Set]|, defined by

E(A 2L B) = hom(—, 4) 2 hom(—, B),
where of(g) = fog, is a full embedding.

Proof: The described assignment clearly preserves identities and composition. Thus it
is a functor. If f and f’ are distinct members of hom(A, B), then oy and o clearly differ
on id4. Hence E is faithful. Fullness follows from Corollary 6.19 with /' = hom(B, —).0
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6.21 EXAMPLES

(1) If M is a monoid considered as a category, then the unique object assigned to it by
the above embedding is the M°P-action on the set M defined by right translations
in M.

(2) If A is a poset considered as a thin category, then the above embedding is the
representation of A by all the principal ideals in A.

CONCRETE NATURAL TRANSFORMATIONS
AND GALOIS CORRESPONDENCES

6.22 REMARK

From now on, when investigating concrete categories, we typically will use the notational
conventions described in Remark 5.3. In particular,

(1) we will denote a concrete category (A, U) over X by A alone and denote the under-
lying functor U by | |,

(2) the expression “|A| <, |B| is an A-morphism” means that for the X-morphism

|A] N | B| there exists a (necessarily unique) A-morphism A — B, which will also
be denoted by f, with |[A — B| = |4 1, |B].

6.23 DEFINITION

If A and B are concrete categories over X and F,G : A — B are concrete functors (5.9),
then a natural transformation 7: F' — G is called concrete (or identity-carried)
provided that |74| = id) 4| for each A-object A.

6.24 PROPOSITION
If F,G: A — B are concrete functors, then the following are equivalent:

(1) F<G (5.18),

(2) there exists a (necessarily unique) concrete natural transformation 7 : F — G. O

6.25 DEFINITION

Let A and B be concrete categories over X. If G: A — B and F': B — A are concrete
functors over X, then the pair (F,G) is called a Galois correspondence (between A
and B over X) provided that F'o G < ida and idg < Go F.

6.26 EXAMPLES

(1) Galois isomorphisms: If K : A — B is a concrete isomorphism, then (K1, K)
is a Galois correspondence, called a Galois isomorphism.
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(2) Galois reflections and coreflections:

(a)
(b)

If E: A — B is a concrete embedding and R: B — A is a concrete reflector,
then (R, E) is a Galois correspondence, called a Galois reflection.

If E: A — B is a concrete embedding and C : B — A is a concrete coreflector,
then (E,C) is a Galois correspondence, called a Galois coreflection.

(3) Galois correspondences for constructs:

(a)

(b)

Let U : Top — Set be the forgetful functor, let D : Set — Top be the discrete
functor, and let N : Set — Top be the indiscrete functor [3.29(5) and (6)].
Then (D,U) and (U, N) are both Galois correspondences.

Let G : Top — Rel be the concrete functor (over Set) defined on objects by:
(X,7) — (X, pr), where zp,y if and only if z is in the 7-closure of {y}. Let
F: Rel — Top be the concrete functor defined on objects by (X, p) — (X, 7,),
where A is 7,-closed if and only if A is a lower-set for p [i.e., a € A and
a'pa = o’ € A]. Then (F,G) is a Galois correspondence.

If U : Unif — Top is the forgetful functor that assigns to any uniform space
the completely regular space underlying it, and F': Top — Unif is the fine
functor that assigns to any topological space the fine uniform space determined
by it, then (F,U) is a Galois correspondence.

(4) Galois connections:

(a)

Recall that when X = 1, then concrete categories over X are essentially pre-
ordered classes and concrete functors between them are essentially order-preserv-
ing functions. Historically, a Galois connection between preordered classes A and
B has been defined as a pair (f,g) of order-preserving®* functions g: A — B
and f: B — A with the property that for all a € A and b € B, f(b) < a if and
only if b < g(a). Notice that the latter condition is equivalent to: (fog)(a) <a
foralla € Aand b < (go f)(b) for all b € B. Thus Galois connections are just
Galois correspondences with the base category X = 1. (See also Proposition
6.28 below.)

Important special cases of Galois connections arise from (binary) relations:

Let p be a relation from the set X to the set Y, i.e., p C X x Y. Denote by A
the poset of all subsets of X ordered by inverse inclusion and by B the poset of
all subsets of Y ordered by inclusion. Then the following maps yield a Galois
connection:

g: A— B, defined by ¢(S)={yecY|spy forall se S}
f: B— A, definedby f(T)={xeX|zpt forall teT}.

34Many

of the earlier definitions of Galois connections deal only with the case of par-

tially ordered sets and they wusually adopt a “contravariant” formulation as follows: If
g: A — B and f: B — A are order-reversing functions between posets, then (f,g) is a (con-
travariant) Galois connection provided that a < f(b) if and only if b < g(a). Notice that this is the
same as the formulation above if the order on A is reversed. The order-preserving version corresponds
to what are frequently called residuated-residual pairs or (sometimes) Galois connections of mixed

type.
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6.27 PROPOSITION
(1) If (F,G) is a Galois correspondence between A and B and (F', Q) is a Galois corre-

spondence between B and C, then (Foﬁ’7 Go G) is a Galois correspondence between

A and C [sometimes denoted by (F,G) o (F,G)].

(2) If (F,G) is a Galois correspondence between A and B over X, then (G°P, F°P) is a
Galois correspondence between B°P and A°P over X°P.

Proof:
(1). For any A-object A we obtain FG(GA) < GA. Application of the functor F yields

FFGG(A) < FGA. Since FGA < A, transitivity of < yields (FF)(GG)(A) < A.
Likewise B < (GG)(F'F)B for each B-object B.

(2). Obvious. O

6.28 PROPOSITION

Let G: A — B and F: B — A be concrete functors over X. Then the following are
equivalent:

(1) (F,QG) is a Galois correspondence,

(2) an X-morphism |F(B)] 7, |A| is an A-morphism if and only if | B] TN |IG(A)| is a
B-morphism.

Proof:
(1) = (2). If |FB| 7, |A| is an A-morphism, then by applying G and using

i
idg < G o F, one has that |B] ——— |(G o F)(B)| N |GA| is a B-morphism.

Conversely, the facts that |B| N |GA| is a B-morphism and that F o G < ida im-
i
ply that |F'B| iR |(FoG)(A)] eI |A| is an A-morphism.

i

(2) = (1). Since each |F'B| il |F'B| is an A-morphism, from (2) we see that
B < (G o F)(B) for each B-object B. Similarly, (F o G)(A) < A for each A-object A.
Thus (F,G) is a Galois correspondence. O

6.29 PROPOSITION

The functors in a Galois correspondence between amnestic concrete categories determine
each other uniquely; in particular, if (F,G) and (F',G) are such Galois correspondences,
then F = F'.

Proof: Let B be a B-object. If (F,G) is a Galois correspondence, B < (G o F')(B),
so that by the above proposition, if (F’,G) is a Galois correspondence, F'B < FB.
Similarly, FB < F'B, so that by amnesticity, F' = F’. [Dually, it can be shown that if
each of (F,G) and (F,G") are Galois correspondences, then G = G| O
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6.30 PROPOSITION

If (F,G) is a Galois correspondence between amnestic concrete categories, then G o F' o

G=Gand FoGoF =F.

Proof: Clearly, idg < G o F implies F = Foidg < F oG o F. Similarly, F o G < ida
implies FoGo F < idy o F = F, so that by amnesticity F' = F o G o F. The other
equation holds by duality. O

6.31 COROLLARY

If (F,G) is a Galois correspondence between amnestic concrete categories, then (Go F)o
(GoF)=GoF and (FoG)o(FoG)=FoQG. O

6.32 COROLLARY

Let G: A — B and F: B — A be concrete functors between amnestic concrete cat-
egories such that (F,G) is a Galois correspondence, and let A* be the full subcategory
of A with objects: {F(B)|B € Ob(B)} and B* the full subcategory of B with objects:
{G(A)| A € Ob(A)}. Then

(1) A* is coreflective in A, and A € Ob(A*) if and only if A= (F o G)(A).

(2) B* is reflective in B, and B € Ob(B*) if and only if B= (G o F)(B).

(3) The restrictions of G and F' to A* and B* are concrete isomorphisms, G* : A* — B*
and F* : B* — A*, that are inverse to each other. O

6.33 EXAMPLES
(1) If (R, E) is a Galois reflection between amnestic concrete categories with £ : A — B,

then A* = B* = A. Similarly for Galois coreflections.

(2) For the Galois correspondence (D, U) of Example 6.26(3)(a) Set* = Set and Top*
is the full subcategory of discrete spaces.

(3) For the Galois correspondence (U, N) of Example 6.26(3)(a) Set* = Set and Top*
is the full subcategory of indiscrete spaces.

(4) For the Galois correspondence (F, G) of Example 6.26(3)(b) Rel* = Prost and Top*
consists of those topological spaces for which arbitrary intersections of open sets are
open.

(5) For the Galois correspondence (F,U) of Example 6.26(3)(c) Top* is the full subcat-
egory of completely regular (= uniformizable) spaces, and Unif™ is the full subcat-
egory of fine uniform spaces.

6.34 PROPOSITION

Let G: A — B and F: B — A be concrete functors between amnestic concrete cate-
gories such that (F,G) is a Galois correspondence. Then the following are equivalent:

(1) G is a full embedding,
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(2) G is full,

(3) G is injective on objects,
(4) F is surjective on objects,
(5) FoG =ida,

(6) up to Galois isomorphism, (F,G) is a Galois reflection; i.e., there exists a Galois re-
flection (R, E) and a Galois isomorphism (K !, K) with (F,G) = (R, E)o(K~!,K).

Proof:
(1) = (2). Trivial.

(2) = (3). If GA = GA’, then by fullness, A < A" and A’ < A. Hence, by amnesticity,
A=A

(3) = (4). By Proposition 6.30 for any A-object A, we have (Go FoG)(A) = G(A), so
that by (3), F(GA) = A.

(4) = (5). For any A-object A there exists, by (4), a B-object B with F(B) = A.
Hence, by Proposition 6.30, (F o G)(A) = (FoGo F)(B) = F(B) = A.

(5) = (6). Let B* be the full subcategory of B with objects {G(A)|A € Ob(A)};
let K be the codomain restriction of G, ie., K: A — B*; let £: B* — B be the
inclusion; and let R = K o F. Then by Corollary 6.32 K~! = Fo F and (K}, K) is
a Galois isomorphism. Clearly, G = FoK and F = K~ 'oR. It remains to be shown that
(R, E) is a Galois reflection; i.e., that R is a concrete reflector. For each B-object B,
B < (GoF)(B). But (Go F)(B) = R(B). Thus |Bj| /N |R(B)| is a B-morphism so
that the reflection arrows are identity-carried.

(6) = (1). By amnesticity the embedding E must be full (5.24). Thus G = Fo K is the
composition of full embeddings and so must be one too. O

6.35 DECOMPOSITION THEOREM FOR GALOIS
CORRESPONDENCES

Every Galois correspondence (F,G) between amnestic concrete categories is a composite
(F,G) = (R,Eg) o (K} K)o (Ea,C) of

(1) a Galois coreflection, (Ea,C),
(2) a Galois isomorphism, (K1, K) and
(8) a Galois reflection, (R, EB).

A—5B AL B
T 4T
K
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Proof: If G: A — B and F': B — A are concrete functors such that (F, G) is a Galois
correspondence, then let A* and B* be the full subcategories of A and B determined by
the images of F' and G, respectively (Corollary 6.32). Let C: A — A*and R: B — B*
be the codomain restrictions of F' o G and G o F, respectively, let K : A* — B* and
K~': B* — A* be the corresponding restrictions of G and F, and let E4: A* — A
and Ep : B* — B be the full embedding of these subcategories. The result then follows
immediately from Proposition 6.34 and its dual. O

6.36 REMARK

Notice that the above theorem actually gives a characterization of Galois correspondences
between amnestic concrete categories since the composition of Galois correspondences is
a Galois correspondence.

Suggestions for Further Reading
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Yoneda, N. On the homology theory of modules. J. Fac. Sci. Tokyo 7 (1954): 193-227.

Herrlich, H., and M. Husek. Galois connections categorically. J. Pure Appl. Algebra
68 (1990): 165—-180.

EXERCISES

6A. Composition of Natural Transformations

Let F,F': A — B and G,G’ : B — C be functors and let F - F’ and G - G’ be
natural transformations. Show that

(a) oF' o Gt = G'T o oF. [This natural transformation is called the star product of T
and o and is denoted by G o F 2= G o F' ]

(b) oF =0 xidp and GT = idg * T.

(C) ZdG * idF = ZdGOF.

(d) If H,H' : C — D are functors and H 2, H'is a natural transformation, then
dx(oxT7)=(0x0)*T.

(e) If A 7, B and B -9 C are functors and F/ —— F” and G/ -2 G" are natural

transformations, then

(0’ oc)x(T"or)= (0 *x1") o (0xT).
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(f) If C 2. Disa functor, then (Ho)F = H(cF).

(g) IfC L, D is a functor, then (HoG)r = H(GT).

(h) If D K, Aisa functor, then o(F o K) = (¢ F)K.

(i) If B 9", ¢ and C L D are functors and G' 2 G” is a natural transformation,
then H(o' oo)F = (Ho'F)o (HoF).

6B. Counting Natural Transformations

(a) Show that there is precisely one natural transformation idget — idget.

(b) Let M be a monoid considered as a category. Show that an element z of M yields
a natural transformation iy — idpg if and only if z oy = y o x for each y € M.

(c) How many natural transformations are there from S? to P? Cf. 3.20(8) and 3.20(10).
[Hint: Observe that S? is naturally isomorphic to hom(2, —) and use Corollary 6.19.]

6C. Functor-Structured Categories

Let S,T : X — Set be functors. Show that Spa(S) and Spa(T') are concretely isomor-

phic if and only if S and T are naturally isomorphic.

6D. Functors Naturally Isomorphic to ida

Show that

(a) If a functor A LLAs naturally isomorphic to ida, then F' is an equivalence.

(b) A functor Set L, Set is naturally isomorphic to idget if and only if F' is an equiv-
alence.

(c) If G is a group considered as a category, then a functor G EiNYe! (i.e., a group
endomorphism F') is naturally isomorphic to idg if and only if F' is an inner auto-
morphism of G.

(d) If A is a discrete category, then ida is the only functor from A to A that is naturally
isomorphic to ida .

6E. Ban -2 Set and Ban — Set
Show that O is representable, but U is not. Cf. 5.2(3).

6F. Representability of Power-Set Functors
Show that the contravariant power-set functor Set? 2, Set is representable (by any

two-element set), but that the covariant power-set functor Set 7, Set is not repre-
sentable.
6G. Maps Induce Galois Connections

Let A L5 Bbea map. Consider the functions PA LN PB and PB N PA
[cf. 3.20(8) and (9)] as concrete functors between the power-sets PA and PB, ordered
by inclusion, and show that (P f, Qf) is a Galois connection.
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6H. Legitimate Functor Quasicategories.

(a) Prove that for each small category A all quasicategories [A, B] are legitimate.

(b) Prove that 1 and () are the only categories B with the property that each quasicat-
egory [A, B] is legitimate.

(c) Prove that [Set, Set] is illegitimate.

61. Total Categories

A category A is called total provided that the natural embedding £ : A — [A°P, Set)]
of Theorem 6.20 maps it onto a reflective subcategory E[A] of [A°P, Set].

(a) Prove that Set is total. [Hint: A reflection of F': Set°® — Set is given by
7: F — hom(—, F(1)), where 1 = {0} and 74 maps a € F(A) to the function
Ta(a) : A — F(1) given by t — Ff(a) for f: 1 — A, with f(0) =t.]

(b) Prove that Spa(T) is total for each T': Set — Set. [Hint: Analogous to (a) with
(1,0) substituted for 1.]

(c) Prove that if A is a total category then every full reflective subcategory of A is total.

(d) Prove that a category isomorphic to a total category is total. Conclude that Pos,
Vec, Sgr, and Alg(Q2) are total categories. [Hint: Combine 6I(c) and 4K.]

6J. Yoneda Embedding

Show that the bijective function Y of Corollary 6.19 is “natural in the variables A and
F” | ie., define functors H,G : [A,Set] x A — Set on objects by H(F, A) = F(A) and
G(F,A) = [hom(A, —), F] such that ¥ becomes a natural isomorphism from G to H.

6K. Representable Functors

If F: A — Set is a functor, then a universal point of F' is a pair (A,a) consisting
of an A-object A and a point a € F'A with the following (universal) property: for each
A-object B and each point b € F'B there exists a unique A-morphism f: A — B with
Ff(a)=b.

(a) Prove that a functor is representable if and only if it has a universal point.

(b) Find a universal point of each of the forgetful functors of Vec, Top, and Pos. Show
that the forgetful functor of ¥-Seq has no universal point.

(c¢) Find a universal point of Q : Set°® — Set.
(d) For which sets M does the functor — x M : Set — Set have a universal point?

(e) Does P : Set — Set have a universal point?

6L. “Naturally Isomorphic” is an Equivalence Relation

Let F, G, and H be functors from A to B and let F - G and G —— H be natural
isomorphisms. Show that:

(a) 0t = (0,"): G — F is a natural isomorphism.
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(b) Too: F — H is a natural isomorphism.

6M. Naturally Isomorphic Hom-Functors

Let 7: hom(A, —) — hom(B, —) be a natural isomorphism. Show that 74(id4): B — A
is an isomorphism.
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7

Objects and morphisms in abstract cat-
egories

INITIAL AND TERMINAL OBJECTS

7.1 DEFINITION

An object A is said to be an initial object provided that for each object B there is
exactly one morphism from A to B.

7.2 EXAMPLES

(1)

(2)
3)

The empty set () is the unique initial object for Set. Likewise, the empty partially
ordered set (resp. the empty topological space) is the unique initial object for Pos
(resp. Top).

Every one-element group is an initial object for Grp; likewise for Vec.

The empty category (i.e., the category with no objects and no morphisms) is the
only initial object for Cat. It is also the only initial object for the quasicategory
CAT, and, considered as a concrete category over X (via the inclusion), is the only
initial object in CAT(X).

For any category of the form Spa(7) (Definition 5.40) an object (X, «) is initial if
and only if X is an initial object in X and a = ().

For any category of the form Alg(Q) [Example 3.3(2)] let Q, = {i € I|n; =n}. If
Qo = 0, then the unique initial object is the empty algebra. If Qg # (), then an initial
object in Alg(2) is the term algebra. Its members are terms, defined inductively
as follows:

(a) each element of Q) is a term;

(b) ifi € Q, and if wy,ws,...,w, are terms, then iwjws ...w, is a term; and
(c) all terms are obtained by iterative application of (a) and (b) above.
Each term algebra operation is concatenation via rule (b) resp. (a).

The ring of integers is an initial object in the construct Rng of rings with unit and
unitary ring homomorphisms. For a ring R with unit e, the unique homomorphism
f: 7Z — Ris defined by f(n) =e+e+---+ e [n summands], and f(—n) = —f(n).

The two-element boolean algebras are initial objects in Boo.
>-Seq has no initial object.

In a poset considered as a category, an object is an initial object if and only if it is
a smallest element.
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7.3 PROPOSITION

Initial objects are essentially unique, i.e.,
(1) if A and B are initial objects, then A and B are isomorphic,

(2) if A is an initial object, then so is every object that is isomorphic to A.

Proof:

(1). By definition, there are morphisms A *, Band B A Furthermore, hok = id 4
since id 4 is the unique morphism from A to A. Analogously, ko h = idg. Thus k is
an isomorphism.

(2). Let k: A" — A be an isomorphism. For each object B there is a unique morphism
f: A— B. Then fok: A’ — B is a morphism from A’ to B. It is unique since if
g: A — B, then gok™ : A — B. So go k™! must be f;i.e., g must be fok. O

Next we define terminal objects. They are dual to initial objects; i.e., A is terminal in
A if and only if A is initial in A°P.

7.4 DEFINITION

An object A is called a terminal object provided that for each object B there is exactly
one morphism from B to A.

[ROMA TERMINI]

V'

—

<

=~

= A %\"\ \

A terminal object

7.5 EXAMPLES
(1) Every singleton set is a terminal object for Set.

(2) Frequently for constructs, there is only one structure on the singleton set {0}, and
in these cases the corresponding object is a terminal object. This is the case, for
example, in Vec, Pos, Grp, Top, and Cat,;.
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(3) In Rel there are two structures on the set {0}. Of these, the pair ({0}, {(0,0)}) is
a terminal object.

(4) For any category of the form Spa(T) (Definition 5.40) an object (X, a) is terminal
if and only if X is a terminal object object in X and o = T'(X).

(5) In X-Seq the acceptor with exactly one state that is both an initial and a final state
is a terminal object.

(6) In a poset considered as a category an object is a terminal object if and only if it is
a largest element.

(7) In CAT(X) an object (A, U) is terminal if and only if U : A — X is an isomorphism.

In particular, (X, ix) is a terminal object.

7.6 PROPOSITION

Terminal objects are essentially unique. @

ZERO OBJECTS

7.7 DEFINITION

An object A is called a zero object provided that it is both an initial object and a
terminal object.

7.8 REMARK

Notice that since “terminal object” is dual to “initial object”, the notion of zero object
is self-dual; i.e., A is a zero object in A if and only if it is a zero object in A°P.

7.9 EXAMPLES

(1) Set and Top don’t have zero objects, but pSet and pTop (cf. Exercise 3B) do have
zero objects — the “singletons”.

(2) Vec, Ban, Bany,, TopVec, and Mon have zero objects, but Sgr doesn’t.
(3) Ab and Grp have zero objects, but Rng doesn’t.
(4) Pos and Cat don’t have zero objects.

SEPARATORS AND COSEPARATORS

7.10 DEFINITION ;
An object S is called a separator provided that whenever A —= B are distinct mor-
g

phisms, there exists a morphism S M. A such that

shtoatl.prs oA
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7.11 EXAMPLES
(1) In Set the separators are precisely the nonempty sets.

(2) In Top (resp. Pos) the separators are precisely the nonempty spaces (resp. nonempty
posets).

(3) In Vec the separators are precisely the nonzero vector spaces.

(4) The group of integers Z under addition is a separator for Grp and for Ab. The
monoid of natural numbers N under addition is a separator for Mon.

(5) (X, p) is a separator in Rel if and only if X # 0 = p.

7.12 PROPOSITION

An object S of a category A is a separator if and only if hom(S,—): A — Set is a
faithful functor.

Proof: The faithfulness of hom(S, —) means, by definition, that given distinct A-mor-
f

phisms A —= B, their hom(S, —) images are distinct; i.e., they differ in at least one
g

element h € hom(S, A). In other words, f oh # goh, and this is precisely the definition
of separator. O

7.13 REMARK

As we will see later, the existence of a separator in A often serves as a useful “smallness”
condition for A that guarantees that there are not “too many” A-objects. A slightly
weaker condition that serves the same purpose is the existence of a separating set.

7.14 DEFINITION 4
A set T of objects is called a separating set provided that for any pair A ==X B of
g

distinct morphisms, there exists a morphism S M, A with domain S a member of T
such that foh # go h.

7.15 EXAMPLES
(1) The empty set is a separating set for A if and only if A is thin.

(2) A one-element set {S} is a separating set if and only if S is a separator.

(3) Set x Set has no separators, but the set consisting of the two objects (0, {0}) and
({0},0) is a separating set.

(4) Aut has no separator, but {41, A2} is a separating set, where A; has states {qo, q1 },
with go initial, no input, and output set {0,1,2}, with y(qo) = 0 and y(q1) = 1;
and Ag has states {¢; | € N}, with go initial, one input o, with §(o,¢;) = ¢i+1, and
ylai) = i.
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Next we introduce coseparators — the dual concept to separators. From the list of
examples one can discern that in familiar categories coseparators are more rare than
separators.

7.16 DEFINITION ;
An object C'is a coseparator provided that whenever B —= A are distinct morphisms,
g

there exists a morphism A !, € such that

7.17 PROPOSITION
C' is a coseparator for A if and only if hom(—,C) : A°? — Set is faithful. (D]

7.18 EXAMPLES

(1) In Set the coseparators are precisely those sets that have at least two elements. [If
C has at least two elements and if B %; A differon b € B, let h: A — C be any
function with h(f (b)) # h(g(b)).]

(2) In Vec the coseparators are precisely the nonzero vector spaces.

(3) The coseparators in Pos are precisely the nondiscrete posets. To see this, suppose
that C has elements z < y and B %?A differ on b € B, say, f(b) £ g(b). Define
h: A— C by

h(a):{:): if a<g(b)

y if aZg(b).

(4) The coseparators in Top are precisely the non-Ty-spaces. [If C' is a non-Ty-space,
then C has an indiscrete subspace with at least two points. Using this fact, proceed
as in (1) above.]

5) The coseparators in Top, are precisely the non-Tj-spaces. To see this, suppose that
0
C' is a Ty-space that is not T7. Then there exist elements x and y with y € ct{z}

f
and = ¢ cl{y}. If B ? A differ on b € B, then there exists an open set W in A
that contains precisely one of f(b) and g(b). Define h: A — C by

if
h(a) = T if aeW
Yy if a¢gW.

(6) In a preordered class considered as a category, every element (= object) is simulta-
neously a separator and a coseparator.
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(7) Any two-element boolean algebra is a coseparator for Boo. The closed unit interval
is a coseparator for Tych. The Banach space of complex numbers is a cosepara-
tor for both Bany, and Ban (Hahn-Banach Theorem). The circle group R/Z is a
coseparator for Ab and, considered as a compact group, it is a coseparator for the
category of locally compact abelian groups. Set is a coseparator for the quasicate-
gory CAT. [If F,G: B — A, with F' # G, then hom(A, —) o F # hom(A,—) o G
for some A-object A.]

(8) None of the categories Rng, Grp, Sgr, or Haus has a coseparator. (This follows for
rings from the existence of arbitrarily large fields, for groups and semigroups from
the existence of arbitrarily large simple groups, and for Hausdorff spaces from the
fact that for each Hausdorff space X there exists a Hausdorff space Y with more
than one point such that every continuous map from Y to X is constant.) Indeed,
none of these categories even has a coseparating set.

SECTIONS AND RETRACTIONS

7.19 DEFINITION
A morphism A 7, B is called a section provided that there exists some morphism
B %5 A such that go f = idy (i.e., provided that f has a “left-inverse”).

Sections

7.20 EXAMPLES

(1) A morphism in Set is a section if and only if it is an injective function and is not
the empty function from the empty set to a nonempty set.

(2) In Vec the sections are exactly the injective linear transformations.

(3) In Ab a homomorphism f: A — B is a section if and only if it is injective and f[A]
is a direct summand of B.

18th January 2005



Sec. 7] Objects and morphisms in abstract categories 107

(4) If X and Y are sets (resp. topological spaces) and if a € Y, then the function
f: X — X xY defined by f(z) = (z,a) is a section in Set (resp. Top). [Note that
the image of f is a “cross-section” of the product, which is in one-to-one correspon-
dence (resp. homeomorphic) to X. This motivates our use of the word “section” in
Definition 7.19.]

(5) The sections described in (4) are just special cases of the following situation: Let
f: X — Y be a morphism in Set (resp. Top, Grp, R—Mod). Consider the graph
of f as a subset (resp. subspace, subgroup, submodule) of the product X x Y. Then
the embedding of X into X x Y defined by = +— (z, f(x)) is a section in the category
in question.

(6) If T is a terminal object, then every morphism with domain 7" is a section.

(7) In a thin category, sections are precisely the isomorphisms.

7.21 PROPOSITION
(1) If A L. B and B % C are sections, then A L. B % C is a section.

(2) If A I.B L Cisa section, then f is a section.

Proof:
(1). Given h with ho f =id4 and k with ko g = idp, then (hok)o (go f) =id4.
(2). Given h with ho (go f) =ids, we have (hog)o f =1idg4. O

7.22 PROPOSITION

Every functor preserves sections (i.e., if F: A — B is a functor and f is an A-
section, then F(f) is a B-section).

Proof: If ho f =ida, then Fho Ff = F(ho f) = F(ids) = idpa. O

7.23 PROPOSITION

Every full, faithful functor reflects sections (i.e., if F : A — B is full and faithful and
F(f) is a B-section, then f is an A-section).

Proof: Given h: FB — FA with ho F(f) =idpa, by fullness there is k : B — A with
h = F(k). Thus F(ko f) =idpa = F(id), so that by faithfulness ko f = idy. O

The dual concept for “section” is “retraction”. The name comes from topology, where a
subspace Y of a space X is called a retract if there is a continuous function f: X — Y
with f(y) =y for each y € Y; so that if e : Y — X is the inclusion, f oe = idy.

7.24 DEFINITION
A morphism A SN B is called a retraction provided that there exists some morphism

B %5 A such that fog = idp (i.e., provided that f has a “right-inverse”). If there exists
such a retraction, then B will be called a retract of A.
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7.25 EXAMPLES

(1) The retractions in Set are precisely the surjective functions. [Notice that this state-
ment is equivalent to the Aziom of Choice for sets.]

(2) In Vec the retractions are exactly the surjective linear transformations.

(3) A morphism f in Top is a retraction if and only if there is a topological retraction
r and a homeomorphism h such that f = hor. In other words, the retractions in
Top are (up to homeomorphism) exactly the topological retractions.

(4) In any thin category the concepts “retraction”, “section”, and “isomorphism” agree.

(5) The usual underlying functor U : Top — Set is a retraction in the quasicategory
CAT. It has precisely two right inverses, the discrete functor and the indiscrete
functor.

(6) In Ab retractions are (up to isomorphism) the projection homomorphisms, i.e.,
f: A — B is a retraction if and only if there is an abelian group C such that

A 7, B=ABxc™ B, where h is an isomorphism and p is a projection.
7.26 PROPOSITION
For a morphism f the following are equivalent:
(1) f is an isomorphism,

(2) f is a section and a retraction.

Proof: This follows immediately from Proposition 3.10. O

7.27 PROPOSITION
(1) If A L, B and B2 C are retractions, then A 921, G is a retraction.

(2) If A 2, s retraction, then g is a retraction. (D]

7.28 PROPOSITION
Every functor preserves retractions. @

7.29 PROPOSITION
Every full, faithful functor reflects retractions. @

7.30 REMARKS

(1) Notice that by combining Proposition 7.23 and its dual (7.29) we get the result
(already proved [3.32]) that every full, faithful functor reflects isomorphisms.

(2) Notice also that we did not need to define “sect” as the dual of retract, since “retract”
is self-dual.
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7.31 PROPOSITION

An isomorphism-closed full reflective subcategory A of a category B contains with any
object A each retract of A in B.

Proof: Let A — B be a B-retraction of an A-object A. Then there exist a section
s: B — A such that r o s = idp and an A-reflection B —— Ap. By the definition of
reflection there is an A-morphism Ap —— A such that s = tou. Thus (rot)ou=ros=
idp. Hence uo (rot)ou =u=1ida, ou, so that by uniqueness u o (rot) = ids,. Thus
u is an isomorphism, and since A is isomorphism-closed in B, B must belong to A. O

MONOMORPHISMS AND EPIMORPHISMS

7.32 DEFINITION
A morphism A 1, Bis said to be a monomorphism provided that for all pairs

h
C —— A of morphisms such that foh = f ok, it follows that h = k (i.e., f is “left-
k

cancellable” with respect to composition).

7.33 EXAMPLES

(1) A function is a monomorphism in Set if and only if it is injective. [To show that
a monomorphism f: A — B must be injective, take a,b € A and consider the
constant functions a, b: {p} — A/]

(2) For any morphism f in Vec, the following are equivalent:
(a) f is a monomorphism,
(b) f is a section,
(c) f is injective.

(3) In many constructs, monomorphisms are precisely those morphisms that have in-
jective underlying functions; e.g., this is the case for Pos, Top, Grp, Ab, Sgr,
Rng, Rel, and Alg(f2). In fact this is true for any construct with a representable
underlying functor (7.37 and 7.38).

(4) In the construct {o}-Seq (whose forgetful functor is not representable), monomor-
phisms are precisely the injective simulations. [If f: A — B is not injective, then
there exist distinct states z1 and zy with f(z1) = f(x2), and there exist n, m, and k
such that o™ t*2y = oFx; and 6™ * 29 = o*25. Let C be the acceptor obtained from
A by adding k+mnm nonfinal states qi, - . ., @k1nm such that o¢; = g;+1 fori < k+nm
and 0Qi4+nm = Qx+1- For ¢ = 1,2, there is a unique simulation g; : C — A that is
the inclusion on A-states and such that g;(¢1) = x;. Then fog; = fogs.]

(5) In the category DivAb of divisible abelian groups and group homomorphisms there
are monomorphisms that have non-injective underlying functions. Consider the
natural quotient Q — Q/Z, where @ is the additive group of rational numbers and
Z is the additive group of integers.
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(6) There is a monomorphism X Ly in Top such that the homotopy class X Ly
of f is not a monomorphism in the category hTop, whose objects are topological
spaces and whose morphisms are homotopy equivalence classes of continuous maps.
[Consider the usual embedding of the bounding circle of a disc into the disc.]

(7) The monomorphisms in CAT are precisely the embedding functors.

(8) In the category of all fields*> and homomorphisms between them, every morphism
is a monomorphism.

(9) In any thin category every morphism is a monomorphism.

7.34 PROPOSITION

(1) If A L. B and B % C are monomorphisms, then A L, B 2. ¢ is a monomor-
phism.

(2) If A 1. B C is a monomorphism, then f is a monomorphism.
Proof: Let h,k: D — A.

(1). (9o floh=(gof)ok = go(foh)=go(fok) = foh=fok = h=k
(2). foh=fok = (gof)oh=(gof)ok = h=k. O

7.35 PROPOSITION
FEvery section is a monomorphism.

Proof: Suppose that go f =id and foh= fok. Then h=go foh=go fok=%k.O

7.36 PROPOSITION
For any morphism f the following are equivalent:
(1) f is an isomorphism,

(2) f is a retraction and a monomorphism.

Proof: (1) = (2) is clear from Propositions 7.26 and 7.35. To show that (2) = (1), let
f be a monomorphism with fog =1d. Then fo(gof)=(fog)of=idof= foid, so
that by left-cancellation, g o f = id. Hence f is an isomorphism. O

7.37 PROPOSITION

(1) Every representable functor preserves monomorphisms, i.e., if F : A — Set is
representable and if f is a monomorphism in A, then F(f) is a monomorphism in
Set (i.e., an injective function).

(2) Ewvery faithful functor reflects monomorphisms, i.e., if ' : A — B is faithful
and F(f) is a B-monomorphism, then f is an A-monomorphism.

35Recall that in each field 0 # 1.
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Proof:
(1). Simple computations show that

(a) hom-functors hom(A, —): A — Set preserve monomorphisms,

(b) whenever functors F' and G are naturally isomorphic and F' preserves mono-
morphisms, then so does G.

(2). Suppose that foh = fok. Then Ff o Fh = Ff o Fk implies that FFh = Fk, so
that by faithfulness h = k. O

7.38 COROLLARY

In any construct all morphisms with injective underlying functions are monomorphisms.
When the underlying functor is representable, the monomorphisms are precisely the mor-
phisms with injective underlying functions. O

The categorical dual of “monomorphism” is “epimorphism”.

7.39 DEFINITION ,
A morphism A i B is said to be an epimorphism provided that for all pairs B —= C
k

of morphisms such that ho f = ko f, it follows that h = k (i.e., f is “right-cancellable”
with respect to composition).

7.40 EXAMPLES
(1) In both Set and Vec the following are equivalent for any morphism f:

(a) f is an epimorphism,
(b) f is a retraction,
(¢c) f is surjective.

[To show that an epimorphism A 4, B in Set is surjective, consider two functions
from B to {0, 1}, one of them mapping every point of B to 0 and the other mapping

precisely the points of f[A] to 0. To show that A L, Bin Vecis surjective, use the
above idea with the quotient B/ f[A] replacing {0, 1}.]

(2) In a number of constructs the epimorphisms are precisely the morphisms with surjec-
tive underlying functions. This is the case, for instance, in Top, Rel, each Alg(f?),
Lat, ¥-Seq, Pos, Ab, Grp, and HComp. [For Top, argue as in Set, where {0, 1}
is given the indiscrete topology; similarly for Rel. For Ab and HComp, argue as
in Vec.| However, this situation occurs less frequently than that of monomorphisms
being precisely those morphisms with injective underlying functions. In quite a few
familiar constructs, epimorphisms fail to be surjective (see below), and even when
they are surjective, the proof may be far from obvious; e.g., for Grp see Exercise
TH.
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(3) In Haus the epimorphisms are precisely the continuous functions with dense images.
Also in Bany, and in Ban (with either of the two natural forgetful functors) [5.2(3)],
the epimorphisms are precisely the morphisms with dense images. In the category
of Hausdorff topological groups there exist epimorphisms with non-dense images.

(4) In the category of torsion-free abelian groups, a morphism A N B is an epimor-
phism if and only if the factor group B/f[A] is a torsion group. Thus, in this
category, the inclusion 27 — 7Z is a non-surjective epimorphism.

(5) In Rng and Sgr there are epimorphisms that are not surjective; e.g., the usual

embedding 7Z N Q@ of the integers into the rationals is an epimorphism in Rng and
in Sgr. [If h and k are homomorphisms such that ho f = ko f and if n/m € Q,
then

h(n/m) = h(n) - h(1/m) - h(1) = k(n) - h(1/m) - k(1)
— k(n) - h(L/m) - k(m) - k(1/m) = k(n) - h(1/m) - h(m) - k(1/m)
— k(n) - h(1) - k(1/m) = k(n) - k(1) - k(1/m) = k(n/m)]

(6) In Cat there are epimorphisms that are not surjective. Consider the epimorphism
F: A — B, where A = 2, e, B is the additive monoid of natural numbers, and
F is the unique functor from A and B with F(g) =

(7) There is an epimorphism X g, Y in Top such that the homotopy class X N Y
of f is not an epimorphism in the category hTop. Consider the covering projection
of the real line onto the circle, defined by: x +— e'*.

(8) In a thin category, each morphism is an epimorphism.

7.41 PROPOSITION
(1) If A . B and B -2 C are epimorphisms, then A N N C' is an epimorphism.

(2) If A JT.BE Cisan epimorphism, then g is an epimorphism. (D]

7.42 PROPOSITION

Every retraction is an epimorphism. @

7.43 PROPOSITION

For a morphism, f, the following are equivalent:
(1) f is an isomorphism.

(2) f is a section and an epimorphism. (D]

7.44 PROPOSITION
Every faithful functor reflects epimorphisms. @
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7.45 COROLLARY

In any construct all morphisms with surjective underlying functions are epimorphisms.@

7.46 REMARK

Although faithful functors reflect epimorphisms and monomorphisms, they need not
preserve them (as the above examples show). In fact, even full embeddings may fail
to do s0.° For example, the full embedding E : Haus — Top doesn’t preserve epi-
morphisms [7.40(2) and (3)] and so the full embedding E°P : Haus® — Top°® doesn’t
preserve monomorphisms. However, if such functors are also isomorphism-dense, then
they preserve monomorphisms and epimorphisms, as the following shows:

7.47 PROPOSITION

Every equivalence functor preserves and reflects each of the following: monomorphisms,
epimorphisms, sections, retractions, and isomorphisms.

Proof: By duality and Propositions 7.22, 7.23, and 7.37, we need only show preser-
vation of monomorphisms. Let F' : A — B be an equivalence, let A’ L, A be an

A-monomorphism, and let B :Ti FA’ be morphisms with F'f or = F f os. Since F is
S

isomorphism-dense, there exists an A-object A” and a B-isomorphism F'A” *. B. By

fullness there are A-morphisms A” r:; A’ with Fr' =rok and F's’ = sok. Thus
s/

F(forY=FfoFr' =Fforok=Ffosok=FfoFs =F(fos).

Faithfulness and the fact that f is a monomorphism imply that ' = s/, from which it
follows readily that r = s. O

7.48 REMARK

The above is typical of equivalences. They preserve and reflect virtually all properties
that are considered to be categorical. In fact, a reasonable way to define a “categorical
property” would be as “a property of categories that is preserved and reflected by all
equivalences”. This is why equivalent categories are considered to be almost as much
alike as isomorphic ones.

7.49 DEFINITION
(1) A morphism is called a bimorphism provided that it is simultaneously a monomor-

phism and an epimorphism.

(2) A category is called balanced provided that each of its bimorphisms is an isomor-
phism.

36However, we will see later [Proposition 18.6 and Example 19.12(1)] that embeddings of reflective
subcategories must preserve monomorphisms.
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7.50 EXAMPLES
(1) Set, Vec, Grp, Ab, and HComp are balanced categories.

(2) Rel, Pos, Top, Mon, Sgr, Rng, Cat, Ban, and Bany, are not balanced categories.
The inclusion Z — @ is a non-isomorphic bimorphism in Mon, Sgr, Rng, and Cat.
The function ¢ - co,”" defined by f(z,) = (%2), is a non-isomorphic bimorphism
in Ban and Bany,.

REGULAR AND EXTREMAL MONOMORPHISMS

Originally it was believed that monomorphisms would constitute the correct categorical
abstraction of the notion “embeddings of substructures” that exists in various constructs.
However, in many instances the concept of monomorphism is too weak; e.g., in Top
monomorphisms are just injective continuous maps and thus need not be embeddings.
Below we introduce two stronger notions (and there are several others in current use
— see Exercises 7D and 14C) that more frequently correspond with embeddings in
categories. However, a satisfactory concept of “embeddings” seems to be possible only
in the setting of constructs (see 8.6).

7.51 DEFINITION

Let A== B be a pair of morphisms. A morphism E —— A is called an equalizer of
g

f and g provided that the following conditions hold:

(1) foe=goe,

(2) for any morphism €’ : E' — A with foe’ = go ¢/, there exists a unique morphism
e: E' — E such that ¢/ = eog, i.e., such that the triangle

E/
I
EﬁA%B

commutes.

7.52 EXAMPLES ;
(1) Let A be one of the categories Set, Vec, Pos, Top, or Grp. If A== B are A-
g
morphisms, and if £ denotes the set {a € A| f(a) = g(a)} considered as a subset
(resp. linear subspace, subposet, subspace, subgroup) of A, then the inclusion from

F to A is an equalizer of f and g. [If B/ <= A is such that foe’ = goe¢’, then € is
the codomain restriction of ¢’.]

37 oo (resp. co) is the classical Banach space of all bounded sequences in the field K (resp. all sequences
in K that converge to 0) with the sup-norm.
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(2) If A is the full subcategory of Top that consists of sequential spaces (resp. compactly
generated spaces) and if E (as in (1)) is supplied with the coarsest sequential (resp.
compactly generated) topology for which the inclusion F <, A is continuous, then
e is an equalizer of f and g in A.

7.53 PROPOSITION ;
Equalizers are essentially unique; i.e., given A —= B in a category, then the following
g

hold:

(1) if each of E < A and E' <, Ais an equalizer of f and g, then there is an
isomorphism k : E' — E with e’ = eok,

(2) if E =5 A is an equalizer of f and g, and if E’ *, Eis an isomorphism, then

E' %, A s also an equalizer of f and g.

Proof:

(1). Since foe' = goeé there is a k with ¢/ = e o k. Analogously, there is an h with
e =¢€¢oh Thuseoid = e = ¢ oh = eo (koh), sothat by the uniqueness
requirement in the definition of equalizer, id = k o h. Similarly, h o k = id, so that
k is an isomorphism.

(2). This is clear, since whenever € is a unique morphism with eoe = ¢/, then k™' o€

will be a unique morphism with (eo k) o (k~'oe) = ¢ O

7.54 PROPOSITION
If E 55 A is an equalizer of A ? B, then the following are equivalent:

(1) f=y,

(2) e is an epimorphism,

(8) e is an isomorphism,

(4) id 4 is an equalizer of f and g. O

7.55 PROPOSITION
If A ANy Ry L A, then g is an equalizer of go f and idp.

Proof: Clearly (go f)og=go(fog) =g=idpog. Given h: C — B with (go f)oh =
idp o h, then foh: C — A is the unique morphism k with h = g o k. O

7.56 DEFINITION

A morphism E - A is called a regular monomorphism provided that it is an
equalizer of some pair of morphisms.
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7.57 REMARKS

(1) It is clear from the uniqueness requirement in the definition of equalizer that regular
monomorphisms must be monomorphisms.

(2) One should be aware of the difference between the concepts of equalizer and regular
monomorphism. “Equalizer” is defined relative to pairs of morphisms, whereas “reg-
ular monomorphism” is absolute. The difference is more than just a technical one.
For example, later we will see that it is possible for a functor to preserve regular
monomorphisms without preserving equalizers (13.6).

7.58 EXAMPLES

(1) In Set the regular monomorphisms are the injective functions, i.e., up to isomor-
phism, precisely the inclusions of subsets. [If E -+ A is an inclusion of a subset,
consider functions f and g from A to {0,1}, where f maps every point of A to 1
and g maps precisely the points of E to 1. Then e is an equalizer of f and g.]

(2) In Top the regular monomorphisms are, up to isomorphism, precisely the embed-
dings of subspaces. [If E -, A is an inclusion of a subspace, proceed as in (1), and
supply the set {0, 1} with the indiscrete topology.]

(3) In Haus the regular monomorphisms are, up to isomorphism, precisely the inclusions
of closed subspaces. [If e: E — A is an embedding of a closed subspace in Haus,
let A; = Ay = A, and let A be the topological sum of A; and Ay with embeddings
p1 and pg. Let ¢ : A — B be the quotient map that for each z € E identifies ju;(x)
and po(z), but identifies nothing else. Then B is Hausdorff and e is an equalizer of
gopi and g o pg.] Similarly, in Met. (resp. Bany,) the regular monomorphisms are
the topological embeddings of closed (linear) subspaces. In Met (resp. Ban) the
regular monomorphisms are the isometric embeddings of closed (linear) subspaces.

(4) In many “algebraic” categories, e.g., in Vec, Grp, and Alg(f?), and also in HComp,
all monomorphisms are regular. [If e: £ — A is a monomorphism in Vec, consider
the quotient space B = A/e[FE], the zero map f: A — B, and the natural quotient
map ¢g: A — B. Then e is an equalizer of f and g.] However, in Sgr and Rng
monomorphisms need not be regular, e.g., the inclusion Z — Q@) is a non-regular
monomorphism. [If it were regular, then since it is an epimorphism [7.40(5)] by
Corollary 7.63 and Proposition 7.66 it would necessarily be an isomorphism.|

(5) In {o}-Seq the regular monomorphisms are precisely the injective simulations that

map each nonfinal state to a nonfinal state.

7.59 PROPOSITION

(1) Every section is a regqular monomorphism.

(2) Every regular monomorphism is a monomorphism.

Proof: (1) is immediate from Proposition 7.55 and (2) follows from the uniqueness
requirement in the definition of equalizer. O
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7.60 REMARK

Neither implication of the previous proposition can be reversed. For example, Z — @Q
is a monomorphism in Sgr that is not regular, and every embedding of a non-connected
topological space into a connected one is a regular monomorphism in Top that is not a
section. Also the embedding of the unit circle into the unit disc is not a section in Top.
(This is the crucial lemma for Brouwer’s fixed-point theorem.)

Next, we introduce another type of monomorphism that is particularly useful because
(as is the case with regular monomorphisms) it often coincides with embeddings in
constructs, and, since it is defined by intrinsic properties, it is sometimes easier to
handle than regular monomorphisms.

7.61 DEFINITION

A monomorphism m is called extremal provided that it satisfies the following extremal
condition: If m = f oe, where e is an epimorphism, then e must be an isomorphism.

7.62 PROPOSITION
Let A g, B and B -2 C be morphisms.

(1) If f is an extremal monomorphism and g is a regular monomorphism, then go f is
an extremal monomorphism.

(2) If go f is an extremal monomorphism, then f is an extremal monomorphism.

(8) If go f is a reqular monomorphism and g is a monomorphism, then f is a reqular
monomorphism.

Proof:

(1). Let g be an equalizer of r and s. Let go f = hoe, where e is an epimorphism. Then
rohoe=rogof=sogof =sohoeimplies that roh = soh. Thus there exists
a unique morphism k with h = gok. Hence gokoe =hoe = go f. Consequently,
k oe = f, which implies that e is an isomorphism.

(2). Immediate.

(3). If g o f is an equalizer of r and s, then f is an equalizer of 7 o g and s o g. O

7.63 COROLLARY
Every regular monomorphism is extremal. O

7.64 REMARK

A composite of extremal monomorphisms may fail to be extremal. However, if all ex-
tremal monomorphisms in a category are regular, then, by Proposition 7.62, in that
category the class of extremal (= regular) monomorphisms is closed under composition
and is cancellable from the left; i.e., its compositive behavior is similar to that of the
class of all monomorphisms (cf. Proposition 7.34). This is the case for most of the famil-
iar categories, e.g., for Set, Vec, Rel, Pos, Top, Haus, Grp, and Alg(Q2). (See also
the dual of Proposition 14.14.) However, this is not always the case, as the following
example and Exercises 7J and 141 show.

18th January 2005



118 Objects and Morphisms [Chap. II

7.65 EXAMPLE
Let FHaus denote the full subcategory of Top consisting of the functionally Hausdorff

spaces.’® Then a morphism A SN B in FHaus is
(a) a monomorphism if and only if f is injective,
(b) an extremal monomorphism if and only if f is an embedding such that for every

subspace C' of B with f[A] € C, there exists a non-constant morphism C IR

=

with the restriction g|f[A] constant,

(c¢) a regular monomorphism if and only if f is an embedding of a subspace of B that
is an intersection of zerosets® in B (cf. 7J).

7.66 PROPOSITION
For any morphism f the following are equivalent:

(1) f is an isomorphism,

(2) f is an extremal monomorphism and an epimorphism.

Proof: (1) = (2) is immediate from Proposition 7.59, Corollary 7.63, and duality. If f
satisfies (2), the trivial factorization f = id o f shows that f is an isomorphism. O

7.67 PROPOSITION

For any category A, the following are equivalent:
(1) A is balanced,

(2) in A each monomorphism is extremal.

Proof: (1) = (2) is immediate from Proposition 7.34(2), and (2) = (1) follows from
the proposition above (7.66). O

REGULAR AND EXTREMAL EPIMORPHISMS

One of the nice insights that can be gleaned from category theory is that the formation
of quotient structures (such as groups of cosets and identification topologies) can be
viewed as the dual of the formation of substructures. Analogous to the situation where
monomorphisms frequently are too weak to represent substructures, epimorphisms are
frequently too weak to represent quotient structures. The notions of regular epimorphism
and extremal epimorphism, which are the duals of the notions of regular monomorphism
and extremal monomorphism, frequently coincide with natural quotients in abstract
categories. However, as is the case with subobjects, a truly satisfactory concept of
“quotient” seems to be possible only in the setting of constructs (see 8.10).

38 A topological space A is called a functionally Hausdorff space provided that for any two distinct
points a and b of A there exists a continuous map from A to the real numbers that has different
values at a and b.

397 is called a zeroset in B provided that there exists a continuous map from B to the real numbers
such that Z is the inverse image of 0.
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7.68 DEfFINITION

Let

A== B be a pair of morphisms. A morphism B — C is called a coequalizer of
g

f and g provided that the following conditions hold:

(1)
(2)

cof=cog,

for any morphism ¢ : B — C’ with ¢ o f = ¢/ o g, there exists a unique morphism
¢: C — (' such that ¢ =¢oc; i.e., such that the triangle

f ¢
A$B*>C

N

Cl

commutes.

7.69 EXAMPLES

1.

Given two functions A —= B in Set, let ~ be the smallest equivalence relation on
g

B such that f(a) ~ g(a) for all a € A. Then the natural map g : B — B/~, which
assigns to each b € B the equivalence class to which b belongs, is a coequalizer of
f and g.

f
If A—= B are continuous functions in Top, then the procedure given above yields
g

a coequalizer of f and g, provided that B/~ is assigned the finest topology that
makes ¢ continuous (i.e., the final (or identification) topology).

Coequalizers in Rel and Prost are formed analogously to the way that they are
formed in Top. In Pos they are formed by first forming the coequalizers in Prost
and then taking the Pos-reflection of the resulting preordered set.

f
If A?B are Ab-morphisms, let By be the subgroup {f(a) — g(a)|a € A} of

B. Then the natural map ¢ : B — B/By to the group of cosets is a coequalizer of
f and g.

f
If A——= B are homomorphisms in Alg(2), then a coequalizer for them is ob-
9

tained analogously as in Set by using, instead of equivalence relations, the smallest
congruence relation ~ such that f(a) ~ g(a) for all a € A.

f
If A——= B are simulations in X-Seq, then a coequalizer for them is obtained
g

analogously as in Alg(Q) with final states precisely the congruence classes that
contain some final state of B.
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7.70 REMARK

Since the concept of coequalizer is dual to that of equalizer, the general results about
equalizers can be translated (via the Duality Principle) into results about coequalizers.
For example,

(1) Coequalizers are essentially unique.

(2) If A Ny BNy A, then f is the coequalizer of g o f and idp.

f
(3) If B C is a coequalizer of A == B, then the following are equivalent:
g

7.71 DEFINITION

A morphism B - (' is called a regular epimorphism provided that it is a coequalizer
of some pair of morphisms.

7.72 EXAMPLES

(1) In Set the regular epimorphisms are the surjective functions. [Given e: A — B
surjective, consider the two projections from D = {(a,d’) € A x A|e(a) = e(da’)} to
A.] In fact, in Set,
Retr = RegEpi = Surj = Epi.

(2) In Top the regular epimorphisms are precisely the topological quotient maps; i.e.,
the surjective continuous maps onto spaces with the final topology. [For such a map
e proceed as in Set with D considered as a subspace of A x A.] In ¥-Seq regular
epimorphisms are precisely the surjective simulations that have the property that
each final state in the codomain has a final preimage in the domain. Thus, in both
of these categories,
RegEpi € Surj = Epi.

(3) In each Alg(Q?), Vec, Grp(cf. 7TH), Ab, Lat, and HComp,
RegEpi = Surj = Epi.

(4) In Sgr, Mon, and Rng,
RegEpi = Surj C Epi.

(5) In the constructs Cat and (Ban,O) there exist regular epimorphisms that are

not surjective. In Cat, consider the regular epimorphism A L, B of Example
7.40(6). In (Ban,O), consider the regular epimorphism e: ¢y — K, where K is
the field of real (or complex) numbers considered as a Banach space, ¢y is the clas-
sical Banach space of all sequences in K converging to 0 with the sup-norm, and

e(wn) = S0 /2"
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7.73 REMARK

Each of the forgetful functors from Vec, Grp, and Top; (71-topological spaces) into
Set preserves regular epimorphisms. However, none of them preserves coequalizers.
(Cf. Remark 13.6.)

7.74 DEFINITION

An epimorphism e is called extremal provided that it satisfies the following extremal
condition: Ife = mo f, where m is a monomorphism, then m must be an isomorphism.

7.75 PROPOSITION
(1) Every retraction is a regular epimorphism.

(2) Every regular epimorphism is an extremal epimorphism. @

7.76 REMARK

(1) In most of the familiar categories the regular epimorphisms and the extremal epimor-
phisms coincide. See, e.g., Proposition 14.14. However, in Cat there exist extremal
epimorphisms that are not regular epimorphisms. An example is the composite Go F’
of the regular epimorphism (functor) F': A — B of Example 7.40(6) with the reg-
ular epimorphism (functor) G : B — C, where C is the multiplicative submonoid
{0,1} of Z (considered as a category), G(n) =0 for n > 0, and G(0) = 1.

(2) In general, “between” regular epimorphisms and extremal epimorphisms there are
several other commonly used types of epimorphisms, the “strong epimorphisms” (the
dual of which is introduced in Exercise 14C), the “swell epimorphisms” (introduced
in 15A), and the “strict epimorphisms” (introduced in Exercise 7D). Thus we have
the following diagram that summarizes the relative strengths of the various notions
introduced. Notice that the notions in the boxes frequently coincide (see (1) above),
but none of the implications can be reversed in general.

isomorphism
section retraction
3 4
regular mono regular epi
strict mono strict epi
4
swell mono swell epi
! U
strong mono strong epi
4 Y
extremal mono extremal epi
bimorphism
monomorphism epimorphism
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SUBOBJECTS

For most of the familiar constructs, a canonical notion of “subobject” is generally un-
derstood. Category theory has made it apparent that “A being a subobject of B” is
not only a property of the object A, but also of the naturally associated “inclusion mor-
phism” from A into B. Hence we will define subobjects of B to be pairs (A, m), where
A is an object and m is an “inclusion morphism”.

Since, as we have seen, for different categories one may need different concepts of mor-
phism®” to characterize (up to isomorphism) the “inclusion morphisms of subobjects”,
the concept of subobject will be made dependent upon a chosen class M of morphisms
that represents (in each case) such inclusions.

7.77 DEFINITION
Let M be a class of monomorphisms. An M-subobject of an object B is a pair (A, m),

where A -2~ B belongs to M. In case M consists of all (regular, extremal) monomor-
phisms, M-subobjects are called (regular, extremal) subobjects.

7.78 REMARK

By the above definition, a subobject of a set B in Set is a pair (A, m), wherem : A — B
is an injective function. In order for the notion of subobject to correspond more closely
to the notion of subset, two subobjects (A, m) and (A’, m’) should be considered to be
essentially the same if m[A] = m/[A’]. Furthermore a subobject (A,m) of B in Set
should be considered to be “smaller than” the subobject (A’,m’) of B provided that
m[A] C m/[A"]. The following definitions capture these ideas.

7.79 DEFINITION

Let (A,m) and (A’,m’) be subobjects of B.

(1) (A, m)and (A, m’) are called isomorphic provided that there exists an isomorphism
h: A— A withm=m'oh.

(2) (A,m) is said to be smaller than (A’,m’) — denoted by (4,m) < (A',m') —
provided that there exists some (necessarily unique) morphism*' h: A — A’ with

m=m'oh
A

RS

B

7.80 REMARK
Observe that for the class of all subobjects of a given object

4OFor example, in Rng the class of monomorphisms is appropriate, whereas the class of regular (=
extremal) monomorphisms is not. However, for Top the class of regular (= extremal) monomorphisms
is appropriate, whereas the class of monomorphisms is not.

41Observe that by Proposition 7.34, h must be a monomorphism.
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(1) the relation of being isomorphic is an equivalence relation, and

(2) the relation < is a preorder; i.e., it is reflexive and transitive. In general, it fails to
be antisymmetric, but (A, m) < (A’,m’) and (A’,m’) < (A, m) imply that these two
subobjects are isomorphic.

7.81 EXAMPLES

(1) Let B be a set, let PB be the set of all subsets of B, let SB be the class of
all subobjects of B in Set, and let H: SB — PB be the function defined by:
H(A,m) =m[A]. Then
(a) (A,m) and (A’,m’) are isomorphic if and only if H(A,m) = H(A',m’), and
(b) (A,m) < (A’,m’) if and only if H(A,m) C H(A",m').

Hence, up to isomorphism, subsets of B correspond bijectively to subobjects of B,

where the correspondence is order-preserving.

(2) Similarly, in the categories Vec, Sgr, Mon, Grp, Ab, Rng, Alg({2), and
HComp, subobjects correspond to linear subspaces, subsemigroups, submonoids,
subgroups, subrings, subalgebras, and compact subspaces, respectively.

(3) Analogously, in Top, Rel, and Pos, regular (= extremal) subobjects correspond to
subspaces, subrelations, and subposets, respectively.

7.82 DEFINITION
Let M be a class of monomorphisms of a category A.

(1) A is called M-wellpowered provided that no A-object has a proper class of pair-
wise’? non-isomorphic M-subobjects.

(2) In case M is the class of all (regular, extremal) monomorphisms, then M-well-
powered is called (regular, extremally) wellpowered.

7.83 REMARK

Every wellpowered category must be regular wellpowered and extremally wellpowered,
but not conversely. [The thin category Ord of all ordinal numbers (with its usual
order) is wellpowered. Ord®°P is extremally wellpowered, but is not wellpowered. In
fact, each of its objects has a proper class of pairwise non-isomorphic subobjects, but
only one extremal subobject.] Thus one should be aware that even though the phrase
“extremally wellpowered” sounds stronger than “wellpowered”, it is actually weaker.

QUOTIENT OBJECTS

Often in mathematics one has a “quotient” or “identification” procedure that maps
points to equivalence classes or “collapses” parts of a structure. Frequently, both of

42«Pajrwise” in this context means that any pair consisting of distinct members are assumed to be
non-isomorphic.
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these processes are considered to be essentially the same, and are used interchangeably.
For example, collapsing a subgroup of an abelian group to the identity element is un-
derstood either as the homomorphism onto the group of cosets or as the homomorphism
onto a particular set of representatives of the cosets. The reason that mathematicians
don’t distinguish these procedures is because they both give rise to essentially the same
quotient object — where “quotient object” is the dual concept to that of subobject.

7.84 DEFINITION
Let E be a class of epimorphisms. An E-quotient object of an object A is a pair (e, B),

where A - B belongs to E. In case E consists of all (regular, extremal) epimorphisms,
E-quotient objects are called (regular, extremal) quotient objects.

7.85 DEFINITION
Let (e, B) and (¢/, B') be quotient objects of A.

(1) (e,B) and (€¢/, B') are called isomorphic provided that there exists an isomorphism

h: B— B withe =hoe.

(2) (e, B) is said to be larger than (¢/, B") — denoted by (e, B) > (¢/, B') — provided

that there exists some (necessarily unique) morphism h : B — B’ with ¢’ = hoe.

A—>B

AN

B/

7.86 EXAMPLES

(1)

Let A be a set, let £A be the set of all equivalence relations on A, let A be the set
of all quotient objects of A in Set, and let H : KA — EA be the function defined
by: H(e,B) = {(z,y) € Ax Ale(z) =e(y)}. Then

(a) (e,B) and (¢, B") are isomorphic if and only if H(e, B) = H(¢', B'), and
(b) (e,B) > (¢/,B’) if and only if H(e, B) C H(¢', B).
Hence, up to isomorphism, quotient objects of A correspond bijectively to equiva-

lence relations on A, where the correspondence is order-reversing.

Similarly, in the constructs Top, Rel, and Pos the regular (= extremal) quotient
objects of an object correspond (up to isomorphism) bijectively to the equivalence
relations on its underlying set.

Analogously, in HComp the quotient objects (= regular quotient objects) of an
object A correspond (up to isomorphism) bijectively to those equivalence relations
p on the underlying set of A that, considered as subsets of A x A, are closed.

In algebraic constructs such as Vec, Sgr, Mon, Grp, Ab, Rng, and Alg(Q2), the
regular (= extremal) quotient objects of an object A correspond (up to isomorphism)
bijectively to the congruence relations on A; i.e., to the equivalence relations on the
underlying set of A that respect the operations.
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7.87 DEFINITION
Let E be a class of epimorphisms of a category A.

(1) A is called E-co-wellpowered provided that no A-object has a proper class of
pairwise non-isomorphic E-quotient objects.

(2) In case E is the class of all (regular, extremal) epimorphisms, then E-co-wellpowered
is called (regular, extremally) co-wellpowered.

7.88 THEOREM

FEvery construct is reqular wellpowered and regular co-wellpowered.

Proof: Let (A,U) be a construct.

(1). To show that A is a regular co-wellpowered category, let A be an A-object and
let {(e;, B;)|i € I} be a class of pairwise non-isomorphic regular quotient objects
of A. Let £A be the set of all equivalence relations on UA and let the function
H: I — E£A be defined by: H(i) = {(a,b) € UA x UA|e;(a) = e;(b)}. To see
that H is injective, let i1,i2 € I with H(iy) = H(i2). For k = 1,2, let (e;,, B;,) be

T
a coequalizer of A :k§ A . The equality e;, oy = e;, o s; implies that for each
Sk
a € UA; (ri(a),si1(a)) € H(i1) = H(i2). Consequently, e;, or; = e;, 051, so that by
the definition of coequalizer (e;,, B;,) > (€4, Bi,). By symmetry, and by using the
dual of Remark 7.80(2), we have that (e;,, B;,) and (e;,, B;,) are isomorphic and

hence, by assumption, iy = i5. Thus H : I — £A is an injective function, so that
since £A is a set, I must be a set.

(2). That A is regular wellpowered follows immediately from (1) and the fact that
(A°P Qo U®P) is a construct [5.2(4)]. O

7.89 COROLLARY

Every category with a separator or a coseparator is regqular wellpowered and regular co-
wellpowered.

Proof: If S is a separator in A, then (A,hom(S,—)) is a construct. If C' is a cosep-
arator in A, then (A, Q@ o hom(—,C)°P) is a construct, where Q : Set®® — Set is the
contravariant power-set functor. O

7.90 EXAMPLES

(1) Fibre-small transportable constructs for which the epimorphisms are precisely the
morphisms with surjective underlying functions must be co-wellpowered.

(2) Constructs are frequently co-wellpowered, even when they have non-surjective epi-
morphisms; e.g., Sgr, Rng, and Haus. However, in these cases establishing co-
wellpoweredness is more involved.
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(3) The construct of Urysohn spaces®® is not co-wellpowered. The proof is nontrivial.

Another non-co-wellpowered subcategory of Top is described in Exercise 7L. Both
of these constructs are regular co-wellpowered (since they are constructs). Ord is
obviously not co-wellpowered.

(4) Constructs need not be extremally co-wellpowered: consider the construct whose
objects are all sets and whose morphisms are all identities and all constant functions
from sets A to sets B, where the cardinality of B is greater than that of A.
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EXERCISES
7A. Zero Morphisms
A morphism A 1. B is called a constant morphism provided that for any pair

Al i; A of morphisms we have f or = f os. Morphisms that are simultaneously
S

constant and coconstant are called zero morphisms. Show that
(a) If f is a constant morphism then so is any composite ho f o g.
(b) If f can be factored through a terminal object, then f is constant.

(c) If A has a zero object, 0, then an A-morphism is a zero-morphism if and only if it
can be factored through 0.

43 A topological space is called a Urysohn space provided that any two distinct points have disjoint
closed neighborhoods.
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7B. Pointed Categories

A category is called pointed provided that each of its morphism sets hom(A, B) contains
a zero morphism. Show that a category is pointed if and only if it is a full subcategory
of a category with a zero object.

7C. Kernels and Normal Monomorphisms

In a pointed category an equalizer of A 7, B and a zero morphism A — B is called a
kernel of f. A morphism is called a normal monomorphism provided that it is the
kernel of some morphism. Show that

(a) Every normal monomorphism is regular.

(b) In Grp the normal monomorphisms are the embeddings of normal subgroups,
whereas the regular monomorphisms are the embeddings of subgroups. [Use 7H(a)].
(c) If A 1. B % C are morphisms in a pointed category and g is a monomorphism,

then f is a kernel of g if and only if A is a zero object.

(d) Each nonempty pointed category has a zero object if each of its morphisms has a
kernel.

(e) If A is a pointed category such that each of its morphisms has a kernel and a cokernel,
then the following hold:

(1) A morphism f is a normal monomorphism if and only if it is a kernel of a
cokernel of f.

(2) For each object A the preordered class of all non-isomorphic normal subobjects
of A is anti-isomorphic with the preordered class of all non-isomorphic normal
quotient objects of A.

7D. Strict Monomorphisms

A morphism A 7, B is called a strict monomorphism provided that whenever

A’ = B is a morphism with the property that for all morphisms B i; C,rof =sof
S

implies that ro f’ = so f/, then there exists a unique morphism A’ L, A with f'=fof.
Show that:

(a) Every regular monomorphism is a strict monomorphism, but not vice versa.

(b) Every strict monomorphism is an extremal monomorphism, but not vice versa
(cf. 141).

(c) If A g, B is an extremal monomorphism and B I, C is a strict monomorphism,

then A N B %, C is an extremal monomorphism.

(d) If A L, Bis a strict monomorphism and B -Z» €' is a section, then A L. B¢
is a strict monomorphism.
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The composite of two strict monomorphisms is an extremal but not necessarily strict
monomorphism.

IfA N B L C is a strict monomorphism and B I, Cisa monomorphism, then

A N B is a strict monomorphism.

Sections

Show that

(a)
(b)

()

7F.
Let

7G.

(a)

(b)

Every morphism with a terminal domain is a section.

Ao, C is a section and A ., Bisan epimorphism, then B % C'is a
section.

1t A L B is a function and A has at least two elements, then in Set the following
are equivalent:

(1) f is an isomorphism,
(2) there exists precisely one function B I, A with go f = idy.

If A is a full subcategory of B, then an A-reflection arrow is a section if and only if
it is an isomorphism.

In a construct each section (but not necessarily each regular monomorphism) is
injective.

If a natural transformation 7 = (74) regarded as a morphism in the functor quasi-
category [A,B] is a section, then each 74 is a B-section (but the converse need not
be true).

Full Embeddings of Reflective Subcategories
A be a full reflective subcategory of B. Show that the inclusion functor A — B
preserves and reflects monomorphisms, sections, retractions, and isomorphisms,

preserves but need not reflect regular monomorphisms, extremal monomorphisms,
and strict monomorphisms,

reflects but need not preserve regular epimorphisms, extremal epimorphisms, strict
epimorphisms, and epimorphisms.

Faithful Functors

Show that a faithful functor that reflects extremal epimorphisms must reflect iso-
morphisms.

Show that a functor F : A — B that reflects equalizers (i.e., whenever £ - A

f
and A —= B are A-morphisms such that Fe is an equalizer of F'f and F'g, then e
g

is an equalizer of f and g) is faithful.
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7TH. Epimorphisms for Groups

* (a) Show that if K is a subgroup of the (finite) group H, then there exists a (finite)
group G and group homomorphisms fi, fo : H — G such that

K ={heH| fi(h) = f2(h) }.

[Hint: Consider the set X obtained from the set { hK | h € H } of all left K-cosets

of H by adjoining a single new element K. Let G be the permutation group of X,
and let p: X — X be the permutation that interchanges the elements e/ (=K)
and K, and leaves all other elements of X fixed.

Define f1, fo : H — G by

hWK if S=NK
f1<h><s>={f( fe_ e

fa(h) = po fi(h)op"]

(b) Show that the epimorphisms in Grp are precisely the surjective homomorphisms.

(c) Show that the epimorphisms in the category of finite groups are precisely the
surjective homomorphisms.

(d) Show that in the category of commutative cancellative semigroups, A L, Bisan
epimorphism if and only if for each b € B there exist a1, a2 € A with f(a;) +b=
f(a2). [Hint: Embed each commutative cancellative semigroup in an abelian group.
There the epimorphisms are surjective.]

(e) Show that in the category of torsion-free abelian groups, a morphism A L. Bis
an epimorphism if and only if the factor group B/f[A] is a torsion group.

71. Epimorphisms in FHaus
(a) Show that in FHaus a morphism A g, B is an epimorphism if and only if each

morphism B 25 R is constant whenever g o f is constant.

(b) Let B be the space with underlying set R that has 7 U {R \ Q} as a subbase for its
topology (where 7 is the usual topology on R). Let A be the subspace of B with
underlying set . Show that the (closed) embedding A < B is an epimorphism in
FHaus. Notice that this implies that A < B is not an extremal monomorphism in
FHaus.

7J. Regular Monomorphisms in FHaus

In the category of functionally Hausdorff spaces (cf. 7.65) consider the discrete spaces
A and B with underlying sets { 1 [n € N* } and {0} U{ 2 |n € NT }, the space C with
underlying set R, having 7 U{IR \ A} as a subbase for its topology (where 7 is the usual
topology on R), and the space D obtained as a quotient of C' by identifying the points
0 and 1.
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(a) Show that the natural inclusions A L. Band B % C are regular monomorphisms,
but that g o f is not regular.

(b) Show that if C ", D is the natural quotient map, then h o (g o f) is a regular
monomorphism, but that g o f is not regular.

7K. Subobjects

Show that it is possible for (A, m) and (A’,m’) to be non-isomorphic subobjects of an
object B even though A and A’ are isomorphic.

7L. A Non-co-wellpowered Category of Topological Spaces

Let A be the full subcategory of Top that consists of those topological spaces in which
every compact subspace is Hausdorff. Show that

(a) A is a reflective subcategory of Top, and
(b) A is not co-wellpowered.

7M. Coequalizers
f

Let A <+ B be an epimorphism and let B —= C be a pair of morphisms. Show that ¢
g

is a coequalizer of f and ¢ if and only if ¢ is a coequalizer of f oe and goe.

7N. Extremal Monomorphisms

Show that the composite of two extremal monomorphisms need not be extremal.

70. Epi = RegEpi and Mono = RegMono

Show that the above equations hold in any of the following categories: Set, Vec, Ab,
Grp, Alg(Q), and HComp.

7P. A Characterization of Monomorphisms by Sections

Let f be a morphism in a category A. Show that f is a monomorphism in A if and only
if A can be embedded into a category B such that f is a section in B.

7Q. Separating Sets and Concretizable Categories

(a) Show that if A has a separating set { A;|7 € I} and I is the discrete category
associated with I, then A is concretizable over [I, Set]. (Cf. Proposition 7.12.)

(b) Show that if A has a separating set, then A is concretizable over Set.

(c) Exhibit a construct that has no separating set.

7TR. Epi-Transformations and Mono-Transformations
Let S,T: X — Set be functors. Show that

(a) If there exists an Epi-transformation from S to 7', then Spa(T) is concretely iso-
morphic to a reflective modification of Spa(.5).
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(b) If there exists a Mono-transformation from S to 7', then Spa(S) is concretely iso-
morphic to a coreflective modification of Spa(T').

7S. Regular Epimorphisms in Cat
(a) Let A L, B be the functor described in 7.40(6), let B %, C be the functor

/
described in 7.76(1), let D be the category e —=e  let A ., D be the inclusion
g

functor, and let D -~ B be the functor defined by K(g) = 1 and K(f) = 2. Show
that

(1) F and G are regular epimorphisms in Cat, but G o F' is not a regular epimor-
phism,

(2) F = KoH is aregular epimorphism in Cat, but K is not a regular epimorphism,

(b) Consider the functors:

AN 4, B, A B =4, B, Al e B,
— 7 = | |
As f3 Bs As f3 Bs As f=fs Bs

Show that in Cat:

(1) F is a regular epimorphism,

(2) G is a retraction,

(3) G o F is not a regular epimorphism.
[Contrast this with Exercise 10M.]
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8 Objects and morphisms in concrete
categories

In this section we study special objects and morphisms in concrete categories. It will
become apparent that these concepts depend heavily upon the underlying functors, and,
hence, can be defined in the context of arbitrary (not necessarily faithful) functors.
The notational conventions of Remark 6.22 will be used throughout this section. In
particular, forgetful functors will be denoted by | |.

DISCRETE AND INDISCRETE OBJECTS

8.1 DEFINITION

An object A in a concrete category A over X is called discrete whenever, for each
object B, every X-morphism |A| — |B| is an A-morphism.

8.2 EXAMPLES
(1) In the construct Pos the discrete objects are precisely the sets ordered by equality.

2) In Cat the discrete objects are the discrete small categories.

(2)
(3) In Top the discrete objects are the discrete topological spaces.
(4)

4) Let PMet denote the construct of pseudometric spaces** and contractions. For each
set X, the object (X, d), where d is defined by

d(z,y) 0, if z=y
T,y) =
Y oo, if x#uvy,

is a discrete object in PMet. In contrast, in the construct Met no space with at
least two points is discrete.

(5) The constructs Vec, Grp, and X-Seq have no discrete objects. For Q # ), Alg(Q)
has no discrete object, with the possible exception of the empty (2-algebra.

(6) In TopGrp, considered as a concrete category over Grp, the discrete objects are
the topological groups with discrete topology. In TopGrp, considered as a concrete
category over Top, no object is discrete.

4 A pseudometric on a set X is a function d : X x X — [0, 0c], such that:
(1) d(z,z) =0 for all x € X,

(2) d(z,y) =d(y,z) for all z,y € X,

(3) d(z,z) < d(z,y) +d(y,2) for all z,y,z € X.
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(7) In an abstract category considered as concrete over itself (w.r.t. the identity functor)
every object is discrete. In a poset A, considered as a concrete category over 1, an
object is discrete if and only if it is the smallest element of A.

Next we consider the concrete dual (5.20) of the concept of discrete object.

8.3 DEFINITION

An object A in a concrete category A over X is called indiscrete whenever, for each
object B, every X-morphism |B| — |A| is an A-morphism.

8.4 REMARK

Notice that if A is a discrete (resp. indiscrete) object in the concrete category A, then
A is the smallest (resp. largest) element in the fibre of |A| (cf. 5.4). The converse need
not hold, as seen below [8.5(2)].

8.5 EXAMPLES

(1) In the construct Pos the only indiscrete objects are the empty poset and the single-
ton posets; similarly in Cat.

(2) In Top the indiscrete objects are precisely the indiscrete topological spaces. In the
full subcategory Top, of Top, consisting of all T3-spaces, only the empty space and
the singleton spaces are indiscrete. However, each fibre has a largest element — the
cofinite topology.

(3) In PMet (8.2) the indiscrete objects are precisely those for which every pair of
points has distance 0. The only indiscrete objects in Met are the metric spaces
with at most one point.

(4) In Vec, Grp, and Mon only the trivial objects with precisely one element are
indiscrete.

(5) In X-Seq an acceptor is indiscrete if and only if it has only one state and that state
is final.

(6) If TopGrp is considered as a concrete category over Grp, then the indiscrete objects
are the topological groups with indiscrete topology. If TopGrp is considered as a
concrete category over Top or Set, then the indiscrete objects are trivial.

EMBEDDINGS

In §7 several classes of monomorphisms have been introduced in order to formalize the
intuitive concept of “embeddings of subobjects”. However, none of these concepts works
in all situations. (Recall that monomorphisms fail in Top [7.33(3)] and extremal and
regular monomorphisms fail in Sgr [7.58(4), 7I].) Below, we introduce the concept of
embedding, which agrees with the intuitive notion of “embeddings of subobjects” in every
familiar construct.
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8.6 DEFINITION
Let A be a concrete category over X.

(1) An A-morphism A L, Bis called initial®® provided that for any A-object C' an X-

morphism |C] < |A| is an A-morphism whenever |C| tog, |B| is an A-morphism.

(2) An initial morphism A g, B that has a monomorphic underlying X-morphism
| Al N |B| is called an embedding.

(3) If A Z, Bisan embedding, then (f, B) is called an extension of A and (A4, f) is
called an initial subobject of B.

8.7 PROPOSITION

For any concrete category the following hold:
(1) Each embedding is a monomorphism.
(2) Each section (and in particular each isomorphism) is an embedding.

(3) If the forgetful functor preserves regular monomorphisms, then each regular mono-
morphism is an embedding.

Proof:
(1). Immediate from Proposition 7.37(2).

(2). Suppose that A °» B and B -~ A are A-morphisms with r o s = ids. Let
IC| <5 |A| be an X-morphism for which |C] 2% |B| is an A-morphism. Then

g=ro(sog)isan A-morphism. Thus A == B is initial, hence an embedding.

(3). Suppose that A = B is an equalizer of a pair of morphisms (u,v), and let
g: |C| — |A] be an X-morphism such that m o g is an A-morphism. Then since
uo(mog) =wvo(mog), there exists an A-morphism k : C' — A with mog =mok.
Since, by assumption, m is a X-monomorphism, this implies that £ = ¢g. Thus
g=k: C — Ais an A-morphism. Hence m is initial, and so is an embedding. O

8.8 EXAMPLES*6
(1) If an abstract category A is considered to be concrete over itself via the identity
functor, then every morphism is initial. In particular,

Emb(A) = Mono(A).

(2) In the construct A = Top a continuous map f: (X,7) — (Y,0) is initial if and
only if 7 is the “initial topology” with respect to f and o, i.e., 7 = { f~1[S]| S € 0 }.
Thus embeddings are precisely the “topological embeddings”, i.e., homeomorphisms
onto subspaces. In particular,

RegMono(A) = ExtrMono(A) = Emb(A) € Mono(A).

45Notwithstanding their names, the concepts of initial object (7.1) and initial morphism are unrelated.
4°Emb(A) is the class of all A-embeddings. Similarly, Mono(A) is the class of all A-monomorphisms,
etc. See the Table of Symbols.
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(3) In the construct A = Haus the initial morphisms are precisely the topological
embeddings. Hence

ExtrMono(A) C Init(A) = Emb(A) € Mono(A).
(4) In the construct A = FHaus of functionally Hausdorff spaces the initial morphisms
are precisely the topological embeddings. Hence (cf. 7.65, 71 and 7J)
RegMono(A) ¢ ExtrMono(A) C Init(A) = Emb(A) C Mono(A).
(5) In some “algebraic” constructs A such as Vec and Grp the initial morphisms coin-
cide with each of the other “reasonable” families of monomorphisms; i.e.,
RegMono(A) = Init(A) = Emb(A) = Mono(A).
However, if A is any of the constructs Rng, Bany, or (Ban, O), then
ExtrMono(A) C Init(A) = Emb(A) = Mono(A).
(6) In the construct A = (Ban,U) injective morphisms usually fail to be initial; in-

stead the initial morphisms are precisely the isometric embeddings of (automatically
closed) subspaces. Thus

ExtrMono(A) = Init(A) = Emb(A) € Mono(A).
(7) In the construct A = Met the initial morphisms are precisely the isometric embed-
dings of (not necessarily closed) subspaces. Thus
ExtrMono(A) C Init(A) = Emb(A) € Mono(A).
(8) In the constructs Rel and Pos a morphism f : (X, p) — (Y, 0) is initial if and only

if the equivalence: xpy < f(z)of(y) holds. Thus in Pos initial morphisms are
precisely the embeddings, and in both cases

ExtrMono(A) = Emb(A) C Mono(A).

(9) Extremal monomorphisms need not be embeddings. In the full subconstruct A =
DRail of Top consisting of all discrete spaces and all infinite indiscrete spaces,
every injective map with finite discrete domain and indiscrete range is an extremal
monomorphism, but (for non-trivial domain) not an embedding. Hence

ExtrMono(A) Z Emb(A) = RegMono(A) C ExtrMono(A).

(10) In the construct Cat the embeddings are precisely the embedding functors.

(11) In the construct ¥-Seq embeddings are those injective simulations A L, B for
which any state a € A, with f(a) final in B, must itself be final in A.
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(12) In a preordered class A considered as a concrete category over 1, initial morphisms
and isomorphisms coincide. Thus, if A is a nondiscrete poset, then

Iso(A) = Init(A) = Emb(A) = ExtrMono(A) C Mono(A).

(13) If TopGrp is considered as a concrete category over Grp (resp. over Top), then a

morphism G 7, G is initial if and only if G has the initial topology with respect to
f (resp. if and only if it is injective).

8.9 PROPOSITION

(1) If A L. B and B 2~ C are initial morphisms (resp. embeddings), then A oo,
is an initial morphism (resp. an embedding).

(2) If A 90, ¢ is an initial morphism (resp. an embedding), then f is initial (resp. an
embedding). O

QUOTIENT MORPHISMS

The concepts of final morphism and quotient morphism are dual to the concepts of initial
morphism and embedding, respectively.
8.10 DEFINITION

Let A be a concrete category over X.

(1) An A-morphism A N B is called final provided that for any A-object C, an X-

morphism |B| <5 |C| is an A-morphism whenever |A| LN |C| is an A-morphism.

(2) A final morphism A 1, B with epimorphic underlying X-morphism |A] 1, |B| is
called a quotient morphism.

(3) If A L. Bisa quotient morphism, then (f, B) is called a final quotient object
of A.

8.11 EXAMPLES

(1) In the construct Top a continuous function f: (X,7) — (Y, 0) is final if and only
if o = {ACY|f1[A] € 7}; i.e., o is the “final topology” on Y with respect to f
and 7. Thus in Top the quotient morphisms are the topological quotient maps.

(2) In the construct Rel a morphism f: (X, p) — (Y, 0) is final if and only if o is the
final relation on Y with respect to f and p; i.e., o = {(f(x), f(y)) | (z,y) € p}.

(3) For any of the constructs Grp, Ab, Vec, Boo, Lat, HComp, BooSp, Mon, Sgr,
and ¥-Seq, we have’”

Final(A) = Quot(A) = RegEpi(A).

“TFinal(A) is the class of all final morphisms in A. Similarly, Quot(A) is the class of all A-quotient
morphisms, etc. See the Table of Symbols.
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(4) For the constructs Cat and (Ban, O) there exist regular epimorphisms that are not
final. Some examples of such morphisms are the non-surjective regular epimorphisms
described in Example 7.72(5).

(5) In the construct Cat there exist surjective extremal epimorphisms that are not final.
An example of this is the functor G o F': A — C described in Remark 7.76(1).

(6) A morphism (X, d) 7, (Y,d) is final in PMet if and only if
d(y,y') = inf { Z distq(f~ i), f Y (Wis1)) | (Y1, - .., yn) is a finite sequence in Y
with y; =y and y,, = y/}.

8.12 PROPOSITION

For any concrete category the following hold:
(1) Each quotient morphism is an epimorphism.
(2) Each retraction (and in particular each isomorphism) is a quotient morphism.

(3) If the forgetful functor preserves regular epimorphisms, then each regular epimor-
phism is a quotient morphism. @

8.13 PROPOSITION
(1) If A L. Band B % C are final morphisms (resp. quotient morphisms), then

AL 0 final (resp. a quotient morphism).

(2) If A 90, ¢ s a final morphism (resp. a quotient morphism), then g is final (resp. a
quotient morphism).

8.14 PROPOSITION

In a concrete category A over X, the following conditions are equivalent for each A-
morphism f:

(1) f is an A-isomorphism.
(2) f is an initial morphism and an X-isomorphism.

(3) f is a final morphism and an X-isomorphism.
Proof: (1) = (2) follows from Proposition 3.21 and Proposition 8.7(2).

—1
(2) :> (1) If A L5 B is an initial X- isomorphism then |B| I, |A] — N ]B|

|B ] | B| implies, by initiality, that |B] e |A| is an A-morphism. Thus A 1B
is an A-isomorphism.

(1) & (3) follows by duality from (1) < (2). O
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STRUCTURED ARROWS

For concrete categories A over X, we have introduced properties of A-objects and of
A-morphisms. Next we will investigate properties of pairs (f, A) consisting of an X-
morphism f and a suitably related A-object A. First we define three concepts of “gen-
eration”. Whereas for “topological” constructs the concept of generation works better
than that of extremal generation, and for “algebraic” constructs the concept of extremal
generation works better than that of generation, the concept of concrete generation
works well in either setting.

8.15 DEFINITION

Let A be a concrete category over X.

(1) A structured arrow with domain X is a pair (f, A) consisting of an A-object A
and an X-morphism X N |A|. Such a structured arrow will often be denoted by
x Lo 4.

(2) A structured arrow (f, A) is said to be generating provided that for any pair of
A-morphisms r,s: A — B the equality r o f = s o f implies that r = s.

(3) A generating arrow (f, A) is called extremally generating (resp. concretely gen-
erating) provided that each A-monomorphism (resp. A-embedding) m: A’ — A,
through which f factors (i.e., f = m o g for some X-morphism g), is an A-isomor-
phism.

(4) In a construct, an object A is (extremally resp. concretely) generated by a
subset X of |A| provided that the inclusion map X < |A| is (extremally resp.
concretely) generating.

8.16 PROPOSITION

In a concrete category A over X the following hold for each structured arrow
f: X —|Al:

(1) If (f, A) is extremally generating, then (f, A) is concretely generating.

(2) If (f, A) is concretely generating, then (f, A) is generating.

(3) If X N |A| is an X-epimorphism, then (f, A) is generating.

(4) If X g, |A| is an extremal epimorphism in X, and if | | preserves monomorphisms,

then (f, A) is extremally generating. O

8.17 EXAMPLES*®

(1) If an abstract category A is considered to be concrete over itself via the identity

functor, then an A-morphism A £, B, considered as a structured arrow (f, B), is

“8Gen(A) is the class of all generating structured arrows in A, ExtrGen(A) is the class of all extremally
generating structured arrows in A, ConcGen(A) is the class of all concretely generating structured
arrows in A, etc. See the Table of Symbols.
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(6)

generating (resp. extremally or concretely generating) if and only if f is an epimor-
phism (resp. an extremal epimorphism). That is,

Gen(A) = Epi(A) and ExtrGen(A) = ConcGen(A) = ExtrEpi(A).

In Vec, Grp, Sgr, Rng, and other algebraic constructs, the concepts of concrete
generation and of extremal generation coincide with the familiar (non-categorical)
concept of generation.

In the constructs Sgr and Rng the inclusion map Z — Q) is generating, but is not
concretely generating [cf. 7.40(5)].

In the construct A = Top we have

ConcGen(A) = Gen(A) = Surjective maps, and

ExtrGen(A) = Surjective maps with discrete codomain.

In the construct A = Haus we have

Gen(A) = Dense maps,
ConcGen(A) = Surjective maps, and

ExtrGen(A) = Surjective maps with discrete codomain.

In a partially ordered set A, considered as a concrete category over 1, every struc-
tured arrow is concretely generating. A structured arrow (f,a) is extremally gener-
ating if and only if @ is a minimal element of A.

In ¥-Seq, given an acceptor A, the inclusion map of {go}, where ¢p is the initial
state, concretely generates A if and only if A is reachable.

8.18 REMARK

In a concrete category A, if an A-morphism A g, B is regarded as a structured arrow
(f, B) with domain |A|, then the following hold:

(1)
(2)

3)

AL Bisan epimorphism if and only if (f, B) is generating.

If (f,B) is extremally generating and the forgetful functor preserves monomor-

phisms, then A 4, B is an extremal epimorphism.

It A L B is an extremal epimorphism, then (f, B) is concretely generating.

8.19 DEFINITION
Let A be a concrete category over X.

(1)

Structured arrows (f, A) and (g, B) in A with the same domain are said to be iso-
morphic provided that there exists an A-isomorphism k: A — B with ko f = g.

18th January 2005



140 Objects and Morphisms [Chap. II

(2) A is said to be concretely co-wellpowered provided that for each X-object X
any class of pairwise non-isomorphic concretely generating arrows with domain X
is a set.

8.20 EXAMPLES

Most of the familiar constructs such as Vec, Grp, Top, HComp, Pos, Alg(Q2) for each
Q, and Y-Seq for each X are concretely co-wellpowered. The construct with objects
all sets and morphisms all identity mappings is fibre-small and co-wellpowered, but
not concretely co-wellpowered. The constructs CLat and CBoo are not concretely co-
wellpowered (cf. Exercise 8E). A proper class, ordered by equality and considered as a
concrete category over 1, is co-wellpowered, but is not concretely co-wellpowered.

8.21 PROPOSITION
Each concretely co-wellpowered concrete category is extremally co-wellpowered.
Proof: This follows immediately from the following two facts:

(1) Each extremal quotient (f, B) of A, considered as a structured arrow with domain
|A], is concretely generating. Cf. Remark 8.18(3).

(2) Extremal quotients (f1, B1) and (f2, By) are isomorphic if and only if the structured
arrows (f1, B1) and (f2, Ba) are isomorphic. O

UNIVERSAL ARROWS AND FREE OBJECTS

8.22 DEFINITION
In a concrete category A over X

(1) a universal arrow over an X-object X is a structured arrow X — |A| with domain

X that has the following universal property: for each structured arrow X 7, | B|
with domain X there exists a unique A-morphism f: A — B such that the triangle

X —— |A|
Sl
B

commutes,

(2) afree object over an X-object X is an A-object A such that there exists a universal
arrow (u, A) over X.

8.23 EXAMPLES
(1) In a construct, an object A is a free object

(a) over the empty set if and only if A is an initial object.
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(2)
(3)
(4)

(5)

(b) over a singleton set if and only if A represents the forgetful functor (6.9).
In the construct Vec each object is a free object over any basis for it.
In the constructs Top and Pos the free objects are precisely the discrete ones.

In the construct Ab free objects over X are the free abelian groups generated by X.
They can be constructed as the group of all functions p : X — Z with finite carrier,
where addition is carried out componentwise, and, if A is such a group of functions,
a universal arrow u : X — |A] is given by

1, if z==x

w(@)(@:{a P

Similarly, the familiar free group generated by a set X is a free object over X in the
construct Grp.

\ o™ \“"‘)

A non-free group and a free object

In the construct Mon a free monoid X* over a set X is a free object over X;
elements are words (= finite sequences, including the empty one) formed from mem-
bers of X, with operation e of concatenation: (x1,x2,...,2Z,) ® (Y1,Y2,.-.,Ym) =
(T1,22, ooy Ty Y1,Y2, -« - Ym), and u : X — |A| is given by u(z) = (z). Analogously,
in the construct Sgr a free semigroup generated by X consists of all nonempty words
formed from members of X.

In each construct Alg(Q2) the free objects over a set X can be described in a way
similar to the description of initial objects [cf. 7.2(5)] except that in step (a) each
element of 29 W X should be required to be a “term”. Notice that in any Alg(X) a
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(12)

Objects and Morphisms [Chap. II

free unary algebra over a singleton set is, by coincidence, the algebra ¥* of all words
with unary operations given by concatenations. A free algebra over a set X is the
disjoint union of card(X) copies of ¥* (cf. Exercise 8H).

In the construct CLat an initial object is the two-point chain, a free object over a
one-element set is the three-point chain, and a free object over a two-element set is
the six-element lattice formed by replacing the middle member of a three-element
chain by a four-element boolean algebra. There are no free objects over sets that
have more than two elements (cf. Exercise 8G). In the construct CBoo an initial
object is the two-point chain, the four-element boolean algebra is a free object over a
one-element set, and a free object over n (< Rg) generators has 22" elements. There
is no free object over any infinite set. (See Exercise 8F.)

In JCPos the free objects are, up to isomorphism, precisely the power sets (regarded
as JCPos objects). For each set X, the structured arrow X —— |P(X)|, defined by
u(z) = {x}, is a universal arrow.

However, in the construct A-JCPos (with objects triples (X, <,\) consisting of a
complete lattice (X, <) and a unary operation A on X, and morphisms the join-
preserving {A}-homomorphisms) there do not exist free objects over any set. In
particular, A-JCPos has no initial object [even though A-JCPos is extremally co-
wellpowered, the empty set extremally generates arbitrarily large objects!], and the
forgetful functor is not representable.

In the construct Cat a free object over the set {0} is a category of the form e I e
(where the universal arrow u sends 0 to g).

In the construct Rng the polynomial ring Z[M] over a set M of variables is a free
object over M.

Let Y be a nonempty set and consider Set as a construct via the forgetful functor
U = hom(Y,—). Then the structured arrow X —— U(X xY) = hom(Y, X x Y),
defined by (u(z))(y) = (z,y), is universal.

To construct a universal arrow in (Ban, O) over a set X, let £1(X) be the subspace
of the vector space KX consisting of all » = (r;)zex in KX whose norm ||r| =
> sex x| is finite. Then ¢1(X) is a Banach space. Define X —— O({1(X)) at y
by the Dirac function u(y) = (0yz)zex. Then (u,¢1(X)) is a universal arrow over
X. Observe, for comparison, that for the construct (Ban,U) the only set having
a universal arrow is the empty set, and that for the construct Bany, the only sets
having universal arrows are the finite ones.

In an abstract category, considered as a concrete category over itself via the identity
functor, every object is free over itself.

In an preordered set A, considered as a concrete category over 1, an object a is free
over the single object of 1 if and only if a is the smallest element of A.

In the concrete category of Rng over Mon in which the forgetful functor “forgets
addition” a universal arrow over a monoid M is given by the monoid ring Z[M| of M
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over the additive group (Z, +) and the arrow u: M — |Z[M]| defined by u(x) = x.
Likewise in the concrete category of Rng over Ab, where multiplication is forgotten,
a universal arrow over an abelian group G is given by the tensor ring over G.

(16) No acceptor is free in the construct ¥-Seq. (In fact, if A is an acceptor on n states
and if B is the (n + 1)-state acceptor in which the next-state maps 6(—, o) are
(n + 1)-cycles, then there is no simulation from A to B.)

8.24 PROPOSITION

Every universal arrow is extremally generating.

Proof: Let X % |A| be a universal arrow. By the uniqueness requirement, (u, A) is
generating. Let A’ —— A be an A-monomorphism, and let X 2, |A’| be an X-morphism
with w = m o g. Since (u, A) is universal, there exists an A-morphism A 9. A with
g = gou. Hence A AL A and A "9 A are A-morphisms with id4 ou = (mo g) o u.
By the uniqueness requirement in the definition of universal arrow, this implies that

ida = mo g. Hence m is simultaneously an A-retraction and an A-monomorphism, and
so is an A-isomorphism (7.36). O

8.25 PROPOSITION
For any X-object X, universal arrows over X are essentially unique; i.e., any two uni-
versal arrows with domain X are isomorphic, and conversely, if X — |A| is a universal

arrow and A = A’ is an A-isomorphism, then X ——— |A’| is also universal. |A 4-19}4

8.26 DEFINITION

A concrete category over X is said to have free objects provided that for each X-object
X there exists a universal arrow over X.

8.27 EXAMPLES

By Examples 8.23 the constructs Vec, Grp, Ab, Mon, Sgr, Alg(Q2), Top, Pos, and
(Ban, O) have free objects; but the constructs CLat, CBoo, and (Ban, U) don’t. Nei-
ther do the constructs Bany, and Met; however, PMet does. A partially ordered set,
considered as a concrete category over 1, has free objects if and only if it has a smallest
element.

8.28 PROPOSITION

If a concrete category A over X has free objects, then an A-morphism is an A-mono-
morphism if and only if it is an X-monomorphism.

49The symbol | A 4.19]indicates that a proof of the preceding result can be obtained as a straightforward
analogue of the proof of Proposition 4.19.
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Proof: The sufficiency holds for all concrete categories [cf. Proposition 7.37(2)]. To see
the necessity, let A N B be an A-monomorphism, and let X ::i |A| be a pair of
X-morphisms with for = fos. If X = |C| is a universal arrow over X, then there
exist A-morphisms C:ZiA with fou =7 and sou =s. Thus (for)ou = (foS§)ou.

By the uniqueness requirement in the definition of universal arrow, this implies that
for = fos. Since f is an A-monomorphism, it follows that 7 = §, so that »r = s. Hence
f is an X-monomorphism. O

8.29 PROPOSITION

If a construct A has a free object over a singleton set, then the monomorphisms in A
are precisely those morphisms that are injective functions.

Proof: By Example 8.23(1) the forgetful functor for A is representable. Hence the
result follows from Corollary 7.38. O

OBJECTS AND MORPHISMS
WITH RESPECT TO A FUNCTOR

8.30 DEFINITION
Let G: A — B be a functor, and let B be a B-object.

(1) A G-structured arrow with domain B is a pair (f, A) consisting of an
A-object A and a B-morphism f: B — GA.

(2) A G-structured arrow (f, A) with domain B is called
(a) generating provided that for any pair of A-morphisms A i; A , the equality
S
Gro f = Gso f implies that r = s,

(b) extremally generating provided that it is generating and whenever A’ 2.4
is an A-monomorphism and (g, A") is a G-structured arrow with f = G(m) o g,
then m is an A-isomorphism,

(¢) G-universal for B provided that for each G-structured arrow (f’, A’) with

domain B there exists a unique A-morphism A L, A with f=G(f)of, ie.,
such that the triangle

B—1.ca

N Lo

GA'

comimutes.
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8.31 EXAMPLES
(1) For concrete categories (A, U) over X, we have the following:

U-structured arrow = structured arrow,
U-generating arrow = generating arrow,
extremally U-generating arrow = extremally generating arrow,

U-universal arrow = universal arrow.

(2) If A is a subcategory of B and E : A — B is the associated inclusion functor, then
an E-structured arrow (u, A) with domain B is E-universal if and only if B — A
is an A-reflection arrow for B.

(3) Let A be a category and let G be the unique functor from A to 1. Then a G-
structured arrow (u, A) is G-universal if and only if A is an initial object in A.

(4) If G = hom(A, —) : A — Set, then a G-structured arrow X — G(B) = hom(4, B)
is G-universal if and only if for every A-object C and every family (A F=, C)zex of

A-morphisms there exists a unique A-morphism B R C with f, = fou(x) for each
x € X. [By the definition of coproducts in §10, this is equivalent to ((u(z))zex, B)
being a coproduct of the family consisting of X copies of A; i.e., to B being an

]

X-copower of A with injections A —— B.

(5) Minimal realization is universal. This means that for the category Beh of behav-
iors (i.e., triples (X,Y,b), where X* 2 Yisa function) and behavior morphisms
e, (f,9): (5,Y,b) — (X,Y", ), where ¥ 15 2 and Y > V" are functions
with (gob)(o109---0y) = (f(01)f(02) - f(on))], the minimal realization functor
M : Beh — Aut, has universal arrows. Here Aut, denotes the full subcategory
of Aut [3.3(4)(b)] formed by those automata for which each state can be reached
from the initial one, and M assigns to each behavior its minimal realization. An
M-universal arrow A —— M(2,Y,bs) (where by : £* — Y is the external behavior
of A) is the unique simulation onto the minimal realization of by.

8.32 PROPOSITION
If G: A — B is a functor, then the following are equivalent:

(1) G is faithful,
(2) each A-epimorphism, considered as a G-structured arrow, is generating,

(3) each A-identity, considered as a G-structured arrow, is generating. O

8.33 PROPOSITION
Every G-universal arrow is extremally generating.
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8.34 DEFINITION

G-structured arrows (f, A) and (f’, A’) with the same domain are said to be isomorphic
provided that there exists an A-isomorphism k: A — A’ with G(k)o f = f’.

8.35 PROPOSITION

For any functor G: A — B and any B-object B, G-universal arrows for B are es-
sentially unique; i.e., any two G-universal arrows with domain B are isomorphic, and,

conversely, if B — GA is a G-universal arrow and A — A’ is an isomorphism, then

B G5, G A s also G-universal.

8.36 PROPOSITION
Let G: A — B be a functor. If the triangle

X—GA

N

GB

commutes, where (u, A) is a G-universal arrow and A R B is an A-morphism, then

the following hold:
(1) (f, B) is generating if and only if f is an epimorphism.
(2) (f,B) is extremally generating if and only z'ff 1s an extremal epimorphism.

~

Proof: It is clearly sufficient to show that whenever f is an extremal epimorphism, then
(f, B) is extremally generating. Let X 2, GC be a G-structured arrow and let C - B

be an A-monomorphism with f = Gm o g. Then there exists an A-morphism A 4, C
with ¢ = G§ o u. Thus the equality G(m o g) ou = f = Gf ow implies that mo g = f.
Hence m is an isomorphism. O

8.37 DEFINITION

(1) A functor G: A — B is called (extremally) co-wellpowered provided that for
any B-object B, any class of pairwise non-isomorphic (extremally) generating G-
structured arrows with domain B is a set.

(2) A faithful functor G : A — B is called concretely co-wellpowered provided that
the concrete category (A, G) is concretely co-wellpowered.

8.38 PROPOSITION
If a faithful functor G : A — B is co-wellpowered, then so is A.
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8.39 REMARK

If a faithful functor G: A — B is extremally co-wellpowered, then A need not be
extremally co-wellpowered. Conversely, if A is co-wellpowered, then G : A — B need
not even be extremally co-wellpowered. Consider, e.g., the unique functor from a large
discrete category to 1.

More can be said if, e.g., for every B-object B there exists a universal G-structured
arrow for B. See 18.11 and 18B.

COSTRUCTURED ARROWS
All of the concepts relating to G-structured arrows have duals. In particular:

8.40 DEFINITION
Let G: A — B be a functor and let B be a B-object.

(1) A G-costructured arrow with codomain B is a pair (A, f) consisting of an
A-object A and a B-morphism GA 1. B.

(2) A G-costructured arrow (A, f) with codomain B is called G-co-universal for B
provided that for each G-costructured arrow (A’, ') with codomain B there exists

a unique A-morphism A’ 7, A with = foG(f).

8.41 EXAMPLES

(1) If A is a subcategory of B and E : A — B is the associated inclusion functor, then
an E-costructured arrow (A, u) with codomain B is E-co-universal if and only if
A % B is an A-coreflection arrow for B.

(2) For forgetful functors U of familiar concrete categories, U-co-universal arrows are
relatively rare. For example, Grp has U-co-universal arrows only for one-point sets,
and Pos has U-co-universal arrows only for sets with at most one point. However,

(a) in the construct Top for every set X there exists a co-universal arrow

(X,7) X , where 7 is the indiscrete topology,

(b) if T': X — Set is a functor and Spa(T") is the associated concrete category over
X, then for every X-object X there exists a co-universal arrow

(X, T(X)) 25 X,

(c) in the constructs Alg(>) of unary algebras there exist co-universal arrows for
each set X: consider the Y-algebra X>" of all functions from X* (the set of all
words over X)) into X, with the operation o € ¥ sending a function g : ¥* — X
to the function g(o_), defined by: g(o_)((o1---0y)) = g(ooy---0,). Then
e: X*¥ — X given by e(g) = g(0) is co-universal. [In fact, given a Y-algebra
A and a function f : AA — X, the unique homomorphism f: A — X" with
f=c¢eo fisgiven by f(a)(o1--0on) = f(o1---0pna).]
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EXERCISES

8A. Regular Monomorphisms vs. Embeddings
(a) Show that in a construct a regular monomorphism need not be an embedding. [Cf.
Proposition 8.7.]

(b) Prove that each regular monomorphism in a construct that has a free object over a
nonempty set must be an embedding.

(c) Prove that each embedding in a construct that has a two-element indiscrete object
must be a regular monomorphism.

8B. Initial Monomorphisms vs. Embeddings

Show that in constructs the embeddings are precisely the initial monomorphisms, but
that in concrete categories initial monomorphismss may fail to be embeddings.

8C. An Initial, Non-injective Morphism in Sgr

Show that if A resp. B are the semigroups with underlying sets {0, 1,2} resp. {0, 1} and
multiplication defined by z -y = 0 for all z and y, then the non-injective map A 1, B,
defined by f(z) = Min{z, 1}, is an initial morphism in Sgr.

8D. A Characterization of Concretely Co-wellpowered Constructs

Show that a uniquely transportable construct is concretely co-wellpowered if and only if

it is fibre-small and for every cardinal number k there exists a cardinal number k such
that every object that is concretely generated by a set of cardinality not exceeding k has
an underlying set with cardinality not exceeding k.
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* 8E. CBoo is Extremally Co-wellpowered,
but Not Concretely Co-wellpowered

Let CBoo be the construct of complete boolean algebras and boolean homomorphisms
that preserve arbitrary meets and joins. Show that:

(a) CBoo is wellpowered and extremally co-wellpowered,
(b) CBoo is not concretely co-wellpowered,
(c) the forgetful functor CBoo — Set is not extremally co-wellpowered.

[Hint for (b) and (c): Let X be a topological space. A subset A of X is called regular
open provided that int(clA) = A (where “int” designates “interior” and “cl” designates
“closure”). The set R(X) of all regular open subsets of X is a complete boolean algebra
with respect to the following operations:

\/ M = int(cl(| | M), for M C R(X)
A\ M = int((| M), for ) # M C R(X)
A =int(X — A), for A € R(X).

Let K be an infinite cardinal number. Let X be the set of all ordinal numbers with
cardinality less than K, considered as a discrete topological space. Let P = XN be the
topological product of countably many copies of X, with projections 7, : XN — X. The
complete boolean algebra R(XYN) is extremally generated by the family

{m,}(€) | n € N, £ € X}, hence by the countable set {4y, | m,n € N}, where
Amn = {z e XX ’ Tm(x) < mp () }]

8F. Free Objects in CBoo

Show that in the construct CBoo

(a) there exists a free object over each finite set.

(b) there does not exist a free object over any infinite set. [Hint: 8E.]

8G. Free Objects in JPos, JCPos, CLat, and Fram

Show that

*(a) the constructs JCPos and Fram have free objects.

(b) in the construct JPos there exists a free object over X if and only if card X # 1.

*(¢) in the construct CLat there exists a free object over X if and only if card X < 2.

8H. Free Objects in Alg(Q?)

As outlined in Example 8.23(6) free Q-algebras can be constructed as algebras of terms.
Another, more graphic, description can be achieved via labeled trees: Consider the
infinite regular tree w* of all words in w (with root ), the empty word; the first level
consists of all natural numbers ¢ € w; in the second level, the successors of i are all words
ij with j € w, etc.). An -labeled tree in a set X is defined to be a “labeling” partial
function ¢ : w* — QW X such that
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(a) the domain of definition Dy of ¢ is finite, and it has () as a member;

(b) if t(i1i2---i,) is an operation symbol of arity k, then iyiy - - - iyin+1 belongs to Dy if
and only if i,41 € {0,1,...,k —1};

(c) if t(iyig---ip) is an element of X, then i1is - - inin11 does not belong to Dy for any
oy

Show that the set of all 2-labeled trees is an (2-algebra that is isomorphic to the term
algebra, and hence is free.

[Given 0 €  of arity k, and given (-labeled trees to,t1,...,tx—1, then the tree
o(to,t1,...,tg—1) =t is defined on igiy - - - iy, by

t(ioil . ’Ln) = tio(il oo Zn) for g <k, i1---i, € Dtio;
otherwise it is undefined.]

8I. Free Objects in Set°P, Topg®, and HComp®°P

Show that the constructs Set®® (see 5.2(4)), Topy® (see 5L), and HComp®P (see 5M)
have free objects and, in each case, describe them explicitly.

8J. Free Objects in BooSp and HComp

Show that the constructs BooSp and HComp have free objects and, in each case,
describe them explicitly.

8K. Free Objects in (Ban, O) and (Ban,U)

Show that (Ban, O) has free objects (cf. 8.23(12)), but that (Ban,U) has free objects
only over the empty set.

8L. Isomorphic Free Objects

Show that it can happen that a construct A has free objects in such a way that any
two free objects over finite, nonempty sets are isomorphic (as objects). [Hint: Consider
the concrete full subcategory of Alg(2), where Q@ = (1,1,2), consisting of those Q-
algebras (X, (w1,we,ws)) that satisfy the equations wi(w3(z,y)) = =, we(ws(x,y)) =
y and ws(wi(z),wa(xz)) = z. Show that whenever an object (X, (w1,w2,ws)) of the
construct A is free over a set Y W {x, y}, then it is free over Y W {ws(z,y)}.]

8M. Discrete Objects

Show that for concrete categories the following hold:
(a) Retracts of discrete objects are discrete.
(b) An object A is discrete if and only if the structured arrow |A| “, |A| is universal.

8N. A Characterization of Faithfulness
Show that a functor A -2 B is faithful if and only if every A-epimorphism A g, A,
considered as a G-structured arrow (Gf, A), is generating.
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80. Regular Epimorphisms and Finality

Let A be a concrete category over X that has free objects, and let f be an A-morphism
such that U f is a regular epimorphism in X. Show that f is a regular epimorphism in
A if and only if f is final.

8P. Free Automata
(a) Show that the construct X-Seq has free objects if and only if ¥ = ().

(b) Show that Aut considered as a concrete category over Set x Set x Set has only the
(trivial) free objects over (X,Q,Y) with Q@ =Y = 0.
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9 Injective objects and essential embed-
dings

Earlier it has been shown that many familiar constructions, particularly “completions”
such as the completion of a metric space or the Cech-Stone compactification of a Ty-
chonoff space, can be naturally regarded as reflections. However, there also exist familiar
completions that cannot be (or only artificially can be) regarded as such. Examples are
the Mac Neille completion of a poset and the algebraic closure of a field.° In both cases,
and in several others, the construction in question can be regarded rather naturally as an
injective hull, a concept that will be studied in this section. Roughly speaking, an object
C' is called injective provided that for any object A, any morphism from a subobject
of A into C' can be extended to a morphism from A into C. Since a satisfactory con-
cept of subobjects is available for concrete categories, but not for arbitrary categories,
we will first define injective objects for concrete categories only. Later, for arbitrary
categories A and arbitrary classes M of A-morphisms, M-injective objects will be intro-
duced in such a way that for concrete categories the injective objects are precisely the
Emb(A)-injective objects.

INJECTIVITY IN CONCRETE CATEGORIES

For concrete categories we will use the notational conventions described in Remark 6.22.

9.1 DEFINITION
In a concrete category an object C' is called injective provided that for any embedding

A B and any morphism A g, C there exists a morphism B RIS, extending f, i.e.,
such that the triangle

A—"-RB

N

<

C

commutes.

9.2 REMARK

The morphism g in the above definition is not required to be uniquely determined by m
and f. This contrasts sharply with many categorical definitions in which existence and
uniqueness requirements are coupled (see 4.16 for a typical example).

9.3 EXAMPLES
In Examples (1)—(5) below, we consider injective objects in various constructs:

%00bserve, e.g., that there exist two different automorphisms of the field of complex numbers (the
algebraic closure of the field of real numbers) that keep the reals pointwise fixed.
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(1)
(2)

In Set the injective objects are precisely the nonempty sets.

In Pos the injective objects are precisely the complete lattices. [Injectivity of a
complete lattice C' follows from the fact that, for given m and f as in Definition
9.1, the map g : B — C defined by ¢(b) = sup{f(a)|a € A and m(a) < b} is order-
preserving. Completeness of an injective object C' follows from 9.5 and the fact that
C' is a retract of its Mac Neille completion.] Similarly the injective objects

(a) in Boo (and in the construct DLat of distributive lattices) are precisely the
complete Boolean algebras,

(b) in the construct SLat (posets with finite meets and maps that preserve finite
meets) are precisely the frames [see Exercise 5L(b)],

c¢) in JCPos are precisely the completely distributive complete lattices.

)
b) In Ab the injective objects are precisely the divisible abelian groups.
)

(¢) In Alg(1) the injective objects are precisely those unary algebras whose single
unary operation is surjective and has a fixed point. Analogously, a {o }-acceptor
is injective in {0 }-Seq if and only if every state is final and its next state function
is a permutation with a fixed point.

(d) In Grp only the terminal objects are injective [since each group can be properly
embedded into a simple group]. Analogously, terminal objects are the only
injective objects in Lat, Mon, Sgr, and Rng.

(Topology)
(a) In HComp the injective objects are precisely the retracts of powers [0, 1]7 of the

unit interval [0, 1]. In particular, [0, 1] is injective (Tietze-Urysohn Theorem).

(b) In BooSp the injective objects are precisely the retracts of Cantor spaces, i.e.,
of powers of the two-element Boolean space B = ({0,1},P{0,1}).

(c) In Top, the injective objects are precisely the retracts of powers of the Sierpinski

space S = ({0,1},{0,{0},{0,1}}).

(d) In Top the injective objects are precisely the retracts of powers C7 of the space
C= ({07 L, 2}7 {®7 {07 1}7 {07 L, 2}})

(e) In Met an object (X,d) is injective if and only if it is hyperconvex, i.e., if for
any superadditive map®! f: X — RT there exists z € X with d(z,7) < f(z)
for all x € X.

(f) In the construct Unif of uniform spaces and uniformly continuous functions,
the unit interval [0, 1] is injective, but the real line R is not.

Slf: X — RT is superadditive provided that d(z,y) < f(z) + f(y) for all z,y € X.
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(g) In some constructs (e.g., for Top;, Haus, and Tych) only the terminal objects
are injective [since a map f from R\ {0} into a Ti-space X, sending all r < 0
to x and all r > 0 to y, can be extended to a continuous map f: R — X only
if x = y].
(5) (Analysis)

In Ban(K) (Banach spaces over K) the injective objects are (up to isomorphism)
precisely the function spaces C'(X, K) for extremally disconnected compact Haus-
dorff spaces X. [In case K is the field R of real numbers, these are precisely the
hyperconvex spaces (see (4)(e) above). In case K is the field C of complex numbers,
the zero-space is the only hyperconvex injective object.] In particular, K itself is
injective (Hahn-Banach Theorem).

(6) In a partially ordered set, considered as a concrete category over 1, every object is
injective.

9.4 PROPOSITION

FEvery terminal object is injective. O

9.5 PROPOSITION

Every retract of an injective object is injective.

Proof: Let C —— D be a retraction with C' an injective object. Then there exists
D = C with ros =1idp. Let A "> B be an embedding and A L Dbea morphism.

Since C is an injective object, there exists an extension B 9,0 of AL C;ie., a

morphism ¢ such that

A—"-B

f g
DT>C

commutes. Thus r o g is an extension of f. O

9.6 DEFINITION

In a concrete category an object C is called an absolute retract provided that any
embedding with domain C' is a section.

9.7 PROPOSITION

Every injective object is an absolute retract. O

9.8 REMARK
One can easily provide constructs in which absolute retracts fail to be injective. However,
as we shall see below (9.10), under reasonable assumptions, injective objects are precisely

the absolute retracts. From Examples 9.17 we see that this is the case in the constructs
Set, Vec, Pos, Ab, Met, (Ban, O), and Field (= fields and algebraic field extensions).
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9.9 DEFINITION

A concrete category has enough injectives provided that each of its objects is an
initial subobject of an injective object.

9.10 PROPOSITION

If a concrete category A has enough injectives, then in A injective objects are precisely
the absolute retracts.

Proof: Let C be an absolute retract in A, and let C' —— D be an initial monomorphism
with D an injective object. Since C' is an absolute retract, m is a section, i.e., there
exists a retraction D — C with 7 o m = idc. By Proposition 9.5, C' is injective. O

9.11 REMARK
If a concrete category has enough injectives, one may ask whether for every object A

there exists a distinguished injective extension (i.e., an embedding A =, B with B
an injective object), e.g., one which is in some sense minimal or smallest. The crucial
concept needed in order to describe and analyze such “injective hulls” is that of essen-
tial extensions, i.e., extensions that are in a certain sense “dense” (but not necessarily
epimorphic).

9.12 DEFINITION
In a concrete category an embedding A —— B is called essential provided that a

morphism B N C is an embedding, whenever A om, C' is an embedding.

9.13 EXAMPLES
In Examples (1)—(8) below, we consider essential embeddings for various constructs:

(1) In Vec the essential embeddings are the isomorphisms.

(2) In Set the only essential embeddings are the bijective functions and the maps
() — {a} with empty domain and one-element codomain.

(3) In Pos the essential embeddings are the embeddings that are meet-dense and join-
dense (e.g., the embedding of @ into R).

(4) In Boo the essential embeddings are the join-dense embeddings (which are auto-
matically meet-dense).

(5) In Ab an embedding A = B is essential if and only if every nontrivial subgroup
of B meets m[A] nontrivially (e.g., the embedding of (Z, +) into the rationals).

(6) In Tych the essential embeddings are precisely the homeomorphisms, the one-point
compactifications of locally compact, noncompact spaces, and the embeddings of the
empty space into one-point spaces. In particular this example shows that epimorphic
embeddings need not be essential.

(7) In Met an embedding A -~ B is essential if and only if it is tight, i.e., if and only
if it satisfies the following two conditions:
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(a) dB(bl,bz) = Sup{ dB(m(a),bl) — dB(m(a),bg) ‘ ac A} for all by,b € B.

(b) For each b € B, the map f: A — R™, defined by f(a) = dg(m(a),b), is a
minimal superadditive map [cf. 9.3(4)(e)].

In particular, if A is a subspace of R with A\ A = a and \/ A = b, then the embedding
A — [a, b] is essential.

(8) In Lat every object has arbitrarily large essential extensions (see Exercise 9H).

9.14 PROPOSITION
(1) Every isomorphism is essential.

(2) The composite of essential embeddings is essential.
(3) If f and g are embeddings with g o f essential, then g is essential.
(4) If f and g o f are essential embeddings, then g is an essential embedding. O

9.15 PROPOSITION
Injective objects have no proper essential extensions.

Proof: If C > D is an extension of an injective object C, then there is a retraction g
with ido = gom. If m is essential, then g is an embedding, and hence an isomorphism.
Thus m is an isomorphism as well. O

9.16 DEFINITION

An injective hull of A is an extension A —— B of A such that B is injective and m is
essential.

9.17 EXAMPLES

In Examples (1)-(6) below, we describe injective hulls for various constructs:
(1) In Vec every object A has an injective hull, namely, A Ay

(2) In Set every object A has an injective hull, namely,

A , incase A#0;
A —{a}, incase A=0.

(3) In Pos every object has an injective hull, namely, its Mac Neille completion (=
completion by cuts). Likewise in Boo every object has an injective hull, its Mac
Neille completion.

(4) In Ab every object has an injective hull. The embedding Z — @ is an example.

(5) In the construct Field every object has an injective hull, namely, its algebraic clo-
sure. The embedding R «— C is an example.
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(6) In Met every object has an injective hull, namely, its hyperconvex envelope. If A
is a subspace of R with \ A = a and \/ A = b, then the embedding A < [a,b] is an
injective hull. Likewise in (Ban, O) every object has an injective hull.

9.18 REMARK

It is sometimes difficult to decide whether or not every object in a given concrete category
has an injective hull. The existence of enough injectives is a necessary but not sufficient
condition. For example, the construct BooSp has enough injectives, since every Boolean
space is a subspace of some Cantor space [cf. 9.3(4)(b)], but no nonempty Boolean space
has a proper essential extension. A similar situation occurs for HComp (cf. Exercise

9D). In Exercise 9C we will formulate conditions that guarantee the existence of injective
hulls.

9.19 PROPOSITION
Injective hulls are essentially unique, i.e.,
(1) if (m,B) and (m/,B’) are injective hulls of A, then there exists an isomorphism
k / . !/
B — B withm' = kom,

(2) if (m, B) is an injective hull of A, and if B *, Blisan isomorphism, then (kom, B’)
s an injective hull of A.

Proof:

(1). Since m is an embedding and B’ is injective, there exists a morphism B ., B with
m’ = k om. By Proposition 9.14(4), k is an essential embedding. Since B has no
proper essential extension, k is an isomorphism.

(2). Obvious. O

9.20 PROPOSITION

If an object A has an injective hull, then for any extension (m,B) of A the following
conditions are equivalent:

(1) (m, B) is an injective hull of A,

(2) (m, B) is a maximal essential extension of A (i.e., (m, B) is an essential exten-
sion of A, and B has no proper essential extension),

(3) (m, B) is a largest essential extension of A (i.e., (m, B) is an essential exten-
sion of A, and for every essential extension (m’, B') of A there exists an essential
embedding B' > B with m =m om/),

(4) (m, B) is a smallest injective extension of A (i.e., (m, B) is an injective exten-
sion of A, and for every injective extension (m', B') of A there exists an embedding
B ™ B' with m' = om),

(5) (m, B) is a minimal injective extension of A (i.e., (m, B) is an injective exten-
sion of A and whenever A > B = A = B’ 5 B with m' and ™ embeddings,
and B’ an injective object, then T is an isomorphism,).
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Proof: Let (mg, Bp) be an injective hull of A.
(1) = (2). Immediate from Proposition 9.15.

(2) = (1). Let (m,B) be a maximal essential extension of A. Since By is injective,
there exists a morphism f with mg = f o m. By Proposition 9.14(4), f is an essential
embedding. Since (m, B) is a maximal essential extension, f must be an isomorphism.
Hence (m, B) is an injective hull of A.

(1) = (3). Let (m, B) be an essential extension of A. By the injectivity of By, there exists
a morphism f with my = f om. By Proposition 9.14(4), f is an essential embedding.

(3) = (1). Let (m, B) be a largest essential extension of A. Then there exists a morphism
g with m = g o mg. By Proposition 9.14(4) ¢ is an essential embedding, and so by
Proposition 9.15 is an isomorphism. Hence (m, B) is an injective hull of A.

(1) = (4). Immediate.

(4) = (1). If (m, B) is a smallest injective extension of A, then there exists an embedding
m with my = m o m. By Proposition 9.14(3), m is essential and hence, since B has no
proper essential extension, 7 is an isomorphism. Thus (m, B) is an injective hull of A.

(1) = (5). Let (m, B) be an injective extension of A and let (7, By) be an extension of
B with mo = m om. Then by Proposition 9.14(3), m is an essential embedding; hence,
since B has no proper essential extensions, 7 is an isomorphism.

(5) = (1). Let (m, B) be a minimal injective extension of A. Since B is injective, there
exists a morphism f with m = f o mg. Since mg is essential, f is an embedding; hence,
by (5) an isomorphism. Thus (m, B) is an injective hull of A. O

9.21 REMARK

If A has no injective hull, then the concepts mentioned in the above proposition may
fall apart. For example, in Tych every object has a simultaneously largest and max-
imal essential extension, but no space with more than one point has an injective hull
[cf. 9.13(6) and 9.3(4)]. For further “negative” examples see Exercises 9F and 9G.

M-INJECTIVES IN ABSTRACT CATEGORIES

9.22 DEFINITION
Let M be a class of morphisms in a category A.

(1) An object C' is called M-injective provided that for every morphism A -~ B in
M and every morphism A N C there exists a morphism B -5 C with f = g o m.

(2) A morphism A ™, Bin M is called M-essential provided that a morphism
B £, C belongs to M whenever f om does.

(3) An M-injective hull of an object A is a pair (m, B) consisting of an M-injective
object B and an M-essential morphism A —— B.
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(4) A has enough M-injectives provided that for each object A there exists an M-
injective object C' and a morphism A —— C in M.

9.23 REMARK

If M is the class of all embeddings in a concrete category A, then the concepts defined
above specialize to those of injective objects, essential embeddings, and injective hulls.
Also the previous results of this section carry over to the more general context of M-
injectivity, provided that suitable assumptions are imposed on M, e.g.,

(a) Iso(A) C M C Mono(A);i.e., M is a class of A-monomorphisms that contains all
A-isomorphisms,

(b) M oM C M;i.e., M is closed under composition.

We refrain from explicitly formulating the corresponding results.

9.24 EXAMPLES
(1) In any category, if M consists of all sections, then every object is M-injective.

(2) In Met, if M consists of all dense embeddings, then the M-injective objects are the
complete metric spaces, and the M-injective hulls are the metric completions.

(3) In Top,, if M consists of all front-dense embeddings, then the M-injective objects
are the sober spaces, and the M-injective hulls are the sober reflections.

(4) In Top, if M consists of all embeddings X — X U{p} of infinite discrete spaces into
ultrafilter spaces (i.e., p is a point of the Cech-Stone compactification of X), then
the M-injective objects are the compact spaces.

(5) In Top, if M consists of the single embedding {0,1} — [0, 1], then the M-injective
objects are the pathwise connected spaces. Similarly, if M consists of the single
embedding of the unit circle into the unit disc, then a complex domain is an M-
injective object if and only if it is simply connected.

(6) In Top a metrizable space X satisfies dim X < n if and only if the n-sphere S™ is
an M-injective object, where M consists of all embeddings of closed subspaces of X
into X.

(7) In Top, if M consists of all embeddings of closed subspaces of normal spaces, then
[0,1] and R are M-injective objects [Tietze-Urysohn Theorem].

(8) In Ab, if M consists of all pure embeddings, then the M-injective objects are the
algebraically compact abelian groups, or, equivalently, are all the direct summands
of direct products of cocyclic abelian groups.

(9) In CAT(X), if M consists of all concrete full embeddings, then the M-injective
objects are the “topological” concrete categories over X. Such categories will be
defined and studied in detail in §21. In particular, the constructs Top, Unif, Rel,
Prost, and each Spa(T') are topological.
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(10) In a (meet) semilattice C, considered as a category, an object is Mono-injective if
and only if it is the largest element of C.

9.25 PROPOSITION

If B is a reflective, isomorphism-closed, full subcategory of A and M is the class of all
B-reflection arrows, then

(1) the M -injective objects of A are precisely the B-objects, and
(2) the M-injective hulls are precisely the B-reflections.

Proof:
(1). Clearly each B-object is M-injective. Let C be an M-injective object, and let

C - B be an B-reflection arrow for C.. Then there exists some B 1, C for which
idc = for. The fact that idg or = (r o f) or and the uniqueness in the definition
of reflection arrow show that idp = r o f. Thus r is an isomorphism, so that since
B is isomorphism-closed, C' is a B-object.

(2). By (1) we need only show that each B-reflection arrow A — B is M-essential.

Suppose that A — B LB belongs to M, i.e., is also a B-reflection arrow.
Since B-reflection arrows for A are essentially unique (4.19), we can conclude that

B 7, B’ is an isomorphism, and hence is a member of M. O

9.26 REMARK

We may call a class B of A-objects (resp. the associated full subcategory B of A) an
injectivity class in A, whenever there exists a class M of A-morphisms such that
B is precisely the class of M-injective objects. The above proposition shows that every
reflective, isomorphism-closed, full subcategory of A is an injectivity class. The converse
is not true. By Example 9.24(4) compact spaces form an injectivity class in Top, but
the associated subcategory is not reflective in Top. A characterization of injectivity
classes by suitable stability properties is unknown even for “nice” categories (e.g., for
Top). Connected spaces, which have stability properties similar to those of compact
spaces (e.g., they are closed under the formation of products and of continuous images),
do not form an injectivity class in Top. In fact the only injectivity class in Top that
contains all connected spaces is Top itself.
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PROJECTIVITY

9.27 TABLE OF DUAL CONCEPTS

The following table provides the names for the concepts dual to those investigated in
this section:

Concept Dual Concept
embedding quotient morphism
injective object projective object
essential embedding coessential quotient morphism
injective hull projective cover
M-injective object M-projective object
M-essential morphism M-coessential morphism
M-injective hull M-projective cover

9.28 EXAMPLES

In Examples (1)—(4) below, we consider projective objects in various constructs:

(1)

(2)

(4)

In Set and in Vec every quotient morphism is a retraction. Hence in either con-
struct every object is projective, and the coessential quotient morphisms are the
isomorphisms. Thus, in these constructs, each object has a projective cover.

In any of the constructs Top, Pos, Ab, and Grp the projective objects are precisely
the free objects. Projective covers generally fail to exist.

In BooSp and in HComp the projective objects are the extremally disconnected
compact Hausdorff spaces (= the retracts of Cech-Stone compactifications of dis-
crete spaces), and the coessential quotient morphisms are the irreducible quotient
morphisms (= those continuous surjections f: X — Y that map no proper closed
subset of X onto Y'). Projective covers exist for each object (and are called projective
resolutions).

In Alg(Q) the projective objects are precisely the retracts of the free objects. This
follows from the next proposition:

9.29 PROPOSITION

If (A,U) is a concrete category over X that has free objects, and E is the class of all
A-morphisms f for which Uf is a retraction, then the following are equivalent:

(1) A is an E-projective object,

(2) A is a retract of a free object.
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Proof: (1) = (2). Let (u, B) be a universal arrow over UA. Then there exists a unique
A-morphism e: B — A with idys = Ue ou. So e belongs to E. Hence, by (1), there
exists an A-morphism f: A — B with id4 = eo f. Consequently A is a retract of the
free object B.

(2) = (1). Let A be a free object (with universal arrow (u,A)), let e : B — C be

a morphism in F, and let f: A — C be a A-morphism. Since in X every object is
U E-projective there exists an X-morphism ¢ such that the diagram

X—=UA

o| [

UBTUC

commutes. Since (u, A) is universal, there exists a unique A-morphism k: A — B with
g=Ukowu Hence Ufou=Ueog=UeoUkou = U(eok)owu, which implies that
f =eok. Hence A is E-projective. By the dual of Proposition 9.5 every retract of A is
also E-projective. O

Projectivity and retracts of a free object

9.30 COROLLARY

If in a construct with free objects every surjective morphism is a quotient morphism,
then the projective objects are precisely the retracts of the free objects. O
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9.31 EXAMPLES

The above corollary applies to such constructs as Grp, Lat, HComp (and many others).
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EXERCISES

* 9A. The Axiom of Choice

Many results of this book can be expressed (in localized form) in the realm of Zermelo-
Fraenkel set theory (ZF). But if the axiom of choice for sets (AC) is not assumed, several
results fail to be true. Consider the following:

(ET) In Set every epimorphism is a retraction.
In Set every product of injective objects is injective.
The injective objects in Ab are precisely the divisible abelian groups.

)
)
(ST) The injective objects in Boo are precisely the complete Boolean algebras.
) In Boo the two-element Boolean algebra is injective.

)

The projective objects in HComp are the extremally disconnected compact Haus-
dorff spaces.

(a) that in ZF the following implications hold:
(AC) <= (ET) < (PT) <= (BT) = (ST) = (UT).

(b) Show that in ZF the following holds: (ST) <= [(GT) and (UT)].
(c) Does (ST) imply (AC)? [Unsolved.]
9B. A Characterization of Injective Objects
Let A be a construct satisfying
(1) A has enough injectives, and
(2) for every embedding A - B there exists a morphism B L, ¢ such that
A L™, Cis an essential embedding.

Show that in A injective objects are precisely those objects that have no proper essential
extension.

9C. Existence of M-Injective Hulls

Let M be a class of morphisms in a category A and let M™* be the class of M-essential
morphisms. Assume that the following conditions are satisfied:

(1) Iso(A) C M C Mono(A),

(2) MoM C M,

(3) for any m € M, there exists an A-morphism f such that fom € M*,

(4) for every 2-source B «— A L O withme M , there exists a 2-sink
BL.D ™ Cwithme Mand Fom=mo f,

(5) every well-ordered system in M has an upper bound in M,
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(6) A is M*-co-wellpowered (in the obvious sense; M* need not consist of epimorphisms
only).

Show that

(a) For A-objects A the following conditions are equivalent:
(al) Ais M-injective,
(a2) every A > B in M is a section,
(a3) every A 2 B in M* is an isomorphism.

(b) Every A-object has an M-injective hull.

9D. Enough Injectives and Injective Hulls in HComp

Show that HComp has enough injectives, but that the only compact Hausdorff space
that has a proper essential extension is the empty space.

9E. Regular Projective Objects

Show that the RegEpi-projective objects

* (a) in Top are the discrete topological spaces,
*(b) in Haus are the discrete topological spaces,

(c) in Set? are the injective functions,

(d) in (Set?)°P are the surjective functions with nonempty domain.
9F. Injective Objects and Maximal Essential Extensions in Top,
Show that
(a) In Top, the following conditions are equivalent:

(1) X is injective,
(2) X is an absolute retract,
(3) X is a terminal object.

(b) If a Ty-space X has a point such that each of its neighborhoods is cofinite in X,
then X has no proper essential extension. If a Ti-space X has no such point, then it
has an essentially unique proper essential extension. [Add a point p to X with each
neighborhood of p cofinite in X U {p}.]

(¢) In Top, every object has an essentially unique maximal essential extension.

(d) In Top; the only objects that have injective hulls are the initial object and the
terminal objects.

(e) If M is the class of embeddings in Top,, then all the conditions of Exercise 9C are
satisfied except condition (3).
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* 9G. Minimal and Smallest Injective Extensions

Show that

(a)

Minimal injective extensions need not be smallest injective extensions. [In the con-
struct that consists of all sets X with card(X) # 1 together with all identities
and constant maps as morphisms, every () — B with B # () is a minimal injective
extension. However, () has no smallest injective extension. |

Smallest injective extensions need not be minimal. [In the full subconstruct of Set
that contains () and all infinite sets, ) — N is a smallest injective extension. However,
() has no minimal injective extension.]

Injective extensions that are simultaneously smallest and minimal need not be in-
jective hulls. [In the full subconstruct of Set that consists of all sets X with
card(X) # 1, the inclusion () — {1,2} is simultaneously a smallest and a mini-
mal injective extension. However, () has no M-injective hull.]

9H. Essential Extensions in Lat

Show that every lattice that has at least two elements has arbitrarily large essential
extensions. [Hint: First assume that L is a lattice with smallest element 0 and largest
element 1. Show that for any set A that has at least three elements and is disjoint from
L, if A is ordered by equality, then the embedding

1 1

7 e

L\ {0,1} — L\ {0,1} A

. N

is an essential extension of L.

91I.

(a)

(b)

Injective Automata

Prove that the following are equivalent for each object A of {o}-Seq:

(1) A is injective,

(2) A is an absolute retract,

(3) all states in A are final, and §(—, o) is a permutation with a fixed point.

Whenever ¥ has more than one element, show that there exists an object of ¥-Seq
that is not an absolute retract, although every state is final and each §(—,0) is a
permutation with a fixed point.

Characterize those objects of ¥-Seq that have an injective hull.
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10 Sources and sinks

SOURCES

A basic categorical concept that simultaneously generalizes the concepts of objects and
of morphisms is that of sources.

10.1 DEFINITION

A source is a pair (A, (fi)ier) consisting of an object A and a family of morphisms
fi: A — A; with domain A, indexed by some class I. A is called the domain of the
source and the family (A;);es is called the codomain of the source.

10.2 REMARK
(1) Whenever convenient we use more concise notations, such as (A, f;)r, (A, f;) or

(AL Ay,

(2) The indexing class I of a source (A, f;); may be a proper class, a nonempty set, or
the empty set. In case I = (), the source is determined by A. In case I # 0, the
source is determined by the family (f;)s.

(3) Sources indexed by the empty set are called empty sources and are denoted by
(A,0). Whenever convenient, objects may be regarded as empty sources.

(4) Sources that are indexed by a set are called set-indexed or small.

(5) Sources that are indexed by the set {1,...,n} are called n-sources and are denoted
by (A, (fi,.-., fn)). Whenever convenient, morphisms f: A — B may be regarded
as 1-sources (A4, f).

(6) There are properties of sources that depend heavily on the fact that (f;); is a family,
i.e., an indexed collection (e.g., the property of being a product). There are other
properties of sources (A4, f;), depending on the domain A and the associated class
{fili € I} only (e.g., the property of being a mono-source). In order to avoid
a clumsy distinction between indexed and non-indexed sources, we will sometimes
regard classes as families (indexed by themselves via the corresponding identity
function). Hence for any object A and any class S of morphisms with domain A,
the pair (A, S) will be considered as a source. A particularly useful example is the
total source (A, S4), where Sy is the class of all morphisms with domain A.

10.3 DEFINITION
fSs=(A R A;) is a source and, for each i € I, S; = (4; LN ij)J; is a source, then
the source

gijofi

(S) oS = (4 20h,
is called the composite of S and the family (S;);.

Aij)ier, jes;
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10.4 REMARKS
(1) For a source S = (A L, ;)1 and a morphism f: B — A we use the notation
Sof=(BL% 4.

2) The composition of morphisms can be regarded as a special case of the composition
of sources.

MONO-SOURCES
10.5 DEFINITION

A source § = (A4, fi)r is called a mono-source provided that it can be cancelled from
the left, i.e., provided that for any pair B i; A of morphisms the equation Sor = Sos
S

(i.e., fior = f;os for each i € I) implies r = s.

10.6 EXAMPLES
(1) An empty source (A, () is a mono-source if and only if for each object B there is at
most one morphism from B to A.

(2) A 1-source (A4, f) is a mono-source if and only if f is a monomorphism.

(3) In Set mono-sources are precisely the point-separating sources (4, f;)s, i.e.,
sources (A, f;)r such that for any two different elements a and b of A there exists
some i € I with f;(a) # fi(b).

(4) In many familiar constructs, e.g., in Vec, Grp, Top, and Pos, a source is a mono-

source if and only if it is point-separating. [See Corollary 10.8.]

(5) In every preordered class, considered as a category, every source is a mono-source.
This property characterizes thin categories. [Consider the empty sources.]

10.7 PROPOSITION
(1) Representable functors preserve mono-sources (i.e., if G: A — Set is a repre-

sentable functor and S is a mono-source in A, then GS is a mono-source in Set ).

(2) Faithful functors reflect mono-sources (i.e., if G: A — B is a faithful functor,
S = (4, fi) is a source in A, and GS = (GA,Gf;) is a mono-source in B, then S

is a mono-source in A).

Proof: °2

(1). If a functor preserves mono-sources, then, clearly, so does every functor that is nat-
urally isomorphic to it. Thus it suffices to show that each mono-source (B ti, Bi)r
is sent by each hom-functor hom(A, —) : A — Set into a point-separating source:

hom(A,f;)
_

(hom(A, B) hom(A, B;));.

52Even though the proof is immediate by arguments analogous to those used in the proof of Proposition
7.37, we nevertheless sketch a proof so that the reader may gain some familiarity with notation
concerning sources.
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But this is immediate from the definition of mono-source.

(2). Let G and S be as described. If B %ﬁ A is a pair of A-morphisms with Sor =

Sos,then GSoGr =G(Sor) =G(Sos) =GS oGs. Since GS is a mono-source,
this implies Gr = G's. Since G is faithful, this gives r = s. O

10.8 COROLLARY

In a construct (A,U) every point-separating source is a mono-source. The converse
holds whenever U is representable. O

10.9 PROPOSITION
Let T = (S;) oS be a composite of sources.

(1) If S and all S; are mono-sources, then so is T .

(2) If T is a mono-source, then so is S. O

10.10 PROPOSITION
Let (A, fi)1 be a source.
(1) If (A, fj)s is a mono-source for some J C I, then so is (A, fi)r.

(2) If fj is a monomorphism for some j € I, then (A, f;)1 is a mono-source. O

10.11 DEFINITION

A mono-source S is called extremal provided that whenever S = S o e for some epi-
morphism e, then e must be an isomorphism.

10.12 EXAMPLES

(1) A 1-source (A4, f) is an extremal mono-source if and only if f is an extremal mono-
morphism.

(2) In balanced categories (e.g. in Set, Vec, and Grp) every mono-source is extremal.
[This follows immediately from Proposition 10.9(2).] Conversely, if every mono-
source in C is extremal, then C is balanced (cf. Proposition 7.67).

(3) A source (A RN A;); in Pos is an extremal mono-source provided that the following
equivalence holds:
a<bevViel fi(a) < fi(b).

(4) A mono-source (A fi, A;); in Top is extremal if and only if A carries the initial

(= weak) topology with respect to (f;).

(5) A mono-source (A ELN A;)5 in 3-Seq is extremal if and only if a state g of A is final
whenever each state f;(g) is final in A;.

(6) In a poset, considered as a category, a source (A — A;)s is an extremal mono-source
if and only if A is a maximal lower bound of { A; |i € I }.
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10.13 PROPOSITION

(1) If a composite source (S;) oS is an extremal mono-source, then so is S.

(2) If S o f is an extremal mono-source, then f is an extremal monomorphism. O

10.14 REMARK

If S and each §; are extremal mono-sources, then (S;) o S need not be extremal. See
Exercise 7N.

10.15 PROPOSITION
Let (A, f;)1 be a source.

(1) If (A, fj) is an extremal mono-source for some J C I, then so is (A, fi)r.

(2) If fj is an extremal monomorphism for some j € I, then (A, fi)r is an extremal
MOoNno-source. O

10.16 REMARK

The concept of source allows a simple description of coseparators: namely, A is a cosep-
arator if and only if, for any object B, the source (B,hom(B, A)) is a mono-source. This
suggests the following definition:

10.17 DEFINITION

An object A is called an extremal coseparator provided that for any object B the
source (B,hom(B, A)) is an extremal mono-source.

10.18 EXAMPLES
(1) In a balanced category every coseparator is extremal.

(2) In the nonbalanced category Pos every coseparator is extremal [cf. 7.18(3)].

(3) A topological space is an extremal coseparator in Top if and only if it contains an
indiscrete subspace with two elements and a Sierpinski subspace (i.e., a nondiscrete
To-space with two elements) [cf. 7.18(4)].

(4) The unit interval [0,1] is an extremal coseparator in HComp.

(5) The category Tych of Tychonoff spaces and continuous maps has no extremal cosep-
arator [cf. 7.18(7)].

(6) Let 3-Seqq denote the category of sequential ¥-acceptors that have no initial state
and that are observable (i.e., the observability equivalence of Example 4.17(7) is
equality). Then ¥-Seqy has an extremal coseparator: the acceptor (Rat,d, F') of
all rational languages in X, where §(L,0) = {001+ 0y |01+ -0y, € L} and F =
{L € Rat|0 € L}. [For each acceptor A consider the simulation f : A — (Rat, 4, F)
that assigns to each state ¢ the language f(q) € Rat accepted by A in the initial
state ¢. Then f is an extremal monomorphism.|
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PRODUCTS

Cartesian products of pairs of sets or, more generally, of families of sets (resp. direct
products of families of vector spaces, resp. topological products of families of topological
spaces) can be regarded as objects together with families of (projection) morphisms
emanating from them, i.e., as sources. As such — but not as objects alone — they can
be characterized, up to isomorphism, by the following categorical property:

10.19 DEFINITION
A source P = (P 2y ;)1 is called a product provided that for every source S =

(A Fi, i)1 with the same codomain as P there exists a unique morphism A L, pwith
S ="Po f. A product with codomain (4;)s is called a product of the family (A;);.

10.20 EXAMPLES

(1) In the category Set, given sets A; and Ag, the projections from the cartesian product
T A1 X A2 — A1 and T & A1 X A2 — A2 (given by: 7TZ'(£U1,ZL‘2) = xz) form a

product source (A; x Ay — A;)i=1,2. Indeed, given a source (A Ji i)i=1.2,

there is a unique A 1, Ay x Ag with f; = m; o f, namely, f(a) = (fi1(a), f2(a)).
More generally, let (A;); be a family of sets indexed by a set I, and let [[;.; A; be
its cartesian product, i.e., the set of all functions g : I — J; 4; with the property
that g(i) € A;. Then the family of projection functions 7 : [[;c; Ai — Aj;, given
by: g — g(j), is a product in Set.

(2) Likewise in the categories Vec, Ab, and Grp the “direct products”, in Pos the
“ordinal products”, and in Top the “topological products”, considered as sources
via the projections, are products.

(3) If (A4;)ies is a set-indexed family of objects in the category AbTor of abelian torsion
groups, its direct product [[,.; A; need not be a torsion group. However, a product
of the family does exist in AbTor. Let P be the torsion-subgroup of [[,.; 4; (ie.,
the subgroup consisting of all torsion-elements), and for each j € I let p; : P — A;
be the restriction of the jth projection m; : [[;c; A; — Aj. Then (P RN Aj)ier is

a product in AbTor. [Indeed, given a source (A N A;)r in AbTor, each a € A
is a torsion-element of A, so that (f;j(a))s is a torsion-element of [[ A;. Thus the

function A Lo P, given by f(a) = (fi(a)), satisfies the above definition.]

(4) Similarly, in Ban products can be obtained as the subspaces of the direct products
of the corresponding vector spaces, consisting of those elements a = (a;);c; with
||la|| = sup;c; ||lai|| < oo, supplied with the restrictions of the projection-maps.

(5) In X-Seq the product of two acceptors A; x Ay is their parallel connection (the
state of which is determined by knowing the state of both A; and As). Thus finite
products have a clear interpretation in »-Seq, although infinite products usually
don’t exist, since acceptors are by definition finite.
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(6) In a partially ordered class, considered as a category [3.3(4)(d)], a source (P 2 A;);
is a product if and only if P = A,;.; A;.

(7) An empty source (P,() is a product if and only if P is a terminal object. Thus,
regarding empty sources as objects, one might say: terminal objects are empty
products.

(8) A 1-source (P,p) is a product if and only if p is an isomorphism. Thus, regarding
1-sources as morphisms, one might say: isomorphisms are 1-products.

10.21 PROPOSITION
FEvery product is an extremal mono-source.

Proof: If P = (P, p;) is a product and A i; P is a pair of morphisms with P or =
S

Pos,then S =Por ="Posis asource with the same codomain as P. The uniqueness
requirement in the definition of product implies that » = s. Hence P is a mono-source.
To show that P is extremal, let P = Qo e for some epimorphism e. Since P and Q have
the same codomain, there exists a unique morphism f with @ = P o f. Since P is a
mono-source, the equation Poid, =P = Qoe = Po (f oe) implies that id, = foe.
Consequently, e is a section and an epimorphism, hence an isomorphism. O

10.22 PROPOSITION
For any family (A;); of objects, products of (A;); are essentially unique; i.e., if P =
(P LN Ai)r is a product of (A;)r, then the following hold:

(1) for each product Q = (Q X A;); there exists an isomorphism Q L P owith
Q=7Poh,

(2) for each isomorphism A L, P the source Poh is a product of (A;)r.

Proof:

(1). Since P and Q are products with the same codomain, there exist unique morphisms
h and k with @ = Poh and P = Qo k. Therefore Qoidg = Qo (koh) and
Poidp ="Po(hok). Since P and Q are mono-sources, these equations imply that
idg = koh and idp = hok. Hence h is an isomorphism.

(2). Obvious. O

10.23 REMARK

The above uniqueness result allows us to introduce special notations for products (pro-
vided that they exist):

(1) Products of (A;)r will be denoted by (I];c; As =, Aj)jer, or, more simply, by

(ITA: I, j)1, and the morphisms 7; will be called projections.
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(2) If (T A: T, Aj)r is a product and (A Ji, A;) is a source with the same codomain,
then the unique morphism f: A — [[A; with f; = 7w o f for each j € I will be
denoted by (f;):

A7 4 (%)
EN
4;
(3) In case I = {1,2,...,n} the following notation will often be used instead of that
above:
APt Ay e x A (+%)

\ JW]'
A
10.24 REMARK

The above diagram () makes visible why products are useful. The correspondence
(A, fi) — (fi) provides a bijection from the collection of all sources with domain A
and codomain (A;); to the set of all morphisms with domain A and codomain [ [;.; 4;.
Hence products allow one to treat sources as if they were morphisms. Propositions 10.26
and 10.38 below show how this correspondence works.

10.25 PROPOSITION
Let Q = (P;) o P be a composite of sources.

(1) If P and all P; are products, then so is Q.

(2) If Q is a product and all P; are mono-sources, then P is a product.

Proof: This follows immediately from the definition of products and the fact that prod-
ucts are mono-sources (10.21). O

10.26 PROPOSITION

Consider
fi lﬂj
Aj
Then

(1) (A, fi)1 is a mono-source if and only if {f;) is a monomorphism.
(2) (A, fi)1 is an extremal mono-source if and only if (f;) is an extremal monomorphism.

(3) (A, fi)1 is a product if and only if (f;) is a product; i.e., an isomorphism.
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Proof: (1) follows from Proposition 10.9, (3) follows from Propositions 10.21 and 10.25,
and the “only if” part of (2) follows from Proposition 10.13. To show the “if” part
of (2), let (f;) be an extremal monomorphism. By (1), (A4, f;) is a mono-source. Let
A % B be an epimorphism and (B, g;); be a source with f; = g; o e for each i € I.
Then, since the product is a mono-source,

mio(fi) =gioe=m;o(g;)oe implies that (f;) = (gi)oe.

Hence e is an isomorphism. O

10.27 REMARK

Whereas each product is an extremal mono-source, the single projections are usually
retractions, as the following result shows. That this need not always be the case is
demonstrated in Set by the projection: # x N — N.

10.28 PROPOSITION

If (P RN A;)r is a product and if ig € I is such that hom(A;,, A;) # 0 for each i € I,
then p;, s a retraction.

Proof: For each i € I choose f; € hom(A4;,, A;) with f;, = idAz-O- Then (f;): Ai, — P
is a morphism with p;, o (f;) = fi, = ida O

i

10.29 DEFINITION
(1) A category has products provided that for every set-indexed family (A;); of objects
there exists a product (][] 4; EAN Aj)r.

(2) A category has finite products provided that for every finite family (A;); of objects
there exists a product ([] A; —— A;);.

10.30 PROPOSITION

A category has finite products if and only if it has terminal objects and products of pairs
of objects.

Proof: The result follows from the observations that
(1) empty products are terminal objects [10.20(7)],
(2) products of singleton families always exist [10.20(8)],

(3) products of n-indexed families for n > 3 can be constructed via induction by com-
posing products of pairs [cf. 10.25(1)]:

Ay X Ag x oo x Ay = (- ((A1 X Ag) x Ag) X -+ X Ay). a

10.31 EXAMPLES
(1) The categories Set, Vec, Grp, Top, Rel, Pos, Alg(2), and Aut have products.
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(2) Met and X-Seq have finite products, Met, and Met. have countable products,
and PMet has products. [In fact, a set-indexed family (X;);c; of nonempty metric
spaces each having finite diameter diam(X;) has a product in Met if and only if the
set { diam(X;)|i € I} is bounded.]

(3) Bany, has finite products, and Ban has products.

(4) A poset, considered as a category, has products if and only if it is a complete lattice.

10.32 THEOREM
(1) A category that has products for all class-indexed families must be thin.

(2) A small category has products if and only if it is equivalent to a complete lattice.

Proof:

(1). Assume that A has all class-indexed products, but that the set hom(A, B) has at
least two elements. Consider the family (B;)ier with I = Mor(A) and B; = B
for each i € I. Since hom(A, B) has at least two members, there are at least as
many distinct sources with domain A and codomain (B;); as there are subclasses
of I. Hence hom(A, ][ B;) contains at least as many members as this (cf. 10.24),
contradicting the fact that hom(A, [[ B;) is contained in I.

(2). Since A is small, Mor(A) is a set, so that if A has products, the above proof shows
that it is thin. Thus it is a preordered set with meets of all subsets, and, hence, is
equivalent to a complete lattice [cf. 10.31(4)]. The converse is clear. O

10.33 REMARK

The above theorem shows why in Definition 10.29(1) we didn’t require the existence of
products for families of objects indexed by arbitrary (hence also proper) classes. Such
a requirement would be far too strong. None of our familiar constructs [e.g., from
Examples 10.31 (1)—(3)] satisfies this condition, yet many of them do satisfy the weaker
condition of having products of all set-indexed families. This observation demonstrates
strikingly that when working with categories one needs to distinguish carefully between
sets and proper classes (resp. between “small” and “large” collections).

10.34 DEFINITION
If (A; LN B;)r is a family of morphisms and if (][] A; N Aj)rand (][ B; IR Bj)r are
products, then the unique morphism [[ A; — [] B; that makes the following diagram
commute for each j € 1

HAiLﬁ)HBi

l Jpj

fi

is denoted by IIf; and is called the product of the family (f;);. If I = {1,...,n} then
I1f; is usually written as f1 X fo X -+ X fp,.
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10.35 PROPOSITION

Let (fi)r be a set-indexed family of morphisms with product ILf;. If each f; has any of
the following properties, then so does I1f;:

(1) isomorphism,

(2) section,

(8) retraction,

(4) monomorphism,

(5) regular monomorphism (provided that the category in question has products).
Proof: (1), (2), and (3) follow immediately from the observation that Ilg; o IIf; =
II(g; o fi). (4) follows from Propositions 10.9 and 10.21.

(5) follows from the next proposition. (Observe that products of regular monomorphisms
are always extremal monomorphisms. Cf. also 10D) O

10.36 PROPOSITION 5
In a category with products, if I is a set and if E; —— A; is an equalizer of A; :Ii B;
9i

; If;
for each i € I, then [] E; e, [1Ai is an equalizer of [ Ai == ][ B: -
Hg:

Proof:

P

J

That IIf; o Ile; = Ilg; o Ile; follows from the fact that the product (][ B; 2, Bj)

is a mono-source. If C' [T A is a morphism such that IIf; o h = Ilg; o h, then
fjopjoh = gjopjoh for each j € I. Hence for each j € I there exists a morphism
hj: C — E; with p; o h = e; o hj. Consequently, (h;) : C — [] E; is a morphism with
p; oIle; o (h;) = ej omj o (h;) = ej o hj = p; o h; hence with Ile; o (h;) = h. Therefore h
factors through Ile;. Since, by Proposition 10.35(4), ITe; is a monomorphism, A factors
uniquely. O

ITe; ILf;
Ig;

10.37 DEFINITION
If [ is a set and ([] A; EIN Aj)r is a product with A; = A for each ¢ € I, then [ 4; is
denoted by Al and called an Ith power of A.

10.38 PROPOSITION

In a category that has products, an object A is an (extremal) coseparator if and only if
every object is an (extremal) subobject of some power Al of A.
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Proof: Let A and B be objects. Consider the source S = (B,hom(B, A)) and the
morphism B —— APm(B:A4)  defined by f = g om for each f € hom(B,A). By
Proposition 10.26, S is an (extremal) mono-source if and only if m is an (extremal)
monomorphism. Hence A is an (extremal) coseparator if and only if B —— Ahom(5.4)
is an (extremal) monomorphism for each object B. Finally, B <+ Al is an (extremal)
monomorphism for some I [i.e., the source (B, m; 0 g)crs is an (extremal) mono-source] if
and only if S = (B,hom(B, A)) is an (extremal) mono-source. Cf. Propositions 10.10(1)
and 10.15(1). O

10.39 REMARKS

(1) In a category A that has products and an (extremal) coseparator the above result
provides a useful description of the A-objects. For example, since the two-element
chain 2 is a coseparator for Pos, posets are precisely the subobjects of powers of
2 in Pos, and since the unit interval [0, 1] is an extremal coseparator for HComp,
compact Hausdorff spaces are precisely the extremal subobjects (= closed subspaces)
of powers of [0,1] in HComp.

(2) In a category that has products, M-coseparators may be defined (for any class M
of monomorphisms) as objects A such that each object is an M-subobject of some
power of A.

10.40 PROPOSITION

For any class M of morphisms, every product of M -injective objects is M -injective.” 0]

SOURCES IN CONCRETE CATEGORIES

Next we turn our attention to sources in concrete categories. As before, in the context
of concrete categories, we use the notational conventions of Remark 6.22.

INITIAL SOURCES

10.41 DEFINITION

Let A be a concrete category over X. A source (A Ji, A;) in A is called initial
provided that an X-morphism f : |B| — |A| is an A-morphism whenever each composite
fio f: |B| — |A;| is an A-morphism.

10.42 EXAMPLES
(1) An empty source (A, ) is initial if and only if A is indiscrete.

(2) A l-source (A, f) is initial if and only if f is an initial morphism (cf. 8.6).

53The special case for products that are empty sources yields Proposition 9.4.

18th January 2005



180 Sources and Sinks [Chap. III

(3) A source (A, f;); in Top is initial if and only if A carries the initial (= weak) topology
with respect to the family (f;);. In particular, a topological space X is completely
regular if and only if the source S(X, R), consisting of all continuous maps from X
to the real line, is initial (in the construct Top); and X is a Tychonoff space if and
only if S(X,R) is an initial mono-source.

(4) In Spa(T) asource ((X, @) fi, (Xi, ;) is initial if and only if oo = ;c (T'f) ™ e

In particular, a source ((X,p) I (Xi,pi))r in Rel is initial if and only if the

equivalence: zpy < Vi€ I fi(x)p;fi(y) holds.
(5) In PMet a source ((X,d) ELN (X, d;))s is initial if and only if

d(z,y) = sup di(fi(z), fi(y))-

il

(6) In Pos and in Y-Seq the initial sources are precisely the extremal mono-sources
(cf. 10.12).

(7) In any of the constructs Vec, Ab, Grp, Mon, Rng, Boo, and Alg({?) the initial
sources are precisely the mono-sources.

(8) In a preordered class, considered as a concrete category over 1, the initial sources are
precisely the products [cf. 10.20(6)]. This fact is not as accidental as it may seem.
As we will see later in this section (cf. 10.58), a source in an arbitrary category A is
a product if and only if it is T-initial, where T': A — 1 is the unique functor from
Atol.

10.43 PROPOSITION
If (A RN Ai)r is an initial source in A, then

A=max{ B €Ob(A) | |B|=|A| and all |B| Ji, |A;| are A-morphisms}.* O

10.44 REMARK

The above property often characterizes initial sources, e.g., in such constructs as Top or
Spa(T). However, in the construct Top,, there are non-initial sources with the above
property. In fact, as shown in Example 8.5(2), for each set X the fibre of X has a largest
element Ax, hence the empty source (Ax, () satisfies the above property. But (Ax, )
is initial (i.e., Ax is indiscrete) only for card(X) < 1.

10.45 PROPOSITION
Let T = (S;) oS be a composite of sources in a concrete category.

(1) If S and all S; are initial, then so is T .
(2) If T is initial, then so is S. O

®4Recall the order on the fibre of |A| [5.4(1)].
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10.46 PROPOSITION

Let (A, fi)1 be a source in a concrete category. If (A, f;) is initial for some J C I, then
so is (A, fi)1- O

10.47 DEFINITION

A concrete functor F': A — B over X is said to preserve initial sources provided
that for every initial source § in A, the source F'S is initial in B.

10.48 EXAMPLES

(1) The forgetful concrete functor Rng — Ab over Set, which forgets multiplication,
preserves initial sources [cf. 10.42(7)].

(2) The concrete functor Top — Rel over Set, which assigns to each topological space
(X, 7) the object (X, p) with zpy if and only if = € cl{y}, preserves initial sources.

(3) An order-preserving map between preordered classes, considered as a concrete func-
tor over 1, preserves initial sources if and only if it preserves all existing meets.

10.49 PROPOSITION

If (F,G) is a Galois correspondence, then G preserves initial sources.

Proof: Let G: A — B and F': B — A be concrete functors over X such that (F,G)
is a Galois correspondence over X. Let (A ELN ;)1 be an initial source in A and let
B GAbean X-morphism such that all B Ve LN G A; are B-morphisms. Then
by Proposition 6.28, all F'B LY N A; are A-morphisms. Hence F'B . Ais an
A-morphism. Again by Proposition 6.28, B M GAs a B-morphism. O

10.50 COROLLARY

Embeddings of concretely reflective subcategories preserve initial sources. O

10.51 REMARK

Let G: A — B be a monotone map between posets, considered as a concrete functor
over 1. If A is a complete lattice, then G preserves initial sources (= meets) if and
only if there exists a (necessarily unique) monotone map F : B — A such that (F, Q)
is a Galois connection. [Namely, F'(b) = A{a € A|b < G(a)}]. Theorem 21.24 is a
corresponding result for concrete functors over arbitrary base categories X.

CONCRETE PRODUCTS

10.52 DEFINITION

Let A be a concrete category over X. A source S in A is called a concrete product
in A if and only if S is a product in A and |S] is a product in X.
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10.53 PROPOSITION

A source S in a concrete category A over X is a concrete product if and only if it is
initial in A and |S| is a product in X. O

10.54 DEFINITION
A concrete category A has concrete products if and only if for every set-indexed

family (A4;); of A-objects there exists a concrete product (P RAIN A;)rin A, ie., if and
only if A has products and the forgetful functor preserves them.

10.55 EXAMPLES

(1) Many familiar constructs, e.g., Vec, Grp, Ab, Rng, Top, Rel, Pos, and Alg((2),
have concrete products. According to Proposition 10.53 they can be constructed in
two steps: Given a family of objects (A;); in A, first form the cartesian product

(IT1A4] I, |A;|)1 of the underlying sets, and then supply the set []|A4;| with the
initial structure with respect to (m;)s.

(2) The construct (Ban, O) has concrete products, but the products in (Ban,U) gen-
erally fail to be concrete [cf. 10.20(4)].

(3) Products in the construct AbTor generally fail to be concrete [cf. 10.20(3)].

(4) In a concrete category over 1 every product is concrete.

10.56 PROPOSITION
Let Q = (P;) o P be a composite of sources in a concrete category A.

(1) If P and all P; are concrete products, then so is Q.

(2) If Q is a concrete product and each |P;| is a mono-source, then P is a concrete
product. O

G-INITIAL SOURCES

Now we investigate sources not only in relation to forgetful functors of concrete cate-
gories, but also in relation to arbitrary functors. This will throw additional light on
products.

10.57 DEFINITION

Let G: A — B be a functor. A source S = (4 iR ;)1 in A is called G-initial
provided that for each source 7 = (B 2, ;)1 in A with the same codomain as S and
each B-morphism GB M. GA with GT = GS o h there exists a unique A-morphism

B AwithT =Soh and h = Gh.

B GB
e e
h Gh=h
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10.58 EXAMPLES

(1) If (A, U) is a concrete category, then U-initial sources are precisely the initial sources
in (A,U).

(2) If A is a category and G : A — 1 is the unique functor from A to 1, then G-initial
sources are precisely the products in A.

10.59 PROPOSITION

For a functor G : A — B the following conditions are equivalent:
(1) G is faithful,

(2) for each A-object A the 2-source (A, (ida,ida)) is G-initial,

(3) whenever (A, f;)1 is a source in A and (A, fj) is G-initial for some J C I, then
(A, fi)1 is G-initial.

Proof: Obviously (1) = (3) = (2). To show that (2) implies (1) let A:ZiB be a

pair of A-morphisms with Gr = Gs. Consider the 2-sources S = (B, (idp,idg)) and
T = (A,(r,s)) in A and the B-morphism h = Gr: GA — GB. Then GT = GS o h.
Hence, by G-initiality of S, there exists an A-morphism h: A — B with 7 = Soh, i.e.,
with r = idg o h = s. O

10.60 PROPOSITION

If G: A — B is a functor such that each mono-source in A is G-initial, then the
following hold:

(1) G is faithful,
(2) G reflects products,

(8) G reflects isomorphisms.

Proof:
(1). follows from Proposition 10.59, since in A each 2-source (A, (ida,id4)) is a mono-
source.

(2). If P is a source in A such that GP is a product in B, then GP is a mono-source
in B. Hence, by (1), P is a mono-source in A and, consequently, is G-initial. This,
together with faithfulness of G, immediately implies that P is a product in A.

(3). follows from (2), since isomorphisms are 1-products. O

10.61 REMARK

The property that all mono-sources be initial, is not unfamiliar. As we will see in §23,
it is typical for “algebraic” categories.
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SINKS

The concept dual to that of source is called sink. Whereas the concepts of sources
and sinks are dual to each other, frequently sources occur more naturally than sinks
(cf. §15 and §17). However, there are cases where the opposite is true. Cf. in particular
Definition 10.69 and Proposition 10.71 below.

10.62 DEFINITION

A sink is a pair ((f;)ier, A) [sometimes denoted by (f;, A)r or (A; fi, A)r | consisting
of an object A (the codomain of the sink) and a family of morphisms f; : A; — A in-
dexed by some class I. The family (A;);er is called the domain of the sink. Composition
of sinks is defined in the (obvious) way dual to that of composition of sources.

10.63 TABLE OF DUAL CONCEPTS

The following table provides the names for the concepts dual to those investigated in
this section:

Concept Dual Concept
source sink
mono-source epi-sink

extremal mono-source
extremal coseparator
initial source
G-initial source

product ([ A, 7)) jer

projection 7;

N

4;
power Al

c 9 4B

IIfi; fxg

extremal epi-sink
extremal separator
final sink
G-final sink

coproduct (u;, [T Ai)jer

injection g,

k 2

4;
copower 1A

c 4. p

IHfi; f+yg
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10.64 EXAMPLES OF EPI-SINKS

(1) In Set a sink (A; LN A)r is an epi-sink if and only if it is jointly surjective, i.e., if
and only if A = J;¢; fi[Ad].
In every construct, all jointly surjective sinks are epi-sinks. The converse implication
holds, e.g., in Vec, Pos, Top, and ¥-Seq.

(2) In Sgr we have seen that there are epimorphisms that are not surjective [7.40(5)].
Thus, there are epi-sinks that are not jointly surjective.

(3) A category A is thin if and only if every sink in A is an epi-sink.

10.65 EXAMPLES OF EXTREMAL EPI-SINKS
(1) Every epi-sink (= jointly surjective sink) is an extremal epi-sink in Set, Vec, and
Ab.

(2) In Top an epi-sink (A; N A) is extremal if and only if A carries the final topology
with respect to (f;)ier-

(3) In Pos an epi-sink (4; Ji, A)r is extremal if and only if the ordering of A is the
transitive closure of the relation consisting of all pairs (fi(z), fi(y)) with ¢ € I and
x <yin A;.

(4) In X-Seq an epi-sink (A; Ji, A)r is extremal if and only if each final state of A has
the form f;(q) for some ¢ € I and some final state g of A;.

10.66 EXAMPLES OF EXTREMAL SEPARATORS
(1) Every separator is extremal in Set, Vec, and Ab.

(2) In Pos the separators are precisely the nonempty posets, whereas the extremal
separators are precisely the nondiscrete posets.

(3) Top has no extremal separator.

10.67 EXAMPLES OF COPRODUCTS

Many familiar categories have coproducts. However, as opposed to the situation for

products, coproducts in familiar constructs often fail to be concrete.

(1) If (A;)s is a pairwise-disjoint family of sets, indexed by a set I, then the sink of
inclusion maps (A4; H, Uier Ai)jer is a coproduct in Set. If (A;); is an arbi-
trary set-indexed family of sets, then it can be “made disjoint” by pairing each
member of A; with the index 4, i.e., by working with A; x {i}, rather than A;.
The union | J;c;(As x {i}) is called the disjoint union of the family (4;); and is

denoted by #;c; A;. The sink of natural injections (A; , Wicr Ai)jer [where
wj(a) = (a, )] is a coproduct™ in Set of the the family (4;);. [Indeed, given a sink
(A LN B)jer in Set, the unique function f: ¢),.; A; — B satisfying f; = f o,
for all 7 is defined by: f(a,i) = fi(a).]

®TFor a disjoint family of sets, the union and the disjoint union (together with associated injections)
each form a coproduct. This is not a contradiction since coproducts are determined only up to
isomorphism. Compare this with the corresponding result for products: Proposition 10.22.
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(2) In the construct Top coproducts are called “topological sums” and can be con-
structed as for sets by supplying the disjoint union with the final topology. Thus,
Top has concrete coproducts.

(3) In the construct Pos coproducts are called “cardinal sums” and can be constructed
as for sets by supplying the disjoint union of the underlying sets with the order
that agrees on each A; x {i} with the order on A;, and where members of distinct
summands are incomparable. Thus, Pos has concrete coproducts.

(4) Vec has nonconcrete coproducts called direct sums. The direct sum €, ; A; of a
family (A;)r of vector spaces is the subspace of the direct product [[,.; A; consisting
of all elements (a;)ier with finite carrier (i.e., {7 € I|a; # 0} is finite), together
with the injections p; : A; — @ A; given by:

B o Ja it i=
Hj (a) = (az)zel wit a; = 0, if i#j.

The description of coproducts in Ab is analogous.

(5) HComp has nonconcrete coproducts, namely the Cech-Stone compactifications of
the topological sums.

(6) Grp has nonconcrete coproducts, called “free products”.

(7) The constructs Alg(Q2) all have coproducts. They are concrete if and only if all the
operations are unary.

(8) In a poset A, considered as a category, coproducts are joins. Thus A has coproducts
if and only if it is a complete lattice.

(9) In every category every l-indexed family (A) has a coproduct A @, A; an empty
sink with codomain A is a coproduct if and only if A is an initial object.

10.68 EXAMPLES OF FINAL SINKS
(1) An empty sink (0, A) in a concrete category is final if and only if A is discrete.

(2) A singleton sink A 4. Bin a concrete category is final if and only if f is a final
morphism.

(3) A sink ((X;, ) ti, (X, 7))r in Top is final if and only if 7 is the final topology with
respect to the maps (f;)z, i.e., 7={U C X |forallic I, f '{U] €}

(4) A sink ((X;, <) Ji, (X, <))r in Pos is final if and only if p is the transitive closure
of the relation { (z,z) |z € X } U, { (fi(x), fi(y)) |z <; y }.

(5) A sink ((X;, a4) L, (X,a))r in Spa(T) is final if and only if o = {J; T fi[cv).
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10.69 DEFINITION

A full concrete subcategory A of a concrete category B is said to be finally dense in
B provided that for every B-object B there is a final sink (A; S, B)r in B with 4; in
A foralli e I.

DuaL NoTION: initially dense.

10.70 EXAMPLES
A. Final density in constructs

(1) In Met the full subcategory consisting of all two-element metric spaces is finally
dense.

(2) In Pos the full subcategory whose only object is a 2-chain is finally dense.

(3) In Vec the full subcategory whose only object is R? is finally dense. In general, in
a construct of algebras with operations of arity at most n, any free algebra on n
generators, considered as a full subcategory with one object, is finally dense.

(4) Top does not have any small, finally dense subcategory.

(5) X-Seq does not have any finite, finally dense subcategory. [Consider an automaton
whose transitions form a cycle larger than the number of objects of the given finite
subcategory.]

B. Final density in concrete categories

(6) For a poset B, considered as a concrete category over 1, a subset A is finally dense
if and only if it is join-dense (i.e., each b € B is a join of a subset of A).

(7) For a category A considered as concrete over itself, the empty subcategory is finally
dense.

10.71 PROPOSITION

If A is a finally dense full concrete subcategory of a concrete category B, then every
initial source in A is initial in B.

Proof: Let A = (A Ji, ;)1 be an initial source in A, let B be a B-object, and

|B| <, |A| be an X-morphism, such that each | B Jiod |A;| is a B-morphism. To show

that | B RN |A| is a B-morphism, let B = (C; S, B); be a final sink in B with each
C; belonging to A. Then each
03] 25 |B| 5 4] 2 14

is an A-morphism. Since A is initial in A and each C; belongs to A, each

|C5] %, B i |A| is an A-morphism. Since B is final, | B| i |A| is a B-morphism.OJ
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10.72 REMARK

A full concrete embedding £ : A — B is called finally dense if its image is a finally
dense subcategory of B. The above proposition states, more succinctly, that finally
dense embeddings preserve initiality.

Suggestions for Further Reading

Mac Lane, S. Duality for groups. Bull. Amer. Math. Soc. 56 (1950): 485-516.
Taylor, J. C. Weak families of maps. Canad. Math. Bull. 8 (1965): 771-781.

Pumpliin, D. Initial morphisms and monomorphisms. Manuscr. Math. 32 (1980): 309—
333.

EXERCISES

10A. A Characterization of (Extremal) Mono-Sources

Let A be a category such that for any pair A —< B of morphisms there exists a co-
g

equalizer in A. Show that

(a) A source S in A is a mono-source provided that whenever S = Soe for some regular
epimorphism e, it follows that e is an isomorphism.

(b) A source S in A is an extremal mono-source provided that whenever S = S o e for
some epimorphism e, it follows that e is an isomorphism.

10B. A Characterization of Extremal (Co)Separators

Show that an object S of a category A is

(a) an extremal separator if and only if the functor A Lpom(5,7), Set is faithful and
reflects isomorphisms, and
b) an extremal coseparator if and only if the functor A°P _bom(=5) | Set is faithful and
p y
reflects isomorphisms.
10C. Extremal (Co)Separators in HComp, BooSpa, and Tych
Show that

(a) In HComp every nonempty space is an extremal separator, and [0, 1] is an extremal
coseparator.

(b) In BooSpa every nonempty space is an extremal separator, and every space with
at least two points is an extremal coseparator.

*(c) Tych has neither an extremal separator nor an extremal coseparator.

18th January 2005



Sec. 10] Sources and sinks 189

10D. Products of Special Morphisms
Show that

(a) Products of regular monomorphisms are extremal monomorphisms.

(b) In a category with products, products of regular monomorphisms are regular mono-
morphisms.

(¢) Products of regular monomorphisms may fail to be regular.
(d) Products of extremal monomorphisms may fail to be extremal.
(e) Products of epimorphisms may fail to be epimorphisms.

10E. Hom-Functors Preserve and “Collectively Detect” Products

Show that a source § is a product in A if and only if for each A-object A the source
hom(A, —)(S) is a product in Set.

10F. Concrete Products and Hom-Functors

Let A be a free object over a nonempty set in a construct A. Prove that a source § in
A is a concrete product if and only if S is initial and hom(A, —)(S) is a product in Set.

10G. Products in Ab
Let (G2, (m1,m2)) be the cartesian product of an abelian group G with itself (where the

group operation is given by G2 - G). Show that each of (G2, (w1, m)), (G2, (m1,4))
and (G2, (mg,+)) is a product of the pair (G, G) in Ab.

10H. Products with Terminal Objects

In A let T be a terminal object, A be an arbitrary object, and A L4, T be the unique
morphism from A to T. Show that (A, (ida,ta)) is a product of the pair (A,T) in A.

10I. No (Co)Products in Fields or in a Group

Show that neither Field nor a nontrivial group (nor a nontrivial finite monoid), consid-
ered as a category, has finite products or finite coproducts.

10J. Products for Banach Spaces

Show that

(a) Bany, has finite products, but Bany, does not have products.

(b) Ban has products, but (Ban, U) does not have concrete products.

(c) (Ban,O) has concrete products.

10K. Comparison of Powers

Let I be a subset of K and let A7 and AX be powers of A in A. Show that:
(a) If I # (), then A is a retract of AX,

(b) If I = (), then A’ need not even be a subobject of AX. [Hint: Consider A = () in
Set.|
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10L. A Characterization of Concretizable Categories Over Set

Show that a category that has equalizers and finite products is concretizable over Set if
and only if it is regular wellpowered.

10M. Composites of Regular Monomorphisms With Sections

Show that in a category that has finite products the composite s o m of a regular mono-
morphism m and a section s is a regular monomorphism. [Hint: If r o s = id and m is
an equalizer of f and g, then som is an equalizer of (f or,id) and (gor,sor).] Contrast
this with Exercise 7S.

10N. Dualities and Representability

Let (A,U) and (B, V) be concrete categories that are dually equivalent; i.e., there are
contravariant functors G : A — B and F': B — A such that FoG = 15 and GoF = 1g.
Suppose that the A-object A represents U and the B-object B represents V, and let
A= F(B) and B = G(A). Prove that

(2) U(A) = V(B).
(b) VoG = homp(—,A) and U o F = homg(—, B).
If, moreover, B has products, then show that

(c) for each A-object X there exists a monomorphism mx : G(X) — BY(X) such that
V(mx) is the embedding of V(G(X)) = homa (X, 4) into )
homset (U (X), U(A)) = homse (U (X), V(B)) = (V(B))V™) 2 v(BYH)),

100. Composites of F-Initial Sources

Let F': A — B be a functor and let 7 = (S;) oS be a composite of sources in A. Show
that

(a) If S and S; are F-initial, then so is 7.
(b) If 7 is F-initial and all S; are mono-sources, then S is F-initial.

(c) If T is F-initial, then S need not be F-initial. [Hint: Consider the unique functor

F from
1 1

0 0
which leaves the four objects fixed. Then 1 — 2 is not F-initial, but 1 — 2 — 3 is.]

10P. Universally Initial Morphisms
Let f be a morphism in a category A. Show that

*(a) f is an isomorphism if and only if f is F-initial with respect to every functor F
that has domain A.
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*(b) If f is a section, then f is F-initial with respect to every faithful functor A . B.
Does the converse hold?

(c) f is initial with respect to every full and faithful functor with domain A.

10Q. A Characterization of Products

Show that a source in A is a product if and only if it is initial with respect to every

F
functor A — B that preserves mono-sources.

10R. Copowers Versus Free Objects in Constructs

Let (A,U) be a construct such that U is representable by an object A. Show that for
any set I and any A-object B the following conditions are equivalent:

(1) B is a free object over I,

(2) B is an Ith copower A of A.

10S. Copowers in CBoo and CLat

Show that neither CBoo nor CLat has small copowers. [Hint: Use 10R, 8.23(1)(b),
8.23(7), and 8F resp. 8G.]

10T. Mono-Sources in X-Seq

Prove that mono-sources in {o}-Seq are precisely the point-separating sources — al-
though the forgetful functor is not representable (cf. Corollary 10.8).

10U. Coproducts of Functors

Given functors F; : A — B, where B is a category with coproducts, then F' = [] F;
denotes the functor of “pointwise” coproducts, i.e.,

FAL 2y =[ra P [ Ra.

(a) Verify that F' is a coproduct of the family (F;) in the functor quasicategory [A, B]
(6.15).

(b) Verify that for each type € there exists a coproduct 1" of functors S™ [3.20(10)] such
that Alg(2) is concretely isomorphic to Alg(T).

10V. The Diagonal-Morphism A 4

Ag = (idy,idy) : A — A x A is called the diagonal morphism of A. Consider the
product A <™~ A x A 25 A and show that (A, Ay) is an equalizer of (7, ).
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10W. Products and Constant Morphisms

Consider the diagram

Show that the following are equivalent:
(1) f is constant,

(2) fom = fom,

(3) pro(f x f)=p2o(fx[),

(4)

4) f x f factors through Ap, i.e., for some g:

Ax AT By B=AxAL B2, BxB.

[Chap. III
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11 Limits and colimits

Many basic constructions in mathematics can be described as limits (or dually as co-
limits). Such constructions associate with a given diagram a distinguished object to-
gether with morphisms connecting this object with the objects of the diagram; i.e., a
certain source called the limit of the diagram. This limit can be characterized, up to
isomorphism, by a purely categorical property. We have encountered two special cases
of limits already: equalizers and products. The main new type of limit introduced below
is that of pullback. Unlike products, the usefulness of pullbacks was generally recognized
only after the emergence of category theory.

LIMITS

11.1 DEFINITION

(1) A diagram in a category A is a functor D: I — A with codomain A. The domain,
I, is called the scheme of the diagram.’®

(2) A diagram with a small (or finite) scheme is said to be small (or finite).

11.2 EXAMPLES
(1) A diagram in A with discrete scheme is essentially just a family of A-objects.

(2) A diagram in A with scheme e = e is essentially just a pair of A-morphisms with
common domain and common codomain.

11.3 DEFINITION
Let D: I — A be a diagram.

(1) An A-source (A ti, D;)icop() is said to be natural for D provided that for each

I-morphism ¢ 4, 7, the triangle

A

\fjj

fi
Di 5 D

comimutes.

56 Although there is technically no difference between a diagram and a functor, or between a scheme and
a category, we use the alternate terminology when treating limits and colimits, for reasons of both its
historical development and to indicate a slight change of perspective. For example, we often denote
the image of an object ¢ under a diagram D by D; rather than D(¢). This produces notation that is
more consistent with that introduced earlier for sources and sinks.
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(2)

11
(1)

A limit of D is a natural source (L 4, Dj)icopry for D with the (universal)

property that each natural source (A S, D;);cony for D uniquely factors through
it; i.e., for every such source there exists a unique morphism f: A — L with f; =
l; o f for each i € Ob(I).

.4 EXAMPLES

For a diagram D: I — A with a discrete scheme, every source with codomain
(Di)icop) is natural. A source is a limit of D if and only if it is a product of the
family (D;)iconr). Expressed briefly: products are limits of diagrams with discrete
schemes. In particular, an object, considered as an empty source, is a limit of the
empty diagram (i.e., the one with empty scheme) if and only if it is a terminal object.

f
For a pair of A-morphisms A —= B, considered as a diagram D with scheme e = o,
g

a source (A Lol B) is natural provided that goe = h = f oe. Observe that

f
in this case h is determined by e. Hence, C' — A is an equalizer of A ? B if and

only if the source (A <= C fee, ) is a limit of D. Thus we may say (imprecisely)
that equalizers are limits of diagrams with scheme e = o. If, in the above scheme,
the two arrows are replaced by an arbitrary set of arrows, then limits of diagrams
with such schemes are called multiple equalizers.

If T is a down-directed®” poset (considered as a category), then limits of diagrams
with scheme I are called projective (or inverse) limits. If, e.g., I = N°P is the
poset of all non-negative integers with the opposite of the usual ordering, a diagram
D : I — A with this scheme is essentially a sequence

da di do

Dy Dy

of A-morphisms (where D(n+1 —n) = Dy N D,, D(n+2 —n)=d,ody1,

etc.). A natural source for D is a source (A n, Dp)nen with f, = dp o fra
for each n. In Set a projective limit of a diagram D with scheme N°P is a source
(L LN n)neN, where L is the set of all sequences (zy,)nen with x, € D, and
dp(Tp+1) = xp for each n € N; and where each ¢, is a restriction of the mth
projection 7, : [, eny Pn — D

If D: A — A is the identity functor, then a source £L = (L N A)scopa is a
limit of D if and only if L is an initial object of A. The sufficiency is obvious.
For the necessity let £ be a limit of D and let L N A be a morphism. By the
naturality of £ for D we obtain f o f; = £4. Application of this to f = £4 yields
Laoly =La =L oidy for each object A. Hence, by the uniqueness requirement

S"Down-directed means that every pair of elements has a lower bound. The dual notion is up-

directed.
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in the definition of limit, ¢;, = idy. Consequently, f = foidy = foly ={4. Thus
hom(L, A) = {€4} for each object A.
(5) If the category I has an initial object iy with hom(ig,i) = {m;} for each i € Ob(I),

then every diagram D : I — A with scheme I has a limit: (D;, Dmi Di)icon)-

11.5 REMARK

If D: 1T — A is a diagram, then natural sources for D can be regarded as natural
transformations from constant functors C' : I — A to the functor D.

11.6 PROPOSITION
Every limit is an extremal mono-source.

11.7 PROPOSITION
Limits are essentially unique; i.e., if L = (L N Di)icopy is a limit of D: 1T — A,
then the following hold:

(1) for each limit K = (K LR Di)iconry of D, there exist an isomorphism K L
with I = Lo h,

(2) for each isomorphism A N L, the source Lo h is a limit of D.

PULLBACKS

11.8 DEFINITION
(1) A square

f

|

P B (%)
gl lg
A——C

is called a pullback square provided that it commutes and that for any commuting
square of the form

B

lg

C

there exists a unique morphism P k., P for which the following diagram commutes

/
—

o)

@
«——

|

. P—B
g !
Pl
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(2) If (*) is a pullback square, then the 2-source A & P L, Biscalled a pullback of
the 2-sink A N C <& B and f is called a pullback of f along g.

11.9 REMARKS
(1) A square (x) is a pullback square if and only if the 3-source (P, (g, fog,f)) is a

limit of the 2-sink A - C <& B, considered as a diagram in A with scheme
e — e «— e. Shortly (and imprecisely) pullbacks are limits of diagrams with
scheme @ — o «—— o,

(2) If the square () is a pullback, then (P,(f,g)) is a extremal mono-source. This
follows from (1) and Proposition 11.6.

11.10 PROPOSITION
Let

commute in A. Then

(1) if the squares are pullback squares, then so is the outer rectangle; i.e., pullbacks can
be composed by “pasting” them together,

(2) if the outer rectangle and right-hand square are pullback squares, then so is the
left-hand square. O

RELATIONSHIP OF PULLBACKS TO OTHER LIMITS

11.11 PROPOSITION (Canonical Construction of Pullbacks)

Let A 4, C<L Bbea pair of morphisms with common codomain.

If A2 Ax B2 Bis a product of A and B, and E < A x B is an equalizer of

for
A x Bg:Aic, then
o

s a pullback square.
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Proof: Let
P—=A
rl f
B T> C

be a commuting square. Then P N A x B is a morphism for which fomgo (s,1) =

gompo(s,r). Since e is an equalizer of (f omwa, gonp), there is a morphism P *, E for
which (s,7) =eok. Thus rqoeok = s and rgoeok = r. That k is the only morphism
with this property follows from the fact that A «—2°— E 2%, B is, as a composition
of mono-sources, a mono-source. O

11.12 EXAMPLES

Application of the above construction provides concrete descriptions of pullbacks in many
cases:

(1) Let A L. Bhea pair of maps in Set, let P = {(a,b) € A x B| f(a) = g(b)},

and let P 25 A and P 4, B be the domain restrictions of the projections from
A x B. Then
P2

1

BTC

is a pullback square.

(2) In any of the constructs Pos, Top, or Vec pullbacks can be constructed as for sets
by supplying P in each case with the initial structure with respect to its inclusion
into the product A x B; i.e.,

(a) for Pos, by the pointwise order,
(b) for Top, by the subspace topology,

(c) for Vec, by defining operations coordinatewise.

11.13 PROPOSITION

If T is a terminal object, then the following are equivalent:

(1)
P
pBl
B
1s a pullback square,
(2) (P,(pa,pR)) is a product of A and B. O

pA
—

e

—
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11.14 PROPOSITION (Construction of Equalizers via Products and Pullbacks)
f

If A——= B are morphisms, (A X B,ma,mp) is a product of (A, B), and
g

s a pullback square, then p1 = po is an equalizer of f and g.
Proof: Since (id, f) o p1 = (id, g) o pa, we have
p1=mao (ida, f) op1 =ma o (ida,g) o p2 = pa.

Similarly, fopi =7p o (ida, f) op1 =g o (ida,g) op2 = gops = gopi.
Suppose that K FoAisa morphism such that fok = gok. Then

7TBO<’l'dA,f>Ok3:7TBO<ZdA,g>OkZ, and

mao(ida, f)ok=mao0 (ida,g)ok.

Since the product is a mono-source, we obtain (id4, f) o k = (id4, g) o k, so that since
the square is a pullback square, there is a unique h: K — P such that k =p;o0h. O

PULLBACKS RELATED TO SPECIAL MORPHISMS

11.15 LEMMA
Suppose that the diagram

/\

commutes.
(1) If the outer square is a pullback square, then so is [1].

(2) If [1] is a pullback square and h is a monomorphism, then the outer square is a
pullback square. O
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11.16 PROPOSITION

A g, B is a monomorphism if and only if

is a pullback square. O

11.17 DEFINITION

A class M of morphisms in a category is called pullback stable (or closed under the
formation of pullbacks) provided that for each pullback square

B ()

P
|

with f € M, it follows that f € M.

11.18 PROPOSITION

Monomorphisms, reqular monomorphisms, and retractions are pullback stable.

Proof: Let f be a monomorphism in the above pullback square (x).

(1). If b,k : Q — P are morphisms such that foh = f ok, then

fo(goh)=go(foh)=go(fok)=[fo(gok),
so that go h = go k. Since pullbacks are mono-sources, this implies that h = k.

(2). Suppose that f is an equalizer of p and ¢. Then (pog)o f = (gog) o f. To show
that f is an equalizer of po g and go g, let t: Q — B be a morphism such that
(pog)ot = (gog)ot. Then, by the definition of equalizer, there is some u : @ — A
with fou = got. Thus, by the definition of pullback, there is some h : () — P such
that ¢t = f o h. Uniqueness of h follows from the fact that f is a monomorphism.

(3). If f is a retraction, then there is some C =+ A with f os = idc. Hence fo (so
g) = g oidp, so that by the definition of pullback there is some h: B — P with

idp = f o h. 0

11.19 REMARK
If (A,m) is a subobject of B, C' -2 B is an arbitrary morphism and

:

C

g

@

AT>B
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is a pullback square, then by the above proposition (P, ) is a subobject of C. It is called
an inverse image of (A, m) under g, since it corresponds to the concept of “inverse

image” in familiar constructs. In particular, in Set, if C' 2, B is a function and A is
a subset of B, considered as a subobject of B via its inclusion function, then g~![A],
considered as a subobject of C' via its inclusion function, is an inverse image of A under

g.

CONGRUENCES

If f: A— B is a group homomorphism, then the group-theoretic congruence relation
determined by f is the subset C' of A x A consisting of all pairs (a,b) with f(a) = f(b).
Obviously, C can be regarded as a subgroup of A x A, and if m: C — A x A is the

1
inclusion and A x A —= A are the projections, then (according to Proposition 11.11)
2

the square
C miom A
To0m f
A T) B
is a pullback square.
This motivates our next definition.
11.20 DEFINITION
(1) If
p
—

is a pullback square, then the pair (p, q) is called a congruence relation of f.

]

(2) A pair (p,q) of morphisms is called a congruence relation provided that there
exists some morphism f such that (p,q) is a congruence relation of f.

11.21 LEMMA
Let (p,q) be a congruence relation of A L. B. Then

(1) (p,q) is a congruence relation of A _mef C, for each monomorphism B —— C,

(2) if f=goh and hop=hogq, then (p,q) is a congruence relation of h.

Proof: Apply Lemma 11.15. O
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11.22 PROPOSITION

(1) If (p,q) is a congruence relation and c is a coequalizer of p and q, then (p,q) is a
congruence relation of c.

(2) If ¢ is a regular epimorphism and (p,q) is a congruence relation of ¢, then c is a
coequalizer of p and q.

Proof:
(1). Immediate from Lemma 11.21(2).

(2). Let ¢ be a coequalizer of r and s. By the pullback property there exists a morphism
k with pok =r and qo k = s. To show that ¢ is a coequalizer of p and g, let f be
a morphism with fop = foq. Then for = fos. Hence, since ¢ is a coequalizer
of r and s, there exists a unique morphism f with f = foc. O

INTERSECTIONS

11.23 DEFINITION

Let A be a family of subobjects (A;, m;) of an object B, indexed by a class I. A subobject
(A,m) of B is called an intersection of A provided that the following two conditions
are satisfied:

(1) m factors through each my; i.e., for each i there exists an f; with m = m; o f;,

(2) if a morphism C' 7L, B factors through each m;, then it factors through m.%®

11.24 EXAMPLES

(1) Let B be a set and let (A4;); be a family of subsets of B, considered (via inclusions)
as subobjects of B in Set. Then [, A, considered as a subobject of B, is an
intersection in the sense of Definition 11.23. Similarly for Vec, Top, ¥-Seq, etc.

(2) In a poset, considered as a category, intersections are meets.
(3) For two subobjects (A1, m1) and (A2, m2) of B, an intersection is the diagonal mor-

phism of a pullback of 4] —— B« As,.

11.25 REMARKS
(1) Intersections can be regarded as limits (cf. Exercises 11F and 11L).

(2) Any two intersections of a family of subobjects of B are isomorphic subobjects of
B.

(3) Let A . Bbea morphism. Then (A, h) is an intersection of the empty family of
subobjects of B if and only if A is an isomorphism.

"80bserve that any intersection (A, m) of a family of subobjects (A;,m;) of an object B, indexed by
a class I, depends only on the class {(A;,m;) |7 € I} of subobjects of B and not on the indexing
function. Hence we sometimes also speak of an intersection of a class of subobjects of B.
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11.26 DEFINITION

A class M of monomorphisms is said to be closed under the formation of intersec-
tions provided that whenever (A, m) is an intersection of a family of subobjects (A4;,m;)
of B and each m; belongs to M, then m belongs to M.

COLIMITS

The notion of colimit is dual to that of limit; namely,

11.27 DEFINITION
Let D: I — A be a diagram.

(1) An A-sink (D; Ji, A)icop) is said to be natural for D provided that for each

I-morphism ¢ 4, 7, the triangle

DiLd>Dj

b

A
comimutes.

(2) A colimit of D is a natural sink (D; —— K)icopry for D with the (universal)
property that each natural sink for D uniquely factors through it.

11.28 EXAMPLES

(1) Coproducts are precisely the colimits of diagrams with discrete schemes. In par-
ticular, initial objects are the colimits of empty diagrams.

f
(2) For a pair of morphisms A —= B, considered as a diagram D with scheme o = o,
g

B % C is a coequalizer of f and g if and only if (B - C &f A) is a colimit of
D.

(3) The dual of the concept of an intersection of a family of subobjects of B is the
concept of a cointersection of a family of quotient objects of B. In particular,

(a) If Bis aset and if (p;) is a family of equivalence relations on B considered (as in
7.86) as quotient objects of B in Set, then the smallest equivalence relation p on
B generated by (J;c; pi, considered as a quotient object of B, is a cointersection
of the family in Set.

(b) In a poset, considered as a category, cointersections are joins.
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(4) The dual of the concept of projective limit is that of directed colimit (also called

inductive limit). That is, directed colimits are colimits of diagrams whose schemes
are up-directed posets.

Every diagram D : T — Set, whose scheme is an up-directed poset, has a canonical
dij . C e
colimit. Denote D(i — j) by D; —— Dj, let C = [J;c;(D; x {i}) be the disjoint
union of the family (D;)ics, and let (D; RN C)jeon) be the canonical coproduct
of the family (D;);conr) in Set, as constructed in 10.67(1). Define an equivalence
relation ~ on C by: (z,i) ~ (y,7) if and only if there exists k > 4,5 with di(x) =
dir(y). If C L, @ is the natural map from C onto the set Q = C'/~ of equivalence

classes under ~, then (D; = )icow(r) 1s a colimit of D.

Observe that directed colimits in any construct of the form Alg({2) can be con-

structed as in Set: Let Q = (ng)rex and let D: I — Alg(2) be a diagram for
) di; .

an up-directed poset I. Denote D(i — j) by (D;, (wh)kerx) —— (Dj, (wi)kek) and

form (as above) the colimit (D; ——% Q)icon(r) of the diagram T LD, Set, where

Alg(Q) Y., Set is the forgetful functor. Since I is up-directed, for each k € K
and each (z1,...,2p,) € Q™ there exists some i € Ob(I) and (y1,...,Yyn,) € D;'*
with (g o pi)™ (y1,. .. yn,) = (@1, ., Zn,). Define wy(z1,...,2n,) =

q o i 0w (Y1, .., Yn,). Then up-directedness of I implies that the so-defined map
Q™ £, ) is the unique function that makes the following diagram commute for
each i € Ob(I):

D:Lk 4((10;”)"1@ N Qk

" |-

, .
D; qop; Q

It follows that the sink ((D;, (w})ker) L@, (Wr)kek))icob is a colimit of D.

(5) The dual of the concept of pullback is that of pushout, explicitly described below.

11.29 PROPOSITION

Colimits are essentially unique and each colimit is an extremal epi-sink.

11.30 DEFINITION
(1) The square

S
<«

T

]
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is called a pushout square provided that it commutes and that for any commuting
square of the form

o4

) l

B——
f

there exists a unique morphism P ¥, P for which the diagram

commutes.

(2) If () is a pushout square, the 2-sink ((g, f), P) is called a pushout of the 2-source
(C,(f,9)), and f is called a pushout of f along g.

Pullback and Pushout
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11.31 REMARK

Since pushouts are dual to pullbacks, there is a canonical construction of pushouts via
coequalizers and coproducts (cf. 11.11).

11.32 DEFINITION

A square that is simultaneously a pullback square and pushout square is called a pula-
tion square.

11.33 PROPOSITION
Consider a commuting square

(1) If (x) is a pushout square, then c is a coequalizer of p and q.

(2) If (p,q) is a congruence relation of ¢, and c is a reqular epimorphism, then (%) is a
pulation square.

Proof:
(1). Immediate.
(2). Let
P
o— e
|
e — e
P

be a commutative square. Since (x) is a pullback square and c o id = c o id, there
exists a morphism k such that id = pok = qo k. Hence p o g = § o p implies that

p=pogqok=qgopok=q.

Hence pop = poq. Since by Proposition 11.22, ¢ is a coequalizer of p and ¢, there
exists a unique morphism h with p = hoc¢;i.e., with p=hocand § = hoc. Hence
(%) is a pushout square. O

Suggestions for Further Reading
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Kelly, G. M. Monomorphisms, epimorphisms, and pullbacks. J. Austral. Math. Soc. 9
(1969): 124-142.

Tholen, W. Amalgamations in categories. Algebra Univ. 14 (1982): 391-397.

EXERCISES

11A. Schemes With Initial Objects

Show that for categories A the following conditions are equivalent:
(1) A has an initial object,

(2) the diagram A A, A has a limit,

(3) each diagram with scheme A has a limit.

11B. Products as Projective Limits of Finite Products

Let (A;)ies be a family of objects in A, indexed by an infinite set J. Let I be the

set of all finite subsets of J, ordered by: M < N & N C M. For each M € 1 let
0} .

(TTas Ai, (M) be a product of (A;)ien in A (where [Ty Ai D A=A 4 for

each i € J). Show that

(a) There exists a diagram D : I — A that associates with M < N in I the unique

morphism [[,, 4; Sun, [Ty A: that satisfies p;’ o fary = p}’ for each i € N.

(b) If (P, (pn)ner) is a (projective) limit of D, then (P, (py;y)ie) is a product of (4;)ier-
11C. Pullbacks as Products in Comma Categories

Show that a commuting square

pa
*>A

P
PBJ lf with fopa =gopp=1p
BT>C

is a pullback square in A if and only if ((P,p), (pa,pn)) is a product of f and g in the
comma category (A | C).

11D. Products of Morphisms as Pullbacks
Show that each diagram of the form

AxB-—2.p

aas | |7

AXC?C

is a pullback square.
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11E. Kernels as Pullbacks
Show that in a category A with a zero-object 0, k is a kernel of f if and only if

o —— ()

1

— e
f

is a pullback square.

11F. Intersections as Pullbacks
Let my and my be monomorphisms and let

A2 4

be a commuting square with m = mq 0Ty = mooTy. Show that the square is a pullback
square if and only if (A, m) is an intersection of the family ((A;,m;));cq1,2y of subobjects
of B.

11G. Pushouts as Pullbacks

Show that in a group, considered as a category, the pushout squares are precisely the
pullback squares.

11H. Pullback Stability of Special Monomorphisms

Show that

(a) in any category the class of strict monomorphisms is pullback stable,
(b) in Set the class of sections is not pullback stable,

(c) in DRail the class of extremal monomorphisms is not pullback stable.

111. Pullback Stability of Epi-Sinks in Set
For each i € I let
B; s 4
gi i
B — A
be a pullback square in Set. Show that whenever (4; LN A)r is an epi-sink, then so is

(B; 25 B);.

11J. Stable Epimorphisms

A morphism f is called a stable epimorphism provided every pullback of f is an
epimorphism. Show that
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(a) Every retraction is a stable epimorphism.

(b) Every stable epimorphism is an epimorphism.

*(d) In Haus and in Met: ExtrEpi C StableEpi = SurjMorph C Epi.

)
)
*(¢) In Cat not all regular epimorphisms are stable.
(d)
) Stable epimorphisms are pullback stable.

)

(e
(f) If A has pullbacks of all 2-sinks, then in A stable epimorphisms are closed under

composition.

11K. Intersections
Show that

(a) in Set an intersection of two sections need not be a section,

(b) if A has products, then in A an intersection of a set-indexed family of regular
subobjects is a regular subobject.

[Hint: If (A,m) is an intersection of the family (A;,m;);, where each m; is an

T <r’b>
equalizer of B ?; C; , then m is an equalizer of B—=[]C; .]

(si

11L. Multiple Pullbacks

A pair (f,S), consisting of a morphism A Z, B and a source S=(A LN i)1, is called
a multiple pullback of a sink (A4; AN B)1 provided that

(1) f=gio f; for each i € I, and

(2) for each pair (f/,8’), with A’ L. Ba morphism and &’ = (A4’ L, A;)r a source

for which f' = g; o f! for each i € I, there exists a unique morphism A’ 4, A with
f'=fogand f/ = fiog for each i € I.

(a) Interpret multiple pullbacks as limits.
(b) Interpret pullbacks as multiple pullbacks of 2-sinks.

(c) Interpret intersections as multiple pullbacks. In particular, show that whenever

R = ((A;,m;))1 is a family of subobjects of B and A L. Bisa morphism, then
the following are equivalent:

(1) (A, f) is an intersection of R,

(2) there exists a (unique) source S such that (f,S) is a multiple pullback of
the sink (Az LN B)ie].

(d) Show that each sink that consists of isomorphisms alone has a multiple pullback.
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11M. Products as Multiple Pullbacks

Let A have a terminal object T', and let (A;); be a family of A-objects. Show that a

source P = (P 25 A;); is a product of (4;); if and only if (P — T,P) is a multiple
pullback of the sink (4; — T');.

11N. A Characterization of Monomorphisms by Multiple Pullbacks

Show that a morphism A —— B is a monomorphism if and only if, for each class I, the

sink (A; ., B);, defined by m; = m for each i € I, has a multiple pullback.

110. Directed Colimits in Ab

Show that an abelian group is torsion free if and only if it is a directed colimit in Ab of
free abelian groups.

11P. Pushout Stability of Monomorphisms and Mono-Sources in Set

(a) Show that in Set the class of monomorphisms is pushout stable.

(b) For each i € I let

l:

E
e

=
!

& 3

<.

be a pushout square in Set. Show that the fact that (A ——— A;); is a mono-source

does not imply that the source (B —— B;); is a mono-source. [Contrast this with
111]

11Q. Epimorphisms and Pulation Squares

(a) Let (p,q) be a congruence relation of e. Show that e is a regular epimorphism if and
only if the square

is a pulation square (cf. 11.32).
(b) Dualize part (a).
11R. A Characterization of Monomorphisms

Show that a morphism is a monomorphism if and only if it has a congruence relation of
the form (p,p).
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11S. A Construction of Equalizers
Show that if
p2
o ——

pll l(id,id}

A*W B x B

is a pullback square, then p; is an equalizer of f and g.

[Chap. III
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12 Completeness and cocompleteness

In this section we consider the existence of limits in a given category A. Only rarely
does every diagram in A have a limit. [Recall that any such A must be thin (cf. 10.32
and 10.33).] However, in many familiar categories A, every small diagram has a limit,
and for each object A in A every (possibly large) family of subobjects of A has an
intersection. This leads to the following definitions:

12.1 DEFINITION
A category is said to

(1) have (finite) products provided that for each (finite) set-indexed family of objects
there exists a product (cf. Definition 10.29),

(2) have equalizers provided that for each parallel pair of morphisms there exists an
equalizer,

(3) have pullbacks provided that for each 2-sink there exists an pullback,

(4) have (finite) intersections provided that for each object A, and every (finite)
family of subobjects of A, there exists an intersection.

DuAL NoTioNs: have (finite) coproducts, have coequalizers, and have (finite)

cointersections.

12.2 DEFINITION
A category A is said to be

(1) finitely complete if for each finite diagram in A there exists a limit,

(2) complete if for each small diagram in A there exists a limit,

(3) strongly complete if it is complete and has intersections.

DuaL NotionNs: finitely cocomplete, cocomplete, and strongly cocomplete cat-

egories.

12.3 THEOREM

For each category A the following conditions are equivalent:
(1) A is complete,
(2) A has products and equalizers,

(8) A has products and finite intersections.
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Proof:
(1) = (3) is immediate.

(3) = (2) follows from Proposition 11.14 and Example 11.24(3).

(2) = (1). Suppose that A has products and equalizers, and let D: I — A be a
small diagram. For each morphism ¢: ¢ — j in I let d(t) = i and ¢(t) = j. Form the

products (HieOb(I) D; — Dj)jecopy and (HteMor(I) D) D¢(s)) seMor(1)- For each
t € Mor(I) there is a pair of morphisms 7y, Dt o my) : HlGOb(I) D; — D), and these
define a pair of morphisms

<7Tc(t)>7<Dto7rd(t)> : H D, — H D
1€0b(I) teMor(I)

Ti0€

Let e: E — [[ D; be an equalizer of this pair. We claim that (E —— D;);con) is a
limit of D in A. Indeed,

(a) Tt is a natural source for D because for each morphism i — j in I, we have

Tjoe=TMyg) 0e=Ts0(Te)oe=ms0(Dtomyy)oe= Dsomygoe= Dsomoe.

(b) Suppose that (A Ji, p; ;) is a natural source for D and let f = (f;): A — [[D;.
For each morphism s of I, naturality of the source implies that f.s) = Ds o fys)
Consequently,

Trs 0 (Tet)) © f = Te(s) © f = fe(s) = Ds o fys) = Dsomggyo f =70 (Dt omyyy) o f.
Since the product is a mono-source, (7)) o f = (Dt o mgyy) o f. Thus there is a
unique A 1, E such that f=-eof. Thus f; = mjoeo f’ for each i, and f’ is clearly

seen to be unique with respect to the latter property. O

12.4 THEOREM

For each category A the following conditions are equivalent:
(1) A is finitely complete,

(2) A has finite products and equalizers,

(8) A has finite products and finite intersections,

(4) A has pullbacks and a terminal object.

Proof: (1) < (2) & (3) can be proved as in Theorem 12.3.
(1) = (4) is immediate.

(4) = (3). Recall that products of pairs of objects can be formed via pullbacks of
morphisms to a terminal object (11.13) and that intersections of pairs of subobjects are
formed via pullbacks [11.24(3)]. a

18th January 2005



Sec. 12] Completeness and cocompleteness 213

12.5 PROPOSITION

Each complete and wellpowered category is strongly complete.

Proof: Let A be complete and wellpowered. For each family (A; LN )1 of subobjects
of some object A, there exists a subset J C I such that each subobject 4; —— A, i € I,
is isomorphic to some A; UCIN A, j € J. Obviously, any intersection (B, m) of the small

sink (A, T, A); is an intersection of the original sink (A4; —— A);. O

12.6 EXAMPLES

(1) Each of the categories Set, Vec, Top, HComp, Pos, Grp, Cat, and X-Seq is
strongly complete and strongly cocomplete.

Observe however that the quasicategory CAT fails to have coequalizers.
(2) Met has equalizers, but not products. JPos has products, but not equalizers.

(3) Every non-trivial group, considered as a category, has pullbacks and pushouts, but
not equalizers or coequalizers, nor products or coproducts of pairs, nor terminal or
initial objects.

(4) A poset, considered as a category, is (co)complete if and only if it is a complete
lattice. Thus, for posets, completeness and cocompleteness coincide.

However, the partially ordered class Ord of all ordinal numbers is not complete (it
has no terminal object) even though it is cocomplete (but not strongly cocomplete).

(5) The categories CLat and CBoo (= complete boolean algebras and boolean homo-
morphisms) are strongly complete, but not cocomplete (cf. Exercise 121I).

(6) The category of finite sets is finitely complete and finitely cocomplete, but is neither
complete nor cocomplete.

(7) The category Field is neither finitely complete nor finitely cocomplete.

COCOMPLETENESS ALMOST IMPLIES COMPLETENESS

Although completeness and cocompleteness are not equivalent, the constructions of limits
and colimits are intimately related. In fact, as is shown below, under suitable “smallness
conditions”, completeness and cocompleteness are equivalent.

12.7 THEOREM

A small category is complete if and only if it is cocomplete.

Proof: Immediate from Theorem 10.32(2). O

12.8 PROPOSITION (Canonical Construction of Limits via Large Colimits)

For a small diagram D : I — A, let SP be the category whose objects are all natural
sources (A, f;) for D, whose morphisms (A, fi) = (A, f!) are all those A-morphisms
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AL A with (A, fi) = (A, f]) o g, and whose identity morphisms and composition law
are as in A. If D* : SP — A is the diagram given by:

D*((A7 fZ) R (A/7fz/)) =45 Al?
then for each A-object L, the following conditions are equivalent:

(1) D has a limit £ = (L L, Di)icon)s

(2) D* has a colimit I = (D*(S) ks, L)seOb(SD)r

(3) SP has a terminal object L = (L L, D;)icon)-

Proof: (1) « (3) is immediate.

(3) = (2) follows from the dual of Example 11.4(5).

(2) = (3). Given an object j of I and an object S = (A, f;) in SP let D*(S) Js, Dj be
the morphism A RN Dj in the source S that is indexed by j. Then for each j € Ob(I)

* J
(D*(S) == Dj)secon(sp)

is a natural sink for D*, so that by the definition of colimit there is a unique morphism
€ .
L= D; with the property that f; = fs = {; o ks for each S in SP.

To see that the source £ = (L LN D;);cop() is natural for D, let i LR j be any morphism
in I. If S is any natural source for D, then f; = D(d)o f;, so that £;oks = D(d)o¥;0ks.
Since K, being a colimit, is an epi-sink, it follows that £; = D(d) o ¢;. Consequently, £
is an object of SP.

To see that £ is a terminal object, first notice that if S = (A fi, D;)icon) is a natural

source for D, then the A-morphism A FsL is also a morphism S ks, L in SP.
Moreover if & - £ is any SP-morphism, then since K is a natural sink for D*, this
implies that ks o ¢ = ks. In particular, if for each object S in S” one lets g take on the
role of kg, this yields:

kroks =ks=1id; oks foreach S in SP.

Since K is an epi-sink, this gives k, = idy. Consequently, g = idy, o g = ks og = ks, so
that ks is the unique morphism from S to L. O

12.9 PROPOSITION

A cocomplete category A has a terminal object if and only if it has a weak terminal
object K, i.e., for each A-object A, there exists at least one morphism from A to K.

18th January 2005



Sec. 12] Completeness and cocompleteness 215

Proof: Let K be a weak terminal object in a cocomplete category A. Then let K be
the full subcategory of A that consists of the single object K, let D : K — A be the

inclusion functor, and let (K *, T) be a colimit of D. We shall prove that T is a
terminal object of A.

For each A-object A there is some morphism f: A — K, and hence a morphism g =
kof: A— T. Suppose that ¢’ : A — T. Then to show that g = ¢/, form a coequalizer

g
T < C of A—=T . One need only show that ¢ is an monomorphism. Indeed, there
g/

exists a morphism f’: C — K, and since f' ocok is an element of hom(K, K), the
naturality of the colimit of D implies that ko f’ o co k = k. Furthermore, k is an
epimorphism (since it is a singleton colimit sink) and, hence, ko f' o ¢ = idy; so ¢ is a
section, and thus a monomorphism. O

12.10 DEFINITION

A full subcategory B of a category A with embedding £ : B — A is called colimit-
dense in A provided that for every A-object A there exists a diagram D : I — B such
that the diagram F o D : I — A has a colimit with codomain A.

12.11 EXAMPLES

(1) A full subcategory of Set is colimit-dense in Set if and only if it contains at least
one nonempty set as an object. [Observe that every set X is a coproduct of card(X)
copies of {0}.]

(2) A full subcategory of Pos is colimit-dense in Pos if and only if it contains at least
one nondiscrete poset as an object.

(3) A full subcategory of Vec is colimit-dense in Vec if and only if it contains at least
one nonzero vector space as an object.

(4) Any full subcategory of Ab that contains Z x Z x Z is colimit-dense in Ab.

(5) The full subcategory of Top that consists of all zero-dimensional Hausdorff spaces is
colimit-dense in Top. [Observe that every topological space is a (regular) quotient
of a zero-dimensional Hausdorff space.]

12.12 THEOREM

Every cocomplete category with a small colimit-dense subcategory is complete.

Proof: Let B be a small, colimit-dense subcategory of a cocomplete category A. For
each small diagram D : I — A, consider the category S” of all natural sources for D
(cf. 12.8).

First we establish that S? is cocomplete. Let Dy : J — SP be a small diagram (such
that for each object j of J, Do(j) = (A, fji)1) and let D*: SP — A be the diagram
of Proposition 12.8. Form the colimit (A; =, K)jcony) of the composite diagram

J 2o, 80 20, AL Since for each object i of T (A; LR D;)ow(3) is a natural sink
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for D* o Dy, we have the existence of a unique morphism g¢; : K — D; such that g; o
cj = fji- Since (cj, K)opg) is an epi-sink, (K, gi)opr) is a natural source for D and
((A4;, fii) =, (K, 9i))on(3) is a colimit of Dy. Thus SP is cocomplete.

Now to show that the small diagram D : I — A has a limit, by Propositions 12.8 and
12.9 it is sufficient to prove that the category S” has a weak terminal object. Let I*
be the full subcategory of SP given by all those natural sources S = (A4, fi)os(r)y whose
domain A is a member of B. Since B is small, so is I*, and since S” is cocomplete, the
inclusion T* < SP has a colimit (S ~%- K)seopa-) in SP. We claim that K = (K, p;)
is a weak terminal object in SP.

To see this, let S = (A, fi)ow() be any object of SP. By the colimit density, there exists
a small diagram D : K — B with a colimit (ﬁk LN A)opk) in A. Now for each object
kofK, S, = (ﬁk , fioag)op( is an object of I*. Thus cs, : S — K is an SP_-morphism,
and since (cs, K) is a colimit, for each K-morphism k& < &’ we have cs, = s, © D(g).
Thus (cs,,, K)reopk) is natural for D, so that since (ax, A)opk) is a colimit of D, there

is a unique A !4, K such that taoay = cs,. Since (ak, A) is an epi-sink, it follows that
ta is a morphism in S”. Thus K is a weak terminal object. O

12.13 THEOREM

Every co-wellpowered cocomplete category with a separator is wellpowered and complete.

Proof: Let A be a co-wellpowered cocomplete category with a separator S. First we
prove the following two facts about A:

(1) For every source S there exist an epimorphism e and a mono-source M with & =

Moe.

(2) If M = (A 2 A;); is a small mono-source, then A is a quotient object of
Irhom(5,4i) § o1 a quotient object of 5.

(1). Let (ej) be the collection of those epimorphisms e;, for which there exists a source
S; with § = S 0ej. If e is a cointersection of (e;)s, then there exists a source M
with § = M oe. To show that M is a mono-source, let r and s be morphisms with
Mor = Mos. If c¢is a coequalizer of r and s, then there exists a source 7 with
M = T oc. This implies that S = 7 o (coe). Thus there exists some j € J with
coe = e;. By the definition of e, there exists a morphism f; with e = f; 0 e;. Since e is
an epimorphism, the equations (fjoc)oe = fjoe; = e =idoe imply that f;oc = id.
Thus ¢ is a section and, consequently, an isomorphism. Hence r = s.

(2). Since M is a small mono-source, the map ¢ : hom(S, A) — [[;c;hom(S, A;),
given by (¢(f))(i) = m; o f, is injective. Thus either hom(S, A) = () or there exists
an epimorphism rhom(S4:) g, hom(S,A)g  (Cf. the dual of Exercise 10K.) Since S is
a separator, there exists an epimorphism "om(S-A) g — 4 (cf. the proof of Proposition
10.38). Thus A is a quotient object of S or a quotient object of Mrhom(S:4i) g
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Since A is co-wellpowered, (2) immediately implies that A is wellpowered. It remains to
be shown that every small diagram D : I — A has a limit. Let D be such a diagram and
let Z be a set that represents all quotient objects of 05 and of Micorm hom(S.D()) g Then
the collection G = {S;|j € J } of all natural sources S; = (Q; ELR D(i))iconm for D,
whose domain @; belongs to Z, is a set. Let (u;, ][ Q;);jes be a coproduct of the small
family (Q;)jes. Then there exists a unique source 7 = (][ Q; fi, D(i))icon) such
that S; = T op; for each j € J. By (1) there exist an epimorphism e and a mono-source
L with 7 = L o e. Since each §; is natural for D, so are 7 and L. To verify that £ is
a limit of D it remains to be shown that every natural source S for D factors uniquely
through £. By (1) there exist an epimorphism € and a mono-source M with & = Moe.
Since S is natural for D, so is M. By (2) there exist j € J and an isomorphism h with
M = S;0h. Thus f = eopjohoeis amorphism with § = Lo f. That f is uniquely
determined by S = L o f follows from the fact that £ is a mono-source. O

12.14 REMARK
For slight modifications of the last two theorems see Exercise 12N.
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EXERCISES

12A. Regular Monomorphisms vs. Strict Monomorphisms

Show that

(a) The class of strict monomorphisms is closed under the formation of intersections.
Neither the class of regular monomorphisms nor the class of extremal monomor-
phisms need be closed under the formation of intersections.

(b) Intersections of regular monomorphisms are strict monomorphisms.

(c) If A has equalizers, then in A strict subobjects are precisely the intersections of
families of regular subobjects.

(d) If A is strongly complete, then in A StrictMono = RegMono.
(e) If A has pushouts, then in A StrictMono = RegMono.

12B. Regular Monomorphisms via Extremal Monomorphisms
Show that

(a) If A is strongly complete and in A regular monomorphisms are closed under com-
position, then in A RegMono = ExtrMono [cf. Corollary 14.20].

(b) If A has equalizers and pushouts and in A regular monomorphisms are closed under
composition, then in A RegMono = ExtrMono [cf. Proposition 14.22].

12C. Multiple Pullbacks and Completeness

Show that:

(a) A category is complete if and only if it has a terminal object and multiple pullbacks
of small sinks.

(b) A group, considered as a category, has multiple pullbacks for all (even large) sinks,
but — if nontrivial — it fails to have equalizers or finite products.
12D. Dense Subcategories

A full subcategory B of a category A is called dense provided that each A-object A is
a colimit of its “canonical diagram” with scheme B | A (see 3K) given on objects by
(X — A) — X and on morphisms by h — h (with the canonical colimit sink).

(a) Verify that the colimit-dense subcategories of Example 12.11(1), (2), (4), and (5)
are in fact dense.

(b) Verify that R is colimit-dense in Vec, but is not dense in Vec.

(c) Let B be a small subcategory of A. Define E : A — [B°P, Set] by assigning to each
A-object A the restriction of hom(—, A) : A°® — Set to B°P. Prove that E is full
and faithful if and only if B is dense.

12E. Limit-Dense and Codense Subcategories

(a) Formulate the concepts of limit-density (dual to 12.10) and codensity (dual to 12D).
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(b) Let A be the full subcategory of Set that consists of all finite sets, and let B be the
full subcategory of A that consists of ) and of all finite sets that have cardinality a
power of 2. Show that:

(1) A has no proper limit-closed subcategory (cf. 13.26) that contains {0,1}. How-
ever, {0, 1} is not limit-dense in A.
(2) {0,1} is limit-dense in B, but is not codense in B.
*(¢) Prove the equivalence of the following statements:

(1) the monoid of all functions from N to N is a codense subcategory of Set,

(2) no cardinal is measurable; i.e., every ultrafilter that is closed under the formation
of countable meets is closed under the formation of all meets.

[Hints: For (1) = (2), let F be an ultrafilter on X that is closed under the formation
of countable meets. For each function f: X — N define f: {0} — N by: f(0) =n,
where n is the unique member of N with f~1(n) € F. For each natural source

(X fi, N); the source (f;); is also natural. Thus, it factors through (f;); by a
unique g : {0} — X. Then g(0) € N F.

For (2) = (1), notice that given a set X, a natural source of the canonical diagram
X | {N} — Set is a set A and a function ¢ : hom(X, N) — hom(A, N) with

w(po f)=poe(f) forall p: N — N. Given a € A, prove that the collection of all
subsets Y C X with ¢(fy)(a) =1 (where fy(z) =1if z € Y, else 0) is an ultrafilter
closed under countable meets. Define h: A — X by {h(a)} = {Y | ¢(fy)(t) =1},
then ¢(f) = f o h for each f.]

*(d) Prove that the following statements are equivalent:
(1) Set has a small codense subcategory,

(2) there do not exist arbitrarily large measurable cardinals; i.e., for some n, every
ultrafilter closed under n-meets is closed under all meets.

12F. Weakly Terminal Sets of Objects

Define the concept of weakly terminal set of objects. Prove that a cocomplete
category has a terminal object if and only if it has a weakly terminal set of objects.
12G. Existence of Coproducts

Let A be complete and wellpowered. Show that:

(a) If an A-object A has an Ith copower /A, then it has a Kth copower X A for each
nonempty subset K of I.

(b) If A is connected and [[; X; exists for some family (Xj);, then [], X; exists for
each subset K of I (including the case K = ().

* 12H. Copowers and Cocompleteness

Let A be complete, wellpowered, co-wellpowered, and have a separator S. Prove that
the following are equivalent:
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(1) A is cocomplete,
(2) for each set I there exists an Ith copower /S of S in A.

* 12I. Strongly Complete but not Cocomplete
(a) Show that the categories CBoo and CLat are each complete, wellpowered, and
extremally co-wellpowered, but not cocomplete. (Cf. 8E and 10S.)

(b) Show that the construct A, whose objects are triples (X, A, ), where X 2, X and
PX\ {0} % X are functions, and whose morphisms (X, A, ) N (X", N, 1) are

those functions X <> X’ that make the diagram

PX\{ L x 2o x

fl }l Jf Jf

PX\ {0} —— X' — X'

commute, is complete, wellpowered, and co-wellpowered, but not cocomplete.

12J. Completeness and Coequalizers
Show that a category A has coequalizers whenever A is complete, wellpowered, and
extremally co-wellpowered. (Cf. 15.25 and 15.7.)

* 12K. Cocomplete Subcategories of HComp
Show that a full subcategory of HComp is reflective in HComp if and only if it is
cocomplete.

* 12L. Completions of Abstract Categories

(a) Show that the following category A cannot be fully embedded into a category B
such that the pair (A, B) has a product in B and the embedding preserves products
of pairs:

a s N

A >CB%AO( X Ba go‘—>D
B—— B,
- 58 )
o
where o and 3 are ordinals and g, o fog = "6 1 a=p
sg, if a# f.
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[Hint: If (P, (74, 7)) were a product of (A, B) in B, then homg (P, D) would be a
proper class.]

(b) Show that the following category A cannot be fully embedded into a category B such
that the pair (r, s) has an equalizer in B and the embedding preserves equalizers:

-

ps . )
Diqi—ﬁC'g;)A:siB

A. Ta
9 faﬁl \ ﬁ/

E,— A,

where o and ( are ordinals, r = ry, 0 f,, s = sq © fa, and

pg, fa=p
gaofaﬁz 7 .
g5, if o # 6.

[Hint: If B <5 A were an equalizer of r and s in B, then homp(E, D) would be a
proper class.|

(c) Show that for every category A that has a separating set there exists a full limit-

dense embedding, A =, B, where B is complete and E preserves small limits.

(d) Show that every category can be fully embedded into a complete quasicategory.

* 12M. Universal Completions of Concrete Categories

A full concrete embedding (A, U) RN (B,V) is called a universal completion of
(A, U) provided that the following conditions are satisfied:

(1) (B,V) is concretely complete [i.e., every small diagram has a concrete limit in
(B, V)] and is uniquely transportable,

(2) E preserves concrete limits of small diagrams,

(3) E is concrete limit-dense, i.e., for every B-object B there exists a small diagram
D : I— A, such that B is (the object part of) a concrete limit of E o D,

(4) for every concretely complete and uniquely transportable category (C, W) and every

concrete functor (A, U) <, (C, W) that preserves concrete limits of small diagrams,

there exists a unique concrete functor (B, V) <, (C,W) that preserves concrete
limits of small diagrams, with G =G o F.
Show that

(a) Every amnestic concrete category over a complete category has a universal comple-
tion that is uniquely determined up to concrete isomorphism.

(b) If A is the construct of finite Boolean spaces (equivalently: the construct of finite
sets), then the inclusion A — BooSp is a universal completion.
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* 12N. Re: Theorems 12.12 and 12.13

(a) Show that every cocomplete category with a small colimit-dense subcategory is
strongly complete.

(b) Show that a strongly cocomplete category with a separating set is strongly complete.

(c) Construct a strongly cocomplete category with a separator that is neither well-
powered nor co-wellpowered.

120. Completeness of Functor-Categories

(a) Show that limits and colimits in the category [A,B] are formed componentwise.

(b) Show that for each small category A and each strongly (co)complete category B,
[A, B] is strongly (co)complete.
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13 Functors and limits

In this section the behavior of limits with respect to functors A . Bis investigated.
The following problems receive special attention:

(A) Does F “preserve” limits?

The information that a functor A —— B preserves limits is particularly useful if the do-
main category A is known to have enough limits. See, e.g., the adjoint functor theorems
in §18.

In many cases, particularly for embedding functors of full subcategories and for forgetful

functors of concrete categories, it is not immediately clear whether or not the domain

category A of the functor A L. Bin question has enough limits, but it is known that
the codomain category B does. In these cases the following questions arise naturally:

(B) Can limits in B be lifted along F' to limits of A?

If so, to which extent is the lifting unique?
If not, are there suitable properties of F' that at least guarantee the existence of
limits in A provided that limits exist in B?

PRESERVATION OF LIMITS

13.1 DEFINITION
(1) A functor F': A — B is said to preserve a limit £ = (L L, D;) of a diagram

D : I — A provided that FL = (FL Fh, FD;) is a limit of the diagram
FoD:1— B.

(2) F is said to preserve limits over a scheme I provided that F' preserves all limits
of diagrams D : I — A with scheme I.

(3) F preserves equalizers if and only if F' preserves all limits over the scheme o = o;
F preserves products if and only if F' preserves all limits over small discrete
schemes; I’ preserves small limits if and only if F' preserves limits over all small
schemes; F' preserves strong limits if and only if F' preserves small limits and
arbitrary intersections; etc.

DuAaL NoTIONS: F' preserves colimits (over a scheme I), coequalizers, coprod-
ucts, small colimits, strong colimits, etc.

13.2 EXAMPLES

(1) For the constructs Top, Rel, and Alg(X), the forgetful functors preserve limits and
colimits.
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(2) For constructs of the form Alg(Q) the forgetful functors preserve limits and directed
colimits [see Example 11.28(4)], but generally fail to preserve coproducts or coequal-
izers. Also for the following constructs, the forgetful functors preserve limits and
directed colimits, but neither coproducts nor coequalizers: Vec, Grp, Sgr, Mon,
Rng, and >-Seq.

(3) For the constructs AbTor and (Ban,U) the forgetful functors preserve equalizers,
but not products (cf. 10.55).

(4) The full embeddings Haus — Top and Pos — Rel preserve limits and coproducts,
but not coequalizers.

(5) The covariant power-set functor P : Set — Set preserves neither products (of pairs),
nor coproducts (of pairs), nor equalizers, nor coequalizers.

13.3 PROPOSITION

If F: A — B is a functor and A is finitely complete, then the following conditions are
equivalent:

(1) F preserves finite limits,
(2) F preserves finite products and equalizers,

(3) F preserves pullbacks and terminal objects.

Proof: Immediate from the characterizations of finite limits (12.4). O

13.4 PROPOSITION

For a complete category A, a functor F : A — B preserves small limits if and only if it
preserves products and equalizers.

Proof: This follows immediately from the construction of small limits via products and
equalizers, presented in the proof of Theorem 12.3. O

13.5 PROPOSITION
(1) If a functor preserves finite limits, then it preserves monomorphisms and regular

monomorphisms.

(2) If a functor preserves (small) limits, then it preserves (small) mono-sources.

Proof: (1) follows from Proposition 11.16.

(2) follows from the observation that a source (A fi, A;)1 is a mono-source if and only
if the source
id g
4)14

[

i (iel)
A A;
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is a limit of the diagram

A
in (iel) O

13.6 REMARK

If a functor F' preserves equalizers, then F' (obviously) preserves regular monomorphisms.
The converse is not true: the forgetful functors from the categories Vec®?, Grp°?, Pos®?,
and Haus®? to Set®P preserve regular monomorphisms, but don’t preserve equalizers.

13.7 PROPOSITION

Hom-functors preserve limits.

Proof: Let F' =hom(A,—): A — Set be a hom-functor, let D : T — A be a diagram,
and let £ = (L L, D;) be a limit of D. Then FL is obviously a natural source for
FoD. Let § = (X ti, hom(A, D;)) be an arbitrary natural source for F' o D. Then,

for each element z of X, (A UGN D;) is a natural source for D. Hence for each z € X
there exists a unique morphism f(x): A — L with f;(x) = ¢; o f(x) for each i € Ob(I).
This defines a function f: X — hom(A, L) which is the unique function f: X — FL
that satisfies S = F'Lo f. O

13.8 PROPOSITION

If F and G are naturally isomorphic functors, then F' preserves limits over a scheme 1
if and only if G does.

Proof: Straightforward computation. O

13.9 COROLLARY

Representable functors preserve limits. O

13.10 REMARK

Since the forgetful functors for constructs are quite often representable, the above corol-
lary explains why limits in constructs are much more often concrete (Definition 13.12)
than are colimits. In §18 we will show that adjoint functors (in particular embeddings
of reflective subcategories) preserve limits. Next we will show that embeddings of “suf-
ficiently big” subcategories preserve limits as well.

13.11 PROPOSITION

Embeddings of colimit-dense subcategories preserve limits.

18th January 2005



226 Sources and Sinks [Chap. III

Proof: Let A be a colimit-dense subcategory of B with embedding £ : A — B, and let
D: 1I— A be a diagram with a limit £ = (L N D;). Then L is a natural source for
EoD. Let § = (B LN D;) be an arbitrary natural source for F o D. By colimit-density
there exists a diagram G : J — A and a colimit (G; =, B) of E o G. For each object

jof J, (Gj BN D;)icowpr is a natural source for D. Hence for each j € Ob(J) there

exists a unique morphism g; : G; — L with f; oc; = {; o g; for each i € I.

B
|

4;

Cj
. ,

QD

95

e~ —

Since £ is a mono-source in A, it follows that (G, SN L) is a natural sink for G and
hence for FoG. Consequently, there exists a unique morphism f : B — L with g; = foc;

for each j. Since (G; =, B) is an epi-sink, this implies that f; = ¢; o f for each i. To
show that f is the unique morphism with this property, let f': B — L be a morphism
with f; = £; o f’ for each i. Since (L N D;) is a mono-source in A, this implies that
gj = f'oc¢j for each j, and hence that f' = f. O

CONCRETE LIMITS

13.12 DEFINITION
(1) Let (A,U) be a concrete category. A limit £ of a diagram D : I — A is called a
concrete limit of D in (A, U) provided that it is preserved by U.

(2) A concrete category (A,U) has (small) concrete limits, resp. concrete prod-
ucts, etc., if and only if A has (small) limits, resp. products, etc., and U preserves
them.

DuaL NortIoNs: (has) (small) concrete colimits, concrete coproducts, etc.

13.13 EXAMPLES
(1) The constructs Top, Rel, Prost, and Alg(X) have small concrete limits and small
concrete colimits. So have all constructs of the form Spa(T).

(2) The constructs Vec, Grp, Pos, and Haus have small concrete limits and non-
concrete small colimits. Alg(€2) has small concrete limits; it has small concrete
colimits only if the defining operations are all unary.

(3) The construct 3-Seq has finite concrete limits and finite colimits that are not con-
crete.

(4) The concrete category Aut over Set x Set x Set has small concrete limits and small
colimits that are not concrete.
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13.14 PROPOSITION

A concrete category has small concrete limits if and only if it has concrete products and

concrete equalizers. A 12.3

13.15 PROPOSITION
If (A, U) is a concrete category and D : 1 — A is a diagram, then £ = (L &, D;i)icon)
is a concrete limit in (A, U) if and only if U(L) is a limit of U o D and L is an initial

source in (A,U).

13.16 REMARK

By the above, a concrete limit can be constructed in two steps: first form the limit
of the underlying diagram in the base category, and then provide an initial lift of this
(underlying) limit.

LIFTING OF LIMITS

13.17 DEFINITION
A functor F': A — B is said to

(1) lift limits (uniquely) provided that for every diagram D : I — A and every limit
L of F oD there exists a (unique) limit £’ of D with F(£") = L,

(2) create limits provided that for every diagram D : I — A and every limit £ of

F o D there exists a unique source S = (L ti, D;) in A with F(S) = £, and that,
moreover, S is a limit of D.

Similarly, one has lifts small limits, lifts products, creates equalizers, creates
finite limits, etc.

DuAL NoTIONS: lift colimits (uniquely), create colimits, etc.

13.18 EXAMPLES
The forgetful functors for the constructs

1) of the form Alg(X) create limits and colimits,
2) of the form Alg(Q) create limits and directed colimits [see Example 11.28(4)],
4) Top, Rel, and Prost lift limits and colimits uniquely, but create neither,

5) Met. and Bany, lift finite limits, but do not lift them uniquely,

(1)
(2)
(3) Vec, Grp, Sgr, Mon, Lat, CAT,;, and HComp create limits,
(4)
()
(6)

6) X-Seq lifts finite limits uniquely.
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13.19 THEOREM

If a functor A . B lifts limits and B is (strongly) complete, then A is (strongly)
complete and F preserves small limits (and arbitrary intersections).

Proof: If F lifts limits and B is complete, then obviously A is complete and F' preserves
small limits. Hence, by Proposition 13.5, F' preserves monomorphisms. Thus, if B has
arbitrary intersections, so does A, and F preserves them. O

Lifting of limits

13.20 REMARKS
(1) The obvious implications

F creates limits = F lifts limits uniquely = F' lifts limits

cannot be reversed.

(2) If B has certain limits and F': A — B lifts them, then A has these limits and
F preserves them. Hence the concepts of lifting and creating limits are useful for

functors A —— B with range categories B that have enough limits. In general,
functors that create limits need not even preserve them. An example of this is the
embedding of the terminal category 1 = {e} = A into B =e =% o.

13.21 PROPOSITION

For functors F': A — B the following conditions are equivalent:
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(1) F lifts limits uniquely,
(2) F lifts limits and is amnestic.

Proof: (1) = (2). To show amnesticity, let A’ . A be an isomorphism in A with
Ff = idg. The l-indexed sources (A’ 1, A) and (A Ha, A) are products of the

1-indexed family (A). Since they are mapped via F' to the product (B s, B) of the
1-indexed family (B) = (F'A), uniqueness implies that f = id4.

2)=00).IfL=(L L, D;) and L' = (L' LN D;) are limits of a diagram D : I — A,
then there exists an isomorphism h : L — L' with £ = L'oh. If F(L£) = F(L’) is a limit
of F oD, then Fh = idry. Hence, by amnesticity, h = id;. Consequently, £ = L’. O

13.22 DEFINITION
A functor F': A — B is said to

(1) reflect limits provided that for each diagram D : I — A an A-source S =
(A I D;)icopr is a limit of D whenever F/(S) is a limit of F o D,

(2) detect limits, provided that a diagram D : I — A has a limit whenever F' o D has
one.

Similarly, one has reflect equalizers, detect products, etc.
DuAL NoTioNs: reflect colimits, detect colimits, etc.
13.23 EXAMPLES

(1) Every functor that lifts limits, detects them.

(2) The forgetful functor U : Top — Set lifts limits uniquely (and detects and preserves
them), but does not reflect them.

(3) Full embeddings reflect limits, but they need not lift, preserve, nor detect them.

13.24 PROPOSITION
A functor that reflects equalizers is faithful.

f
Proof: Let F: A — B be a functor and let A ? B be a pair of A-morphisms with

Ff=Fg. Then § = (A Ha, A) is a 1-source and F'S is an equalizer of F'f and Fg. If
F reflects equalizers, then S is an equalizer of f and g. Hence f = idgo f =idpog = g.O

13.25 PROPOSITION
For any functor F': A — B the following conditions are equivalent:

(1) F creates limits,

(2) F lifts limits uniquely and reflects limits,
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(3) F lifts limits, is faithful and amnestic, and reflects isomorphisms in the sense that
whenever F f is a B-isomorphism, then f is an A-isomorphism.

Proof: (1) < (2) is obvious.
(2) = (3) follows from Propositions 13.21, 13.24, and Example 10.20(8).

(3) = (2). To show that F reflects limits, let D: I — A be a diagram and let S =
(A t, D;)icon)y be a source in A such that F'(S) is a limit of F'o D. Since F' lifts
limits, there exists a limit £ = (L L, D;) of D with F(£) = F(S). Since F is
faithful, S is a natural source for D. Hence there exists a morphism A L, L with
S = Lo f. Consequently, F(L) = F(S) = F(L) o Ff, which implies that F'f = idpp.
Since F' reflects isomorphisms, f is an isomorphism. Hence, by amnesticity, f = .
Consequently, S = £. Thus § is a limit of D. O

13.26 REMARK

Embeddings £ : A — B of full subcategories obviously reflect limits. Hence they lift
limits if and only if they create them. A more suggestive term for such full subcategories
is that they are closed under the formation of limits (or just limit-closed) in B.

13.27 PROPOSITION

A full reflective subcategory A of B is limit-closed in B if and only if A is isomorphism-
closed in B.

Proof: If A is limit-closed in B, then obviously A is isomorphism-closed in B. For
the converse, consider a diagram D : I — A such that F o D: I — B has a limit
L = (L L, D;), where E: A — B denotes the embedding. Let L — A be an
A-reflection arrow for L. Then for each i there exists a morphism f;: A — D; with
£; = f;or. By the uniqueness property of reflection arrows and the fact that all D; belong
to A, S = (A Ji, D;) must be a natural source for D resp. for E o D. Consequently,
there exists a morphism f: A — L with S = Lo f. Hence L=Sor = Lo f or, which
implies that f or = idy. Therefore (ro f)or = roidy, = ids or, which implies that
ro f =1ids. Hence r is an isomorphism, and, consequently, L belongs to A. O

13.28 COROLLARY

If a category has certain limits, then so does each of its isomorphism-closed full reflective
subcategories. O

13.29 REMARK

Isomorphism-closed full reflective subcategories A of B usually fail to be colimit-closed.
However, the following proposition shows that the associated inclusion functors detect
colimits.
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13.30 PROPOSITION

Let A be a full subcategory of B with embedding E: A — B, and let D : I — A be a
diagram. If C = (D; = ) is a colimit of E o D, and if C — A is an A-reflection
arrow for C, then C' =roC is a colimit of D.

Proof: Obviously, C’' is a natural sink for D. Let S = (D; Ty ) be an arbitrary
natural sink for D. Then S is a natural sink for £ o D. Hence there exists a unique

morphism C £, A’ with § = foC. Since r is an A-reflection arrow, there exists a
unique morphism A % A’ with f = gor. Hence S = foC = goroC = goC(.
Uniqueness of g is obtained by retracing the steps of the above construction. O

13.31 EXAMPLES

(1) HComp is a full reflective subcategory of Top. The construction of coproducts in
HComp given in Example 10.67(5) is a special case of the above result.

(2) AbTor is a full coreflective subcategory of Ab. The construction of products in
AbTor given in Example 10.20(3) is a special case of the dual of the above result.

13.32 COROLLARY
Embeddings of full reflective subcategories detect colimits. O

13.33 REMARKS

(1) Embeddings of nonfull reflective subcategories may be quite awkward. See Exercise
13K.

(2) As will be seen in Chapter VI, all “reasonable” forgetful functors of concrete cate-
gories lift limits uniquely and detect colimits.

13.34 PROPOSITION
If a functor A . B preserves limits, then the following conditions are equivalent:
(1) F lifts limits (uniquely),

(2) F detects limits and is (uniquely) transportable.

Proof: (1) = (2) follows immediately from the fact that isomorphisms are products of
1-indexed families.

(2) = (1). Let D: I — A be a diagram and let S = (L L, FD;)r be a limit of
F o D. Since F detects limits, D has a limit £ = (A4 iR D;)r. Since F preserves
limits, F'L = (FA Fh, FD;)r is a limit of F'o D. Hence there exists a B-isomorphism
FA - L with S = ho FL. By transportability, h can be lifted to an A-isomorphism

ok~ 1
A%, B. Hence (B L D)y is alimit of D that lifts S. The uniqueness part follows
from Proposition 13.21. O
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CREATION AND REFLECTION OF ISOMORPHISMS

Since isomorphisms can be regarded as the limits of diagrams with scheme 1, the concepts
of creation and reflection of limits specialize to the following concepts:

13.35 DEFINITION
A functor A <, B is said to

(1) create isomorphisms provided that whenever h: X — GA is a G-structured B-
isomorphism, there exists precisely one A-morphism h: B — A with G(h) = h,
and, moreover, h is an isomorphism,

(2) reflect isomorphisms provided that an A-morphism f is an A-isomorphism when-
ever Gf is a B-isomorphism.

13.36 PROPOSITION
(1) If G creates (resp. reflects) limits, then G creates (resp. reflects) isomorphisms.

(2) G creates isomorphisms if and only if G reflects isomorphisms and is uniquely trans-
portable.

(3) If G creates isomorphisms, then G reflects identities. O

13.37 EXAMPLES

(1) Let E: A — B be the embedding of a full subcategory. Then E reflects isomor-
phisms. E creates isomorphisms if and only if A is isomorphism-closed in B.

(2) Let A be a monoid, considered as a category. Then the unique functor A 1
reflects isomorphisms if and only if A is a group. G creates isomorphisms if and
only if A is a trivial (one-element) group.

(3) Each of the forgetful functors from Vec, Grp, and Mon to Set creates isomor-
phisms. None of the forgetful functors from Top, Rel, and Pos to Set reflects
isomorphisms.

13.38 REMARK

The following diagram summarizes some of the relationships between functors and limits.

!
reflects limits ’creates isomorphisms‘ ‘lifts limits uniquely‘
Lo ! ~ .
’reﬂects identities‘ ’uniquely transportable‘ lifts limits
| I
transportable detects limits
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Suggestions for Further Reading
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(1969): 323-352.

Trnkova, V. When the product-preserving functors preserve limits. Comment. Math.
Univ. Carolinae 11 (1970): 365-378.

Adamek, J., J. Rosicky, and V. Trnkova. Are all limit-closed subcategories of locally
presentable categories reflective? Springer Lect. Notes Math. 1348 (1988): 1-18.

EXERCISES

13A. Preservation of Multiple Pullbacks

Let A be a complete category. Show that a functor A . B preserves small limits if
and only if F' preserves small multiple pullbacks and terminal objects.

13B. Preservation of Limits by Set-Valued Functors
Show that

(a) If a functor A 9, Set has a G-universal arrow with a nonempty domain, then G
preserves limits. Deduce Corollary 13.9.

(b) If A is a full subcategory of Set that contains at least one nonempty set, then the
embedding A — Set preserves limits.

*(¢) Every functor Set — Set preserves nonempty finite intersections.
(d) A functor Set — Set preserves products if and only if it is representable.
(e) A functor Set — Set preserves coproducts if and only if it is naturally equivalent,
for some set A, to the functor A x — : Set — Set, defined by
i
Ax )X Ly) = Axx 22 axy

13C. Reflection of Concrete Limits

Let (A, U) have small concrete limits. Show that U reflects small limits if and only if U
reflects isomorphisms.

13D. Lifting of Limits and Faithfulness
Show that

(a) A functor that lifts equalizers is faithful if and only if it reflects epimorphisms.

(b) A functor that lifts limits need not be faithful.

13E. Lifting of Limits and Transportability
Show that a functor that lifts limits (uniquely) is (uniquely) transportable.
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13F. Reflection of Isomorphisms

Show that a functor that reflects equalizers (or finite products) reflects isomorphisms.

13G. Initial Mono-Sources and Reflection of Limits
Show that if mono-sources are G-initial, then G reflects limits. [Cf. Proposition 10.60.]

13H. Hom-Functors and Limits
Show that

(a) If D: I — A is a diagram, then a source S = (L &, Di)icopr is a limit of D if
and only if, for each A-object A, hom(A, —)(S) is a limit of hom(A4, —) o D.
(b) If A is a nonempty set, then hom(A, —) : Set — Set reflects limits.
13I. Limit- and Colimit-Closed Full Subcategories
(a) Show that
(1) Set has no proper full subcategory that is both limit-closed and colimit-closed.
*(2) Top has no proper full subcategory that is both limit-closed and colimit-closed.

(3) Vec has precisely two full subcategories that are both limit-closed and colimit-
closed.

(b) Determine all full subcategories of Rel that are both limit-closed and colimit-closed.
13J. Limit-Closed vs. Reflective Full Subcategories
Show that

(a) Every full subcategory of the partially ordered set Z, considered as a category, is
limit- and colimit-closed in Z, but generally fails to be either reflective or coreflective
in Z.

(b) A full subcategory of a complete lattice A, considered as a category, is reflective in
A if and only if it is limit-closed in A.

*(c) There exist limit-closed full subcategories of Top that are not reflective in Top.
[Cf. 16D.]

13K. A Misbehaved Nonfull Reflective Embedding

Consider the following nonfull embedding A L. B of preordered sets, considered as
categories:
[ ] [ ] e
\ / - \ %/
[ ] [ ]

(a) A is reflective in B,

Show that

(b) B is complete and cocomplete,
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(c) A is neither complete nor cocomplete,
(d) E detects neither limits nor colimits.

13L. Colimit-Dense Full Embeddings

Show that colimit-dense full embeddings preserve limits.

13M. Creation of Isomorphisms

Show that

(a) G creates limits if and only if G is faithful, lifts limits, and creates isomorphisms.
(b) G creates isomorphisms if and only if G creates 1-indexed products.

(c) If G creates isomorphisms, then G reflects identities.

(d) If G reflects identities, then G is amnestic.

13N. Creation of Limits of T-Algebras
Prove that for each functor 7': X — X the forgetful functor of Alg(T") creates limits.
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Chapter IV

FACTORIZATION STRUCTURES

Every function A N B can be factored through its image, i.e., written as a composite

Al p=45 f[A] = B, where A %+ f[A] is the codomain-restriction of f and
fl14] ., B is the inclusion. This fact, though simple, is often useful. Similarly, in
constructs such as Vec, Grp, and Top every morphism can be factored through its
“image”. Since

(a) for categories in general, no satisfactory concept of “embedding of subobjects” and
hence of “image of a morphism” is available,

and

(b) for certain constructs, factorizations of morphisms different from the one through
the image are of interest (e.g., in Top the one through the closure of the image:

AL B=4A—cpflA] — B),

categorists have created an axiomatic theory of factorization structures (E, M) for mor-
phisms of a category A. Here E and M are classes of A-morphisms® such that

each A-morphism has an (E, M)-factorization A L. p=4a €L ¢ M, B
Naturally, without further assumptions on F and M such factorizations might be quite
useless. A careful analysis has revealed that the crucial requirement that causes (E, M)-
factorizations to have appropriate characteristics is the so-called “unique (F, M )-diago-
nalization” condition, described in Definition 14.1. Such factorization structures for
morphisms have turned out to be useful, especially for “well-behaved” categories (e.g.,
those having products and satisfying suitable smallness conditions). They have been
transformed into powerful categorical tools by two successive generalizations

(a) factorization structures for sources in a category, and
(b) factorization structures for G-structured sources with respect to a functor G.

Instead of describing the most general concept first and then specializing to the others,
our presentation will follow the historical development described above.

®The requirements £ C Epi(A) and M C Mono(A) were originally included, but later dropped.
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14 Factorization structures for mor-
phisms

In this section factorization structures for morphisms are defined and investigated. In
particular, it is shown that every strongly complete category is simultaneously (ExtrEpi,
Mono)-structured and (Epi, ExtrMono)-structured (see 14.21).

14.1 DEFINITION

Let E and M be classes of morphisms in a category A.

(E, M) is called a factorization structure for morphisms in A and A is called
E, M)-structured provided that

(
(1) each of E and M is closed under composition with isomorphisms,°
(

2) A has (E, M)-factorizations (of morphisms); i.e., each morphism f in A has a
factorization f = moe, with e € E and m € M, and

(3) A has the unique (F, M)-diagonalization property; i.e., for each commutative
square

A—-B (%)
s g

CTD

|

with e € E and m € M there exists a unique diagonal, i.e., a morphism d such that
the diagram

A—>B

f g

!

CTD

commutes (i.e., such that doe = f and mod = g).

14.2 EXAMPLES

(1) For any category, (Iso, Mor) and (Mor, Iso)! are (trivial) factorization structures
for morphisms.

50 Condition (1) can be replaced by the following conditions (1a) and (1b):
(la) if e € E and h € Iso(A), and h o e exists, then hoe € E,

(1b) if m € M and h € Iso(A), and m o h exists, then mo h € M.
This follows from Proposition 14.6 below since for its proof not the full strength of (1) but only that
of (1a) and (1b) is used. When generalizing factorization structures to sources or to functors, the
formulation in terms of (1a) and (1b) turns out to be more appropriate.

5'Recall that Iso resp. Iso(A) is the class of all isomorphisms (in the category A); similarly for Mor,
Mono, etc. See the Table of Symbols.
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(2) For Set, Vec, Grp, Mon, ¥-Seq, each Alg(Q2) and many other categories of alge-
bras, (RegEpi, Mono) is a factorization structure for morphisms.

(3) For Cat, (RegEpi, Mono) is not a factorization structure for morphisms. [Regu-
lar epimorphisms are not closed under composition (cf. 14.6 and 7.76).] However,
(ExtrEpi, Mono) is a factorization structure for morphisms in Cat.

(4) Set has precisely four factorization structures for morphisms: besides the three
mentioned above, namely, (Epi, Mono) = (RegEpi, RegMono) and the two trivial
ones, the following (pathological) (E, M), where

E={X 5Y|X=0 = Y=0}) and
M ={X 25 Y|m is a bijection or X = (}}.

(5) Top has a proper class (even an illegitimate conglomerate) of factorization structures
for morphisms. Each of

(Epi, RegMono) = (surjection, embedding),
(RegEpi, Mono) = (quotient, injection),
(dense, closed embedding), and
(front-dense, front-closed embedding),

is a factorization structure for morphisms in Top, but (Epi, Mono) is not.
(6) (dense C*-embedding, perfect map) is a factorization structure for morphisms in

Tych.

14.3 PROPOSITION
A is (E, M)-structured if and only if A°P is (M, E)-structured. O

14.4 PROPOSITION

If A is (E, M)-structured, then (E, M )-factorizations are essentially unique, i.e.,

(1) if A =5 C; 25 B are (E, M)-factorizations of A L. B for i = 1,2, then there
exists a (unique) isomorphism h, such that the diagram

A—5 0
|7
e mi
CQT2>B

commutes,

(2) if A L.B=4%C ™ Bisam (E, M)-factorization and C 2, D s an

o oh~1 . . .
hoe, p ", B is also an (E, M)-factorization.

isomorphism, then A N B=A
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Proof:
(1). By the diagonalization-property there exist morphisms h and k such that the dia-
grams
e1 €2
A——Cq A——Cy
o| S e o] e
CQ T2> B Cl Tl> B

commute. Hence, also the diagrams

Ai>01 Ai>02
AT e a2 e
Ol T1>B CQ T2>B

commute. By uniqueness we conclude ko h = idc, and h o k = idc,. Therefore h is
an isomorphism.

(2). This follows directly from the assumption that each of E and M is closed under
composition with isomorphisms. O

14.5 LEMMA
Let A be (E, M)-structured and let e € E and m € M. If the diagram

!

commutes, then e is an isomorphism and f € M.

Proof: The diagram

17

commutes for x = id and for x = e o d. Hence, by uniqueness, e o d = id. Consequently,
e is an isomorphism. Thus f = m o e belongs to M by our assumptions on M. O

14.6 PROPOSITION
If A is (E, M)-structured, then the following hold:
(1) ENM = Iso(A),

(2) each of E and M s closed under composition,
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(3) E and M determine each other via the diagonalization-property;®* in particular, a

morphism m belongs to M if and only if for each commutative square of the form
(%) (see Definition 1/.1) with e € E there exists a diagonal.

Proof:
(1). For any f € E N M there exists a diagonal d that makes the diagram

commute. Hence f € Iso(A). Conversely, if f € Iso(A) and f = moe is an
(E, M)-factorization of f, then for d = f~! o m the diagram

commutes. Hence, by Lemma 14.5, f € M. By duality f € E.

(2). Let A ™ B and B "2~ C be morphisms in M. If myom; = moe is an (E, M)-
factorization, then diagonals d; and ds can be constructed successively such that
the diagrams

A
mll
B

commute. By Lemma 14.5 this implies m9o o m; € M. By duality, E is also closed
under composition.

€ (& €

o A o A
Jm and 7’1{ Jdl and hence ldl
A A

c B

E

C

NI
{ X
N

(3). This follows for M immediately from Lemma 14.5, and for E via duality. O

14.7 PROPOSITION

If E and M are classes of morphisms in A, then A is (E, M)-structured if and only if
the following conditions are satisfied

(1) Iso(A) C EN M,

(2) each of E and M is closed under composition,

52Here the diagonal needn’t be required to be unique.
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(8) A has the (E, M)-factorization property, unique in the sense that for any pair of
(E, M)-factorizations my o ey = f = mg o e of a morphism f there exists a unique
isomorphism h, such that the diagram

commutes.

Proof: By Propositions 14.4 and 14.6, conditions (1)—(3) are necessary. To show that
they suffice, the unique (E, M)-diagonalization property must be established. Let

o« e ()

be a commutative square with e € E and m € M. Let f = m/ o€’ and g = m” o ¢”
be (E, M)-factorizations. Then there exists a unique isomorphism h that makes the
diagram

€
e//

m’ m

||
||

commute. Hence d = m/ohoe” is a diagonal for (x). To show uniqueness, let d be a
diagonal for (). If d = moé is an (F, M)-factorization, then there exist isomorphisms
h/ and h” such that the diagrams

commute. Hence in (+*) h can be replaced by h’ o h”, which implies that h = h' o h”.
Consequently, d =moé=m'oh’oh’ o’ =m/ohoe’ =d. O

€oe e’

— e °
y lm and él
— e °

m’ mom

N

14.8 REMARK

If condition (3) in the above proposition would be weakened by just requiring the
existence but not the uniqueness of h, then (1)—(3) would not imply that (E,M)-
factorizations are unique. To see this, let A be a category with three objects A, B,
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and C, and four non-identity morphisms, three of which are depicted in the commuta-

tive diagram
e

A—— B
SJX m

and for which the fourth is B~ B with hoh = h. If E = Iso(A) U {e} and M =
Iso(A) U {m}, then both h and idp serve as diagonals of the above square. See also
Exercise 14B.

14.9 PROPOSITION

Let A be (E, M)-structured and let f og € M.
(1) If f € M, then g € M.

(2) If f is a monomorphism, then g € M.

(8) If g is a retraction, then f € M.

Proof:

(1). Let ¢ = moe be an (E, M)-factorization. Then (f o m)oe and (f o g) oid are
(E, M)-factorizations of f o g. By Proposition 14.4 there is an isomorphism h with
hoe=1id. Consequently, e is an isomorphism, and thus g = m o e belongs to M.

(2). Let g = moe be an (E, M)-factorization. Then there exists a diagonal d that makes

the diagram
e

e —— O
a| [
e — O
fog

commute. Since f is a monomorphism, the diagram

commutes as well. Hence Lemma 14.5 implies that g € M.

(3). Let f =moe be an (F, M)-factorization, and let s be a morphism with id = g o s.
Then there exists a diagonal d that makes the diagram

e

7]
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commute. Hence
[

o —— 0
v
i m
o— e
!
commutes, so that, by Lemma 14.5, f € M. O

RELATIONSHIP TO SPECIAL MORPHISM CLASSES

14.10 PROPOSITION
If A is (E, M)-structured, then the following hold:

(1) E C Epi(A) implies that ExtrMono(A) C M.
If, moreover, A has (Epi,Mono)-factorizations, then
(2) Epi(A) C E implies that M C ExtrMono(A).
(3) Epi(A) = E implies that M = ExtrMono(A).

Proof:
(1). If f = moeis an (E, M)-factorization of an extremal monomorphism, then
e € Epi(A) implies that e € Iso(A). Hence f € M.

(2). We will show that whenever m € M is factored as m = f oe, where e is an epimor-
phism, then e is an isomorphism. This will imply that: (a) m is a monomorphism
(consider an (Epi, Mono)-factorization of m), and (b) m is extremal. It is clearly
sufficient to show that e is a section, and this follows from the existence of a diagonal
d for the diagram

(3) follows from (1) and (2). O

14.11 PROPOSITION

If A is (E, M)-structured and has products of pairs, then the following conditions are
equivalent:

(1) E C Epi(A),
(2) ExtrMono(A) C M,
(8) Sect(A) C M,

(4) for each object A, the diagonal morphism Ag = (ida,ids) : A — A x A belongs to
M,
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(5) foge€ M implies that g € M,
(6) foee M and e € E imply that e € Iso(A),
(7) M ={f€ Mor(A)|f=goe and e € E imply that e € Iso(A)}.

Proof: The implication (1) = (2) follows from Proposition 14.10(1). The implications
(2) = (3) = (4), are obvious.

(4) = (1). Consider A <+ B in E and BéC with 7 oe = soe (= h). Then there

exists a diagonal morphism d that makes the diagram

| 2 e

C*}ACCXC

commute. Hence r = d = s, so that e is an epimorphism.
Therefore conditions (1)—(4) are equivalent.

(1) = (6). If e € E and f oe € M, then there exists a diagonal morphism d that makes
the diagram

commute. Hence e is a section and an epimorphism, i.e., an isomorphism.
(6) = (7) is obvious.

(7) = (5). If fog € M and g = moe is an (E, M )-factorization, then e is an isomorphism.
Hence g € M.

(5) = (3) follows from Iso(A) C M. O

14.12 COROLLARY
If A is (E, Mono)-structured and has products of pairs, then E = ExtrEpi(A).

Proof: Immediate from the Proposition 14.11 and the dual of Proposition 14.10(3). O

14.13 REMARKS

(1) If A does not have products of pairs, the conditions of the above proposition need
no longer be equivalent. Consider, e.g., a category A with Ob(A) = Z, and

m<n
homa (n,m) having exactly 2 » elements if m=n+1

otherwise
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If E = Mor(A) and M = Iso(A) = Mono(A) = Epi(A), then A is (E, M)-structured
and conditions (2), (3), (5), (6), and (7) of Proposition 14.11 are satisfied, but (1)
is not.

The fact that A is (M, E)-structured also shows that the results (2) and (3) of
Proposition 14.10 need not hold for factorization structures for morphisms in arbi-
trary categories.

(2) As will be seen in Theorem 15.4, factorization structures (E,M) for sources in a

category A always satisfy £ C Epi(A).

14.14 PROPOSITION
If A has (RegEpi, Mono)-factorizations, then the following hold:

(1) A is (RegEpi, Mono)-structured,

(2) RegEpi(A) = ExtrEpi(A),

(3) the class of reqular epimorphisms in A is closed under composition,
(4) if fog is a reqular epimorphism in A, then so is f.

Zg.ocgi)viously, every category has the unique (RegEpi, Mono)-diagonalization property.
(2). This follows from the dual of Proposition 14.10(3).

(3). This follows from (1) and Proposition 14.6(2).

(4). This follows from (2). O

RELATIONSHIP TO LIMITS

14.15 PROPOSITION

If A is (E, M)-structured, then M is closed under the formation of products and pull-
backs, and M N Mono(A) is closed under the formation of intersections.’’

Proof:
(1). Let [T A; mi | [ Bi be a product of morphisms m; in M, and let

ITA4: Ami, [1B: = [[4: = C > [ B; be an (E, M)-factorization. Then for

each index j there exists a diagonal morphism d; that makes the following diagram
commute (where 7; and p; are the projection morphisms):

Aj —— B;

53 In fact, M is closed under the formation of multiple pullbacks (cf. Exercise 11L).

18th January 2005



248 Factorization Structures [Chap. IV

This implies that (d;) o e = idpa, and IIm; o (d;) = m. Therefore Lemma 14.5
implies that IIm; € M.

(2). Let the diagram
A-">B
i
D——C

be a pullback with m € M, and let A 5 B = A -5 A’ 5 B be an (E,M)-
factorization. Then there exists a diagonal morphism d that makes the diagram

€ /

A——
|
wr C

D

commute. By the pullback-property there exists a morphism A2 4 with m =
mogand d = fog. This implies that Mo (goe) =m and fo(goe) = f and hence
that goe =1id4. By Lemma 14.5 this implies that m € M.

(3). Let A L.op=at, A; 2 B be an intersection with each m; being a monomor-

phism in M, and let A J.B=4%C"™ Bbean (E, M)-factorization. Then
for each index i there exists a diagonal morphism d; that makes the diagram

48)0

A
d;
fil m
AA

ZHB

mg

commute. Thus m factors through each m;. Hence there exists a morphism C 4
with m = f od. Consequently, f odoe = f, which implies that doe =ida. So, by
Lemma 14.5, f € M. O

We conclude this section with several results showing that the existence of suitable
limits or colimits in a category guarantees the existence of distinguished factorization
structures for morphisms.

14.16 FACTORIZATION LEMMA

Let A have intersections and equalizers, let C £, D be an A-morphism, and let M C
Mono(A) satisfy the following conditions:

(a) intersections of families of M -subobjects of D belong to M,
(b) if f=mogoh withim € M and g € RegMono(A), then mo g € M.
Then there exist m € M and e € Epi(A), such that
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(1) f=moe,
(2) if f =mog withm € M, then there exists a diagonal d that makes the diagram

e

|

commute,

(3) if e=mmog, where mom € M, then m € Iso(A).

Proof: Let S be the sink consisting of all M-subobjects D; —=— D of D through which
f factors (i.e., f = m; o g; for some g;), and let (B, m) be the intersection of S. Then
m € M and there exists a morphism e with f = moe. By construction, (2) is immediate.
To establish (3) consider a factorization e = m o g of e with m om € M. Then, by (2),
there exists a diagonal d that makes the diagram

commute. Since m is a monomorphism, this implies that m o d = id. Hence m is a
retraction and, being the first factor of the monomorphism m o 7, a monomorphism;
thus an isomorphism. Hence (3) holds. It remains to be shown that e is an epimorphism.
Consider a pair (r, s) of morphisms with roe = soe, and let g be an equalizer of (r, s).
Then there exists a morphism h with e = go h. Hence f =mogoh. By (b) mog € M,
so that by (3) g is an isomorphism. Thus r = s. O

e

N

mom

14.17 THEOREM
If A has finite limits and intersections, then A is (ExtrEpi, Mono)-structured.

Proof: Application of Lemma 14.16 to M = Mono(A) yields that A is (ExtrEpi,
Mono)-factorizable. To show that A has the (automatically unique) (ExtrEpi, Mono)-
diagonalization property, consider a commutative diagram
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be a pullback. Then there exists a unique morphism A such that the diagram
e

NN

g

commutes. Since e is an extremal epimorphism and m (being a pullback of a mono-
morphism) is a monomorphism, 77 must be an isomorphism. Hence d = § o ! is the
desired diagonal. O

14.18 PROPOSITION

If A has the (Epi, ExtrMono)-diagonalization property, then the class of extremal mono-
morphisms in A is closed under composition and intersections.

Proof: Since monomorphisms are closed under composition and intersections, only the
stability of the extremal-property needs to be verified. If m and m are extremal mono-
morphisms and m om = f o e for some epimorphism e, then by assumption there exists
a diagonal d that makes the diagram

commute. Hence m = d o e implies that e is an isomorphism.

Now let A = (4; == A); be a family of extremal subobjects of A. If D A=

D 4, A; 5 A is an intersection of A, and if d = f o e for some epimorphism e, then
for each i € I there exists a diagonal k; that makes the diagram

commute. Since the intersection (being a limit) is an extremal mono-source, the epimor-
phism e must be an isomorphism. O

14.19 THEOREM
If A has equalizers and intersections, then A is (Epi, ExtrMono)-structured.

Proof: First we show that A has the (Epi, ExtrMono)-diagonalization property. Let

A—>B

o]

CTD
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be a commutative diagram, where ¢ is an epimorphism and f is an extremal monomor-
phism. Let M be the class of all subobjects (D,,, m) of D with the property that there
exist (necessarily unique) morphisms f,, and h,, that make the diagram

—>

s

C—>D

;“

commute. Then M satisfies the conditions (a) and (b) of Lemma 14.16, so that there
exists an (Epi, M)-factorization f = moe. Since f is an extremal monomorphism, this
implies that e (= f,) is an isomorphism. Thus d = e~! o h,, is the desired diagonal.
Consequently, A is (Epi, ExtrMono)-diagonalizable. This fact, together with Proposition
14.18, implies that the class M = ExtrMono(A) satisfies conditions (a) and (b) of Lemma
14.16 for every A-morphism f. Hence A is (Epi, M)-factorizable. O

14.20 COROLLARY

In a category with equalizers and intersections the class of extremal monomorphisms is
the smallest class of morphisms that contains all regular monomorphisms and is closed
under composition and intersections.

Proof: By the above results (14.18 and 14.19) and Corollary 7.63, ExtrMono(A ) con-
tains all regular monomorphisms and is closed under composition and intersections. If
M is a class of morphisms with these properties, then M = M N M ono(A) satisfies
conditions (a) and (b) of Lemma 14.16 for every A-morphism f, which implies that
A is (Epi, M)-factorizable. If f = moe is an (Epi, M)-factorization of an extremal
monomorphism f, then e is an isomorphism, and so belongs to M. Thus f = moe € M.OJ

14.21 COROLLARY

Every strongly complete category is (ExtrEpi, Mono)-structured and (Epi, ExtrMono)-
structured. O

14.22 PROPOSITION

A category with pullbacks and coequalizers is (RegEpi, Mono)-structured if and only if
regular epimorphisms are closed under composition.

Proof: The composition closure is a necessary condition, by Proposition 14.6(2). To
show that it is sufficient, observe that by Proposition 14.14 it need only be shown that
every morphism f has a (RegEpi, Mono)-factorization. Let (p,q) be a congruence-
relation of f, and let ¢ be a coequalizer of (p,q). Then there exists a unique morphism
m with f = moec. To show that m is a monomorphism, let (7, s) be a pair of morphisms
with m or = mo s and let ¢ be a coequalizer of (r,s). Then there exists a unique
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morphism g with m = go¢. Since (p, q) is a congruence relation of f = gococ and since
cop=cogq, (p,q) is a congruence relation of ¢ and of ¢ o ¢. Since ¢ and ¢ o ¢ are both
regular epimorphisms, each (by Proposition 11.22) is a coequalizer of (p,q). Hence, by
essential uniqueness of coequalizers, ¢ must be an isomorphism. So r = s. Thus m is a
monomorphism. O

14.23 EXAMPLES

(1) Many familiar categories are (RegEpi, Mono)- and (Epi, RegMono)-structured, e.g.,
Set, Vec, Grp, Pos, Top, Aut, X-Seq, and HComp. So are any of the constructs
Alg(f2) and Spa (T).

(2) Cat is (ExtrEpi, Mono)-structured, but it has extremal epimorphisms that are not
regular (cf. 7.76).

(3) Sgr is (Epi, ExtrMono)-structured, but it has extremal monomorphisms that are
not regular (cf. 14I).
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EXERCISES

14A. Factorization Structures for Morphisms in Special Categories
Let A g, B be a morphism in one of the categories Set, Vec, Top, Pos, Sgr, or Rng.

Show that the familiar “image”-factorization A L.p=4a=< fl[A] = Bis
(a) an (Epi, ExtrMono)-factorization in Set, Vec, Top, and Pos,
(b) an (ExtrEpi, Mono)-factorization in Set, Vec, Sgr, and Rng.
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14B. Diagonals
1. Show that Set has

(1) (Mono, Epi)-factorizations and -diagonalizations, but not unique ones,
(2) (Section, Projection)-factorizations and -diagonalizations, but not unique ones.

2. Show that every category that has pullbacks has the unique (ExtrEpi, Mono)-
diagonalization property.

14C. Strong Monomorphisms

A monomorphism m in A is called strong provided A has the unique (Epi, {m})-
diagonalization property. Show that

(a) Every strict monomorphism is strong, but not vice versa.
(b) Every strong monomorphism is extremal, but not vice versa.

(¢) The class of strong monomorphisms is closed under composition, intersections, pull-
backs, products, and left-cancellation.

(d) If A has pushouts, then in A StrongMono = ExtrMono.

(e) If A has equalizers and intersections, then in A StrongMono = ExtrMono [cf. The-
orem 14.19].

(f) If A is (Epi, M)-structured for some class M of monomorphisms, then
M = StrongMono = ExtrMono.

(g) If A is (Epi, M)-structured, then M need not consist of monomorphisms alone [cf.
Remark 14.13(1)].

14D. (RegEpi, Mono)-Structured Categories
Let A have pullbacks and coequalizers. Show that

(a) A is (RegEpi, Mono)-structured if and only if RegEpi(A) = ExtrEpi(A). [Cf. Propo-
sitions 14.22 and 7.62(1).]

(b) If regular epimorphisms are stable in A(cf. Exercise 11J), then A is (RegEpi, Mono)-
structured.

(c) If there exists a faithful functor from A into a (RegEpi, Mono)-structured cate-
gory that preserves and reflects regular epimorphisms, then A is (RegEpi, Mono)-
structured.

14E. Regular Categories

A category A is called regular provided that it satisfies the following conditions:
(1) A has finite limits,

(2) A is (RegEpi, Mono)-structured,

(3) In A regular epimorphisms are stable (cf. 11.J).
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Show that
(a) If A has coequalizers, then A is regular provided that it satisfies (1) and (3) above.

(b) If A is regular and X is small, then [X, A] is regular.

14F. Exact Categories

Pointed categories that are (NormalEpi, NormalMono)-structured are called exact.
Show that

(a) A pointed category is exact if and only if it has (NormalEpi, NormalMono)-factoriza-
tions.

(b) If A is exact, then so is A°P.

¢) In an exact category every monomorphism is normal.

(
d

An exact category has kernels and finite intersections.
f) An exact category is wellpowered if and only if it is co-wellpowered.

)
)
)
(e) A nonempty exact category has a zero-object.
()
) Exact constructs are wellpowered and co-wellpowered.
)

(g
(

h) Vec and Ab are exact, but none of Grp, Mon, or pSet is exact.

14G. Closure Properties

Let A be (E, M)-structured. Show that

(a) M is closed under the formation of multiple pullbacks (cf. Proposition 14.15).

(b) M is closed under formation of retracts in the arrow category A2 (cf. Exercise

3K(b)).

14H. (E, —)-structured Categories

A is called (E,—)-structured provided that there exists some M such that A is
(E, M)-structured. Show that a cocomplete category A is (F, —)-structured if and only
if E C Mor(A) satisfies the following conditions:

1) Iso(A) C E,

3

(1)

(2) E is closed under composition,

(3) E is closed under the formation of pushouts,
(4)

4) FE is closed under the formation of colimits,

(5) if e= foe with e and € in F, then f € E,
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(6) (solution set condition) for each A-morphism f there exists a set of factorizations
f=gioe; i €1, with e; € E such that for each factorization f = goe withe € F
there is some ¢ € I and some morphism A such that the following diagram commutes:

.L}.

[

(= g

e—— e
9i

14I. Regular Monomorphisms in the Category of Semigroups
Let C ={0,a,b,c,d,e} and consider the following multiplication table:

-10 a b ¢ d e
0j/0 0O OO 0O O
al0 0 0 0 b ¢
b0 0 0 0 ¢ O
cl0O 0O 0 0 0 O
d|0 b ¢ 0 e 0
el0 ¢ 0 0 0 O

(a) Prove that C' with the above multiplication - is a semigroup.

(b) A = {0,a,b} and B = {0,a,b,c} are subsemigroups of C. Let f: A — B and
g: B — C be the inclusion homomorphisms. Prove that f and ¢ are regular
monomorphisms and that g o f is an extremal monomorphism in Sgr.

h
(c) Prove that if C ? D are morphisms in Sgr that coincide on A, then h and k

coincide on B. [Hint: Use the equalities b = da and ¢ = bd.] Conclude that g o f is
not a regular monomorphism in Sgr.

(d) Let B be the free semigroup on three generators {a, b, ¢}; let A be the subsemigroup
of B generated by {a ba acl; let C be the quotient semigroup obtained by identifying
the words a and bac and let i : A — B and p: B — C be the inclusion map and
natural map, respectively.

(1) Construct a semigroup D and homomorphisms ¢ ::i D such that poi is an
equalizer of r and s.
(2) Show that 7 is not a regular monomorphism in Sgr.
(e) Conclude that for the complete, wellpowered category Sgr, the following hold:

(1) The class of regular monomorphisms coincides with the class of strict monomor-
phisms.

(2) There exist extremal monomorphisms that are not regular.
(3) The class of regular monomorphisms is not closed under composition.

(4) Sgr is not (Epi, RegMono)-factorizable.
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(5) The first factor of a regular monomorphism is not necessarily regular.

14J. Dominions

Let A be a wellpowered complete category, and let X N Y be an A-morphism. Prove
that

(a) X L, ¥ has a factorization X - D % Y, where d is a regular monomorphism
that is characterized uniquely by any of the following equivalent conditions:

(1) for all morphisms r and s, 7o f = so f implies that rod = sod,
(2) (D,d) is the smallest regular subobject of Y through which f can be factored,

(3) d is the intersection of all regular subobjects of Y through which f can be
factored.

(D,d) is called a dominion of f.
(b) Any two dominions of f are isomorphic subobjects of Y.

(¢) In A the extremal monomorphisms are precisely the regular monomorphisms if and
only if the (Epi, ExtrMono)-factorization of any morphism is the same as its domin-
ion factorization.

(d) f is an epimorphism if and only if (Y,idy) is a dominion of f.
f

is a regular monomorphism if and only if (X, f) is a dominion of f.

)
()
(f)

)

f) If f =r os, where s is an epimorphism, then the dominions of f and r coincide.
(g) Consider the pushout square
[ ] L} [ ]
I
[ ] T} [ ]

Then (D, d) is a dominion of f if and only if d is an equalizer of p and q.
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Because of their generality, factorization structures for sources are frequently a more
powerful categorical tool than factorizations for morphisms. However, in two respects

they are more restrictive. Namely, if (F,M) is a factorization structure for sources in
A, then

(1) E must be contained in the class of epimorphisms of A (15.4), and
(2) certain colimits of diagrams in A involving morphisms in F must exist (15.14).

Such source factorization structures occur quite frequently (15.10 and 15.25), and for
co-wellpowered categories with products there is no essential difference between these
two approaches to factorization since for such categories A every factorization structure
for morphisms, with E C Epi(A), has a unique extension to a factorization structure
for sources (15.21). In particular, every strongly complete, co-wellpowered category has
both (Epi, ExtrMono-Source) and (ExtrEpi, Mono-Source) as factorization structures
for sources (15.25).

15.1 DEFINITION

Let E be a class of morphisms and let M be a conglomerate of sources in a category A.
(E,M) is called a factorization structure on A, and A is called an (E, M)-category
provided that

(1) each of E and M is closed under compositions with isomorphisms in the following
sense:
(la) if e € E and h € Iso(A) and h o e exists, then hoe € E,
(Ib) if S € M and h € Iso(A) and S o h exists, then Soh € M,

(2) A has (E,M)-factorizations (of sources); i.e., each source S in A has a factor-
ization S = M oe with e € E and M € M, and

(3) A has the unique (E, M)-diagonalization property; i.e., whenever A > B and

e C are A-morphisms with e € E, and S = (B LN D;)r and M = (C LN D;)r
are sources in A with M € M, such that M o f = S o e, then there exists a unique

diagonal, i.e., a morphism B 4, ¢ such that for each i € I the diagram

A——B
f / gi
CW i

commutes.
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Factorization of sources

15.2 REMARKS

(1)

(2)

As opposed to the concept of factorization structures for morphisms the concept
of factorization structures (for sources) is not self-dual. The dual concept, that of
factorization structures for sinks, will not be explicitly formulated here.

Another distinction from factorization structures for morphisms is the fact that the
uniqueness requirement for diagonals in the definition of factorization structures (for
sources) is redundant. Cf. Exercise 14B on the one hand, and the proof of Theorem
15.4 on the other.

If (E,M) is a factorization structure on A and M is the class of those A-morphisms
that (considered as 1-sources) belong to M, then (E, M) is a factorization structure
for morphisms on A. (Cf. footnote to Definition 14.1) Hence all the results of §14

apply.

Factorization of sources applies to empty sources too. If (E, M) is a factorization
structure on A, and Ay is the class of all A-objects A such that the empty source
(A,0) with domain A belongs to M, then conditions (2) and (3) in Definition 15.1
translate into:

(29) for every object A there exists a morphism A —— B in E with B € Ay,

(3%) for every morphism A <~ B in F and every morphism A 1, ¢ with © € Am

there exists a unique morphism B L, ¢ with f=doe.
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15.3 EXAMPLES

(1) Every category is an (Iso, Source)-category.%* This factorization structure is called
trivial. Also, every category has the (unique) (RegEpi, Mono-Source)-diagonaliza-
tion property, although not all categories are (RegEpi, Mono-Source)-categories
(cf. Proposition 15.13).

(2) Set is an (Epi, Mono-Source)-category. For Set this is the only nontrivial factor-

ization structure. (Epi, Mono-Source)-factorizations of a source (A ti, A;)r in Set
can be obtained via either of the following two constructions:

(a) Define an equivalence relation on A by: “a ~ b if and only if f;(a) = fi(b) for
each i € I”, and let A < A/~ be the naturally associated surjection. Then for
each ¢ € I there exists a unique map A/~ M, A; with f; = m; oe. Then

AL A =A% A0 4,
is an (Epi, Mono-Source)-factorization of (f;) in Set.
(b) Consider the cartesian product (][ A;, 7)1 of the codomain (A4;); — that is, the
conglomerate® of all functions = with domain I such that z(i) € A; for each

i € I. The function A L [T A; defined by a — f(a), where (f(a))(i) = fi(a)
for each i € I, has a factorization A 1, [TAi = A = B 2 [] A, with e
a surjective function and m an injective one. Since A is a set and A - B
is surjective, B is codable by a set; i.e., there exists a set B’ and a bijection
B' % B. Then for B " A; defined by m;(b) = (m(b))(i), it follows that

1

AL 4= a0 gm0l

is an (Epi, Mono-Source)-factorization of (f;) in Set.

For various constructs, one of the above constructions can be used to obtain (Epi,
Mono-Source)-factorizations.

(3) Many algebraic constructs such as Vec, Grp, Mon, Rng, and Alg(f2) are
(RegEpi, Mono-Source)-categories.

(4) Cat is an (ExtrEpi, Mono-Source)-category.

54Source (resp. Source(A)) is the conglomerate of all sources (in the category A). Similarly, Mono-Source
is the conglomerate of all mono-sources in the given category, etc. See the Table of Symbols.

550One might be tempted to describe this construction more categorically by forming the quasicategory
Class of all classes and all functions, and by letting ([] A:,m:)r be the product of (A4;)r in that
quasicategory. This, however, is not possible, since the conglomerate (] A;)r frequently fails to be a
class and, hence, to be an object of the quasicategory Class. In fact, the quasicategory Class behaves
badly with respect to many familiar constructions (recall, e.g., that there is a largest class, U). This
problem could be resolved, e.g., by introducing in addition to “sets”, “classes”, and “conglomerates”,
one higher level of entities, say, “collections”. Then the collection of all conglomerates and all
functions between them would form a rather well-behaved “quasi-quasicategory”. Since there are
only a few occasions in this text where the use of something like this would be advantageous, we have
refrained from complicating the foundations by introducing it.
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(5) Aut is an (RegEpi, Mono-Source)-category.

(6) Top has a proper class (even an illegitimate conglomerate) of factorization structures
(cf. Exercise 15L). In particular, Top is an (Epi, ExtrMono-Source)-category, an
(ExtrEpi, Mono-Source)-category, and a (Bimorphism, Initial-Source)-category.

15.4 THEOREM
If A is an (E,M)-category, then E C Epi(A).

Proof: Consider e € E and a pair (r,s) of morphisms with r o e = s oe. The source
(hy) feMor(a), defined by hy = roe, has an (E, M)-factorization (hy) = (my)oe. The
source () remor(a), defined by

r, if mpof=s
gr =

s, otherwise,

satisfies the equation (mys)oe = (gr) oe. Hence there exists a diagonal d that makes the
diagram

commute for each f € Mor(A). In particular,

{r, if mgod=13s
mgod=gq=

s, otherwise.
This is possible only for » = s. Thus e is a epimorphism. O
15.5 PROPOSITION

If A is an (E,M)-category, then the following hold:

(1) (E,M)-factorizations are essentially unique,

(2) E C Epi(A) and EztrMono-Source(A) C M,

(3) ENM = Iso(A),

(4) each of E and M is closed under composition,

(5) if fog € E and g € Epi(A), then f € E,

(6) if fog€ E and f € Sect(A), then g € E,

(7) if (S;)oS €M, then S € M,

(8) if a subsource of S belongs to M, then S belongs to M,

(9) E and M determine each other via the diagonalization-property; moreover,
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(a) a source belongs to M if and only if every E-morphism through which it factors
s an isomorphism,

(b) if M consists of mono-sources only, then a morphism f belongs to E if and only

if f =mog with m € M implies that m € Iso(A).

Proof: (8) follows from (9). All other conditions are proved as in §14 by use of Theorem
15.4. O

RELATIONSHIP TO SPECIAL MORPHISMS
AND SPECIAL SOURCES

15.6 PROPOSITION
If A is a (RegEpi, M )-category, then M contains all mono-sources of A.

Proof: Let S be a mono-source and S = M o e be a (RegEpi, M)-factorization of S.
Let e be a coequalizer of  and s. Then Sor = Moeor=Moeos =S os. Since S
is a mono-source, this implies that r = s. Hence e is an isomorphism, so that S € M.O

15.7 PROPOSITION
For (E,M)-categories A, the following are equivalent:

(a) M C Mono-Source(A),
(b) A has coequalizers and RegFEpi(A) C E.

Proof: (a) = (b). Let A ::; B be a pair of morphisms. Consider the source & =

(B S, B;); that consists of all morphisms f; with fjor = fios. If S = Moeis
an (E, M)-factorization, then, since M is a mono-source, e is a coequalizer of (r,s).
Hence A has coequalizers. If ¢ is a coequalizer of some pair (r,s), and ¢ = moe is an
(E, M)-factorization, then e is a coequalizer of (r,s). Hence m € Iso(A), so that ¢ € E.

(b) = (a). Let M belong to M and let (r, s) be a pair of morphisms with Mor = Mos.
Then M factors through the coequalizer ¢ of (r, s). Hence ¢ € E implies, by Proposition
15.5(9)(a), that ¢ is an isomorphism. So r = s. O

15.8 PROPOSITION
For (E,M)-categories A the following hold:

(1) if M = Mono-Source(A), then E = ExtrEpi(A),

(2) if M = EztrMono-Source(A), then E = Epi(A),

(3) if E = Epi(A), then the following conditions are equivalent:
(a) M = EztrMono-Source(A),
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(b) A has coequalizers,

(4) if E = ExtrEpi(A) or E = RegEpi(A), then the following conditions are equivalent:
(a) M = Mono-Source(A),
(b) A has coequalizers.

Proof:
(1). Apply Theorem 15.4 and Proposition 15.5(9)(b).

(2). E C Epi(A) by Theorem 15.4. If f is an epimorphism and f =moe is an (E, M)-
factorization, then m is an extremal monomorphism and (as the second factor of
an epimorphism) an epimorphism; hence an isomorphism. Thus f € E.

(3b) and (4a) = (4b) follow from Proposition 15.7.

(3a) =
(3b) = (3a) follows from Propositions 15.5(9)(a) and 15.7.
(

4b) = (4a). By Proposition 15.7, M C Mono-Source(A). If S is a mono-source and
S = Moeis an (E, M)-factorization, then e is an extremal epimorphism and a mono-
morphism; hence an isomorphism. Thus & € M. O

15.9 EXAMPLE

The category A described in Example 14.13(1) is simultaneously an (Epi, Source)-
category, an (ExtrEpi, Source)-category and a (RegEpi, Source)-category. But in A
not every source is a mono-source.

Also, every group, considered as a category, is an (Epi, Source)-category; but for a
nonzero group the empty source is not a mono-source.

EXISTENCE OF FACTORIZATION STRUCTURES

15.10 THEOREM

Every category that has (Epi, Mono-Source)-factorizations is an (ExtrEpi, Mono-Source)-
category.

Proof: Let A have (Epi, Mono-Source)-factorizations and let S = (A Ji, )1 be a
source in A. Consider the source 7 = (A4 =, Bj); that consists of all epimorphisms
e; for which there exists a (necessarily unique) mono-source M; = (B; LN A;) with
S=Mjoej. Let T = Noe= (A B =, Bj); be an (Epi, Mono-Source)-
factorization. Then the sources (M;) o n; do not depend upon j and thus each can
be denoted by M = (B - A;);. Hence S = Mo e is an (Epi, Mono-Source)-
factorization. To show that e is an extremal epimorphism, consider a factorization
e = m o g with monomorphic m. Let ¢ = n o€ be an (Epi, Mono)-factorization of
g. Then § = (M omomn)oeis an (Epi, Mono-Source)-factorization of S. Hence
there exists some j in J with M omon = M, and € = e¢;. For this j, the equations
momnon;oe = monoe; = monoe = mog = e hold. Since e is an epimorphism, we conclude
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that m on on; =id. Hence m is a monomorphic retraction, i.e., an isomorphism. Thus
A is (ExtrEpi, Mono-Source)-factorizable. To show that A has the (ExtrEpi, Mono-
Source)-diagonalization property, consider morphisms e; and sources S;, for j = 1,2,
such that e; is an extremal epimorphism, Ss is a mono-source, and &1 0 e = Sy 0 eo. If
(A =, Bj)jeqiy = (A <. B, Bj)jeq1,2y is an (Epi, Mono-Source)-factorization,
then Sjomjoe=810e1 =8Sy0e9 =Sy omyoe. Hence S o my = Sy 0 ms.

Let CéﬁB be a pair of morphisms with mj or = mq os. Then
S
Saomgor=8omior=8omyos=3S80myos.

Since Ss is a mono-source, this implies that mg or = mg o s. Since (B EIN Bj)je{lz} is
a mono-source, this implies that » = s. Thus m; is a monomorphism. Since e; =mjoe
is an extremal epimorphism, this implies that m; is an isomorphism. Consequently,
d=mgyo ml_l is the desired diagonal. O

15.11 REMARK

As the above result shows, every (Epi, Mono-Source)-factorizable category is an
(E, Mono-Source)-category for a suitable class E. However, it need not be an (Epi,
M)-category for any conglomerate M:

Every poset, considered as a category, is an (ExtrEpi, Mono-Source)-category. But a
poset with a smallest element is an (Epi, M)-category for some M if and only if it is a
complete lattice.

15.12 DEFINITION

A category is said to have regular factorizations provided that it is (RegEpi, Mono-
Source)-factorizable.

15.13 PROPOSITION

If a category has regular factorizations, then it is a (RegEpi, Mono-Source)-category.

Proof: Every category has the (RegEpi, Mono-Source)-diagonalization property. O

15.14 THEOREM

If E is a class of morphisms in A, then A is an (E,M)-category for some M if and
only if the following conditions are satisfied:
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(1) Iso(A) C E C Epi(A),
(2) E is closed under composition,

(8) for every A =5 B in E and every morphism A £, C there exists a pushout square
A——B
f !
C ? D
for which e € F,

(4) for every source (A < A;); that consists of E-morphisms, there exists a cointer-
section
ASB=A4AS554,2.B

for which e € E.

Proof: Necessity: (1) and (2) follow from Theorem 15.4 and Proposition 15.5. To
see (3), let A = B and A L, ¢ be morphisms with e € E. Consider the source

S=(C i, C;)1 consisting of those morphisms f; for which there exists a (necessarily
unique) morphism g; with f;o f = g; oe. Let S = M o€ be an (F, M)-factorization.
Then there exists a diagonal that makes the diagram

B
Jo

C

e

A

eofJ/
[

commute. As can be seen easily, the diagram

SN

<.

e

A B

s ld

C

|

|

e
is a pushout.

To establish (4), let (A = A;); be a source consisting of E-morphisms. Consider the

source § = (A ELIN Bj); that consists of those morphisms f; that have the property

that for each ¢ € I there exists a (necessarily unique) morphism f;; with f; = fi; o e;,
and proceed as in the proof of part (3).

Sufficiency: Define M to be the conglomerate of all sources that do not factor through
a non-isomorphic morphism in E. In order to show that A has (E, M)-factorizations,

let (A fi, i)1 be a source in A. Consider the source S = (A =, Bj) s that consists
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of those morphisms e; € F that have the property that for every i € I there exists a
(necessarily unique) morphism f;; with f; = fij oe;. Let

A-S B= A——>B — B

be a cointersection of S such that e € E. Then for each ¢ € I there exists a morphism
m; that makes the diagram

commute for each j € J. To show that the source M = (B —— A;); belongs to M, let
M =T oé be a factorization with é € E. Then there exists some j € J with éoe = e;.
Hence, for this j the equality e = p;j o e; = pj o € o e implies that p; o € = id. Thus ¢ is
an epimorphic section; hence an isomorphism.

To show that A has the (F, M)-diagonalization property, let e and f be morphisms with
e € E, and let M = (m;)r and S = (fi)r be sources with M € M and Mo f =Soe.
Let

be a pushout square for which ¢ € E. Then for each ¢ € I there exists a morphism g;

that makes the diagram
[ [ ]
f
é
[ J [ ]

commute. Hence M factors through é € E, which implies that é is an isomorphism.
Thus ¢! o f is the desired diagonal. O

I

15.15 COROLLARY
Let A be a category with pushouts and cointersections. Then a class E of A-morphisms
is part of a factorization structure on A (i.e., A is an (E,M)-category for some M)

if and only if Iso(A) C E C Epi(A) and E is closed under composition, pushouts, and
cointersections. O
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15.16 COROLLARY
(1) A is an (Epi, M )-category for some M if and only if A has cointersections and has

a pushout for every 2-source of the form e o0 with epimorphic e.

(2) A is an (Epi, ExtrMono-Source)-category if and only if A has cointersections,

pushouts for 2-sources of the form e AR I with epimorphic e, and has co-
equalizers. O

15.17 COROLLARY
Every strongly cocomplete category is an (Epi, ExtrMono-Source)-category. O

15.18 EXAMPLE

The partially ordered class of all ordinals, considered as a category, is a cocomplete
(ExtrEpi, Mono-Source)-category, but is not (Epi, ExtrMono-Source)-factorizable. [Con-
sider empty sources.| See also Exercise 15D.

Further results concerning the existence of factorization structures will follow after some
necessary preparations, cf., e.g., Theorem 15.25.

EXTENSIONS OF FACTORIZATION STRUCTURES

Factorization structures may be considered for certain specified sources only; e.g., for
1) empty sources (= objects), see Exercise 15G,

2) 1-sources (= morphisms), see §14,

(
(2)

(3) 2-sources, see Exercise 151,

(4) set-indexed sources (= small sources), see Exercise 15..

Here we are concerned with the question: Under which conditions is it possible to
extend factorization structures (E, M) for morphisms to factorization structures (£, M)
for sources, or at least for small sources?

15.19 PROPOSITION

(1) If A has products, then every factorization structure (E, M) for morphisms on A
can be uniquely extended to a factorization structure (E,M) for small sources.

(2) Conversely, if A has an initial object and each factorization structure (E, M) for
morphisms on A can be extended to a factorization structure (E,M) for small
sources, then A has products.

Proof:
(1). Let (E, M) be a factorization structure for morphisms. If M is the class of all
small sources of the form P o m, where P is a product and m € M, then (E, M)
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is a factorization structure for small sources. Indeed, if S = (4 ti, i)1 is a set-
indexed source, let (f;) = A % B = [[ A; be an (E, M) factorization. Then
S = (B 2™ A;)roeis an (E, M)-factorization.

Uniqueness of the extension follows from the observation that M is determined by
E as in Proposition 15.5(9).

(2). Let (Mor(A), M) be an extension of the factorization structure (Mor(A), Iso(A))
for morphisms to a factorization structure for small sources. Then M consists
precisely of the set-indexed products in A. In fact, if (4;)r is a set-indexed family
of objects, @ is an initial object, S = (Q — A;)r is the associated source, and
S =Moeisa (Mor(A), M)-factorization, then M is a product of (A4;);. O

15.20 PROPOSITION

If (E,M) is a factorization structure for small sources on A and A is co-wellpowered,
then the following conditions are equivalent:

(1) (E,M) can be uniquely extended to a factorization structure (E,N) on A,
(2) E C Epi(A),

(8) Sect(A) C M,

(4) for each object A the 2-source (ida,ids) belongs to M,

(5) whenever a subsource of a small source S belongs to M, then so does S.

Proof: (1) < (2). By Theorem 15.4, (1) implies (2). For the converse it suffices to
verify that E satisfies the conditions (1)—(4) of Theorem 15.14. That 15.14(1) and
15.14(2) hold follows from Proposition 14.6. The validity of 15.14(3) can be established
as in the corresponding part of the proof of Theorem 15.14 by replacing the source

S=(C LN i) by a small subsource that contains a representative for each f; € E.
Likewise the validity of 15.14(4) can be established as in the corresponding part of the

proof of Theorem 15.14 by replacing the source S = (A f—J> Bj) by a small subsource
that contains a representative for each f; € E.

The equivalence of the conditions (2)—(5) can be established as in Proposition 14.11 by
using the fact that the assumption made there that products of pairs exist is not needed
here, since we have (E, M)-factorizations for 2-sources. Details are left to the reader.

15.21 COROLLARY

In a co-wellpowered category A with products, every factorization structure (E, M) for
morphisms with E C Epi(A) can be uniquely extended to a factorization structure (E, M)
for sources. O

15.22 EXAMPLE
The factorization structure (dense maps, closed embeddings) for morphisms

e cannot be extended to a factorization structure (dense maps, M) on Top, but
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e can be uniquely extended to a factorization structure (dense maps, M) on Haus.

The latter is one of the most important factorization structures on Haus.

15.23 REMARK

Proposition 15.19 shows that products are a suitable tool for extending factorization
structures for morphisms to those for small sources. Proposition 15.20 shows that co-
wellpoweredness is a suitable tool for extending factorization structures for small sources
to those for sources. The next proposition shows that factorization structures themselves
can be used to extend factorization structures of morphisms to those for sources.

15.24 PROPOSITION

In an (E,M)-category A every factorization structure (C,N) for morphisms with
C C E can be uniquely extended to a factorization structure (C,IN) for sources.

Proof: Let N be the conglomerate of all sources of the form M on with M € M and
n € N. If S is a source with (F, M)-factorization S = Moe and e =nocisa (C,N)-
factorization, then S = (M on) o c is a (C,N)-factorization. If f and ¢ are morphisms
with ¢ € C, and N/ = M on and S are sources with n € N and M € M (i.e., N € N)
and if N o f = Soc, then diagonals dy and dy can be successively constructed such that
the diagrams

oo o e oo
nOfl 7 JS and fJ 7 di  and hence fJ{ 7 ls
commute. Uniqueness follows from ¢ € C C E C Epi(A). O

FACTORIZATION STRUCTURES AND LIMITS

The fact that in an (E, M)-category every extremal mono-source belongs to M [cf. 15.5(2)]
implies that all limit sources belong to M (cf. Proposition 11.6). Below, we further ex-
plore the relationship between factorization structures and limits.

15.25 THEOREM

Let A be a strongly complete, extremally co-wellpowered category. Then the following
hold:

(1) A is an (ExtrEpi, Mono-Source)-category.
(2) If A is co-wellpowered, then A is an (Epi, ExtrMono-Source)-category.

(8) If in A regular epimorphisms are closed under composition, then A is a
(RegEpi, Mono-Source)-category.
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Proof:

(1).

Let S = (A ELN i)1 be a source. By Theorem 14.17, for each i € I there is

an (ExtrEpi, Mono)-factorization A i, A, = A S5 B ™5 A;. Since A is
extremally co-wellpowered, there exists a subset J of I, and for each ¢ € I there is
a j(i) € J and an isomorphism h; with e; = h;oej(;) (where for i € J we can choose

j(i) =i and h; = id). The family (B;);es has a product (P 2, Bj)y. Let

Al p_gcpmp

be an (Epi, Mono)-factorization. Then

miohiopj (4) om

AL 4= a8, p ZEEHOTE, Y,

is an (Epi, Mono-Source)-factorization of S. Hence (1) follows from Theorem 15.10.

. Since A has equalizers and intersections, it is (Epi, ExtrMono)-structured (14.19).

By Corollary 15.21, A is an (Epi, M)-category for a suitable conglomerate M of
sources. Moreover, by (1), A is an (ExtrEpi, Mono-Source)-category. Hence by
Proposition 15.8(4), A has coequalizers. Thus by Proposition 15.8(3), M is the
conglomerate of all extremal mono-sources.

. By (1) and Proposition 15.7, A has coequalizers. Thus by Proposition 14.22, A is

(RegEpi, Mono)-structured. By Proposition 15.24 this implies that A is a (RegEpi,
M)-category for some conglomerate M. By 15.8(4) it follows that M is the con-
glomerate of all mono-sources in A. O

15.26 REMARK

If A is a strongly complete, extremally co-wellpowered category, there need not be any
M for which A is an (Epi, M)-category. See Exercise 15D.
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EXERCISES

15A. Swell Epimorphisms

A morphism f in A is called a swell epimorphism provided that A has the unique
({f}, Mono-Source)-diagonalization property. Show that

(a) Every strict epimorphism is swell, but not vice versa.

(b) Every swell epimorphism is an epimorphism.

c) Every swell epimorphism is a strong epimorphism (cf. 14C), but not vice versa.
(d)

d) The class of swell epimorphisms is closed under right-cancellation, composition, and

the formation of cointersections, pushouts, and coproducts.

(e) Under each of the following assumptions the equality SwellEpi = ExtrEpi holds in
A:

(el) In A 2-sources are (Epi, Mono-Source)-factorizable [but cf. Exercise 15B(b)].
(e2) A is strongly complete and extremally co-wellpowered.

(e3) A is complete and in A every mono-source contains a small mono-source.
(e4) A is strongly cocomplete. [Cf. (d), Corollary 15.15, Proposition 15.7, and (f).]
(f) If A is an (£, Mono-Source)-category, then £ = SwellEpi = ExtrEpi.

15B. (E, —)-Categories

A is called an (E, —)-category provided it is an (E, M)-category for some M. Show
that

(a) Every (Epi,—)-category is a (SwellEpi,—)-category [cf. Theorem 15.14].

e — 0
is a (SwellEpi, —)-category, but neither an (Epi, —)-category nor an (ExtrEpi, —)-
category. In particular, SwellEpi # ExtrEpi.

(b) The category

(c) Every partially ordered set, considered as a category, is an (ExtrEpi, Mono-Source)-
category [and SwellEpi = ExtrEpi]. But a partially ordered set (X,<) is an
(Epi, —)-category if and only if for each x € X the set {y € X | z < y} is a
complete lattice. [E.g.,

./.\.
1><]

is an (Epi, —)-category, but the addition of a smallest element destroys this property.]
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(d) Let A bean (E,—)-category. Show that for any D C E, A is a (D, —)-category if and
only if Iso(A)C D and D is closed under composition, pushouts, and cointersections.

15C. (ExtrEpi, Mono-Source)- vs. (Epi, ExtrMono-Source)-Categories
Show that

(a) Every (Epi, ExtrMono-Source)-category is an (ExtrEpi, Mono-Source)-category [cf.
Ex. 15B(a) and 15A(e)].

(b) Not every (ExtrEpi, Mono-Source)-category is an (Epi, ExtrMono-Source)-category
[cf. Ex. 15B(c), 15D, or 16A(b)].

15D. A Strongly Complete, Extremally Co-wellpowered,
Non-(Epi, —)-Category

Let A-CCPos be the construct that has as objects all triples (X, <,\) with (X, <) a
partially ordered set in which each nonempty chain has a join and A : X — X a unary
(not necessarily order-preserving) operation, and as morphisms all A-homomorphisms

that preserve joins of nonempty chains. Show that
(a) A-CCPos is complete, cocomplete, and wellpowered, hence strongly complete.

(b) A-CCPos is extremally co-wellpowered but not concretely co-wellpowered, hence
not co-wellpowered. [Hint: Consider for each limit ordinal « the natural injection
By <% A, where By = (N, =, \) with A(n) = n + 1 and where Ay = (Xa, <, \a)
with (X, <) the ordered set of all ordinals less than or equal to v and A\, : X, — X,
defined by Ao (8) = Min{5 + 1, a}.]

(¢) A-CCPos is an (ExtrEpi, Mono-Source)-category [cf. Theorem 15.25].

(d) A-CCPos does not have cointersections. [Hint: Consider for each ordinal « the
natural injection By —~ B,, where B, = (Yo, <, Ao) with (Y, <) the set of all
ordinals less than a4+ w, ordered by 5 < v < (8 < v < a w.r.t. the natural order of
ordinals), and A\, (8) = 5+ 1.]

(e) A-CCPos is not an (Epi, —)-category [cf. 15.16(2)], but (Epi, Small ExtrMono-
Source) is a factorization-structure for small sources on A-CCPos [cf. Proposition
15.19 and Corollary 14.21].

15E. Re: Theorem 15.14

Consider the three-element chain {0, 1,2} with its natural order as a category A and let
E consist of all A-morphisms except 0 — 2. Show that A and E satisfy conditions (1),
(3), and (4) of Theorem 15.14, but not condition (2).

15F. Existence of Coequalizers

(a) Show that each category A that satisfies one of the following conditions, has co-
equalizers:

(1) A has (Epi, Mono-Source)-factorizations,
(2) A is strongly complete and extremally co-wellpowered [cf. Theorem 15.25].
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(b) Construct a strongly complete category that does not have coequalizers.

15G. Factorization Structures for Empty Sources
(a) Let (E,M) be a factorization structure for empty sources on A. Show that
(1) An empty source (A, ) belongs to M if and only if A is E-injective.

(2) The full subcategory of A that consists of all E-injective objects is reflective in
A.

(b) Let E be a class of epimorphisms in A that is closed under composition with iso-
morphisms. Show that the following are equivalent:

(1) There exists a class M of empty sources such that (E,M) is a factorization
structure for empty sources on A.

(2) A has enough FE-injectives, i.e., for each A-object A there exists an E-
injective object B and a morphism A — B in E.

(c) Let (E,M) be a factorization structure for morphisms on a category A with a
terminal object T. Let N be the class of all empty sources (A, ) with A — T € M.
Show that (E, N) is a factorization structure for empty sources on A.

15H. E-Injectives
Show that every (E, M)-category has enough E-injectives.

151. Factorization Structures for 2-Sources and 1-Sources
Let (E,M) be a factorization structure for 2-sources and 1-sources on A. Show that

(a) Conditions (1), (2), (3), (5), and (6) of Proposition 14.11 are equivalent to each
other and to each of the following conditions:

(7a) a morphism f belongs to M iff f = goe and e € E imply e € Iso(A).
(7b) a l-source or 2-source F' belongs to M iff F' = Goe and e € F imply e € Iso(A).
(8) for each object A the 2-source A LN belongs to M,
(9) for each 1-source A =~ B in M the 2-source B «— A - B belongs to M,
(10) for each l-source A -+ B in M and each morphism A L, ¢ the 2-source
Bmoal, C belongs to M.

(b) The full subcategory B of A that consists of those objects A for which the 2-source

A4y belongs to M is closed under the formation of products and M-
subobjects.

15J. Factorization Structures for Small Sources
Show that

(a) (Mor, Small Product) is a factorization structure for small sources on Set, but Set
is not a (Mor, —)-category.
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(b) (Epi, Small ExtrMono-Source) is a factorization structure for small sources on
A-CCPos, but A-CCPos is not an (Epi, —)-category.

15K. Source-Sink-Diagonals
Show that if (X; —— X)r is an epi-sink, (X; L, Y)s is an arbitrary sink, (Y SN Y;)s
is a mono-source, and (X I, Y;)s is an arbitrary source in Set, then there exists a

unique function X %, ¥ such that the following diagram commutes:

XZLX

17}

Y =Y

15L. Dispersed Factorization Structures

Let (E,M) be a fixed factorization structure on A. For a full subcategory B of A call
an A-morphism f B-concentrated provided that f € E and each B-object is {f}-
injective, and call an A-source S with domain A B-dispersed provided that the source
obtained from S by adding all morphisms with domain A and codomain in B belongs
to M. Show that

(a) A is a (B-Concentrated, B-Dispersed)-category.

(b) If B is E-reflective, then the following are equivalent for each A-object A:
(1) A belongs to B,
(2) the empty source with domain A is B-dispersed,
(3) A is B-Concentrated-injective.

(c) There are at least as many factorization structures on A as there are E-reflective
subcategories of A.

(d) Each of the categories Top and Rere has a proper class of factorization structures.

(e) If (C,D) is a factorization structure on A with C C E, then the following are
equivalent:

(1) there exists a full subcategory B of A with C' = B-Concentrated morphisms
and D = B-Dispersed sources,

(2) ifgofeCand f € E, then f € C.

15M. Factorization Structures on Cat
Show that

(a) Cat is an (Epi, ExtrMono-Source)-category.
(b) Cat is an (ExtrEpi, Mono-Source)-category.
(c) Cat is not a (RegEpi, —)-category.
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15N. Factorization Structures on Set? and (Set?)°P

Show that Set? and (Set?)°P have regular factorizations.

150. Re: Proposition 15.19

Show that one cannot omit the hypothesis in Proposition 15.19(2) that an initial object
exists. [Consider discrete categories.]
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16 E-reflective subcategories

In this section we will demonstrate that factorization structures provide a convenient
tool to investigate reflective subcategories. The typical situation is this: B is an (E, M)-
category and A is an isomorphism-closed full E-reflective subcategory of B.

16.1 DEFINITION

Let B be a category and let E be a class of B-morphisms. An isomorphism-closed, full
subcategory A of B is called E-reflective in B provided that each B-object has an
A-reflection arrow in E. In particular, we use the terms epireflective (resp. monore-
flective, bireflective) in case E is the class of epimorphisms (resp. monomorphisms, bi-
morphisms) in B. Likewise, we use the terms regular epireflective (resp. extremally
epireflective) in case F is the class of regular (resp. extremal) epimorphisms in B.

DuaL NoTioN: E-coreflective subcategory.

16.2 EXAMPLES
(1) In Met the full subcategory of complete metric spaces is bireflective [cf. 4.17(8)].

(2) HComp is reflective but not epireflective in Top, even though HComp is epire-
flective in Haus, and Haus is epireflective in Top.

(3) Ab is regular epireflective in Grp [cf. 4.17(4)] and Pos is regular epireflective in
Prost [cf. 4.17(3)].

(4) An isomorphism-closed full concrete subcategory of a concrete category B is (identity
carried)-reflective in B if and only if it is concretely reflective in B (cf. 5.22).

(5) The construct of minimal acceptors is regular epireflective in the construct of reach-
able acceptors [cf. 4.17(7)].

Haus is epireflective in Top
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16.3 PROPOSITION

Every monoreflective subcategory of B is bireflective in B.

Proof: Let A be a monoreflective (hence by Definition 16.1 a full) subcategory of B.
P

Consider an A-reflection-arrow B — A for some B-object B and a pair A —= B’ of
q

7,,/

B-morphisms with por = gor. Let B — A’ be an A-reflection arrow for B’. Then
(r'op)or = (r'og)or and A’ € Ob(A) imply that " op =1’ 0 ¢. Since ' is assumed to
be a monomorphism, this implies that p = q. Hence r is an epimorphism. O

16.4 PROPOSITION

Every coreflective isomorphism-closed full subcategory of B that contains a B-separator
is bicoreflective in B.

Proof: Let S be a separator in B, let A be a coreflective full subcategory of B that
contains S, and let A < B be an A-coreflection arrow. By the dual of Proposition 16.3

P
it suffices to show that c is an epimorphism. Let B —= B’ be distinct morphisms. Then
q

there exists a morphism S . B with poh # qoh. Since S belongs to A, there exists a

unique morphism S M, Awith h = col/. Consequently, pocoh’ = poh # qoh = qocol/’,
which implies that poc # qoec. O

16.5 EXAMPLES
The above proposition immediately implies that

(1) Every coreflective isomorphism-closed full subcategory of Top (resp. Pos) that con-
tains a nonempty space (resp. a nonempty poset) is bicoreflective in Top (resp. Pos);
hence it is a coreflective modification.

(2) Every reflective isomorphism-closed full subcategory of Topg (resp. Pos) that con-
tains the Sierpinski space (resp. a two-element chain) is bireflective in Topg (resp.
Pos); hence it is a reflective modification.

(3) Set (resp. Vec) contains precisely one proper coreflective, isomorphism-closed, full
subcategory — namely, the one consisting of the empty set (resp. the zero vector
spaces).

(4) Set contains precisely two proper reflective, isomorphism-closed, full subcategories
— namely, the one consisting of all one-element sets and the one consisting of all sets
with at most one element. Vec contains precisely one proper reflective, isomorphism-
closed, full subcategory — namely, the one consisting of all zero vector spaces.

16.6 REMARK

It is not always easy to determine whether or not a given subcategory is reflective. (For
example, which of the full subcategories consisting of regular spaces, or of connected
spaces, or of compact spaces is reflective in Top?) Fortunately, for E-reflectivity we
have powerful and easily applied criteria, as will be seen in the next results.
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16.7 DEFINITION
Let M be a conglomerate of sources in a category B. A subcategory A of B is said to

be closed under the formation of M-sources provided that whenever (B Ji, Air
is a source in M such that all A; belong to A, then B belongs to A.

16.8 THEOREM

If A is a full subcategory of an (E,M)-category B, then the following conditions are
equivalent:

(1) A is E-reflective in B.
(2) A is closed under the formation of M-sources in B.

In the case that B has products and is E-co-wellpowered, the above conditions are equiv-
alent to:

3) A is closed under the formation of products and M-subobjects®® in B.
(3) ]

Proof: (1) = (2). Let S = (B -~ A;); be a source in M such that all A; belong to
A. If B-5 A is an A-reflection arrow for B in E, then S factors through e. Hence, by
Proposition 15.5(9)(a), e is an isomorphism. Thus B belongs to A.

(2) = (1). For any B-object B, consider the source S with domain B, consisting of all
morphisms with domain B and codomain in A. If S = Moe is an (E, M)-factorization,
then e is an A-reflection arrow for B.

(2) = (3). Obvious.

(3) = (2). Consider a source M = (B —“- A;); in M such that all A; belong to A.
Foreachi e Ilet B A, = B 25 B, =5 A, be an (E, M)-factorization. Then each
B;, being an M-subobject of A;, belongs to A. Since B is E-co-wellpowered, we can
select a subset J of I and for each 7 € I a j(i) € J and an isomorphism h; : Bj;) — B;
with e; = h; o ej(;y. If (P, ;) is a product of the family (Bj);es, then P belongs to A.
If

B9 . p_pe o™ p

is an (F, M)-factorization, then C belongs to A, and we have commutativity of the

diagram
B
/% e
B./: _ A
c m P (i) 3(4) h; Bl g Al

Since M factors through e, and e € E, by Proposition 15.5(9)(a), e is an isomorphism.
Thus B belongs to A. O

56 An M-subobject is simply a singleton M-source. It need not be a monomorphism.
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16.9 COROLLARY

A full subcategory of a co-wellpowered, strongly complete category B is epireflective in B
if and only if it is closed under the formation of products and extremal subobjects in B.

Proof: Immediate from Theorems 16.8 and 15.25(2). a

16.10 EXAMPLE

The full subcategory B of BiTop that consists of all bitopological spaces with both
topologies Hausdorff is strongly complete (but not co-wellpowered). The full subcate-
gory BiComp of B [cf. 4F(b)] is closed under the formation of products and extremal
subobjects in B, but is not reflective in B.

SUBCATEGORIES DEFINED BY
EQUATIONS AND IMPLICATIONS

16.11 MOTIVATING REMARK

Many familiar mathematical objects (e.g., semigroups, monoids, groups, abelian groups,
rings, lattices, boolean algebras, vector spaces, etc.) can be defined by means of opera-
tions and equations. Moreover, the corresponding categories (Sgr, Mon, Grp, etc.) can
be obtained as full subcategories of categories of the form Alg(2), consisting of those
objects that satisfy suitable equations. This singling out of subcategories by equations
(or, more generally, by implications) will be described here in some detail in order to
motivate the much simpler and far more elegant categorical concepts introduced below.
As an example, consider Sgr, which is the full subcategory of the category Alg(2) of
algebras with one binary operation (usually written as multiplication) consisting of those
algebras that satisfy the equation:

Ve VyVz x-(y-2)=(z-y)- 2. (e)

In order to find a categorical description of the above equation (e) and of those al-
gebras that satisfy (e), observe that the expressions x - (y - z) and (x - y) - z can be
interpreted as elements ¢t and s of the free algebra F' on the set {z,y, z} of generators. If
n: {x,y,z} — F is the corresponding universal arrow, then, for any algebra A in Alg(2),
the following conditions are equivalent:

(1) A is a semigroup,
(2) A satisfies equation (e),

(3) for every map f: {z,y,z} — |A| (i.e., for every interpretation of the variables .y,
and z), the unique homomorphism f: F — A, determined by f = f o7, satisfies
f(t) = f(s).

There is a further characterization: if p is the congruence on F' generated by (¢, s), (i.e.,

the smallest congruence relation on the algebra F' such that tps) and F - F/p is the
natural map onto the quotient algebra F'/p, then (3) is equivalent to
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(4) A is {e}-injective (i.e., every homomorphism from F' to A factors through e).

Hence an algebra satisfies equation (e) if and only if it is injective with respect to a
suitable morphism e. In general, an equation in Alg(Q) is a pair (¢,s) of elements in
some free (2-algebra F'. An Q-algebra A satisfies the equation (¢, s) if and only if A is
{e}-injective, where F' -~ F/p is the quotient map corresponding to the congruence
relation p on F' generated by (¢, s).

Slightly more complicated — but in its categorical formulation even simpler (!) — is the
concept of implications. An implication P = K consist of a set P of equations, called
premises, and a set K of equations, called conclusions. For example, the implication

VeVyVz z-y=x-2 = y=z (i)

describes, together with above equation (e), the left-cancellative semigroups. It is clear
what it means to satisfy implication (i): whenever an interpretation of variables satisfies
the premise, then it also satisfies the conclusion. (In this example, both the set of
premises and the set of conclusions are singletons.) Formally, an implication P X Kin
Alg(Q) consists of a set X (of “variables”), a subset P of |F| x |F| (called the set of
“premises” ), and a subset K of | F'|x|F| (called the set of “conclusions”), where F’ denotes
the canonical free Q-algebra on X. (Cf. Example 8.23(6).) An Q-algebra A satisfies the
implication P XK provided that under each interpretation of variables (i.e., for each
map f: X — |A]) such that each premise (p,q) € P becomes true (i.e., such that the
homomorphic extension f: F — A of f satisfies f(p) = f(q) for each (p,q) € P), each
conclusion (t,s) € K must be true (i.e., f(t) = f(s) for each (t,s) € K). If 7 resp.
~ are the congruence relations on F' generated by P resp. by PU K, if F 2N F/m
and F - F/~ are the associated quotient maps, and if F/r — F/~ is the unique
homomorphism satisfying ex = e o ep, then the following conditions are easily seen to
be equivalent for any Q-algebra A:

(1) A satisfies the implication P 2K,
(2) A is {e}-injective in Alg(Q).

Since in Alg(2) morphisms of the form F/m < F/~ are, up to isomorphism, precisely
the surjective homomorphisms (= epimorphisms = regular epimorphisms), we are led to
the following definition:

16.12 DEFINITION

(1) (Regular) epimorphisms are called (regular) implications.

(2) An object @ satisfies the implication A — B provided that @ is {e}-injective

(i.e., provided that for each morphism A R () there exists a morphism B 7, Q
with f = foe).

(3) A full subcategory A of B is called implicational provided that there exists a class
C of implications in B such that A consists precisely of those B-objects that satisfy
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each implication in C'. Constructs that are concretely isomorphic to implicational
subconstructs of Alg(Q) for some ) are called finitary quasivarieties.‘”

In case C can be chosen to be a subclass of some class F of implications in B, A is called
E-implicational.

16.13 EXAMPLES
(1) Pos is an implicational subcategory of Rel. Consider the following implications:

REFLEXIVITY: ({2},0) “% ({z}, {(z,2)}),

TRANSITIVITY: ({z,9, 2}, {(z, 1), (4, 2)}) == ({z. 5, 2}, {(@, 1), (3, 2), (2, 2)}),
A}l:ITISTA)aME?P)iY: ({2, 9} {(2,9), (v, 2)}) — {a} {(x,2)}),
whnere e(r) = ely) = .

A binary relation satisfies the above implications if and only if it is a poset.

(2) Ti-spaces form an implicational subcategory of Top. If P is the Sierpinski space
and P’ is a singleton space, then a topological space is T} if and only if it satisfies
the implication P — P’.

(3) In ¥-Seq, ¥ = {0}, consider all the automata with permutation transition (i.e.,
d(o,x) = 0(o,y) = = = y). These form an implicational class given by P, — P,
(n=1,2,...), where P, has states x,y,1,...,n such that §(o,z) = é(c,y) = 1 and
1,...,n form a cycle, and P/ is the quotient of P, obtained by merging z with y.

(4) The constructs Vec, R-Mod, Ab, Grp, Mon, Sgr, Rng, Lat, DLat, SLat, Boo,
pSet, and AbTop (= abelian topological groups) are finitary quasivarieties. How-
ever, Field is not a finitary quasivariety.

16.14 THEOREM
A full subcategory of an (E,M)-category B is E-implicational if and only if it is E-
reflective in B.

Proof: Let C be a subclass of E and let A be the full subcategory of B determined
by C; i.e., given by those objects that satisfy each implication in C. Consider a source
(B LN A;)r in M such that all A; belong to A. By Theorem 16.8, it is sufficient to

show that B belongs to A. Let Q — R be an element of C"and let Q@ B be a
morphism. Then for each ¢ € I there exists a morphism R SN A; with gjoe =m; o f.
Hence there exists a diagonal d that makes the diagram

Q——R

171

BTZVAi

commute. In particular f = d o e. Hence B belongs to A.

57Recall that in Alg(Q), Epi = RegEpi = surjective homomorphisms.
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Conversely, let A be a E-reflective full subcategory of B. Consider the class C of all
A-reflection arrows for B-objects, and let C be the implicational subcategory of B
determined by C. Obviously, A C C. For the converse, let D be an object of C and
let D <5 A be an A-reflection arrow for D. Since D satisfies the implication ¢, there
exists a morphism f with idp = f o c. Thus ¢ is an epimorphic section (cf. 15.4); hence
an isomorphism. Since A is isomorphism-closed, this implies that D belongs to A.
Therefore C = A. O

16.15 REMARK

As indicated in Remark 16.11, equations in Alg(€2) are those implications that have
the empty set P of premises; equivalently, they are those implications A — B whose
domain A is a free Q2-algebra. The concept of free Q-algebras, unfortunately, refers to the
construct Alg(Q2) and not to the abstract category Alg(2). Fortunately, however, as we
will see below, a full subcategory A of Alg(2) is E-implicational, where E is the class of
all (regular) implications in Alg(£2) with free domain, if and only if A is E-implicational,
where E is the class of all (regular) implications in Alg(Q) with (regular-) projective
domain. This motivates the following definition:

16.16 DEFINITION

(1) Let E be a class of epimorphisms in a category B. An implication in F with E-
projective domain is called an F-equation. Regular epimorphic equations are called
regular equations. A full subcategory A of B is called F-equational provided
that there exists a class C' of F-equations in B such that A consists precisely of
those B-objects that satisfy each E-equation in C.

(2) Let B be a construct. Regular implications with free domain are called equations.
A full subcategory A of B is called equational provided that it can be defined as
above by a class C' of equations in B.

(3) Constructs that are concretely isomorphic to equational subconstructs of Alg(2)
for some (1 are called finitary varieties.

16.17 THEOREM

Let B be an (E,M)-category with enough E-projectives (9.22 dual). Then the following
conditions are equivalent for any full subcategory A of B:

(1) A is E-equational in B.
(2) A is closed under the formation of M-sources and E-quotients in B.

In the case that B has products and is E-co-wellpowered, the above conditions are equiv-
alent to:

(3) A is closed under the formation of products, M-subobjects, and E-quotients in B.
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Proof: (1) = (2). By Theorems 16.8 and 16.14, A is closed under the formation of
M-sources in B. Let A be in A and be A < B be in E. To show that B is in A we will
verify that B satisfies any E-equation C' — D that is satisfied by all A-objects. Since

C is E-projective, for each morphism C' L: B there exists a morphism f with f =e of.
Since A is in A, there exists a morphism f with f = foc. Hence f = (eo f) o c. Thus
B belongs to A.

C——D

f \ l

f

B+——A
(2) = (1). By Theorem 16.8, A is E-reflective in B. Let C be the class of all A-reflection
arrows for FE-projective objects P, and let C be the subcategory of B determined by C.

Obviously, A C C. For the converse, let D be an object of C. Then there exists an
E-projective object P and a morphism P < D in E. Let P = A be an A-reflection

arrow for P. Since D satisfies the F-equation c, there exists a morphism A N D with
e = foec. Since c is an epimorphism, this implies, by Proposition 15.5(5), that A b
belongs to E. Thus D is an E-quotient of an A-object, and so belongs to A.

(2) & (3). Immediate from Theorem 16.8. O

16.18 THEOREM

Let B be a fibre-small, transportable, complete construct that has free objects and for
which the surjective morphisms, extremal epimorphisms and regular epimorphisms coin-
cide. Then for full subconstructs A of B the following conditions are equivalent:

(1) A is equational in B,
(2) A is regular-equational in B,

(8) A is regular epireflective and closed under the formation of reqular quotients (=
homomorphic images) in B,

(4) A is closed under the formation of products, subobjects, and homomorphic images
in B.

Proof: In B the extremal epimorphisms are precisely the surjective morphisms, and, by
Proposition 8.28 the monomorphisms are precisely the injective morphisms. Thus fibre-
smallness and transportability imply wellpoweredness and extremal co-wellpoweredness.
Hence completeness implies strong completeness. Since surjective morphisms are closed
under composition, by Theorem 15.25(3), B is a (RegEpi, Mono-Source)-category. Con-
sequently, Theorem 16.8 and Theorem 16.17 imply the equivalence of the conditions (2),
(3), and (4). Since by Proposition 9.29 every free object is regular projective, (1) implies
(2). To show that (3) implies (1), let C' be the class of all A-reflection arrows F' - A
for free objects F' in B, and let C be the subcategory of B determined by C. Since in
B every object is a homomorphic image of a free object, the same argument as in the
proof of Theorem 16.17 shows that C = A. O

18th January 2005



Sec. 16] E-reflective subcategories 283

16.19 COROLLARY
For full subcategories A of Alg(QY), the following hold:

(1) A is implicational in Alg(Q) if and only if A is closed under the formation of
products and subalgebras.

(2) A is equational in Alg(QY) if and only if A is closed under the formation of products,
subalgebras and homomorphic images. O

E-REFLECTIVE HULLS
16.20 PROPOSITION
For (E,M)-categories B, the following hold:

(1) The intersection of any conglomerate of E-reflective subcategories of B is E-reflec-
tive in B.

(2) For every full subcategory A of B there exists a smallest E-reflective subcategory of
B that contains A.

Proof: (1) follows from Theorem 16.8. (2) follows from (1). O

16.21 DEFINITION

If A is a full subcategory of an (E, M)-category B, then the smallest E-reflective sub-
category of B that contains A is called the E-reflective hull of A in B.

16.22 PROPOSITION
If A is a full subcategory of an (E,M)-category B, then a B-object B belongs to the

E-reflective hull of A in B if and only if there exists a source (B LN A;)r in M with

all A; in A. O
16.23 Examples
B A Epireflective hull
of Ain B

Top S (= Sierpinski-space) Top,

Top [0, 1] Tych

Haus [0, 1] HComp

Rel ({0,1}, <) Pos

Set {0,1} Set

Vec R Vec
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16.24 PROPOSITION (Reflectors as Composites of Epireflectors)

If A is a full reflective subcategory of an (Epi, Mono-Source)-factorizable category B,
and if C is the extremally epireflective hull of A in B, then A is epireflective in C and
C is epirefiective in B.

Proof: By Theorem 15.10, B is an (ExtrEpi, Mono-Source)-category. Hence A has an
ExtrEpi-reflective hull C. Obviously, C is epireflective in B, and A is reflective in C. For
any C'in C there exists, by Proposition 16.22, a mono-source M = (C' LN A;)r with all
A; in A. Let C - A be an A-reflection arrow for C. Then M factors through r, which
implies that r is a monomorphism in B, hence also in C. Thus A is monoreflective in
C, so that by Proposition 16.3 it is epireflective in C.

16.25 REMARK

If we generalize the situation that we are working in just slightly, our results may break
down completely. Here are two examples, the first very simple, the second very deep:

(1) Consider the ordered set of all natural numbers as a category A. Then A almost
satisfies the assumptions of Theorem 15.25: A is well-powered, co-wellpowered, and
“almost” strongly complete (every nonempty diagram has a limit). But A is not an
(Epi, M)-category for any M. If B (resp. C) is the isomorphism-closed, epireflective
subcategory consisting of all even (resp. all odd) numbers, then B N C is empty —
hence not even reflective.

(2) The category Top is strongly complete, wellpowered, and co-wellpowered. However,
there exist two isomorphism-closed full reflective subcategories of Top whose inter-
section is not reflective in Top. [For a corresponding example in the category of
bitopological spaces see Exercise 4F(b).]

If in a category B the intersection of two (epi)reflective isomorphism-closed full subcat-
egories is not (epi)reflective, then this intersection obviously has no (epi)reflective hull
in B.

If there is an isomorphism-closed full subcategory of B that does not have an (epi)reflec-
tive hull in B, then (epi)reflective subcategories of B cannot be characterized among the
isomorphism-closed full subcategories of B by suitable closure properties.
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EXERCISES

16A. Epireflective Subcategories with Bad Behavior
a) Let I be a proper class, and let the category B have as objects A9, AL, A% fori € I,
0> A1, A2
A%, and A}; and morphism-sets such that

no element, if m < n or (m =n and i # j)
homp (A, AZ)) has < precisely two elements, if (n,m) = (0,1) or (n,m) = (2,3)

precisely one element, otherwise.

Let A be the full subcategory obtained from B by removing object A%.
Show that

(1) A is regular epireflective in B.
(2) B is co-wellpowered, but A is not even extremally co-wellpowered.

(3) The inclusion functor A — B sends certain extremal epimorphisms to non-
epimorphisms.

(b) Let the category B have as objects Ay, for n € N, and A}, for n € N; and morphism-
sets such that

precisely two elements, if n =m and @ < j
homp (Afl, Ain) has < no elements, if m <n or j <1

precisely one element, otherwise.
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Let A be the full subcategory of B whose objects are all A9 and all Al .
Show that

(1) A is epireflective in B.

(2) B has regular factorizations, but A is not even (Epi, Mono-Source)-factorizable.
[Consider empty sources.]

(3) The inclusion functor A < B sends certain regular epimorphisms to non-
extremal epimorphisms.

16B. Inheritance of Factorization Structures
Let £ : A — B be the embedding of a subcategory. Show that

(a) If B has regular factorizations and A is regular epireflective in B, then A has regular
factorizations and E preserves and reflects regular epimorphisms.

(b) If B is an (ExtrEpi, Mono-Source)-category and A is extremally epireflective in B,
then A is an (ExtrEpi, Mono-Source)-category and E preserves and reflects extremal
epimorphisms.

(c) If B is an (Epi, ExtrMono-Source)-category and A is epireflective in B, then E need
not preserve epimorphisms [cf. Haus and Top].

(d) If B has regular factorizations and A is epireflective in B, then A need not be an
(ExtrEpi, Mono-Source)-category and E need neither preserve regular nor preserve
extremal epimorphisms [cf. Exercise 16A(b)].

16C. Co-wellpoweredness and (Epi)Reflective Hulls

Let A be an isomorphism-closed full subcategory of a complete, well-powered, and co-
wellpowered category C, and let B be the epireflective hull of A in C. Show that

(a) A is epireflective in C if and only if A is closed under the formation of products and
regular subobjects in C.

(b) The embedding A — B preserves epimorphisms.

(c) If D is an isomorphism-closed full subcategory of B that contains A, then the
following are equivalent:

(1) D is reflective in C,
(2) D is epireflective in B.
(d) B is strongly complete.

(e) If B is co-wellpowered, then the epireflective hull of A in B is a reflective hull of
A in C, i.e., the smallest isomorphism-closed full reflective subcategory of C that
contains A.

(f) The following are equivalent:

(1) A is reflective in C and co-wellpowered,
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(2) A is limit-closed in C and B is co-wellpowered.
(g) The following are equivalent:
(1) A has a co-wellpowered reflective hull in C,

(2) A has a co-wellpowered epireflective hull in C.

16D. Subcategories of Top

(a) Show that a full reflective subcategory of Top is co-wellpowered if and only if its
epireflective hull in Top is co-wellpowered.

(b) Construct an epireflective, non-co-wellpowered subcategory of Top. [Cf. Example
7.90(3).]

(c) Construct a full, limit-closed, non-reflective subcategory of Top.

16E. Smallest E-Reflective Subcategories

Let (E, M) be a factorization structure for empty sources (resp. for morphisms) on a
category A (with a terminal object T'). Show that

(a) A is E-injective if and only if (A,0) € M (resp. A —T € M).

(b) The full subcategory B of A that consists of all E-injective objects is the smallest
E-reflective subcategory of A. Moreover, a morphism A — B is a B-reflection
arrow if and only if (4,0) = A - (B, () is an (F, M)-factorization [resp. if and
only if A— T =A - B — T is an (E, M)-factorization].

16F. The Cech-Stone Compactification

Show that if ' is the class of dense C*-embeddings and M is the class of perfect maps,
then (E, M) is a factorization structure for morphisms on Tych. Apply the results of
Exercise 16E.

16G. A Generalized Birkhoff Theorem

Let A be a full subcategory of an (E, M)-category B and let @ be a class of epimorphisms
in B such that

(o) B has enough Q-projectives,
() if goe € @ and e € F, then g € Q.
(a) Show that the following conditions are equivalent:
(1) A is closed under the formation of M-sources and Q-quotients.
(2) A is definable by implications B -~ C in E with Q-projective domain B.

(b) Show that in the case that A is co-wellpowered and has products, the above condi-
tions are equivalent to

(3) A is closed under the formation of products, M-subobjects, and Q-quotients.
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16H. Epireflective Subcategories Are Closed Under Extremal Mono-Sources

Let A be an epireflective subcategory of B and let (B ——— B;); be an extremal mono-
source in B. Show that whenever all B; belong to A, then so does B.

161. The Lattice of Regular Epireflective Subcategories

Show that the lattice of regular epireflective subcategories of
(a) Set has precisely two elements,

(b) Set? has the form

(c) (Set?)°P has the form

16J. Injective Hulls for Finitary Varieties

Show that in a finitary variety (A, U) every object has an injective hull if and only if
the following conditions (cf. 9C) are satisfied:

(1) Monomorphisms are pushout stable,
(2) A is M-co-wellpowered, where M is the class of essential monomorphisms.
16K. Finitary Quasivarieties Isomorphic to Finitary Varieties

Show that a finitary quasivariety (A, U) is a finitary variety if and only if there exists a

finitary variety (B, V') and an isomorphism A A, B.

16L. Strongly Limit-Closed vs. Epireflective Subcategories
A full subcategory A of B is called strongly limit-closed in B provided that whenever

(L fi, D;)op) is a limit of a diagram D : T — B and for each i € Ob(I) there exists a
j € Ob(I) with D; in A and homg(j,7) # 0, then L belongs to A. Show that:

(a) If A is epireflective in B, then A is strongly limit-closed in B.
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(b) If B is complete, wellpowered, and co-wellpowered, then a full subcategory A of B
is epireflective in B if and only if A is strongly limit-closed in B.

16M. A Characterization of Extremally Epireflective Subcategories

Show that a full subcategory of an extremally co-wellpowered, strongly complete category
B is extremally epireflective in B if and only if it is closed under the formation of products
and subobjects in B.

16N. Finitary Varieties and Finitary Quasivarieties
Show that
(a) All the finitary quasivarieties exhibited in Example 16.13(4) are finitary varieties.

(b) The full subconstruct TfAb of Ab is a finitary quasivariety, but is not a finitary
variety. [Cf. 20.41(2) and 24.7.]

(c) Every regular epireflective subconstruct of a finitary quasivariety is a finitary quasi-
variety.

(d) The finitary variety Grp is a full, isomorphism-closed, reflective subconstruct of the
finitary variety Sgr. However, Grp is not even implicational in Sgr.
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17 Factorization structures for functors

In §8 we have generalized the concept of morphisms to that of G-structured arrows,
where G is a functor. Here we will generalize, in an analogous way, the concept of
sources to that of G-structured sources. Many (but by no means all) of the results on
factorization structures of sources can be carried over to the context of G-structured
sources. Sometimes even proofs of the more general results can be readily obtained by
adapting the corresponding proofs from §15.

This section contains the basic results on factorization structures for functors. Special
classes of functors, defined by means of particular factorization properties, will be studied
in greater detail in the remaining chapters; especially: adjoint functors (Chapter V); and
topological, algebraic, and topologically algebraic functors (Chapter VI).

Domain and codomain of a source

17.1 DEFINITION
Let G: A — X be a functor. A G-structured source S is a pair (X, (f;, A;)icr) that

consists of an X-object X and a family of G-structured arrows X LN G A; with domain
X, indexed by some class I.

X is called the domain of § and the family (A;);cs is called the codomain of S.

17.2 REMARKS
(1) Whenever it is convenient, we use notations for G-structured sources such as

(X N GA;)ieror (X LR GA;)r (which is reminiscent of notations used for sources
in §15).
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(2) As with sources, we use, whenever convenient, such expressions as
(a) G-structured empty sources (i.e., X-objects),
(b) G-structured 1l-sources (i.e., G-structured arrows),
(c¢) G-structured 2-sources (when the cardinality of the index class is 2), and
(d) G-structured small sources (when the index class is a set).

(3) As with sources, every pair (X,S) that consists of an X-object X and a class S of
G-structured arrows with domain X can be considered to be a G-structured source
via indexing S by itself.

17.3 DEFINITION

Let G: A — X be a functor, let E be a class of G-structured arrows, and let M be a
conglomerate of A-sources. (E,M) is called a factorization structure for G, and G
is called an (E, M)-functor provided that

(1) E and M are closed under composition with isomorphisms in the following sense:
(la)if X > GA € Eand A5 B € Iso(A), then X - GA 9" GB € E,
(1b) if (A 5 4;); € Mand B 25 A € Tso(A), then (B 15 A ™ 4;); € M.

(2) G has (E,M)-factorizations, i.e., for each G-structured source (X LN GA)r
there exists X — GA € F and M = (A ™ A;); € M such that

XA ga, = x 5 6A S, GA; foreach i€l

(3) G has the unique (E,M)-diagonalization property, i.e., whenever X L, aa
and X - GB are G-structured arrows with (e, B) € E, and M = (A = A));
and S = (B LN A;)r are A-sources with M € M, such that (Gm;)o f = (Gfi)oe
for each ¢ € I, then there exists a unique diagonal, i.e., an A-morphism B 44
with f = Gdoe and § = M o d, which will be expressed (imprecisely) by saying
that the following diagram commutes:

X —-GB

[

GA Gy GAi

17.4 REMARKS
(1) A category A is an (F, M)-category if and only if the identity functor on A is an

(E, M)-functor (provided that we identify each A-morphism A —— B with the idx-
structured arrow (e, B)). Hence (E, M)-categories can be considered as special cases
of (E, M)-functors.
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(2) The dual of a factorization structure on G is a factorization structure on G°P, hence
it concerns factorizations of G-costructured sinks.

(3) A functor G is called an (E, —)-functor provided that there exists some M for which
G is an (E, M)-functor. Analogously for (—, M)-functors.

(4) Whereas every category is an (E,M)-category for suitably chosen E and M, a
functor is an (E, M)-functor for suitably chosen E and M if and only if it is an
adjoint functor (cf. 18.3).

17.5 EXAMPLES
(1) The forgetful functor U : Top — Set is a (Generating, Initial Mono-Source)-functor.
The desired factorizations of U-structured sources of the form (X ti, (Xi, 7)1

can be obtained in two steps: First, let X LN X, =X S5 Y 2 X, be an
(Epi, Mono-Source)-factorization in Set. Second, let 7 be the initial topology on Y
with respect to the m; and 7;. Then

XL (X)) = X5 (v r) T (X, m)

provides a factorization with the desired properties. By using similar arguments, U
can be seen to be an (Extremally Generating, Mono-Source)-functor and a (Bijection,
Initial Source)-functor.

(2) The forgetful functor U : Grp — Set is an (Extremally Generating, Mono-Source)-
functor. (Recall that X <5 UG is extremally generating if and only if the set e[ X]
generates the group G in the familiar algebraic sense.) The desired factorizations of

U-structured sources (X Ji, UG;)r can be obtained by either of the following two
constructions, each being of independent interest:

(a) Let X % UF be a universal arrow in Grp. Then each f; can be uniquely

extended to a homomorphism F s, G;. Let

Flog = Fa™q, el

be an (Epi, Mono-Source)-factorization of the source (f,); in the category Grp.
Then the factorization

Um,;

x g = x L pa UG, iel,

has the desired properties.

(b) Form the cartesian product conglomerate [[; G; and consider this as a (possibly
illegitimate) group by defining the operation coordinate wise. [That is, the mem-
bers of [ [; G; are functions « : I — |JG; with (i) € G, and (2-y) (i) = z(i)-y(7)
and 71(i) = (x(i))~!.] Define a function f: X — [[; Gi by (f(2))(i) = fi(z).
Then f[X] is a subset of [[; G;, and it clearly generates a (small) subgroup
H of the (possibly illegitimate) group [[; G;. Thus the codomain restriction
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e: X — UH of f together with the functions m;: H — G, defined by
m;(x) = x(i), form the desired factorization.®®

Observe that the second construction is more elementary than the first one, even
though it uses the generalized group [[; G; (which often fails to be a group because
it often fails to be a set).

(3) The forgetful functors U of many familiar constructs are (Extremally Generating,
Mono-Source)-functors, e.g., those of Top, Haus, Pos, Rel, Vec, Grp, Rng, Sgr,
Mon, Lat, Boo, HComp, Cat, and Alg(Q2). In each case a construction anal-
ogous to one of those given in (1) and (2) yields the desired factorizations. The
diagonalization property holds automatically: cf. Theorem 17.10.

17.6 THEOREM
If G is an (E,M)-functor, then each member of E is generating. A 154

17.7 PROPOSITION
If G: A — B is an (E,M)-functor, then the following hold:

(1) (E,M)-factorizations are essentially unique,

(2) M determines E via the unique diagonalization property,

(3) if A is an (E,M)-category, (e, A) € E and A £, BeE, then ((Gé)oe,B) € E.
[A 15.5]

17.8 REMARK

Even though (E, M)-functors are analogous to (E,M)-categories, not all of the prop-
erties of (E,M)-categories carry over to (F,M)-functors. In particular, for (E,M)-
functors

(I) M need not be determined by E [cf. 15.5(9)]. [The canonical forgetful functor
U : Top — Set is simultaneously an (F, M;)-functor for i = 1,2, where E consists
of all U-structured arrows (e, A) with e bijective and A discrete, M; consists of all
sources in Top, and My consists of all sources in Top with discrete domain.]

(2) Extremal mono-sources need not all belong to Mcf. 15.5(2)]. [In (1) above, there are
limit sources — even isomorphisms (considered as 1-sources) — that do not belong
to MQ]

(3) M need not be closed under composition [cf. 15.5(4)]. [If U and E are as in (1)
above, and M3 = My U {Q — R,R < C}, then U is an (E, Mj)-functor, but
@Q — C does not belong to Ms.]

S81f I is a set, then the entire construction above is just the image factorization of f = (f;) (as f = moe)
composed with the product source (711-)7 i.e., m; = m;om. Even if I is a proper class, the construction
could be performed in the quasicategory of “large groups”, but in order to introduce this entity we
would need to enrich our foundations.
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17.9 PROPOSITION

If G is an (E, Mono-Source)-functor, then E consists precisely of those structured arrows

that are extremally generating. A 15.8(1)

17.10 THEOREM
If a functor G has (Generating, Mono-Source)-factorizations, then G is an

(Extremally Generating, Mono-Source)-functor.

FACTORIZATION STRUCTURES AND LIMITS

17.11 THEOREM

Let A be a strongly complete category and let A “. X bea functor that preserves strong
limits.

(1) If G is extremally co-wellpowered or if A has a coseparator, then G is an (ExtrGen,
Mono-Source)-functor.

(2) If G is faithful and concretely co-wellpowered, then G is a (ConGen, Initial Mono-
Source)-functor.

Proof:

(1). In case G is extremally co-wellpowered, the result is a straightforward generaliza-
tion of Theorem 15.25(1). In case A has a coseparator C, we conclude as above
that G has (ExtrGen, Mono-Source)-factorizations for set-indexed G-structured
sources. As in Theorem 15.10 this implies that G has the (ExtrGen, Mono-Source)-
diagonalization property (for arbitrary sources). Let X be an arbitrary X-object.
For each G-structured morphism X ra (Chom(X,GC))y

factorization:

select an (ExtrGen, Mono)-

X L} G(chom(X,GC)) - X 9h GAh Gmy, G(chOm(X,GC))

Likewise for each G-structured morphism X — G (C?) select an (ExtrGen, Mono)-
factorization:

X £ qe?) = x 2 ga, S G,

Then M = {(gn, An) | h € hom (X, G(CPmXON)} U {(gy, Ag) | k € hom(X, G(C?))}
is a set. Next we show that every G-structured morphism X 7, G A has an
(M, Mono)-factorization. Analogous to Theorem 15.25(1) this implies that G is

(ExtrGen, Mono Source)-factorizable. Let X LogA=X %GB -9 GAbe a
(Gen, Mono)-factorization. Since C' is a coseparator, there exists a monomorphism
B = ¢homa(B.C) In case homy (B, C) = 0, choose k = Gn o e. Then there exists
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a diagonal Ay, 2, B such that the diagram

x —,qA,

[0

(]
GB —G(CY)

commutes. Since my is a monomorphism, so is d. Thus

G(mod)
—_—

xoga=x 2. ga, GA

is an (M, Mono)-factorization. In case homa (B, C) # (), there exists a monomor-

Choma(B,C) M, ~homx (X,GC)

phism , since the map

¢ : homa(B,C) — homx(X,GC),
defined by ¢(¢) = Gloe, is injective (cf. Exercise 10K). By choosing h = G(nnon)oe
and proceeding as before, one obtains an (M, Mono)-factorization of X L, ga.

(2). This follows as a ready adaptation of the proof of Theorem 15.25 since regular
monomorphisms are G-initial [cf. Proposition 8.7(3)]. O

FACTORIZATIONS OF STRUCTURED 2-SOURCES

17.12 PROPOSITION

If G-structured 2-sources have (Generating, —)-factorizations, then G preserves
Mono-sources.

Proof: Let A - X be a functor. Let M = (A 2 A;); be a mono-source in A, and

let X é; GA be a pair of X-morphisms with GMori = GMory. If
T2

X 1hGA = X S 6B-ZLGa, ie{1,2)

is an (Generating, —)-factorization of the structured 2-source (X — GA)icq1,2), then
G(mjosi)oe=GmjoGsioe=Gmjor; =Gmijoryg =Gm;oGsyoe=G(m;osy)oe
for each i € I. Since (e, B) is generating, this implies that m; o s; = m; o s9 for each
i€ 1. Since (A LN A;)1 is a mono-source, this implies that s; = so. Thus r1 =r9. O

17.13 PROPOSITION

If G: A — B is a functor such that G-structured 2-sources have (Generating, Mono-
Source)-factorizations, then the following conditions are equivalent:

(1) G reflects isomorphisms,
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(2) each mono-source is G-initial,

(3) G is faithful and reflects extremal epimorphisms,
(4) G reflects limits,

(5) G reflects equalizers.

Proof: (1) = (2). Let M = (A 2% A;); be a mono-source in A, let S = (B LN I

be a source in A, and let GB N G A be an B-morphism with G§ = GM o f. Consider
a (Generating, Mono-Source)-factorization:

S e

GA

of the G-structured 2-source GB «- GB 1> GA. Then GMon)og=G(Som)og
implies that M on = S om. Thus, since (n,m) and M are mono-sources, this implies
that m is a monomorphism. Hence, by Proposition 17.12, Gm is a monomorphism and a
retraction, so an isomorphism. By (1), m is an isomorphism. Thus f = nom™!: B — A
is an A-morphism with Gf = f and S = M o f. It is the unique morphism with these
properties, since M is a mono-source.

(2) = (3). By Proposition 10.60 G is faithful and reflects isomorphisms. Let e be
an A-morphism such that Ge is an extremal epimorphism. By faithfulness, e is an
epimorphism. If e = mo g is a (—, Mono)-factorization of e, then, by Proposition 17.12,
Ge = Gmo Gy is a (—, Mono)-factorization of Ge. Hence Gm is an isomorphism in B.
Thus m is an isomorphism in A.

(3) = (1). G reflects extremal epimorphisms and, by faithfulness, monomorphisms.
Hence, by the dual of Proposition 7.66, G reflects isomorphisms.

(2) = (4). By Proposition 10.60 G is faithful. Let D: I — A be a diagram and let
L= (L N D;)r be a source in A such that GL is a limit of G o D. By faithfulness £
is a natural source for D. Let S = (A RN D;); be an arbitrary natural source for D.
Then GS is a natural source for G o D. Hence there exists a B-morphism G A 2, GL

with GS§ = GL o g. Since GL, being a limit, is a mono-source, the faithfulness of G
implies that £ is a mono-source; hence it is G-initial. Thus there exists an A-morphism

AL Lwith @ f=gand § = Lo f. Since L is a mono-source, f is uniquely determined
by the latter property. Hence £ is a limit of D.

(4) = (5). Obvious.

(5) = (1). Immediate, since a morphism A L. Bisan equalizer of (idp,udp) if and
only if f is an isomorphism. O
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17.14 REMARK

Observe that in the diagram below, all arrows indicate implications that hold without any
assumptions, whereas those labeled 1, 2, 3, and 4 are equivalences under the hypothesis
of the preceding Proposition (cf. 17G).

MONoSources
are initial

1

Y

reflects limits

2

Y

’ reflects equalizers ‘ faithful

; |

' 4 faithful and
reflects reflects extremal
isomorphisms epimorphisms

17.15 PROPOSITION
A functor A Y X s faithful if and only if for each A-object A the G-structured source

(GA A ogal, GA) is (Generating, Initial Source)-factorizable.

Proof: If GG is faithful, then
GA

i
G4 TG?’d A

g a

GA——GA

) Gid g
N

GA
is, by Proposition 8.16(3) and Proposition 10.59, a (Generating, Initial Source)-factori-
zation. Conversely, if A ::; B is a pair of A-morphisms with Gr = Gs and

GA

G a
Gm

GA—1 Go

N

GA

is a (Generating, Initial Source)-factorization, then there exists an A-morphism

A 2L, C with Gg = gand mog = idy = nog. Since (g,C) is generating, the
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equalities G(rom)og=GroGmog=Gr = Gs = GsoGno g = G(son)o g imply
that rom =son. Thusr =roidg =romog=sonog=soidyg =s. O

17.16 COROLLARY

If G-structured 2-sources are (Generating, Initial Source)-factorizable, then G is faith-
ful. O

Suggestions for Further Reading
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Herrlich, H., and G. E. Strecker. Semi-universal maps and universal initial completions.
Pacific J. Math. 82 (1979): 407-428.

Nakagawa, R. A note on (E, M)-functors. Springer Lect. Notes Math. 719 (1979):
250-258.

EXERCISES

17A. A Characterization of Generating Arrows

Let (A,U) be a concrete category that has concrete equalizers. Show that a structured
arrow is

(a) generating if and only if it does not factor through a non-isomorphic regular mono-
morphism,

(b) concretely generating if and only if it does not factor through a non-isomorphic
embedding,

(c) extremally generating if and only if it does not factor through a non-isomorphic
monomorphism.
17B. Composites of (Generating,—)-Factorizable Functors

Show that whenever A —— B is (Generating, Mono-Source)-factorizable and B <, c

is (Generating, —)-factorizable, then A RN (Generating, Mono-Source)-factoriza-
ble.

Conclude that a functor with an (Epi, Mono-Source)-factorizable domain is (Generating,
Mono-Source)-factorizable if and only if it is (Generating,—)-factorizable.

17C. Existence of Factorization Structures
Let (A,U) be a concrete category over X. Show that

(a) If (A,U) has concrete equalizers and concrete intersections, then structured arrows
have (Extremally Generating, Mono)-factorizations.
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(b) If X is strongly complete and if U lifts limits and is concretely co-wellpowered, then
U is a (Concretely Generating, Initial Mono-Source)-functor.

17D. Uniqueness of Diagonals

Show that a functor is an (E, M)-functor if it has (E, M)-factorizations and the (not
necessary unique) (E, M)-diagonalization property.

17E. Properties of (E, M)-Functors
Consider the following properties of an (E, M)-functor A <. B

(1) If GA %+ GA’ is a B-morphism and (e, A’) belongs to E, then there exists an
A-morphism A < A’ with Ge = e.

(2) E is closed under composition.

(3) (idga, A) € E for each A-object A.
(4) Any source in M is G-initial.
()

5) A source (A LA i)1 belongs to M if and only if for every commutative diagram

B—~GA

| e

GA Gy GAi

with (e, A) € E there exists a unique diagonal.
Show that
(a) (1) implies (2), but not conversely.
2) implies (3) if each A-object is the codomain of a member of E.

3) and (4) are equivalent.

(2)

(3)

(4) implies (5), but not conversely.

(5) implies that every A-isomorphism, considered as source, belongs to M.
(

(
()
17F. Factorizations of Structured 2-Sources
Show that

3) implies that G is faithful and that all extremal mono-sources belong to M.

(a) If G has (Generating, Mono-Source)-factorizations for structured 2-sources, then G
has the unique (Extremally Generating, Mono-Source)-diagonalization property (for
all structured sources).

(b) If G has (Concretely Generating, Initial Mono-Source)-factorizations for structured
2-sources, then G has the unique (Concretely Generating, Initial Mono-Source)-
diagonalization property.
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If G has the (E, Extremal Mono-Source)-diagonalization property for structured
2-sources, then each (e, A) in E is generating.

If G has the (E, Mono-Source)-diagonalization property for structured 2-sources,
then each (e, A) in E is extremally generating.

If G is faithful and G has the (F, Initial Mono-Source)-diagonalization property for
2-sources, then each (e, A) in E' is concretely generating.

17G. Re: Remark 17.14
Show that

(a)

A functor need not be faithful even though it reflects every type of monomorphism
and every type of epimorphism introduced above (extremal, regular, strict, strong,
section, retraction, isomorphism, etc.). [Hint: Consider the functor G from 0 = 1
to 0 — 1 with G(0) =0 and G(1) = 1.]

A faithful functor that reflects isomorphisms and extremal epimorphisms need not
reflect equalizers. Hint: Consider the inclusion functor from

0 0

N N

2 3 into 2 3
1

A functor that reflects equalizers need reflect neither limits nor regular monomor-
phisms. Hint: For limits consider the inclusion functor from the discrete category
with objects 0 and 1 into 0 — 1; for regular monomorphisms consider the inclusion

functor from
0 0
l into l
1 1

If a functor A <> B reflects limits, then mono-sources in A need not be G-initial.
Hint: Consider the inclusion functor from

1

v

2

NIER

If mono-sources are G-initial, then GG need not reflect extremal epimorphisms. Hint:
Consider the inclusion functor from

0

1

0 2

l into

1

'
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* 17TH. A Generalization of Theorem 17.11
Let A be a strongly complete category with a coseparating set. Show that every functor

A 5 B that preserves strong limits is an (ExtrGen, Mono-Source)-functor.

171.

Prove that if A has equalizers and intersections and G : A — B preserves these lim-
its, then G-structured arrows have (Extremal Generating, Mono)-factorizations. Cf.
Theorem 14.19.

17J.

Let (A,U) be a concrete category over a strongly complete category X. Show that if
U is concretely co-wellpowered and preserves and detects limits, then U is (Concretely
Generating, Initial Mono-Source)-factorizable, thus a (—, —)-functor.

17K.

Let (A, U) be a fibre-small, transportable concrete category over a wellpowered category
X. Prove that if (A,U) has concrete limits and bounded generation, then U is an
(Extremal Generating, Mono-Source)-functor.

17L.
Show that the nonfull embedding

3
2R 5
]
0

satisfies all of the conditions of Proposition 17.13 except condition (2). Cf. also Propo-
sition 10.60.
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18 Adjoint functors

Perhaps the most successful concept of category theory is that of adjoint functor. Adjoint
functors occur frequently in many branches of mathematics and the “adjoint functor
theorems” have a surprising range of applications.

18.1 DEFINITION

A functor G: A — B is said to be adjoint provided that for every B-object B there
exists a G-universal arrow with domain B (cf. 8.30).

Dually, a functor G: A — B is said to be co-adjoint provided that for every B-object
B there exists a G-co-universal arrow with codomain B (cf. 8.40).

18.2 EXAMPLES

(1) A subcategory A of a category B is (co)reflective in B if and only if the associated
inclusion A — B is a (co-)adjoint functor [cf. 8.31(2) and 8.41(1)].

(2) The forgetful functor U of a concrete category (A, U) over X is adjoint if and only
if for each X-object X there exists a free object over X. In particular, the forgetful
functors:

(a) of the constructs Rel, Top, and Alg(X) are both adjoint and co-adjoint (cf. 8.23
and 8.41),

(b)

()

(d) of the concrete categories of the form Spa(7') are both adjoint and co-adjoint,
(e)

(3) O: Ban — Set is adjoint, but U: Ban — Set is not [cf. 8.23(12)].

of the constructs Vec, Grp, Pos, and Cat are adjoint but not co-adjoint,

of the constructs CLat and CBoo are neither adjoint nor co-adjoint,
TopGrp — Grp, TopGrp — Top, and TopGrp — Set are adjoint.

(4) Each equivalence is adjoint and co-adjoint.

(5) If A is a category, then the unique functor A — 1 is adjoint if and only if A has an
initial object [cf. 8.31(3)].

(6) A hom-functor hom(A,—): A — Set is adjoint if and only if there exist arbitrary
copowers of A in A [cf. 8.31(4)].

(7) For each set M, the endofunctor (M x —) : Set — Set that sends A 1, Bto

Mx A BTy B s co-adjoint. “Evaluation” ev: M x AM — A defined by
(m, f) — f(m) is an (M X —)-co-universal arrow for A (cf. §27).

(8) The minimal realization functor M : Beh — Aut, is adjoint [cf. 8.31(5)].
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18.3 PROPOSITION

For a functor G: A — B the following conditions are equivalent:
(1) G is adjoint,

(2) G has (Generating®,— )-factorizations,

(8) G is an (E,M)-functor for some E and M,

(4) G is a (Universal®®, Source)-functor.

Proof: (1) = (4) = (3). Obvious.

(3) = (2). Theorem 17.6.

(2) = (1). For any B-object B let B L, GA; = B % GA G, GA; be a

(Generating,—) factorization of the G-structured source that consists of all G-structured
arrows (f;, A;) with domain B. Then the G-structured arrow (e, A) is universal for B.0J

18.4 PROPOSITION
If A is an (Epi, M)-category, then for any functor G : A — B the following are equiv-
alent:

(1) G is adjoint,
(2) G is a (Generating,M )-functor.

Proof: (1) = (2). Let (B ti, GA;)r be a G-structured source. If B -+ GA is
a universal arrow, therj for each ¢ € I there exists an A-morphism A EIN A; with
fi = Gfiou. If A B A= A5 A2, A is an (Epi,M)-factorization, then
B I GA; = B (Geev g Gmi, GA; is a (Generating,M)-factorization. To show

the (Generating,M)-diagonalization property, consider a commutative diagram

B—YaA (%)

[ e

CA g GAs

with (g, A) generating and (A’ = A;); in M. If B % G'A is a universal arrow, then

there exist A-morphisms AL A and 4 L A with f=Gfouand g=Ggou. This
implies that m; o f = f; o g for each i € I. Since (g, A) is generating, g must be an

epimorphism. Hence there exists an A-morphism A %, A’ that makes

A—2154

1]

A= Ai

89“Generating” in this context denotes the class of all generating G-structured arrows; likewise, “Uni-
versal” denotes the class of all universal G-structured arrows.
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commute. Obviously, d is a diagonal for (x). Uniqueness follows from the fact that (g, A)
is generating.

(2) = (1). Proposition 18.3. O

PROPERTIES OF ADJOINT FUNCTORS

18.5 PROPOSITION

If A S B and B %2 C are adjoint, then so is A G206,

C.

Proof: If C =~ G9B is universal for C, and B — G1A is universal for B, then

C M G9G1 A is universal for C. O

18.6 PROPOSITION

Adjoint functors preserve mono-sources.

Proof: Let G: A — B be an adjoint functor, let S = (4 = A;)7 be a mono-source in

A, andlet B ﬁ: GA be a pair of B-morphisms with GSor = GSos. If B - GAis a

universal arrow, then there exist A-morphisms 4 i; A withr = GFou and s = Gsou.
S

This implies that G(So7)ou = G(S035)owu; hence SoF = So73, so that 7 = 3, and thus
T =S5. 0

18.7 COROLLARY

Embeddings of reflective subcategories preserve and reflect mono-sources. O

18.8 REMARK
(1) As shown in Example 7.33(5) embeddings of full subcategories need not preserve
monomorphisms, hence they need not preserve mono-sources.

(2) Full, reflectiveembeddings preserve extremal monomorphisms. (Cf. 7F.)

18.9 PROPOSITION
Adjoint functors preserve limits.

Proof: Let G: A — B be an adjoint functor, let D: I — A be a diagram, and let
L= (L 4, D;); be a limit of D. Then GL is a natural source for G o D. Let § =

(B ti, GD;); be a natural source for G o D. If B - GA is a universal arrow for B,
then for each i € I there exists an A-morphism f,: A — D; with f; = Gf; o u. Since

(u, A) is generating, the source S = (A s, D;) is natural for D. Hence there exists

an A-morphism f: A — L with S = Lo f. Consequently, f = Gfou: B — GL is a
B-morphism with § = GL o f. Uniqueness follows from the fact that, by Proposition
18.6, GL is a mono-source. O
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18.10 COROLLARY
If (A,U) is a concrete category over X that has free objects, then the following hold:

(1) all limits in (A,U) are concrete,
(2) U preserves and reflects mono-sources,

(8) if (A,U) is fibre-small and transportable, then wellpoweredness of X implies well-
poweredness of A. O

18.11 PROPOSITION

If G: A — B is an adjoint functor and A is co-wellpowered, or extremally co-well-
powered, then so is G.

Proof: Immediate from Proposition 8.36. O

ADJOINT FUNCTOR THEOREMS

We have seen above that adjoint functors preserve limits. Next we will see that this
property in conjunction with certain completeness and smallness conditions actually
characterizes such functors. We have seen before that both general constructions and
smallness conditions are essential ingredients of category theory. The adjoint functor
theorems of this section are prime examples of this fact. Below we will see that each of
them contains a completeness condition and a smallness condition, neither of which can
be eliminated.

18.12 ADJOINT FUNCTOR THEOREM

A functor G : A — B, whose domain A is complete, is adjoint if and only if G satisfies
the following conditions:

(1) G preserves small limits,

(2) for each B-object B there exists a G-solution set, i.e., a set-indexed G-structured
source (B iR GA;)r through which each G-structured arrow factors (in the sense

that given any B 4, GA, there exists a j € I and a A; 9, Ain A such that

Bl 64,

x lcg

GA

commutes).
Proof: If G is an adjoint functor, then, by Proposition 18.9, G preserves limits. If

B - GA is a G-universal arrow for B, then the G-structured source Sp consisting
of (u, A) alone is a G-solution set for B. Hence conditions (1) and (2) are necessary.
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To show the converse, suppose that (1) and (2) are satisfied. Let B be a B-object
and let Sp = ((u;, A;)); be a G-solution set for B. If (P,m;); is a product of the
family (A;); in A, then by (1) (GP,Gm;)r is a product of (GA;); in B. Thus u =
(u;) : B — GP is a G-structured arrow such that the G-structured source, consisting
of (u, P) alone, is a G-solution set for B. Consider the family (g;); consisting of all

A-morphisms P 2, P with (Ggj)ou = u. If E <, P is a multiple equalizer of
(gj)s, then by (1) GE ¢, GP is a multiple equalizer of (Gg;);. Thus there is a
B-morphism B — GE with v = Ge o v. The G-structured source, consisting of the
G-structured arrow (v, E') alone, is a G-solution set for B. Thus to prove that (v, E) is

a G-universal arrow, it need only be shown that (v, E) is G-generating. Let FE £§ A
S

be a pair of A-morphisms with Grov = Gsowv. If E <, Eisan equalizer of r and s,
then by (1) GE 9, GEisan equalizer of Gr and Gs. Thus there exists a B-morphism
B L. GE with v = Ge o f. Since ((u, P)) is a G-solution set for B, there exists an

eoeog

A-morphism P - E with f = Ggou. Hence P ——25 P is an A-morphism with
G(eoeog)ou = G(eo€)o f = Geowv = u. Therefore there exists some j € J with
g;j = eoeog. There also exists some k € J with g, = idp. Thus g; o e = g; o e implies
eoeogoe =e. Since e is a monomorphism, this implies that ec go e = idg. Thus €
is a retraction, which by Proposition 7.54 implies that » = s. Consequently, (v, F) is a
G-universal arrow for B. Thus G is an adjoint functor. O

18.13 EXAMPLES
The following functors have complete domains and preserve limits, but fail to be adjoint:

(1) the unique functor Ord°® — 1, where Ord is the partially ordered class of all ordinal
numbers, considered as a category,

(2) the forgetful functors CLat — Set and CBoo — Set [cf. 8.23(7)].
Whereas the “limit-preservation” condition in the above theorem is usually easy to check,
the “solution set” condition is often rather cumbersome, particularly since the theorem

gives no idea of how to find such a set. In the next results, attention is focused on
“canonical” candidates for solution sets.

18.14 THEOREM
If A is strongly complete and (extremally) co-wellpowered, then the following conditions

are equivalent for any functor A “.B:

(1) G is adjoint,

(2) G preserves small limits and is (extremally) co-wellpowered.

Moreover the implication (2) = (1) holds without the assumption that A be (extremally)
co-wellpowered.

Proof: (1) = (2). Immediate from Propositions 18.9 and 18.11.

(2) = (1). Immediate from Proposition 18.3 and Theorem 17.11(1). O
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18.15 COROLLARY

Fibre-small, concretely co-wellpowered constructs that are concretely complete have free
objects. O

LIS
!
LIMES
ROMANUS

vl',': ! —

An adjoint functor is co-wellpowered and preserves small limits

18.16 EXAMPLES

The conditions in the above theorem are carefully balanced as the following examples
show:

1. There exist full embeddings A ©., B such that A is complete and co-wellpowered
and G preserves limits and is extremally co-wellpowered, but G is neither adjoint
nor co-wellpowered. [Let C be the partially ordered class of all ordinals, considered
as a category, let A = C°P let B be obtained from A by adding an initial object,

and let A 4. B be the inclusion.]

2. There exist strongly complete categories A that are not co-wellpowered, even

though the unique functor A Co1s adjoint and co-wellpowered. [Consider
A-CCPos.]

For suitable categories A the somewhat cumbersome solution set condition completely
vanishes, as the following result shows:

18.17 SPECIAL ADJOINT FUNCTOR THEOREM

If A is a strongly complete category with a coseparator, then for any functor G: A — B,
the following conditions are equivalent:

(1) G is adjoint,
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(2) G preserves strong limits.

Proof: Immediate from Theorem 17.11, Proposition 18.3, and Proposition 18.9. O

18.18 REMARK

The categories Set, Vec, Pos, Top, and HComp are complete, wellpowered, and have
coseparators (cf. 7.18), so that the above theorem applies to them. Since many familiar
categories have separators but fail to have coseparators, the dual of the Special Adjoint
Functor Theorem is applicable even more often than the theorem itself.

18.19 CONCRETE ADJOINT FUNCTOR THEOREM

Let G: (A,U) — (B,V) be a concrete functor. If (A,U) is complete, wellpowered,
co-wellpowered, and has free objects, then G is adjoint if and only if G preserves small
limits.

Proof: As before, it suffices to show that the above assumptions imply that G is co-
wellpowered. Let B be a B-object and let VB - UAg be a (fixed) universal U-
structured arrow with domain V' B. It suffices to show that for every generating G-
structured arrow B -L» GA, A can be considered (via a suitable epimorphism) as a
quotient-object of Ag. By universality there exists a unique A-morphism g: A — A
such that the triangle

VB————UAp
k JUQ
VGA=UA
commutes. Since (g, A) is a generating G-structured arrow, g is an epimorphism; hence

A is a quotient-object of Ap. O

18.20 REMARKS

(1) Faithfulness of U is not needed for the above result, but faithfulness of V' is essential.

(2) If (A,U) and (B, V) satisfy the assumptions of the above result and if V' reflects
limits, then every concrete functor (A,U) — (B,V) preserves limits, and hence
must be adjoint. Similar situations will be investigated in §23. (Observe that the
reflection of limits is typical for forgetful functors of “algebraic” concrete categories.)
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EXERCISES

18A. Functors that are Simultaneously Adjoint and Co-adjoint
Let A %5 B be a functor. Show that

(
(

a) If G is an equivalence then G is adjoint and co-adjoint.

b) If G is adjoint and co-adjoint and A = B = Set, then G is an equivalence.

)

)

(c) If A and B are monoids, considered as categories, then G is adjoint iff G is co-adjoint.

(d) If A has an initial and a terminal object and B = 1, then G is adjoint and co-adjoint.
)

(e

If A =1 and G maps the single object of A to a zero object in B, then G is adjoint
and co-adjoint.

(f) The forgetful functor Top — Set is adjoint and co-adjoint.

(g) The forgetful functor Alg(1l) — Set is adjoint and co-adjoint, where the n : X —
(X x N, ), defined by n(z) = (x,0) and A(z,n) = (x,n + 1), are universal arrows,
and the ¢ : (XN, u) — X, defined by &(z,,) = zo and u(z,,) = (,41) are couniversal
arrows.

(h) If A is small and C is a category that is complete and cocomplete, then the functor
G,id . .. ..
B, C] 164, [A, C] is adjoint and co-adjoint.
18B. Smallness Conditions For Adjoints

(a) Let A %, B be a faithful adjoint functor. Show that A is co-wellpowered if and
only if G is co-wellpowered.

(b) Let A <, Bbean adjoint functor such that mono-sources are G-initial. Show that
A is extremally co-wellpowered if and only if G is extremally co-wellpowered.

(c) Show that the unique functor A-CCPos — 1 is adjoint and co-wellpowered, even
though A-CCPos is not co-wellpowered. Cf. Exercise 15D.

18C. Adjoints via Representable Functors
Show that

(a) A functor A <, Set is adjoint if and only if G is representable by an object for
which arbitrary copowers exist (cf. Exercise 10R).

(b) A functor A Y. Bis adjoint if and only if for each B-object B the functor

h, B,— .
A% B % Set is representable.
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18D. (Co-)Adjoints and Colimits

(a) Show that a functor Set — A is co-adjoint if and only if it preserves coproducts.

(b) Let A %, Set be a faithful and representable functor whose domain is a complete,
wellpowered, and co-wellpowered category A. Show that G is adjoint if and only if
A is cocomplete.

18E. Power-Set Functors

Show that the covariant power-set functor P : Set — Set is neither adjoint nor co-
adjoint, but that the contravariant power-set functor () : Set®® — Set is adjoint.

18F. Upper Semicontinuity as Adjointness

Let A be a complete totally ordered set and let R be the ordered set of real numbers.
Let G : A — R be an order-preserving map, considered as a functor. Show that G is
adjoint if and only if G is upper semicontinuous.

18G. Complete Boolean Algebras

Show that (cf. Exercises 8E, 8F, and 10R):

(a) CBoo is complete, well-powered, and extremally co-wellpowered.

(b) CBoo is not cocomplete.

(¢) The forgetful functor CBoo — Set is not adjoint.

18H. Adjoint Functors between Posets

Consider order-preserving functions A R B between posets as functors and show that

(a) f is adjoint if and only if for each b € B, the set {a € A ’ b < f(a) } has a smallest
element.

(b) If A= B =N (with the usual order), then
(1) f is adjoint if and only if it is unbounded.
(2) f is co-adjoint if and only if it is unbounded and f(0) = 0.
(c) If A= B =7 (with the usual order), then f is adjoint if and only if it is co-adjoint.
18I. Stable Epimorphisms and Adjoints
Show that faithful adjoints reflect stable epimorphisms.

18J. Extremal Monomorphisms and Adjoints

Show that adjoint functors need not preserve extremal monomorphisms.

18K. Compact Categories

A category A is called compact provided that each functor with domain A that pre-
serves colimits is co-adjoint. Prove that

(a) Each cocomplete co-wellpowered category that has a separator is compact.
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(b) Each compact category is complete. [Hint: For each small diagram D in A the
functor F': A — Set°P that assigns to each A-object A the set of all natural sources
for D with domain A preserves colimits. Thus F°P is representable.]

18L. Coseparating Sets

(a) Prove that a set S of objects of a category A that has products is an (extremally)
coseparating set for A if and only if every A-object is an (extremal) subobject of
some product of objects in S (cf. Proposition 10.38).

(b) Using (a) prove that the Special Adjoint Functor Theorem (18.17) holds also for all
strongly complete categories A that have a coseparating set.
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With every adjoint functor A £, B there can be naturally associated (in an essentially

unique way) a functor B X, A and two natural transformations idg -~ G o F and
F oG <5 ida. There is an intricate web of relationships between the functors G and F
and the natural transformations 7 and ¢, including an inherent duality, that is largely
responsible for the importance of adjoint functors.

19.1 THEOREM

Let G : A — B be an adjoint functor, and for each B-object B letng : B — G(Ap) be a
G-universal arrow. Then there exists a unique functor F': B — A such that F(B) = Ap

for each B-object B, and idg =tns) G o F is a natural transformation.

Moreover, there exists a unique natural transformation F o G —— ida that satisfies the
following conditions:

(1) G 2% qgra S 6 =q e g,
2) F 2 por L p=F X0, F,

Proof:
(a). The existence of a unique F' with the required properties follows analogously to the
proof of Proposition 4.22.

(b). For each A-object A, there exists a unique A-morphism FGA 2, A such that

GA—4 GFGA
dden JGEA

GA

commutes. Thus if € = (4) is a natural transformation from F'G to ida, it is the

unique one that satisfies (1). To show naturality, consider an A-morphism A N A
Then it follows that G(foes)onga = GfoGegonga = Gf = GegrongaroGf =
Gep o GFGf onga = G(ea o FGf) onga by the naturality of . Hence foey =
€A’ O FGf

(c). Since n: idp — GF is natural, we get nGF on = GFnon. Hence (1) implies that
G(idp)on =idgF on=GeF onGFon=GeFoGFnon=G(eF o Fn) on. Thus
idp = eF o Fn, i.e., (2) holds. O

19.2 REMARK
Below (cf. 19.7) it is shown that conditions (1) and (2) of Theorem 19.1 play a crucial

role. In particular, given functors A Y. B and B %> A and natural transformations
idg — GF and FG <> ida that satisfy the above conditions, the following hold:
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G is adjoint.

F' is co-adjoint.

Each B 225 G(FB) is a G-universal arrow.

Each F(GA) =2 A is an F-co-universal arrow.

19.3 DEFINITION
An adjoint situation (n,¢): F — G: A — B consists of functors A <, B and

B - A and natural transformations idg —— GF (called the unit) and FG = ida
(called the co-unit) that satisfy the following conditions:

1) ¢ 2% qgra . g =g He.

@) F pegr L p=F 22, F.

19.4 EXAMPLES

By Theorem 19.1 every adjoint functor gives rise to an adjoint situation. (Cf. Examples
18.2 of adjoint functors.) In particular:

(1) every embedding A L, B of a full reflective subcategory gives rise to an adjoint
situation (n,e) : R — E: A — B, where R is a reflector, the np’s are A-reflection
arrows, and the €4’s are isomorphisms,

(2) every concrete category (A,U) over X with free objects gives rise to an adjoint
situation (n,e): F — U : A — X, where F is called a free functor, the nx’s are
universal arrows (also called insertions of generators), and each €4 expresses A
as a retract of the free object generated by U A,

(3) foreachset M, (n,e) : (Mx—) — hom(M,—): Set — Set is an adjoint situation,
where (M x —) is the endofunctor of Example 18.2(7), each B —— hom(M M x B)
is defined by (n5(b))(m) = (m,b), and each M x hom(M, A) =2 A is defined by
ea(m, f) = f(m).

19.5 REMARK

We have seen that every adjoint functor gives rise to an adjoint situation. Below it will
be shown that

(1) every adjoint situation arises in this way (cf. 19.7),

(2) every adjoint situation (n,¢): FF — G : A — B is, up to a natural isomorphism,
uniquely determined by G (cf. 19.9).

First, however, we exhibit a duality that is inherent in the concept of adjoint situations.

19.6 DUALITY THEOREM FOR ADJOINT SITUATIONS

If (n,e) : F — G: A — B is an adjoint situation, then
(e°P n°P) : G°P — F°P: B — A°P is an adjoint situation.
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Proof: If A %5 B and B 2= A are functors, then so are A°P G, B and
B 7, Aop. If idg - GF and FG - ida are natural transformations, then

n°P

so are GOPF°P — . idgop and idaop =L FoPGOP. T (e o nG = g, it follows that
7°PGP o GPeP = idgop, and if e F o F'n = idp, it follows that F°Pn°P o g°P F°P = id pop.[J

19.7 PROPOSITION
If (n,e): F — G : A — B is an adjoint situation, then the following hold:

(1) G is an adjoint functor,
(2) for each B-object B, B —25 GFB is a G-universal arrow,
(8) F is a co-adjoint functor,

(4) for each A-object A, FGA =25 A is a F-co-universal arrow.

Proof: It suffices to prove (2), since (2) implies (1), and (3) and (4) follow by the

Duality Theorem 19.6 from (1) and (2). Let B L, GA be a G-structured arrow. Then
the commutative diagram

B—T saa

nBl nGAl \\\ﬁj:

GFBWGFGAE)GA

shows that F'B eacll gy is an A-morphism f with f = Gf o ng. Conversely, if
FB L. A is an A-morphism with f = Gf o np, then the commutative diagram

Ff

"\ FGFB—— FGA
FGT

N
AN EFB €A

h

shows that f =¢c4 0 Ff. O

19.8 REMARKS

(1) Observe that Theorem 19.1 and Proposition 19.7 imply that G : A — B is an adjoint
functor if and only if there exists an adjoint situation (n,e) : F — G: A — B.

(2) A functor G : A — B is an equivalence if and only if there exists an adjoint situation
(n,e): F — G : A — B with natural isomorphisms 7 and . Cf. Proposition 6.8.
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(3) If G: A — B and F: B — A are concrete functors over X, then (F, G) is a Galois
correspondence if and only if there exist concrete natural transformations n and e
for which (n,e): FF — G : A — B is an adjoint situation. (Cf. 6.24 and 6.25.)

19.9 PROPOSITION

Adjoint situations associated with a given adjoint functor G: A — B are essentially
unique, i.e., for each adjoint situation (n,e): F — G : A — B, the following hold:

(1) if m,2): F — G: A — B is an adjoint situation, then there exists a natural
isomorphism F' — F for whichj = Gron and € = ¢ o 771G,

(2) if F: B— A is a functor and F = F is a natural isomorphism, then
(Gron, eor™'G): F — G: A — B is an adjoint situation.

Proof:

(1). By Proposition 19.7, for each B-object B, B 1%, GFB and B -2+ GFB are
G-universal arrows for B. Hence by Proposition 8.25 there exists an isomorphism
FB 2, FB with Grg o ng = 7jg. It follows that F =), F is a natural
isomorphism with 7 = G7 on. For each A-object A the equalities Ge4 o nga =
idga = GEaoljgy = GEA0GTGA0NGA = G(EA0TGA)oNGA imply that £4 = Eq07¢a.
Hence e = 2o 7G.

(2). Straightforward computations show that G(e o 771G) o (G7 0 )G = idg and that
(e077'G)F o F(GT o) = id. O

19.10 DEFINITION

Let A <5 B and B 2 A be functors. Then F is called a co-adjoint for G and
G is called an adjoint for F' (in symbols: F' — G) provided that there exist natural
transformations 7 and ¢ such that (n,e): FF — G : A — B is an adjoint situation.

19.11 REMARKS

(1) Every adjoint functor G has, by Theorem 19.1, a co-adjoint F; and any two co-
adjoints F' and F of G are, by Proposition 19.9, naturally equivalent. Thus every
adjoint functor has, up to natural equivalence, a unique co-adjoint. Conversely, if a
functor G has a co-adjoint, then, by Proposition 19.7, G is an adjoint functor. Thus
a functor is adjoint if and only if it has a co-adjoint. Moreover, by Proposition 19.7,
the co-adjoint of a functor is a co-adjoint functor.

(2) By duality, a functor is co-adjoint if and only if it has an (essentially unique) adjoint.
A functor F' is a co-adjoint for G if and only if GG is an adjoint for F'. Thus adjoint
functors and co-adjoint functors naturally come in pairs, and these pairs are parts
of adjoint situations.

(3) The reader should be aware that the following alternative terminology is also used:
G is right adjoint = G has a left adjoint = G is adjoint.
F is left adjoint = F' has a right adjoint = F is co-adjoint.
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19.12 EXAMPLES

(1) Let A be a reflective subcategory of B. Then a functor B EL Aisa co-adjoint for
the inclusion functor A — B if and only if R is a reflector for A.

(2) Let A be a coreflective subcategory of B. Then a functor B . Aisan adjoint for
the inclusion functor A — B if and only if C is a coreflector for A.

(3) If a construct (A, U) has free objects, i.e., if U is an adjoint functor, then co-adjoints
for U are the free functors for (A, U).

(4) The discrete functor D : Set — Top is a co-adjoint for the forgetful functor
U : Top — Set, and the indiscrete functor I : Set — Top is an adjoint for U.

(5) If a functor G is an isomorphism, then G~! is simultaneously an adjoint and a co-
adjoint for G. More generally, for every equivalence A ©., B there exists a functor

B £ A that is simultaneously an adjoint and a co-adjoint for G. Cf. Proposition
6.8.

(6) Let A be a category with a zero-object. Then the zero-functor 1 — A is simultane-
ously an adjoint and a co-adjoint for the functor A — 1. Cf. Exercise 4H(b).

(7) A co-adjoint for the minimal realization functor [cf. 18.2(8)] is the behavior functor
B : Aut, — Beh that assigns to each reachable automaton its behavior function
[cf. 8.31(5)).

19.13 PROPOSITION
Adjoint situations can be composed; specifically, if (n,e): FF — G: A — B and
(M,2): F — G : B — C are adjoint situations, then so is

(GnF o7, co0FeG): FoF — GoG: A — C. O

19.14 THEOREM
If (n,e): F — G : A — B is an adjoint situation, then the following hold:

(1) The following are equivalent:
(a) G is faithful,
(b) G reflects epimorphisms,
(c) € is an Epi-transformation.
(2) The following are equivalent:
(a) G is faithful and reflects isomorphisms,
(b) G reflects extremal epimorphisms,
(c) € is an (Extremal Epi)-transformation.

(8) G is full if and only if € is a Section-transformation.
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(4) G s full and faithful if and only if € is a natural isomorphism.

(5) If G reflects reqular epimorphisms, then each mono-source is G-initial.”’

Proof: (la) = (1b) = (lc) is immediate, since Ge is a Retraction-transformation.

f
(Ic) = (la). If A ? A is a pair of A-morphisms with Gf = Gg, then the equations
foea=e o0 FGf=¢40FGg=goea imply that f =g.

(2a) = (2b) = (2c) is immediate, since G, being adjoint, preserves monomorphisms.

(2¢) = (2a). By (1), G is faithful. Let A ., Abe an A-morphism such that Gf
is an isomorphism. Since foecy = €40 FFGf is a composite of an isomorphism with
an extremal epimorphism, and so is an extremal epimorphism, the dual of Proposition
7.62(2) implies that f is an extremal epimorphism. By the faithfulness of G, f is a
monomorphism as well; hence it is an isomorphism.

(3). Let G be full. Then for each A-object A there exists an A-morphism A —2» FGA
with Gsg = nga. Hence the equations G(s4 0e4)onga = GsaoGegongs = Gsg =
G(idpga) o nga imply that sq oeq = idpga. Thus €4 is a section. Conversely, let €
be a Section-transformation, let A and A be A-objects, and let GA R GA be a B-
morphism. Then there exists an A-morphism A L FGA with roey = drpaa. Hence
Al i=a2, FGA i, FGA 45 Ais an A-morphism. Since € ; is an F-co-
universal arrow, the equalities € 4 o FGf = fo ea=¢4j0Fforoey =¢;0Ff imply
that Gf = f. Thus G is full.

(4). This follows from (1) and (3).

(5). If G reflects regular epimorphisms, then ¢ is a (Regular Epi)-transformation. Let

(A 2 A)); be a mono-source, (A ti, A;); be a source in A, and GA L, GAbe a
B-morphism such that Gf; = Gm; o f for each ¢« € I. Then the equalities f; oe; =
€4, 0 FGfi=¢e4,0 FGm;jo Ff =m;oes o Ff imply that for each ¢ € I the diagram

FGA—— A
eaoF'f lfi

A———A;

my

commutes. Since every category has the (Regular Epi, Mono-Source)-diagonalization
property, there exists a diagonal A 4 A In particular f; = m; od. Since, by (1), G is
faithful, this implies that the mono-source (A —=— A;)s is G-initial. O

"0See Exercise 19B(c) for a characterization of adjoint functors G with the property that each mono-
source is G-initial.
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Suggestions for Further Reading

Booth, P. I. Sequences of adjoint functors. Archiv Math. 23 (1972): 489-493.

Hoffmann, R.-E. Sequences of adjoints for Ens-valued functors. Manuscr. Math. 32
(1980): 191-210.

EXERCISES

19A. Alternative Description of Adjoint Situations

Show that functors A <> B and B 2 A yield an adjoint situation if and only if there
exists an isomorphism hom(F'A, B) = hom(A, GB) that is natural in the variables A
and B; more precisely,

Let A -5 B and B - A be functors. Define functors hom(F_,_): B°?» x A — Set
and hom(_,G_): B°? x A — Set by

hom(F_,_)(B,A) = homa (FB, A)

hom(F_, _)(f,g9) = hom(F'f,g), where hom(Ff,g)(k) =goko Ff
hom(_,G_)(B,A) = homgp(B,GA)

hom(_, G_)(f,9) = hom(f,Gg), where hom(f,Gg)(k) = Ggoko f.

(a) Let (n,e) : FF — G be an adjoint situation.
Define 7 4y : homa (F'B, A) — homp(B,GA) by 7 .4)(f) = Gf onp and show
that 7 = (7p,4) : hom(F_, _) — hom(_,G_) is a natural isomorphism.

(b) Let 7: hom(F_,_) — hom(_,G_) be a natural isomorphism. Define n = (np) by
ne = 7(5,rp)(idrp) and € = (e4) by e4 = T(_GlA’A)(idGA) and show that
(n,e) : F — G is an adjoint situation.

(¢) The constructions described in (a) and (b) are essentially inverse to each other.
19B. Adjoints Reflecting Special Epimorphisms
Let (n,e): FF — G: A — B be an adjoint situation. Show that

(a) If f is G-final and Gf is an extremal (resp. a regular) epimorphism, then f is an
extremal (resp. a regular) epimorphism.

(b) G reflects regular epimorphisms if and only if every A-morphism f, for which G f is
a regular epimorphism, is G-final.

(c) The following are equivalent:
(1) mono-sources are G-initial,
(2) G reflects swell epimorphisms,

(3) e is a (Swell Epi)-transformation.
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(d) Each of the following conditions implies but is not equivalent to its immediate suc-
Cessor:

(1) G reflects regular epimorphisms,
(2) G reflects swell epimorphisms,
(3) G reflects extremal epimorphisms,
(4) G reflects epimorphisms.
(e) If G reflects swell epimorphisms, then G reflects limits.
(f) If G reflects isomorphisms and A has equalizers, then G is faithful.
(g) If G reflects isomorphisms, then G need not be faithful.
19C. Hom-functors Reflecting Epimorphisms

Let hom(A, —) : A — Set be a covariant hom-functor that reflects epimorphisms. Show
that

(a) If in A arbitrary copowers ‘A of A exist, then hom(A, —) is faithful.
(b) In general hom(A, —) need not be faithful.

19D. Galois Adjunctions

An adjoint situation (n,e) : F — G is called a Galois adjunction provided that nG
is a natural isomorphism. Show that

(a) For adjoint situations the following conditions are equivalent:
(1) (n,e): FF — G is a Galois adjunction,
(2) Fnis a natural isomorphism,
(3) nG is an Epi-transformation,
(4) Fn is an Epi-transformation,
(5) GFn=nGF.
(b) I (
(c) I

f(n,e): FF — G is a Galois-adjunction, then so is (¢°P,n°P) : G°P — F°P.
f (n,e): F — G is an adjoint situation and if 7 is an Epi-transformation or if G
is full, then (n,e): F — G is a Galois-adjunction.

(d) If (n,e) : FF — G is a Galois-adjunction, then G and GF'G are naturally isomorphic.

19E. Galois Correspondences

(a) Let (A,U) <, (B,V) and (B, V) (A,U) be concrete functors over X. Show
that (F,G) is a Galois correspondence if and only if there exists an adjoint situation
(n,e) : F — G with concrete natural transformations 7 and e.

*(b) Construct a concrete functor G that has a concrete co-adjoint, but is not a part of
a Galois correspondence (F,G). Cf. Exercise 21E(b).
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* 19F. Adjoint Sequences
Consider the poset N as a category and show that

(a) There is a sequence of functors Gy, : N — N, no two of which are naturally isomor-
phic, such that Go(z) =z + 1 and G,,11 — G, for each n € N.

(b) If Gy, : N — N is a sequence of functors such that G,, — G411 for each n € N,
then G,, = iy for each n € N.

19G. Self-Adjoints

(a) Let A ©. A be an endofunctor of A with G —i G. Show that
(1) If A is a poset, considered as a category, then G is an isomorphism.
(2) If A = Set, then G is an equivalence.

(b) Let A be a category with a zero object A and let G : A — A be the constant functor
with value A. Show that G — G.

19H. Adjoint Situations and Equivalences

(a) Show that a functor A . Bisan equivalence if and only if there exists an adjoint
situation (n,¢) : F — G : A — B with natural isomorphisms 7 and €.

(b) Let (A,U) be a construct. Show that F¥ — U — F' implies that F' is an equiva-
lence.

* 191.
Show that if FF — G — H, then F' is full and faithful if and only if H is full and
faithful.

19J. Units and Co-units
Let (n,e): FF — G : A — B be an adjoint situation. Show that

(a) GFnon=nGF on.

(b) e0eFG =¢o FGe.

(c) If B L, GAis a G-structured arrow, then f = e4 o F'f is the unique A-morphism
FB -Ls A with f = GFong.

19K. Swell Separators

In A an object S is called a swell separator provided that mono-sources in A are
hom(S, —)-initial. Show that

(a) Every swell separator is an extremal separator.
(b) If S is a swell separator, then hom(S, —) reflects limits.
(c) If in A arbitrary copowers /S of S exist, then the following hold:

(1) S is a swell separator if and only if hom(S, —) reflects swell epimorphisms.
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(2) S is an extremal separator if and only if hom(S, —) reflects extremal epimor-
phisms.

(3) S is a separator if and only if hom(S, —) reflects epimorphisms. [But cf. 19C(b).]
(4) If hom(S, —) reflects regular epimorphisms, then S is a swell separator.

(d) In Set every separator is swell.
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20 Monads

Algebraic constructs (A, U), such as Vec, Grp, Mon, and Lat, can be fully described
by the following data, called the monad associated with (A,U):

1. the functor T : Set — Set, where T'=U o F and F': Set — A is the associated
free functor (19.4(2)),

2. the natural transformation 7 : idget — 1' formed by universal arrows, and

3. the natural transformation p: T oT — T given by the unique homomorphism
ux : T(TX) — TX that extends idry.

In fact, in the above cases, there is a canonical concrete isomorphism K between (A, U)
and the full concrete subcategory of Alg(T') consisting of those T-algebras T'X 20X
that satisfy the equations x o nx = idx and x o Tx = x o ux. The latter subcategory is
called the FEilenberg-Moore category of the monad (T',n, u).

The above observation makes it possible, in the following four steps, to express the
“degree of algebraic character” of arbitrary concrete categories that have free objects:

Step 1: With every concrete category (A, U) over X that has free objects (or, more gen-

erally, with every adjoint functor A Y, X) one can associate, in an essentially
unique way, an adjoint situation (n,e): F — U : A — X. (See Theorem 19.1
and Proposition 19.9.)

Step 2: With every adjoint situation (n,¢): FF — U : A — X one can associate a
monad T = (T,n, ) on X, where T'=UoF : X — X. (See Proposition 20.3.)

Step 3: With every monad T = (7,7, 1) on X one can associate a concrete subcategory
of Alg(T) denoted by (XT,UT) and called the category of T-algebras. (See
Definition 20.4.)

Step 4: With every concrete category (A,U) over X that has free objects one can

associate a distinguished concrete functor (A, U) X, (XT UT) into the asso-
ciated category of T-algebras called the comparison functor for (A,U). (See
Proposition 20.37 and Definition 20.38.)

Concrete categories that are concretely isomorphic to a category of T-algebras for some
monad T have a distinct “algebraic flavor”. Such categories (A,U) and their forgetful
functors U are called monadic. It turns out that a concrete category (A, U) is monadic if
and only if it has free objects and its associated comparison functor (A, U) X, (XT UT)
is an isomorphism. Thus, for concrete categories (A,U) that have free objects, the
associated comparison functor can be considered as a means of measuring the “algebraic
character” of (A, U); and the associated category of T-algebras can be considered to be
the “algebraic part” of (A, U). In particular,

(a) every finitary variety (see Definition 16.16) is monadic,
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(b) the category TopGrp, considered as a concrete category
(1) over Top, is monadic,

(2) over Set, is not monadic; the associated comparison functor is the forgetful
functor TopGrp — Grp, so that the construct Grp may be considered as the
“algebraic part” of the construct TopGrp,

(c) the construct Top is not monadic; the associated comparison functor is the forgetful
functor Top — Set itself, so that the construct Set may be considered as the
“algebraic part” of the construct Top; hence the construct Top may be considered
as having a trivial “algebraic part”.

Among constructs, monadicity captures the idea of “algebraicness” rather well (as will
be demonstrated in §24). Unfortunately, however, the behavior of monadic categories in
general is far from satisfactory. Monadic functors can fail badly to reflect nice properties
of the base category (e.g., the existence of colimits or of suitable factorization structures),
and they are not closed under composition. Such deficiencies are shown near the end of
this section. Better behaved (and, moreover, simpler) concepts of “algebraicity” will be
developed in §23.

MONADS AND ALGEBRAS

20.1 DEFINITION

A monad on a category X is a triple T = (7,7, 1) consisting of a functor 7': X — X
and natural transformations

n:idx —-T and p: ToT —T

such that the diagrams

T
ToToT —5ToT T T

| [ \; e

TOTM—>T

commute.

20.2 EXAMPLES
(1) On every category X there is the trivial monad T = (7,7, u) with T' = idx and
n=p=irp.
(2) In Set the word-monad T = (7,7, ) is defined as follows:
(a) T: Set — Set assigns to each set X the set TX = (J,cn

“words” over X and to each function X <= Y the function TX —4» TY that
sends the empty word (€ XV) to the empty word and for n > 0 sends each word

(x1,...,zpn) to (f(z1),..., f(zn)),

X™ of tuples or

18th January 2005



Sec. 20] Monads 327

(b) nx : X — T'X is defined by nx(z) = (x), i.e., nx interprets each member of X
as a one-letter word,

(¢) px : T(TX) — TX is given by concatenation:

px (@11, Ting )5 (X215 -5 T2ng )y ooy (Th1s oo, Thony,)) =
(115, TAngs 20y ooy L2nny - o Thls - -+ s Lhong )
i.e., ux interprets each word of words in the natural way, as a word.
(3) In Set the power-set monad T = (P, n, u) is defined as follows:
(a) P: Set — Set is the power-set functor,
(b) nx : X — PX is defined by nx(z) = {z},
(c) pux : P(PX) — PX is defined by ux(Z) = Z.

(4) Let X be a poset, considered as a category. A monad T on X consists of an order-
preserving function 7: X — X with s < T's (due to ) and T = T o T (since
(T oT)s <Ts due to ) — in other words, T is a closure operator on X.

20.3 PROPOSITION

Each adjoint situation (n,e): F — G : A — X gives rise to the associated monad
(T,n,n) on X, defined by

T=GoF: X—-X and p=GeF :ToT —T.

Proof:

(1). poTu = GeFoGFGeF = G(eoFGe)F = G(e0eFG)F = GeFoGeFGF = pouT,
since € o FGe = € 0 e G, in view of the fact that € is a natural transformation.
(Cf. Exercise 19.].)

(2). poTn=GeFoGFn=G(eF oFn)=G(id) = .
(3). ponT = GeF onGF = (Ge onG)F = (id)F = . O
20.4 DEFINITION

Let T = (T, n, 1) be a monad on X. The full concrete subcategory of Alg(T') consisting
of all algebras TX —— X that satisfy

(1) zonx =idy, and
(2) xoTx=xopuyx: T(TX) - X

is denoted by (XT,U7T) and is called the Eilenberg-Moore category of the monad
T, or the category of T-algebras.

20.5 EXAMPLES
(1) If T is the trivial monad on X, then (XT ,U7T) is concretely isomorphic to (X, idx).
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(2) If T is the word-monad on X = Set, then (XT,UT) is concretely isomorphic to the
construct Mon of monoids. [If TX =5 X is a T-algebra, multiplication in X is
defined by a-b = x((a, b)), and if e is the value of x at the empty word, then (X, -, e)
is a monoid.]

(3) If T is the power-set monad on X = Set, then (XT,UT) is concretely isomorphic
to the construct JCPos. [If TX =5 X is a T-algebra, then a < b if and only if
xz({a,b}) = b defines a partial order on X with x(A) = sup A for each A C X; the
T-morphisms are precisely the join-preserving maps.] Cf. Exercise 5N(a).

(4) If T = (T,n, ) is a monad on a partially ordered set X, considered as a category,
and if £: Y — X is the embedding of the full subcategory Y of X, whose objects
are the fixed points of T', then (XT,UT) is concretely isomorphic to (Y, E).

(5) The construct Vec is concretely isomorphic to the construct AbT for the following
monad T = (7,7, u) on abelian groups: for each abelian group X, let 7X = R® X
be the tensor product, with morphisms nx : X — R ® X given by  — 1 ® z, and
ux : ROR® X - R® X given by 1 @ ro ® & — (r17r2) @ x.

20.6 REMARK

As outlined in the introduction of this section, with each concrete category (A, U) over
X that has free objects (or, more generally, with every adjoint functor A Y, X) one
can associate a category (XT,UT) of T-algebras in three steps. Since the first of these
steps does not yield a unique result, (XT,UT) is not uniquely determined by (A, U).
However, any two categories of algebras that are obtained from (A,U) in this manner
are concretely isomorphic. (See Exercise 20A.) Thus, by “abuse of language”, we will
sometimes designate any category of algebras that is obtained from (A, U) via the proce-
dure outlined above as the category of algebras associated with (A, U) (resp. with
the functor U).

20.7 PROPOSITION

Every monad T = (T,n,u) on X gives rise to an associated adjoint situation
(n,e): FT — UT: XT — X, where

(1) XT and UT are defined as in Definition 20./,

(2) X L5 XT is defined by FT(X L5 V) = (TX, px) —L (TY, py),

in particular, (TX, ux) is a free object over X in (XT,UT),
(3) FTUT = idxr is defined by (x4 = .

Moreover, the monad associated with the above adjoint situation (20.3) is T itself.

Proof: Straightforward computations. O
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MONADIC CATEGORIES AND FUNCTORS

20.8 DEFINITION

(1) A concrete category over X is called monadic provided that it is concretely isomor-
phic to (XT,U7T) for some monad T on X.

(2) A functor A Y, X is called monadic provided that U is faithful and (A,U) is
monadic.

20.9 REMARK

In Proposition 20.40 it will be shown that every monadic category is concretely isomor-
phic to its associated category of algebras.

20.10 EXAMPLES
(1) Every isomorphism is monadic [cf. 20.5(1)].

(2) The construct Mon is monadic [cf. 20.5(2)]. So is every finitary variety (cf. 20.20).
(3) The construct JCPos is monadic [cf. 20.5(3)].
(4)

4) An embedding of a full subcategory A of X into X is monadic if and only if A is
isomorphism-closed and reflective in X. (See Proposition 20.12, Theorem 20.17, and
Exercise 20F.) A concrete category (A, U) over a partially ordered set X is monadic
if and only if, up to isomorphism, A Y, X is the embedding of a full reflective
subcategory of X [cf. 20.5(4)]. In particular, a partially ordered set, considered as a

concrete category over 1, is monadic if and only if it contains precisely one element.
(5) None of the constructs Top, Rel, or Pos is monadic since the corresponding forgetful

functors don’t reflect isomorphisms (cf. 20.12).

20.11 LEMMA

The FEilenberg-Moore category of a monad T = (T,n, ) is closed under the formation of
mono-sources in Alg(T).

Proof: Let T = (T,n, 1) be a monad on X, and suppose that the diagram

TX kN TX;

commutes for each i € I, where (X LN X;)7 is a mono-source in X, and each (X;,z;)
is a T-algebra. To show that (X, z) is a T-algebra, first notice that the commutativity
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of the diagram

m{ [

TX *>TXZ‘

Tm;

X — X;

and the fact that z; o nx, = idx, imply m; o (x onx) = z;0Tm;onx = x;0nx, om; =

[Chap. V

idx, om; = m; oidy, and thus z o nxy = wdx. The commutativity of the five inner

quadrangles in the diagram

Tx

KX uxli ll’z r

TX X

implies that m; o (x o ux) = m; o (x o Tx) and thus x o uxy = z o Tx.

20.12 PROPOSITION
For monadic functors A Y. X the following hold:

(1) U is faithful,

(2) (A,U) is fibre-small,

(3) U is adjoint, i.e., (A,U) has free objects,

(4) (A,U) is uniquely transportable, hence amnestic,

(5) U creates isomorphisms, hence reflects them,

(6) U reflects epimorphisms and extremal epimorphisms,
(7) U preserves and reflects mono-sources,

(8) in (A,U) mono-sources are initial,

(9) U detects wellpoweredness, i.e., if X is wellpowered, then so is A,

(10) U creates limits.

Proof: Since all of the properties mentioned above are invariant under concrete iso-
morphisms, we may assume that (A, U) = (XT,UT) for some monad T = (T,7,u) on

X.
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(1) and (2) follow immediately from the definition of monadicity.
(3) follows from Proposition 20.7.

(7) follows from (1) and (3).

(8) is immediate by straightforward computation.

(9) follows from (7) and (8).

(10). Let D : T — XT be a diagram and let £ = (L L, D;)op be alimit of UToD. For
each i € Ob(I) let D; = (X;,x;). Then the source S = (T'L T4, TX; 2 Xi)ow()

is natural for UT o D. Hence there exists a unique X-morphism TL %> L with
S = Loy, i.e., such that each diagram

TL —5TX,

L X
commutes. Thus it remains to be shown that (L,y) is a T-algebra and that the
source <(L, Y) &, Di) ob) is a limit of D. The former follows from the fact that

L is a mono-source and from Lemma 20.11. The latter follows from (7) and (8)
via Proposition 13.15.

(4) and (5) follow immediately from (10), by Proposition 13.36.

(6) follows immediately from (1), the preservation of monomorphisms (7) and the
reflection of isomorphisms (5). O

20.13 REMARK
Even though monadic functors behave perfectly with respect to limits, their relationship

to colimits is rather complex. For example, if A Y, X is a monadic functor with X
cocomplete and if A has coequalizers, then A is cocomplete (see Exercise 20D); but
A needn’t have coequalizers (see 20.47). In fact, monadic functors are characterized
by their (somewhat strange) behavior with respect to coequalizers, as will be seen in
Theorem 20.17.

20.14 DEFINIT;ON
1. A fork A%; B -5 is called a congruence fork provided that (p,q) is a

congruence relation of ¢, and c is a coequalizer of p and gq.
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P
2. A fork A== B+ is called a split fork and c is called a split coequalizer
q
of (p,q) provided that there exist morphisms s and ¢ such that the diagram

\ /
/ \

comiutes.

3. A colimit K of a diagram D : I — A is called an absolute colimit provided that

for each functor A -2~ B the sink GK is a colimit of G o D.
In particular, ¢ is called an absolute coequalizer of p and ¢ in A provided that

for each functor A % B, Gc is a coequalizer of Gp and Gq in B.

4. A functor A <5 B is said to create absolute colimits provided that for each

diagram I D, A and each absolute colimit K of G o D there exists a unique sink
C = (D; = C)op() such that GC = K and, moreover, C is a (not necessarily

absolute) colimit of D.
S5 468

Cﬁ Cu)))_, 7
N—

i~

%%z%

A monadic functor creating colimits

\

20.15 EXAMPLES
(1) If A is a category, f is an A-morphism, (p,q) is a congruence relation of f in A,
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P
and c is a coequalizer of p and ¢ in A, then @ — e —+ e is a congruence fork in
q

A. (Cf. Proposition 11.22.)

P
(2) A congruence fork ¢ —e ;e is a split fork if and only if c is a retraction.
q

(3) If %3 e ;e is a split fork, then ¢ is an absolute coequalizer of p and g.

(4) If (n,e) : FF — U : A — X is an adjoint situation, then for each A-object A

UFUexg Uey
UFUFUAU:§UFUA4>UA
EFUA

is a split fork in B since the diagram

UFUA Uea UA
nu A
NUFUA UFU
i UFUFUA——=— UFUA i
k///fé;;:: Ue Uea
UFUA A UA

commutes.

(5) If T = (T,n, p) is a monad on X, then for each T-algebra (X, x)
Tx x
T°X uﬁ TX — X
X
is a split fork in X. Hence, in particular, for each X-object X
Tux 115
T3X —=372°X ——TX
HTX
is a split fork in X.

20.16 PROPOSITION
Each monadic functor U creates absolute colimits.

Proof: Let T = (T,7, 1) be a monad on X and let (XT,U7T) be the associated category
of T-algebras. Let D: I — XT be a diagram and let K = (UTD; = C)opr be an

absolute colimit of UToD. Then TK = (TUT D; e, T'C)op() is a colimit of T'o UToD.
If D; = (X;,z;) for each i € Ob(I), then S = (TX; 2 X; = C)ow(r) is a natural sink
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for T oUT o D. Hence there exists a unique morphism TC' — X with S = co TK, i.e.,
such that for each i € Ob(I) the diagram

Tc;

commutes. Thus it remains to be shown that (C,c) is a T-algebra and that the sink
(D; =5 (C, ¢))op() is a colimit of D. The former follows from the fact that X and T2k,
being colimits, are epi-sinks and from the equations

(conc)oci:coTcionXi:cioxionxi:cioidxi:idcoci
and

(coTe)oT?c; = coTe;oTax; = ciox;oTx; = cioxiouyx, =coTcouy, = (copc)oT?c.

For the latter, consider a natural sink X = (D; Ji, (X, 2))op) for D. Then UTX =
(X, i, X)owm is a natural sink for UT o D. Thus there exists a unique X-morphism

C L. X with f; = f o¢; for each i € Ob(I). Hence T'f; = T'f o T¢; for each i € Ob(I)
andsoxoTl foTc;, =xo0Tfi= fiox;= focox; = focoTc;. Since TK is an epi-sink,
this implies that x o T'f = fo¢, ie., (C,c) N (X, z) is the unique T-homomorphism
with X = fo K. O

20.17 CHARACTERIZATION THEOREM FOR MONADIC FUNCTORS
For any functor A Y. X the following conditions are equivalent:

(1) U is monadic,
(2) U is adjoint and creates absolute coequalizers,

(8) U is adjoint and creates split coequalizers (as defined in 20.1/).

Proof: (1) = (2) follows from Propositions 20.12 and 20.16.
(2) = (3) follows from Example 20.15(3).

(3) = (1). Since U is adjoint, there is an adjoint situation (n,¢) : FF — U : A — X. Let
T = (T,n, i) be the associated monad and let (XT,UT) be the associated category of T-

algebras. It suffices to construct functors A KL XT and XT 25 A with U =UT o K ,
Lo K =ida, and K o L = idxr; since then U would be faithful, (A, U) would be a

concrete category, and (A, U) X, (XT,UT) would be a concrete isomorphism.

Construction of K: For each A-object A the pair (UA,Ue4) is a T-algebra [cf. 20.15(4)],
and for each A-morphism A 1. B ,(UA,Uey) R (UB,Uepg) is an T-homomorphism.

18th January 2005



Sec. 20] Monads 335

Thus there exists a unique functor A £ XT with K (A) = (UA,Ue,) for each A-object
A.

Construction of L: For each XT-object (X, ) the fork

Tx U(Fz)
T°X =3TX *+X = UFUFX)—=U(FX)*—X
Hx U(erx)

is a split fork [cf. 20.15(5)]. Hence, by condition (3), U(FX) - X has a unique U-lift
FX % L(X) and 7 is a coequalizer of epx and Fx in A. For each T-homomorphism
(X, x) N (Y, y) the following equalities hold:

(yoFf)oerx =Yoepy o FUFf=YyoFyo FTf = (yoFf)o Fa.

Since T is a coequalizer of epx and Fx in A, there exists a unique A-morphism
L(X) d), L(Y) with yo F'f = L(f)oZ. Since x is an epimorphism, the equali-
ties UL(f)ox = UL(f)oUZT = Uyo UFf = yoTf = foux imply that UL(f) = f,

ie., ULX,2) 2V Liv,y) = X Lo v = UT((X,2) L= (V,y)). Thus L defines a

concrete functor XT 25 A. The equation LoK = ida immediately follows (via concrete-
Ue g

ness) from the fact that, for each A-object A, FUA SA, A Ulifts UFUA =225 U A,
so that L o K(A) = A. To show that K o L = idxr, let (X,z) be an T-algebra. Then
(Ko L)(X,x) = (UL(X,),Uer(x4)). Since UL(X,z) = X, it remains (in view of
concreteness) to be shown that z = €L(X,z)- By the universality of 7, the equations

Uzonx =wxonx =idx = Uepxz) ©MuL(xz) = UeL(x,z) © Nx Imply that T = ep(x 1)
and hence that x = UT = Uep(x 4)- O

20.18 PROPOSITION
FEach construct of the form Alg(S) is monadic.

Proof: By Example 8.23(6) the forgetful functor Alg() Y, Set is adjoint, so by the
above theorem it suffices to show that U creates absolute coequalizers. Consider a pair

P

(A, (a;)1) == (B, (3:)1) of Q-homomorphisms and an absolute coequalizer B — C
q

of p and ¢ in Set. For each i € I, the functor S™ : Set — Set [3.20(10)] preserves

this coequalizer. Thus B" L oM s a coequalizer of p™ and ¢™ in Set. Since
(cofB;)op™ = copoa; = coqoay; = (cof3;)oq™, there exists a unique function C™ iNYe;
with co 8; = v; 0 ¢®. Thus (B, (8;)1) — (C,(v)1) is the unique U-lift of the costruc-
tured map (B, (8;)1) — C. It follows easily that (B, (8;);) — (C, (vi)1) is a coequalizer

P
of (A, ()r) ? (B, (Bi)r) in Alg(f2). Thus U creates absolute coequalizers. O

20.19 PROPOSITION

Let (A,U) be a monadic category over X. Then each concrete full reflective subcategory
of A that is closed under the formation of reqular quotients is also monadic over X.
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Proof: Immediate from Theorem 20.17. O

20.20 PROPOSITION

Each finitary variety is a monadic construct.

Proof: Immediate from Propositions 20.18 and 20.19. O

E-MONADS AND E-MONADIC
CATEGORIES AND FUNCTORS

20.21 DEFINITION
(1) A monad T = (T,n, ) on X is called an E-monad provided that X is an (E, M)-
category for some M and T[E] C E.

RegEpi-monads in categories with regular factorizations are called regular monads.

(2) A concrete category (A,U) over X (or a faithful functor A N X) is called E-
monadic (resp. regularly monadic) provided that (A, U) is concretely isomorphic
to (XT,U7T) for some E-monad (resp. regular monad) T on X.

20.22 PROPOSITION
Every monad on Set is regular.

Proof: This follows from the facts that in Set every regular epimorphism is a retraction
and that every functor preserves retractions. O

20.23 DEFINITION

A functor A -2 X lifts (E,M)-factorizations uniquely provided that for any source
S in A and any (E, M)-factorization US = Moe in X there exists a unique factorization
S=Moéin A with UM = M and Ué =e.

20.24 PROPOSITION
If X is an (E,M)-category and A Yo X s E-monadic, then U lifts (E, M)-factoriza-
tions uniquely.

Proof: Assume that (A,U) = (XT,UT) for some F-monad T = (T,n,u) on X. Let

S =((X,2) Ji, (X;,2:))r be a source in XT and (X RN X)) =X Sy I X)),
be an (E, M)-factorization of UTS in X. Since Te € E, there exists a unique diagonal
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TY 45 Y in X that makes the diagram

TX—>TX

e

x ) T4 (Z € I)
Y
N
X fi Xi

commute. That (Y,y) is a T-algebra follows from the fact that e and T2e are epimor-
phisms [15.5(2)] and from the equations

yonyoe=yoTleonxy =eoxony =eoidx =idyoe
and

(yoTy)oT?e=yoT(yoTe)=yoT(eox)=yoTeoTr=coxolr=eoxopuy
=yoTeopuy = (youy)oT?e. O

20.25 PROPOSITION

Let A be a full subcategory of an (E, M)-category B. Then the inclusion functor A Y. B
1s E-monadic if and only if the following conditions are satisfied:

(1) A is reflective in B,

(2) if A5 B 25 A is an (E,M)-factorization of an A-morphism A "= A’, then
B belongs to A.

Proof: If U is E-monadic, then by Propositions 20.12(3) and 20.24, conditions (1) and
(2) are satisfied. Conversely, let (1) and (2) be satisfied, and let (n,e): FF — U: A — B
be an adjoint situation. If T = (T, n, u) is the associated monad, then (A,U) can be
shown to be concretely isomorphic to (BT, UT). To see this consider the concrete functor
K: (A, U) — (BT,UT) given by KA = (A,n;). K is an isomorphism since for each
T-algebra (B,b) we have bonp = idp (where np is an A-reflection for B) and hence
np obonp = np implies that np o b = id. Thus b = n5', and B € Ob(A) since, by (2),

A is isomorphism-closed. It remains to be shown that T[E] C E. Consider a morphism
m

B-5 B in E. Let TB — TB' = TB <, B" ™, TB' be an (E, M)-factorization of
Te. Then there exists a diagonal B 2, B that makes the following diagram commute:

B——p

B"——TB
m
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By the universal property of 7 there exists a morphism 7B’ 4, B" with d = d o ng:.
Thus modonB/ = mod = np implies that mod = i. Moreover, domoeonB =
domodoe = donB/oe = doe = éonp implies that domoé =é. Thus, since é is
an epimorphism, d o1 = id. Hence 7 is an isomorphism and, consequently, Te = mo é
belongs to E. O

20.26 COROLLARY

If A is an E-reflective subcategory of an (E,M)-category B, then the inclusion-functor
A — B is E-monadic.

Proof: Immediate from Theorem 16.8 and Proposition 20.25. O

20.27 EXAMPLES

As the following examples show, there exist full subcategories A of (E, M)-categories B
such that the inclusion functor A — B is E-monadic, but such that A is neither closed
under the formation of M-subobjects nor under the formation of E-quotient objects:

(1) Sgr is a (RegEpi, Mono-Source)-category, the full embedding Grp — Sgr is regu-
larly monadic, and Grp is closed under the formation of regular quotients in Sgr.
But Grp is not closed under the formation of subobjects in Sgr.

(2) Top is an (Epi, ExtrMono-Source)-category and the full embedding of HComp into
Top is Epi-monadic. But HComp is neither closed under the formation of quotients
nor closed under the formation of extremal subobjects in Top.

20.28 PROPOSITION
If (A,U) is an E-monadic category over an (E,M)-category X, then the following hold:

(1) Every A-morphism f with Uf € E is final in (A,U).
(2) A is an (UY[E], U~ [M])-category.

Proof:
(1). Assume that (A,U) = (XT,UT) for some E-monad T = (T,n,u) on X. Let
(X,2) % (Y,y) be a T- homomorphism with X < Y in B, and let Y X5 Z be

an X-morphism such that (X, x) (Z,z) is a T-homomorphism. Since Te is an
epimorphism, the equalities

(foy)oTe=(foe)ox=z0T(foe)=(z0Tf)oTe

imply that foy =zo0T}f, ie., that (Y,y) 4, (Z,z) is a T-homomorphism.

(2). By Proposition 20.24, A has (U~![E],U~[M])-factorizations. By (1) and the fact
that U~1[E] C Epi(A), A has the unique (U~'[E], U~![M])-diagonalization prop-
erty. O
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20.29 COROLLARY
If (A,U) is E-monadic over an E-co-wellpowered category, then A is U~1[E]-co-well-
powered. O

20.30 PROPOSITION

If (A,U) is regularly monadic, then A has regular factorizations and U preserves and
reflects reqular and extremal epimorphisms.

Proof: By Proposition 20.28, A is an (E, Mono-Source)-category, where E is the class
U~![RegEpi(X)]. Thus, by Proposition 15.8(1), E = ExtrEpi(A). It suffices to show
that in A every extremal epimorphism A — B is regular. Since Ue is an extremal
epimorphism and hence a regular epimorphism in the base category X, it is a coequalizer

T
of some pair X :1§ UA of X-morphisms. If X -5 UC is a universal arrow over X,
T2

then for each i = 1, 2 there exists an A-morphism C i, A with r; = (Ur;)on. Since Ue
is a coequalizer of r; and ry in X, the finality of e [cf. Proposition 20.28(1)] implies that
e is a coequalizer of 71 and 79 in A(cf. Exercise 80). Hence e is a regular epimorphism
in A. O

20.31 COROLLARY
Regularly monadic functors detect extremal co-wellpoweredness. O

20.32 CHARACTERIZATION THEOREM FOR
REGULARLY MONADIC FUNCTORS

A functor A Y. X is regularly monadic if and only if the following conditions hold:
(1) U is monadic,
(2) X has regular factorizations,

(3) U preserves reqular epimorphisms.

Proof: By Proposition 20.30 every regularly monadic functor satisfies the above condi-
tions. Conversely, assume that (A,U) = (XT,UT) for some monad T = (T,n, 1) on X,
and that conditions (2) and (3) are satisfied. Then F'T and hence T = UT o F'T preserve
regular epimorphisms. Thus T is a regular monad and (A, U) is regularly monadic. O

20.33 PROPOSITION
Regularly monadic functors detect colimits.

Proof: Let (A, U) be a regularly monadic category over X, let D : I — A be a diagram,
and let (UD; —— Cicopa) be a colimit of U o D. Consider the structured source

fioci

—— UA;j
is an A-morphism . If C J%, UA is a universal arrow over C, then for each jeJ

(C Sy Aj)jer) consisting of all structured morphisms for which each UD;
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there exists a unique A-morphism A AN Aj with f; = gjonc. Let (A AN j)g =
(A= B SN A;)j be a (RegEpi, Mono-Source)-factorization.

U Di Ci C nc U A e
UA;

UB

Since mono-sources are initial and each UD; fycci UA; is an A-morphism, each
UD;, =", UB is an A-morphism. It follows easily that (D; oot B)ieOb(I)
is a colimit of D. O

MONADIC CONSTRUCTS

20.34 PROPOSITION

Monadic constructs are complete, cocomplete, wellpowered, extremally co-wellpowered,
and have reqular factorizations.

Proof: Let (A,U) be a monadic construct. By Proposition 20.12, A is complete and
wellpowered. By Proposition 20.22, U is regularly monadic. Hence Corollary 20.31
implies that A is extremally co-wellpowered, Proposition 20.30 implies that A has regular
factorizations, and Proposition 20.33 implies that A is cocomplete. O

20.35 CHARACTERIZATION THEOREM FOR
MONADIC CONSTRUCTS

For constructs (A, U) the following conditions are equivalent:

(1) U is monadic,

(2) U is regularly monadic,

(3) U is adjoint and creates finite limits and coequalizers of congruence relations,

(4) U 1is extremally co-wellpowered and creates limits and coequalizers of congruence
relations.

Proof: (1) < (2) by Proposition 20.22.

(1) = (3). It suffices to show that U creates coequalizers of congruence relations. Let
P Up

A—= B be a pair of A-morphisms and let UA —=URB <50 bea congruence fork
q Uq

in Set. By Example 20.15(2) it is a split fork. Thus the result follows from Theorem
20.17.
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(3) = (1). By Theorem 20.17 it suffices to show that U creates coequalizers of split
p

forks. Let A —< B be a pair of A-morphisms and let
q

C

UB C
\ /
Up
id UA——UB i
UB C

be a commutative diagram in Set. Let (c1,c2) be a congruence relation of ¢ in Set and
let (p1,p2) be a congruence relation of p in A. Then (Up;, Ups) is a congruence relation
of Up in Set. Thus there exist unique functions u and v that make the diagrams

Up1 c1

ur UA Q _ UB
u c1 o Upx
Upa Q——UB and c2 UP——UA
Czl Jc UP2J lUP
UA Ua UB—; C UB — UA 4>Up UB

commute.

The equations ¢; o (uov) = UgoUp;ov =Uqotoc; = ¢; = ¢;oid for i = 1,2 imply that
uwov = id. Thus, if [ %; UP is a congruence relation of u, then u is a coequalizer of /1
and fo. A straightforwa;d computation shows that the source (L, (¢;)) can be considered
as a limit of the diagram

4y
L s UP

123 U(qop1)

Since U creates finite limits, there is a unique lift (L — P) for the structured source

) Ue
(L &, UP). Since [/], :1§ UP —-Q is a congruence fork, UP - Q has a unique
Uty
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lift P -2 Q and 4 is a coequalizer of /1 and /5 in A. Thus the equations ¢; o Ut =
ciou = U(qop;) and the faithfulness of U imply that each ¢; can be lifted uniquely to an

. & _Ue
A-morphism Q —— B. Since UQ :1§ UB - (C is a congruence fork, UB - C has
Uéa

a unique lift B G and éis a coequalizer of ¢; and ¢ in A. It remains to be shown
that ¢ is a coequalizer of p and ¢. Since ¢ o p = ¢ o g, this follows from the fact that

whenever ¢ L5 D is an A-morphism with fop= fogq, then foéiotu= foqop =
fopopr=fopops=foqgops = foéeomn, and hence that fo ¢y = focs.

(3) = (4). In view of Proposition 18.11 this follows from (3) = (1) and Proposition 20.34.
(4) = (3). Since U creates limits and Set is strongly complete, so is A. Hence by
Theorem 17.11(1), U has (Generating,—)-factorizations, i.e., it is adjoint. O

20.36 EXAMPLES

(1) The construct HComp is monadic. Condition (3) of the above theorem is easily
seen to hold.

2) Neither of the constructs Cat,s and (Ban,O) is monadic. The corresponding for-
f
getful functors don’t preserve extremal epimorphisms [cf. 7.72(5)].

THE COMPARISON FUNCTOR

Next we will show that every monadic category is not only concretely isomorphic to
some category of algebras, but even to its associated category of algebras (cf. Remark
20.6). Moreover, for every concrete category (A, U) that has free objects, there exists a
distinguished concrete functor into its associated category of algebras; and that functor
turns out to be an isomorphism if and only if (A, U) is monadic. (See Proposition 20.40.)

20.37 PROPOSITION
If (n,e): F — U: A — X is an adjoint situation and (XT,UT) is the associated

category of algebras, then there exists a unique functor A KL XT such that the diagram

X5 A

|
XT 7 X
commutes.
Proof: Existence: The functor A XT defined by
KA L By = WA, Uy Y (UB,Uep),

has the desired properties.
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Uniqueness: Let A £, XT be a functor satisfying U = UT o K and FT = Ko F.
Consider an A-morphism A i B, and denote K (A N B) by (X,z) <> (Y,y). Then
U = UT o K implies that UA 21 UB = X 2+ Y. Thus X = UA, Y = UB, and
g = Uf. It remains to be shown that x = Ue4. Since FUA Z4, A is an A-morphism,

K(FUA =2 A)=FTUA AL KAis a T-homomorphism. Thus the diagram

TUA
\ Tnua

2\ TTUA A 1y A

\
. Uerya T
N J J
€A

commutes.

This implies that x = Ue 4, so that K=K. O

20.38 DEFINITION

(1) For each adjoint situation (n,e) : F — U : A — X, the unique functor A K, xT
of the above proposition is called its comparison functor.

(2) For each adjoint functor A 2 x (resp. each concrete category (A,U) that has
free objects) the comparison functor of an associated adjoint situation is called a
comparison functor for U (resp. for (A,U)).

20.39 REMARKS

(1) In view of the essential uniqueness of comparison functors for U (cf. 20A) we will,
by “abuse of language”, usually speak of the comparison functor for U.

(2) Let (n,e): F — U: A — X be an adjoint situation. Then Proposition 20.37 can
be interpreted as saying that the adjoint situation (n1,eT): FT — UT: XT - X
induced from the associated monad T is the “largest” one with the same associated
monad. In Exercise 20B it is indicated that every monad also has a “smallest
realization”, called its Kleisli category.

20.40 PROPOSITION

An adjoint functor is monadic if and only if the associated comparison functor is a
concrete isomorphism.

Proof: If the comparison functor for an adjoint functor U is an isomorphism, then U is
obviously monadic. Conversely, let A Y. Xbea functor, let T be a monad on X, and let
(A,U) A, (XT UT) be a concrete isomorphism. Let (n,e) : FT — UT: XT — X be
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the adjoint situation associated with T. Then (n, H 'eH): H 1o FT — U: A - X
is an adjoint situation whose associated monad is T. Since the diagram

H-1oFT
A

—
H
FT / U
T
X 4>UT X

X

commutes, H is the associated comparison functor for U. Thus the comparison functor
is an isomorphism. O

20.41 EXAMPLES

(1) The constructs Grp and TopGrp induce the same monads on Set. Thus the forget-
ful functor TopGrp — Grp is the comparison functor for the construct TopGrp.

(2) Since the constructs TfAb and Ab of torsion-free abelian groups and of abelian
groups induce the same monads in Set, the full embedding TfAb — Ab is the
comparison functor for TfAb.

(3) The construct Cat,s is not monadic. If Grph (= the category of oriented graphs)
is the full subconstruct of Alg(1,1) that consists of all objects (X, ¢, d) that satisfy
the equations coc = doc =cand dod = cod = d, then the concrete functor

Cat,; > Grph, defined by KC = (Mor(C),c,d) (where Mor(C) == Mor(C)
d

are given by d(A EiN B) = ids and c(A EN B) = idp), is the comparison functor
for Cat,;. K is not full.

(4) The full concrete embedding of the construct (Ban, O) into the construct TConv
of totally convex spaces is the comparison functor for (Ban, O).

(5) Since the constructs Top and Set induce the same monad on Set, the forgetful
functor Top — Set is the comparison functor for Top.

20.42 THEOREM

Let (A,U) X, (XT UT) be a comparison functor. If A has coequalizers, then K is
adjoint.

Proof: Let (n,e): F — U : A — X be an adjoint situation and let T = (T, n, u) be
the associated monad. Let (X, ) be a T-algebra and let FX — C be a coequalizer of

FUFX 2% FX and FUFX <EX, FX. Then (X,z) —<2X,
arrow as shown below:

KC is a K-universal

(a). Since (Uconx)ox =UcoUFzonupx = UcoUepx onurx = Ucoidyrx =
UcoUidpx = UcoU(epx o Fnx) = U(coepx)oUFnx = U(ec o FUc) o UFnx =

Uec oT(Uconx), it follows that (X, x) eonx (UC,Uce¢) is an T-homomorphism.
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(b). Let (X,x) 1, KA be an arbitrary K-structured arrow. Then FX L4 =

FX 2 4 s the unique A-morphism with f = Ufonx (cf. 19J). The equations
U(foFx)onupx =UfoUFzonupx = Ufonxow=fox=UssoUFf=Uf =
UfOUSFXOnUFX = (fO5FX)O77UFX imply that foF:C = foeFX Since c is a coequalizer

of Fx and EFX in A, there exists an A-morphism C N A with f — foc. This implies

that (X, ) LKA = (X, z) eonx , ko 21 KA, since f=Ufonx =UfoUconx
and K f Uf. Uniqueness of f follows from the fact that ¢ is an epimorphism in A. [

20.43 THEOREM
Let (n,e): FF — U : A — X be an adjoint situation with associated comparison functor

A L XT Then:
(1) K is faithful if and only if U is faithful,

(2) K is full and faithful if and only if € is a RegEpi-transformation.

Proof:
(1). Obvious.

(2). Let € be a RegEpi-transformation. Then, by Theorem 19.14(1), U is faithful. Thus
K is faithful as well. Let A and B be objects in A and let KA L. kB be
an XT-morphism. If €4 is a coequalizer of Cé FUA, then the equations

S

UepoUFfoUr = foUgpoUr = foUegoUs = UepoUF foUs imply that
egoFfor = 63 o Ff os by the faithfulness of U. Thus there exists an A-

morphism A N B with epo F'f = f ocq. Since Uey as a retraction is an
eplmorphlsm the equations Kf olUey = Uf oUep=UepoUFf = foUey imply
that K f = f. Thus K is full. Conversely, let K be full and faithful and let A be an
A-object. Then ¢4 oecpya = €4 0 FUey. To see that €4 is a coequalizer of epya
and FUey, let FUA N B be an A-morphism with foepys = f o FUeys. The
equalities (Uf onya) oUes = Uf o UFUeponurua = Uf o Uepya © nurua =
Uf = UfoUeypaoUFnua = UspoUFUfoUFnyas = UepoT(Uf onua)

imply that KA Ylewa, gp is an T-homomorphism. By the fullness of K,

there exists an A-morphism A N B with K f = Uf onua. The equalities
Ufonua=Kf=Uf=UfoUeaonua="U(foca)onua imply that f = foea.
Uniqueness follows from the fact that (due to the faithfulness of K and hence of U)
€4 is an epimorphism [cf. Theorem 19.14(1)]. a

20.44 COROLLARY

The comparison functor (A,U) £, (XT,UT) of a uniquely transportable concrete cat-
egory, for which U reflects reqular epimorphisms, is an isomorphism-closed full embed-
ding. O
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DEFICIENCIES OF MONADIC FUNCTORS

20.45 EXAMPLE
A composite of two regularly monadic functors need not be monadic. Consider

TfAb ——— Ab
lv

VoU
Set

20.46 EXAMPLE
Concrete functors between monadic categories need not be adjoint. Consider

Ab., —Z Grp,,

e

Sets

where (in each case) A is the full subcategory of A that consists of those objects of A
that have infinite underlying sets, where U and V are the forgetful functors, and E is
the inclusion functor.

20.47 EXAMPLE

Monadic functors need not detect colimits. The following yields a monadic category over
Pos that is not cocomplete.

Denote by P : Set — Pos the power-set functor equipped with the ordering of PX such
that ) is the least element, and PX —{0} is discretely ordered. Denote by H : Pos — Set
the functor that assigns to each poset (X, <) the set

H(X,<)={(z,y,2) € X3 |z <y<zu{a} (where o & X?)

and to each order-preserving function f: (X, <) — (Y, <), the map H f with H f(«a) =
a, and
(f(x), f(y), f(2)), it f(x) # f(y) # f(2)

Q, otherwise.

(a) The functor T = PYo H : Pos — Pos is such that Alg(7T) has free objects. In fact,
for each poset A we have TA = T(A + TA) and, hence, the free T-algebra over A
is (A+TA,¢), where TA £, A+ TA is the second coproduct injection, whereas

the universal arrow A — A +TA is the first coproduct injection. Hence, Alg(T) is
monadic over Pos.

(b) Alg(T) does not have the coproduct of the following T-algebra (X, z) with itself:
X is the 3-chain a < b < ¢, and z : TX — X is the constant map to a.
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To prove this, for each ordinal i define T-homomorphisms f;,g; : (X,z) — (Yi,yi) as
follows: Y; is the following poset

C1 €2

and for each j < 1,

j:yi({(a7b’k) ‘ k<j}u{(a,b,c,~) | i:172})7

and otherwise, y; is constant to a. Finally, fi(a) = gi(a) = a, f;(b) = g¢;(b) = b, and
fi(e) = c1, gi(c) = co. Tt is easy to verify that f; and g; are homomorphisms such that
whenever (X, z)+ (X, z) exists, the factorizing homomorphism (X, z)+ (X, z) — (Y;,v:)
is surjective. This is impossible.

20.48 EXAMPLE

Monadic categories over co-wellpowered categories need not be extremally co-wellpowered.
See Exercise 16A(a).

20.49 EXAMPLE

Monadic categories over categories with regular factorizations need not have (Epi, Mono-
Source)-factorizations. See Exercise 16A(b).

20.50 EXAMPLE

Monadic functors need not preserve either extremal epimorphisms or regular epimor-
phisms. In fact they can map regular epimorphisms into non-extremal epimorphisms
[see Exercise 16A(b)] and extremal epimorphisms into non-epimorphisms [see Exercise
16A(a)].

20.51 EXAMPLE
In monadic categories, regular epimorphisms need not be final. The comparison functor

Cat,s X, Grph for the construct Cat,y, described in Example 20.41(3), is monadic.
The functor F', described in Example 7.40(6), is a regular epimorphism in Cat,s that is
not final in (Cat,y, K).

20.52 EXAMPLE
Monadic functors need not reflect regular epimorphisms. As above, the comparison

functor Cat,; X, Grph is monadic. The functor A G, C, described in Remark
7.76(1), is not a regular epimorphism in Cat,, but K (G o F) is a regular epimorphism
in Grph.
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VARIETORS AND FREE MONADS

We now explain the role that the categories of the form Alg(T) play among monadic
categories. They are, up to isomorphism, precisely the Eilenberg-Moore categories of
free monads (introduced below).

20.53 DEFINITION

A functor T': X — X is called a varietor provided that the concrete category Alg(T)
has free objects.

20.54 EXAMPLES

(1) S™: Set — Set is a varietor. Each set generates a free S™-algebra (i.e., an algebra
with one n-ary operation; cf. 8.23(6)).

(2) If X has countable colimits, then idx is a varietor. Each object X generates a free
idx-algebra whose underlying object is a coproduct of countably many copies of X.

More generally, every functor T : X — X that preserves colimits of w-chains is a
varietor (cf. Exercise 20P).

(3) The power-set functor P is not a varietor. If Alg(P) would have an initial object
(X,z), then z: PX — X would be an isomorphism (cf. Exercise 20I). However,
card PX > card X.

20.55 DEFINITION

(1) Given monads T = (T,n,u) and T = (T', 7, 1) over X, a natural transformation
7: T — T is called a monad morphism (denoted by 7: T — T’) provided that
n=tonand Tou=p orT oTT.

(2) A free monad generated by a functor 7': X — X is a monad T# = (T# n#, u#)
together with a natural transformation A : T — T# that has the following universal
property: for every monad T” = (T”,n/, /') and every natural transformation
7: T — T’ there exists a unique monad morphism 7# : T# — T/ with 7 = 7# o \.

20.56 THEOREM

If T: X — X is a varietor, then Alg(T') is monadic over X and the associated monad
s a free monad generated by T .

Proof: Let U : Alg(T) — X denote the forgetful functor, let F': X — Alg(T) be the
free functor, let T# = U o F, and let T# = (T#,n*, u7) be the associated monad.

f
(1). U is monadic because it creates absolute coequalizers (20.17). If (X, x) :1§ (Y,y)

2
fi
are T-homomorphisms and X ==Y —— Z is an absolute coequalizer in X, then

P
Tc is a coequalizer of T f1 and T'fs, and since

(coy)oTfi=cofioz=cofrox=(coy)oTf,
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there is a unique TZ <> Z for which c¢: (Y,y) — (Z,z2) is a T-homomorphism.
The fact that T'c is a (regular) epimorphism makes it easy to see that

f
(X, ) :1§ (Y,y) == (Z,2) is a coequalizer in Alg(T).
[

2

(2). If FX = (X7, px), then the morphisms

TX XX, 7#x = TX DX, px# X, x#

obviously satisfy the naturality condition; i.e., they form a natural transformation
A: T — T#. To verify the universal property, let (T, 7/, /) be a monad, and let
7: T — T’ be a natural transformation. For each X-object X we have a T-algebra

(T x) X (2 X i
Furthermore, there exists a unique 7-homomorphism T;@E : FX — (T'X, [(/orT"]x)
with Tf: onx = n'y. It is a straightforward computation to verify that the morphisms

U 7';? form a natural transformation 7# : T# — T’ that satisfies all the required
equalities. 0

20.57 COROLLARY
If T : X — X is a varietor, then the category Alg(T) is concretely isomorphic to xXT#
for a free monad T7#. O

20.58 REMARK

The following theorem provides a partial converse to the above (in the case where X is
strongly complete).

20.59 THEOREM

If X is a strongly complete category, then every functor T : X — X that generates a
free monad is a varietor.

Proof: Let (T%,n", u#) together with A\: T — T# be a free monad over T. To
prove that the forgetful functor U : Alg(T) — X is adjoint, it is sufficient to verify
the solution-set condition of Theorem 18.12, since Alg(T') is complete and U preserves
limits (13N). We will show that for each X-object X the T-algebra

Aq#t W%
T(T#X) 25, (T#)?2X X T X

together with the X-morphism nﬁ : X — T#X forms a singleton solution set. In
other words, for each T-algebra (Y,y) and each X-morphism f: X — Y there is a
T-homomorphism

g: (T*X, 5% o Apsx) — (Yyy) with f=gonit.
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Denote by (B, U’) the full concrete subcategory of Alg(T) consisting of all subalgebras
of products of the T-algebra (Y,y). Then B is closed under the formation of limits in
Alg(T). Thus B is strongly complete and U’ preserves limits. Moreover, (Y,y) is a
coseparator of B (10.38), and hence, U’ is adjoint (18.17). Let F’: X — B denote the
free functor, F’X = (X*,px), and let (7,1, ') be the associated monad. Then the
morphisms

TXx XL pxr X

clearly form a natural transformation 7: 7" — T’. By the universal property of A there
exists a unique natural transformation 7# : T# — T’ with (a) 7 =77 o\,

(b) ' =1%on? and (c) 77 ou® =y o 7T o T#17,

If f: X — Y is a morphism, then since (Y,y) lies in B, there is a unique 7-homomor-
phism f*: T"X — (Y,y) with f = f*on . Then g = f* o7’§: T#X — Y is the
desired morphism. In fact, from (b) it follows that f = go 17;’?, and from (a) and (c)
and the properties of monads it is easy to verify that g is a T-homomorphism (i.e., that

yoTy=gopu% orre,). O
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EXERCISES

20A. Associated Categories of T-Algebras Are Essentially Unique

Show that

(a) If (,e): F — U: A — Xand (7,8): F — U: A — X are adjoint situations
that are isomorphic in the sense of Proposition 19.9, then the associated monads

T = (T,n,p) and T = (T, 7, i) are isomorphic in the following sense: there exists
a natural isomorphism 7 - T that is a monad morphism (20.55).

(b) If monads T = (T,n, ) and T = (T, 7, 11) in X are isomorphic in the above sense,
then the associated categories of T-algebras and T-algebras are concretely isomor-
phic.

(c) If (A, U) is a concrete category over X with free objects and if (A, U) X, (XT UT)
and (A,U) X, (XT,UT) are associated comparison functors, then there exists a
concrete isomorphism (XT,UT) A, (XT, UT) with K = Ho K.

20B. The Kleisli Category of a Monad

The Kleisli category of a monad T = (7,7, ) in X is the following concrete category
(X, Ur) over X: Ob(Xt) = Ob(X), homx,(X,Y) = homx (X, TY), (dx)xr = Nx,

and the composition of X LTy with Y 25 TZ in X is given by pz o Tgo f (in X).
Furthermore, U (X i TY)=TX el oy,

(a) Prove that Ur has a co-adjoint Fp with Fp(X EiN Y)=(X ol TY), and that
the associated monad of this adjoint situation is T.

(b) Prove that for each adjoint situation FF — G : A — X with the associated monad
T, there exists a unique functor K* : Xp — A with F = K*o Fp and Uy = Go K*

(c) Describe the Kleisli category of the power-set monad as the category of “sets and
relations”.

(d) Show that Ur need not detect finite limits. [Consider (c).]
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* 20C. Algebraic Theories

(a)

(d)

Let T be a monad over Set. Verify that in the Kleisli category X (20B) each object
(set) X is a coproduct of X copies of 1 = {0} with coproduct injections k; : 1 — X
in X corresponding to nx(z) € TX. Prove that for each T-algebra A the functor
Fs: X1 — Set given by

Fa(X L5 v) = hom((TX, pix), A) 2L hom((TY, py ), A)

[where Fqf(h) = hopux oTf (in Set)] preserves products.

Conversely, prove that every product-preserving functor F': (X1)°? — Set is nat-
urally isomorphic to F4 for some T-algebra A. [Hint: Choose A to be (F(1),¢),
where ¢ : TF(1) — F(1) assigns to each element of T'F (1) represented by an Xr-
morphism f: 1 — F(1), the element of F(1) that the function Ff: F?(1) — F(1)
assigns to id € (F(1))¥(1).] Conclude that SetT is equivalent to the quasicategory
of all product-preserving functors from (X ) to Set.

An algebraic theory is a category L whose objects are precisely all sets and such
that each object X is a coproduct of X copies of 1. A model of L is a product-
preserving functor from L°P into Set. The quasicategory Mod(L) of models of
L is the full subcategory of [L°P,Set| that has models as objects. Prove that
Mod(L) is equivalent to a monadic construct. Moreover, show that the Kleisli
category of the corresponding monad is equivalent to L.

Verify that the above transitions between monads and algebraic theories are essen-
tially inverse to each other (i.e., inverse up to isomorphism of monads and up to
equivalence of algebraic theories).

* 20D. Cocompleteness of Monadic Categories

Let
(a)
(b)

(A,U) be a monadic category over X and let A have coequalizers. Show that
A has colimits over each scheme over which colimits exist in X.

If X is cocomplete then so is A.

* 20E. Concrete Functors Between Monadic Categories

Let
(a)
(b)

(A,U) <, (B, V) be a concrete functor between monadic categories. Show that
If A has coequalizers, then G is monadic.

If (A,U) and (B, V) are regularly monadic, then G is regularly monadic.

20F. Idempotent Monads

A monad T = (T,n,u) is called idempotent provided that 72 £, T is a natural
isomorphism. Show that

(a)

For a monad T = (7,7, 1) the following conditions are equivalent:

(1) T is idempotent,
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(2) T is an Epi-transformation,
3) XT Y5, X s full,
(4) XT Y, Xisan isomorphism-closed full reflective embedding.

(b) If A Y, X is an isomorphism-closed full reflective embedding, then the associated
monad is idempotent.

(¢c) The monad associated with the forgetful functor Top — Set is idempotent.

20G. Monads With Rank

A monad T = (T, n, ) is said to have rank k, where k is a regular cardinal, provided
that T preserves k-directed colimits, i.e., colimits of diagrams whose schemes are posets
in which every subset of cardinality less than k has an upper bound.

(a) Prove that for each variety of finitary algebras the corresponding monad in Set has
rank No

(b) Let B be an isomorphism-closed, full reflective subcategory of a category A. Prove
that the corresponding idempotent monad in A has rank k if and only if B is closed
under the formation of k-direct colimits in A.

(c) For each small category A prove that the forgetful functor [A, Set] — [Ob(A), Set]
(where the set Ob(A) is considered to be a discrete category) is monadic, and that
the corresponding monad has rank Ng.

20H. Locally Presentable Categories

An object A of a category A is called presentable provided that hom(A4, —) : A — Set
preserves k-directed colimits for some regular cardinal k. A category A is called locally
presentable provided that it is cocomplete and has a dense (see 12D) subcategory
formed by presentable objects.

(a) Show that every object A is presentable in Set, Vec, Pos, and Aut. [Choose any
regular cardinal k larger than card A.] Show that in Top the only presentable objects
are the discrete spaces, and in HComp only the empty space is presentable.

(b) Show that Set, Vec, Pos, and Aut are locally presentable categories. Furthermore,
show that [A, Set] is locally presentable for each small category A.

(c) Show that for each monad T with rank over a locally presentable category X the
category XT is locally presentable. In particular, if Setm denotes the category
Set™ for some cardinal number m, then

Setm, SetmT", (SetmTl)TQ,

are locally presentable categories for arbitrary monads Ty, To, ... with rank.

(d) Conversely, prove that every locally presentable category A is equivalent to a cat-
egory (SetmTl)T2 for some monads Ty, To with rank; in fact, let B be a dense
subcategory of A formed by presentable objects, then show that
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(1) the full and faithful functor F : A — [B°P,Set] of Exercise 12D(c) maps A onto
a reflective subcategory E[A], and the corresponding idempotent monad To on
[B°P, Set] has rank,

(2) [B°P, Set] is monadic with rank Ry over Setn = Set” for n = card B [20G(c)].

(e) Let us call an object A strongly n-generated provided that hom(A, —) preserves
colimits of n-directed diagrams whose connecting morphisms are strong monomor-
phisms. Prove that then every quotient of A is also strongly n-generated.

In a locally n-presentable category X the strongly n-generated objects are precisely
the quotients of n-presentable objects. And given a monad T with rank n prove that
a T-algebra is strongly n-presentable in XT iff it is a quotient of the free algebra
TX for some strongly n-generated object X.

(f) In every locally presentable category X prove that every object is strongly n-pre-
sentable for some n. Conclude that if X has, for every regular cardinal n, only a
set of strongly n-generated objects up to isomorphism, then X is co-wellpowered.
Moreover, XT is also co- wellpowered for every monad T with rank.

(g) Conclude that every locally presentable category is complete, wellpowered, and co-
wellpowered.

20I. Initial T-algebras
For an initial object (X, z) of Alg(7T) prove that = is an isomorphism. [Hint: Use the
T-algebra (TX,Tx).]

20J. Monadic Towers
Let A be cocomplete and let A Y. X be an adjoint functor. Call the associated monad

1
T! and the associated comparison functor A Y XT' Then U = UT' o U. By
Theorem 20.42, U! is adjoint. Denote the associated monad by T? and the associated
comparison functor by U2. Then the diagram

2 U2
X —

commutes. This process can be iterated over all ordinals (with limit-steps obtained by
forming a limit in the quasicategory CAT).

(a) Show that U T? is an equivalence whenever U maps regular epimorphisms to epimor-
phisms.

(b) Let A, (n a natural number) be the construct whose objects are pairs (X, (a;)i<n),
where X is a set and «; is a partial endofunction of X defined on x € X if and only if
aj(z) = z for all j < 4. Morphisms from (X, (0;)i<n) to (X', (a})i<n) are functions
f: X — X' such that f(a;(z)) = o(f(x)) whenever a;(x) is defined. Describe
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the free algebras, comparison functors, etc. in detail and prove that the iteration
described above takes precisely n steps. That is, if Uy is the forgetful functor of A,
and Uy is the comparison functor associated with the kth step (k = 0,1,2,...),
then U, is an equivalence but U, _; is not.

(c) Show that there exists a construct for which the above iteration does not stop.

20K. The Constructs Topgp and Fram

Show that (cf. 5L)

(a) Fram is monadic.

(b) Topg® has free objects.

(c) The concrete functor Topy” L, Fram described in Exercise 5L is a comparison
functor.

20L. Regularly Monadic Functors Lift Regularity

Show that

(a) If X is regular and A Y X s regularly monadic, then A is regular.

(b) Monadic constructs are regular.

20M. Extremally Monadic Functors

A functor A %5 X (resp. a concrete category (A,U) over X) is called extremally
monadic provided that X is an (ExtrEpi, Mono-Source)-category and U is ExtrEpi-
monadic. Show that a concrete category (A, U) over X is regularly monadic if and only
if it is extremally monadic and X has regular factorizations.

20N. When Are Order Preserving Maps Monadic?
(a) Show that a morphism in Pos, considered as a functor between thin categories, is

monadic if and only if it is an embedding of a full reflective subcategory.

(b) For any function A L, B consider PA 2L+ PB as a functor (cf. Exercise 6G).
Show that Pf is monadic if and only if f is surjective.

200. Monadic Functors and Extremal Monomorphisms

Determine whether or not monadic functors preserve extremal monomorphisms.

* 20P. Varietors and Colimits of w-chains

Let T : X — X be a functor with X having countable colimits. For each object X define
a diagram D : N — X (where N is the thin category of natural numbers) by

Dy =X,
Dypp1 = X +TD,,

D0—1)=X — X +TX, the first coproduct injection,

dx~+TD(n—m)
e —

Din+1—-m+1)=X+TD, X + TD,.
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If T preserves the colimit of D, prove that X generates a free T-algebra. [Hint: If
(Dp, O, )N is a colimit of D, then there is a unique ¢: T'C — C with coTd,, =

dp110Up, where uy, : TD, — X +TD,, is the second injection. Then X o, |(C,c)
is universal.]

Conclude that each functor T': X — X that preserves colimits of w-chains (i.e.,
diagrams with the scheme N) is a varietor.

Find a varietor that does not preserve colimits of w-chains.
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Chapter VI

TOPOLOGICAL AND ALGEBRAIC
CATEGORIES

As demonstrated in §5, the vague concept of “structure” has a formalization in the
concept of a “concrete category” — the idea being that the forgetful or underlying
functor “forgets” the structure in question. Many structures can be decomposed into
more basic ones, which often can be classified as “topological” or “algebraic”. The nature
of a structure is reflected not so much in properties of its abstract category, but rather
in properties of its underlying functor. For example, topological groups can be regarded:

(a) as topological structures via the forgetful functor TopGrp v, Grp, i.e., as topo-
logical structures over Grp, or

(b) as algebraic structures via the forgetful functor TopGrp Y, Top, i.e., as algebraic
structures over Top, or

(c) as topologically algebraic structures via the forgetful functor TopGrp v, Set, i.e.,
as topologically algebraic structures over Set.

Since it is the underlying functor rather than the abstract category that determines
the character of a structure (= concrete category), in each case we study properties of
functors first. Surprisingly, each of the crucial properties under investigation (U being
topological, algebraic, or topologically algebraic ) implies that the functor U in question
is faithful, i.e., is the forgetful functor of a concrete category.

We choose terminology such that a concrete category (A,U) has a certain property P
if and only if its forgetful functor U has the property P. A desirable characteristic of
such properties will be that they are closed under composition. Moreover, for “algebraic”
properties P, it will be desirable that concrete functors between concrete categories with
property P will automatically have property P as well.

Most properties under investigation can be defined either in a rigid (uniquely trans-
portable) version or in a more flexible (closed under equivalences) one. We have found
it somewhat more convenient and consistent with the current usage to choose the rigid
version in the topological and algebraic cases, and the flexible version in the topologically
algebraic case.
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21 Topological categories

The following phenomena are typical for topological categories (A, U):

(1) (A,U) is initially complete, i.e., every structured source (X ti UA;)r has a unique
initial lift (A4 25 Ay);,

(2) (A,U) is finally complete, i.e., every structured sink (UA; ti, X)r has a unique
final lift (4; L5 A)r,

(3) (A, U) is fibre-complete, i.e., every fibre is a (possibly large) complete lattice (cf. Def-
inition 5.7),

(4) (A,U) has discrete structures, i.e., every X-object has a discrete lift,
(5) (A,U) has indiscrete structures, i.e., every X-object has an indiscrete lift.

As we will see, the above conditions are not independent of each other. In fact, (1)
and (2) are equivalent [Topological Duality Theorem (21.9)], and imply all the others.
Moreover, (1) and (2) have many other pleasant consequences. For example, they imply
that U lifts limits (and colimits) uniquely. The unique lifting of limits implies, together
with (5), all of the other conditions (21.18). However, forgetful functors of algebraic
categories also lift limits uniquely (see §23). Hence the very simple condition (5) in
some sense may be considered to be at the heart of topology.

TOPOLOGICAL FUNCTORS

21.1 DEFINITION
A functor A %5 B is called topological provided that every G-structured source

(B iR GA;)r has a unique G-initial lift (A Is, Ai)r.

21.2 EXAMPLES

(1) The forgetful functors of the constructs Top, Unif, PMet, Rel, and Prost are
topological, but those of the constructs Haus, Met, Vec, and Pos are not topolog-
ical.

(2) For a thin category A, the unique functor to 1 is topological if and only if A is a
(possibly large) complete lattice.

21.3 THEOREM
Topological functors are faithful.
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360 Topological and Algebraic Categories [Chap. VI

Proof: Let A :TZ A’ be a pair of A-morphisms with Gr = Gs. Consider the source
S

S = (GA LN GAp)hemor(a) With (fn, Ap) = (Gr, A’) for each h € MOT’(A). Let
S=(4 LN A')nemor(a) be a G-initial lift of S. Define a source 7 = (A2 A') by
{r, if fpoh=s
gh =

s, otherwise.

Then GT = GS o idga. By G-initiality of S there exists a morphism A *, A with
T=38o k,ie., g, = fh ok for each h € Mor(A). In particular, we obtain g = fk, ok,
which — by the definition of the gp’s — is possible only for r = s. O

Lifting of a source in a topological category

21.4 REMARK

We will see below that “to be topological” is a very strong and pleasant property. Much
of the strength lies in the fact that the G-structured sources are allowed to be large
(as can be discerned from the preceding proof). For example, the natural “forgetful”
functor G from the category of modules to the category of rings is not faithful, hence not
topological, even though each small G-structured source has a G-initial lift (see Exercise
21D).

21.5 PROPOSITION

If A Y. Bisa functor such that every G-structured source has a G-initial lift, then the
following conditions are equivalent:
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(1) G is topological,

(2) (A,QG) is uniquely transportable,

(3) (A, G) is amnestic.

Proof: (1) = (2) is immediate from Proposition 8.14, once it is observed that G is
faithful. The latter follows as in the proof of Theorem 21.3.

(2) = (3) follows from Proposition 5.29.

1

(3)=(1). If (A il A;)r and ({1 — A;)s are initial lifts of (X i GA;)r, then A < A
and A < A; hence by (3), A = A. O

21.6 PROPOSITION
If A S B andB L C are topological, then so is A ELCINe)

Proof: Immediate by Proposition 21.5, since amnesticity and existence of initial liftings
are compositive properties. d

TOPOLOGICAL CATEGORIES

21.7 DEFINITION
A concrete category (A, U) is called topological provided that U is topological.

21.8 EXAMPLES
(1) The constructs Top, Unif, PMet, Rel, and Prost are topological.

(2) All functor-structured categories Spa(7) and all functor-costructured categories
(Spa(T))°P are topological.

(3) A partially ordered set, considered as concrete category over 1, is topological if and
only if it is a complete lattice.

(4) TopGrp is topological if it is considered as a concrete category over Grp, but not
if it is considered as a concrete category over Top or over Set.

(5) The construct Top; is not topological, even though for every structured source
(X RN (Xi,7i))r there exists a largest Top;-structure (= the smallest T}-topology)

7 on X making each (X, 7) RN (X;, ;) continuous.

The following theorem generalizes the well-known fact that each meet-complete poset is
also join-complete.

21.9 TOPOLOGICAL DUALITY THEOREM

If (A, U) is topological over X, then (A°P, U°P) is topological over X°P (i.e., the existence
of unique U-initial lifts of U-structured sources implies the existence of unique U-final lifts
of U-structured sinks).
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Proof: Let (A,U) be topological. It must be shown that in (A,U) every structured
sink § = (UA4; Jix ); has a final lift (since uniqueness follows from amnesticity).
Consider the structured source 7 = (X AU Bj) consisting of all structured arrows
(g5, B;) with the property that UA; i x o UBj is an A-morphism for each i € I.

If (A LN Bj) s is an initial lift of 7', then (4; Ji A)r is a final lift of S. O

21.10 REMARK

The above Topological Duality Theorem implies that (as was the case for abstract and
for concrete categories) there is also a Duality Principle available for topological cat-
egories. However, observe that, since the dual of a concrete (resp. topological) category
over X is a concrete (resp. topological) category over X°P, this does not imply a Duality
Principle for (topological) concrete categories over a fized category X (unless XP = X|
as for X = 1). In particular, there is not a Duality Principle available for topological
constructs.

21.11 PROPOSITION

Topological categories are fibre-complete. The smallest (resp. largest) member of each
fibre is discrete (resp. indiscrete).

Proof: Let (A,U) be topological over X, let X be an X-object, and let (4;); be a

family of A-objects with UA; = X. If (A X A;); is an initial lift of (X 25 UA,)7,
then A = inf(A;) in the fibre of X. For I = (), we have that A is the largest element of
the fibre of X. It is an indiscrete object, since (A4, () is an initial source [cf. 10.42(1)].
By duality, the smallest element of the fibre of X must be discrete. O

21.12 PROPOSITION

If (A, U) is topological over X, then

(1) U is an adjoint functor; its co-adjoint X LA (the discrete functor) is a full
embedding, satisfying U o F' = idx.

(2) U is a co-adjoint functor; its adjoint X G A (the indiscrete functor) is a full
embedding, satisfying U o G = idx.

Proof: Immediate from Proposition 21.11. O

21.13 PROPOSITION
If (A,U) is topological over X, then the following hold:

(1) U preserves and reflects mono-sources and epi-sinks.

(2) An A-morphism is an extremal (resp. regular) monomorphism if and only if it is
initial and an extremal (resp. regular) X-monomorphism.

(8) An A-morphism is an extremal (resp. regular) epimorphism if and only if it is final
and an extremal (resp. reqular) X-epimorphism.
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In particular, in topological constructs, the following hold:
(4) embeddings = extremal monomorphisms = reqular monomorphisms.

(5) quotient morphisms = extremal epimorphisms = regular epimorphisms.

Proof:
(1). Since U is faithful and (co)adjoint, it reflects and preserves mono-sources (epi-sinks).

(2). Let A =5 B be an extremal monomorphism in A. Then, by (1), UA > UB is
a monomorphism in X. Let UA —» UB = UA = X L, UB be an (Epi,—)-
factorization in X. Then UA - X has a final lift A < C. Consequently, by (1),

A B=A%Cc L Bisan (Epi,—)-factorization in A. Therefore, e is an
isomorphism in A and hence in X. Thus UA —— U B is an extremal monomorphism
in X. To show initiality of A —— B, let A’ —— B be an initial lift of UA — UB.

Then A ™ B=A A, A/ ™, Bis an (Epi,—)-factorization. Thus A —Z4, A’
is an isomorphism; hence by amnesticity A = A’. So A —— B = A’ ™ B is initial.
For the converse, let A ——— B be an initial morphism such that UA — UB is an
extremal monomorphism in X. Then, by (1), 4 ., B is a monomorphism in A.

Let A" B=A-%C L Bbean (Epi,—)-factorization in A. Then UA - UC
is an X-isomorphism and A — C' is initial. Hence, by Proposition 8.14, A - C'is
an isomorphism. Thus A —— B is an extremal monomorphism in A.

Next, let A - B be a regular monomorphism in A. Then it is extremal and hence
initial. By adjointness, UA —— UB is a regular monomorphism in X. Conversely,
let A =5 B be an initial morphism such that UA —— UB is an equalizer of

UB== X in X. If B==(C is a final lift, then by Proposition 13.15, m is an
S S

equalizer of r and s in A.
(3) follows by duality (21.9).
(4) and (5) are immediate from (2) and (3). O
21.14 PROPOSITION
If (A, U) is topological over an (E,M)-category X, then the following hold:
(1) A is an (E, My,it)-category, where My consists of all initial sources in M.

(2) A is an (Efim, M)-category, where Egy, consists of all final E-morphisms. O

21.15 PROPOSITION
If (A,U) is topological over X, then U uniquely lifts both limits (via initiality) and
colimits (via finality), and it preserves both limits and colimits.

Proof: The unique lifting follows immediately from Proposition 13.15 and its dual; the
preservation from (co)adjointness of U. O
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21.16 THEOREM
If (A,U) is topological over X, then the following hold:

(1) A is (co)complete if and only if X is (co)complete.

(2) A is (co-)wellpowered if and only if (A,U) is fibre-small and X is (co-)wellpowered.
(3) A is extremally (co-)wellpowered if and only if X is extremally (co-)wellpowered.
(4) A is (Epi, Mono-Source)-factorizable if and only if X is (Epi, Mono-Source)-factori-

zable.

(5) A has regular factorizations if and only if X has regular factorizations.

(6) A has a (co)separator if and only if X has a (co)separator.

Proof: Let G: X — A be the indiscrete functor.

(1).

2).

If X is complete, then A is complete, since U lifts limits. Conversely, if A is
complete, D : I — X is a small diagram, and £ is a limit of Go D : I — A, then
ULisalimit of UoGoD = D.

Let (A, U) be fibre-small and X be wellpowered. For any A-object A consider a set
M={X;, 5 UA i€ I} of X-subobjects of U A such that every subobject of U A
is isomorphic to some member of M. If M consists of all possible lifts 4; —
of members of M, then, by fibre-smallness, M is a set. By transportability each
subobject of A is isomorphic to some member of M. Hence A is wellpowered.
Conversely, let A be wellpowered. For every X-object X, it is clear that the class
A={Ae€ ObA)| UA = X} is a set, since otherwise { A i, GX|A e A}
would by amnesticity be a proper class of pairwise non-isomorphic subobjects of
GX. Thus (A,U) is fibresmall. If (X; —» X); would be a proper class of
pairwise non-isomorphic subobjects of X, then (GX; 2L GX ); would be a proper
class of pairwise non-isomorphic subobjects of GX in A. Hence X is wellpowered.

. Let X be extremally wellpowered. For any A-object A let M = {X; L UA Yier

be a set of extremal subobjects of UA such that every extremal subobject of UA
is isomorphic to some member of M. For each i € I let A; —— A be the unique
initial lift of X; — UA. Then every extremal subobject of A is isomorphic to
some member of the set { A; ——= A|i € I'}. Hence A is extremally wellpowered.
Conversely, let A be extremally wellpowered. If (X; —— X); were a proper class of
pairwise non-isomorphic extremal subobjects of some X-object X, it would follow
that (GX; L GX )r would be a proper class of pairwise non-isomorphic extremal
subobjects of GX in A. Hence X is extremally wellpowered.

If (A L, i)1 is a source in A, (UA ti, UA;) = (UA S X 5 UA) is

an (Epi, Mono-Source)-factorization in X, and (B —- A;); is an initial lift of
(X ™5 UA,);, then (A iR ) = (A5 B ™ Ay) is an (Epi, Mono-Source)-
factorization in A. Conversely, if (X LR X;); is a source in X and GX LR GX; =
GX % A ™, GX;is an (Epi, Mono-Source)-factorization in A, then X LN X, =
X 5 UA ™5 X; is an (Epi, Mono-Source)-factorization in X.
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(5). This follows as in (4) by means of Proposition 21.13(3).

(6). If A is an A-separator, then UA is an X-separator. If X is an X-separator, then
the discrete object A with UA = X is an A-separator.

The “co”-parts follow by duality. O

21.17 COROLLARY

Each topological construct

(1) is complete and cocomplete,

(2) is wellpowered (resp. co-wellpowered) if and only if it is fibre-small,
(3) is an (Epi, Extremal Mono-Source)-category,

(4) has regular factorizations,

(5) has separators and coseparators. O

21.18 INTERNAL TOPOLOGICAL CHARACTERIZATION THEOREM

A concrete category (A, U) over X is topological if and only if it satisfies the following
conditions:

(1) U lifts limits uniquely,
(2) (A,U) has indiscrete structures, i.e., every X-object has an indiscrete lift.
Proof: By Propositions 21.11 and 21.15 topological categories satisfy (1) and (2).

Conversely, let (A, U) satisfy (1) and (2). Then (A, U) is uniquely transportable. Hence,
by Proposition 21.5 and by duality (21.9), it suffices to show that every structured sink

(UA; Ji, )r has a final lift. Let By be the indiscrete object with UBy = X and
let (Bj); be the family of all A-objects B; such that UB; = X and UA4; ti, UB;
is an A-morphism for each i € I. The family (UB; X g By)s has an intersection
X Xy Bp in X. By (1) this intersection can be lifted to an intersection B Hx, By
of the family (B; x, Byp)j. Consequently, S = (4; ti, B); is a sink in A. To show
that it is final, let UB <5 UC be an X-morphism such that each U A; ELN UB L UC
is an A-morphism. Let Cy be the indiscrete object with UCy = UC. Then the pullback
in X
x —=uc

UB——UCo

can be lifted to a pullback in A
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Since, for each ¢ € I, the diagram

A gofi c
fi

dyc

[e=]

BT>C

commutes, by the pullback-property each UA; RN UP is an A-morphism. Conse-
quently, P is a member of (Bj);. This implies that B < P. Hence, by amnesticity,

B=P. Thus B-% ¢ =P % C is an A-morphism. Consequently, (A; ELN B)sis a
final lift of (UA; L X);. O

21.19 REMARK

As we will see later, the unique lifting of limits is a widespread property shared by many
reasonable forgetful functors not only in topology, but also in algebra. Hence the above
theorem shows that the existence of indiscrete structures is the crucial condition that
makes (A, U) topological.

21.20 EXAMPLE

For any construct of the form Alg(X) the forgetful functor Alg(¥) — Set lifts limits
and colimits uniquely. But Alg(Y) is topological only if ¥ is the empty family, i.e., only
if Alg(X) is concretely isomorphic to the construct Set.

21.21 EXTERNAL TOPOLOGICAL CHARACTERIZATION THEOREM
Let CAT(X) be the quasicategory of all concrete categories and concrete functors over
a fived category X. If M is the conglomerate of all full functors in CAT(X), then for
each concrete category (A,U) over X the following are equivalent:

(1) (A,U) is topological over X.

(2) (A,U) is an M-injective object in CAT (X).

Proof: (1) = (2). Suppose that (A,U) is topological over X, (B,V) £, (C, W)

belongs to M, and (B, V) <, (A,U) is a concrete functor over X. For each C-object
C' consider the E-structured source (C ti, EB;)r consisting of all pairs (f;, B;) with
B; € Ob(B) and C ti, EB; € Mor(C). Application of W yields the U-structured
source (WC ELN UGB;);. By hypothesis it has a U-initial lift (A¢ ELN GB;);. Let
(C,W) i>A(A7 U) be the unique concrete functor with GC' = A¢ for each C-object C.
Then G=GoFE.

(2) = (1). Suppose that (A,U) is M-injective in CAT(X). By Proposition 5.33 there

exists an amnestic (B, V) and a functor (A,U) £, (B, V) that is surjective on objects
and belongs to M. By injectivity, P is a section, hence an isomorphism. Thus (A, U) is
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amnestic. It remains to be shown that every U-structured source S = (X iR UA;)r has
a U-initial lift. Embed (A, U) as a concrete and full subcategory of a concrete category
(B, V) by adding one object B with VB = X and adding the following morphisms (for
A-objects A and X-morphisms f):

vA-L.vBe Mor(B) < UA LN UA; € Mor(A) foreachiel,
vB L.uAce Mor(B) <= there exists ¢ € I and an A-morphism

A; L A with f=gof,

VB Lo VB e Mor(B) < VB L UA; € Mor(B) foreach icI.

By M-injectivity, (A, U) is a retract of (B, V), i.e., the identity on A can be extended

to a concrete functor (B, V) <, (A,U). Then (GB fi, i)1 = (GB ti, GA;)ris a
U-initial lift of S. O

21.22 REMARKS

(1) The above result remains true if only fibre-small or only amnestic concrete categories
are considered. In the amnestic case M consists precisely of the concrete full em-
beddings [cf. 5.10(4)]. Application of the fibre-small amnestic case to X = 1 yields
the result that the injectives in Pos are precisely the complete lattices [cf. 9.3(2)].

(2) From the above proof it is easily seen that topological categories have an alternative
external characterization as precisely the M-absolute retracts in CAT(X). For a
description of M-essential extensions and M-injective hulls in CAT(X) see Exercise
21J.

INITIALITY-PRESERVING CONCRETE FUNCTORS

An important property of abstract functors is the preservation of limits. Recall that every
adjoint functor preserves limits and that, under suitable assumptions, this preservation
property characterizes adjoints (see the adjoint functor theorems of §18). For concrete
categories a similar condition is that of the preservation of initial sources. (See Definition
10.47.) Among other things, we will show that for Galois correspondences (F,G) the
concrete functor G preserves initial sources, and that if G has a topological domain, this
preservation property characterizes those concrete functors G that are part of a Galois
correspondence.

21.23 PROPOSITION
Initiality-preserving concrete functors preserve indiscrete objects.
Proof: Immediate by Example 10.42(1). O

21.24 GALOIS CORRESPONDENCE THEOREM

For concrete functors (A,U) <, (B, V) with topological domain (A,U) the following
conditions are equivalent:
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(1) G preserves initial sources,
(2) G is adjoint and has a concrete co-adjoint (B, V) (A, U),
(3) there exists a (unique) (B,V) £, (A,U) such that (F,G) is a Galois correspon-

dence.
Proof:
(1) = (2). For any B-object B consider the G—Structured source Sp = (B ELN GA)r
consisting of all pairs (f;, 4;) with 4; € Ob(A) and B GA; € Mor(B). Appli-
cation of V yields the U-structured source Sp = (VB Ji, UA;)r. Let (Ap LN A)r
be a U-initial lift of Sp. By (1 ) (GAB ENYY i)1 is V-initial.
Since each VB —=— 15 VGAR LN V(GA; is a B-morphism, VB —=— i s VGAp must be a

B-morphism. Thus (idy g, Ag) is a G-universal arrow for B. Since it is identity-carried,
the associated co-adjoint F' of G satisfies V =U o F.

(2) = (3). Let B, V) — £, (A,U) be a concrete co- adjoint of G, induced by G-universal
arrows B —2» GFB. By Theorem 19.1 each FB —— FGFB is a section in A;
hence VB -2 UFB is a section in X. To show that it is an epimorphism in X, let

UFB T:§X be a pair of X-morphisms with r o ng = song. If A is an indiscrete
S

object in (A,U) with UA = X, then FBZ:iA is a pair of A-morphisms. Since

(np, FB) is G-generating, the equality Gr o np = Gs o g implies that r = s. Thus
VB 2, UFB is an X- 1som0rphlsm Let Ap —— FB be a U-initial lift. Then,
by Proposition 8.14, Ap —— FB is an A-isomorphism. Hence, by Proposition 8.35,

B Hvs, GAp =B 5, GFB L GAp is a G-universal arrow for B. If F is the
associated co-adjoint of G, then (F,G) is a Galois-correspondence. Uniqueness follows
from the amnesticity of U.

(3) = (1). Immediate from Proposition 10.49. O

21.25 REMARK

If (A,U) is not topological, then conditions (1) and (2) of the above theorem do not
imply (3). See Exercise 21E(b).

21.26 DEFINITION

Let A -5 X and B -5 Y be functors. An adjoint situation (7,¢): F — G: A — B
is said to lift an adjoint situation (n,¢) : FF — G : X — Y along U and V provided
that the following conditions are satisfied:

(1) the diagrams
G F

A—B B—A
U Vv and VJ/ lU
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commute.
(2) Vip=nV,
(3) Ué =eU.

21.27 REMARKS

(1) In the presence of (1), conditions (2) and (3) in the above definition imply each
other. They have both been included to make the symmetry apparent. If (1) and
(2) hold, then (3) can be deduced from the equations GUé songua = VGEaon,a, =

VGeaoVijg, = V(Geaoipy,) = V(idg,) = idyg, = idaua = Geya o ngua, since
Naa is G-generating.

(2) The following theorem, applied to G = idx, provides a new proof of the equivalence
of conditions (1) and (3) in Theorem 21.24.

21.28 TAUT LIFT THEOREM
Let (A,U) be a topological category over the base category X and (B, V) be a concrete

category over the base category Y. If A C“.Bisa functor and X .Y isan adjoint
functor with V o G = G o U, then the following conditions are equivalent:

(1) G sends U-initial sources into V-initial sources,

(2) every adjoint situation (n,e) : F — G: X — Y can be lifted along U and V to
an adjoint situation (7,€) : F — G : A — B.

Proof:
(1) = (2). For each B-object B consider the G-structured source Sp = (B Ji, GA))

consisting of all pairs (f;, A;) with A; € Ob(A) and B RN GA; € Mor(B). For each
i1€llet FVB Jy A; be the unique X-morphism with

vB Y, qua, =vB 2. gFVB 1L qua,.

Then the U-structured source (F'V B i ya, ;)1 has a U-initial lift 7p = (Ap T4, i)l
By (1), G7p is V-initial. Since VSp = VGTgonyp

VB —Y5 GFVB —— GUAp —— V(G Ap

g A — P T g i

there exists a umque B-morphism B A5, GAp with Vip =nyp and S = GTg o NB.
To show that the G-structured arrow (B, Ap) is G-generating and hence G-universal,

let Ap S:KA be a pair of A-morphisms with Gro np = Gso fip. Then GUr onyp =

VGronyp = V(Grodg) = V(Gsofp) = VGsonyp = GUs o nyp implies that
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Ur = Us. Hence r = s by the faithfulness of U. If (7,€): F — G: A — B is the
adjoint situation determined by G and the G-universal arrows (B, AB), then Viig = nyp
and U o F(B) = U(Ap) = F o V(B) for each B-object B. Thus for each B-morphism
B L. Bthe equality GUE forny s = V(GE foip) = V(igof) = ny5oV [ = GFV fonys
implies that UFf FV f. Hence UoF=FoV.

(2) = (1). Let (n,e): F — G : X — Y be an adjoint situation, let the adjoint situa-
tion (7,€): F — G : A — B be a lift along U and V, and let S =(A— ti, i)1 be a
U- 1n1t1a1 source. To show that GS is V-initial, let 7 = (B I G A, i)1 be a B- source and
VB % VGA be a Y-morphism with V7 = VGS o h. For each i € I lgt FB 25, 4,

be the unique A-morphism with g; = c?gi o fjp. Furthermore, let FV B ", UA be the
unique X-morphism with A = Gh o nyp.

CiUA

GFVB=——=—QGUFB

Then G(U f; o ﬁ) onyp = GUg; o nyp implies that U f; o h= Ug;. Since S is U-initial,

there exists a unique A—morP}}ism FB A with Uh = fL. Thus h* = Gho Np is a
B-morphism with Vh* = VGho Vg = GUhonyp = Ghonyp = h. Consequently,
V(B GA) = VB 5 VGA. Thus GS is Veinitial. 0

TOPOLOGICAL SUBCATEGORIES

21.29 DEFINITION

A full concrete subcategory (A,U) of a concrete category (B, V) is called initially
closed in (B, V) provided that every V-initial source whose codomain is a family of
A-objects has its domain in A.

DuaL NoTion: finally closed subcategory.

21.30 PROPOSITION

An initially closed subcategory of a topological category is topological. O
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21.31 PROPOSITION

For any full concrete subcategory (A,U) of a topological category (B,V') the following
conditions are equivalent:

(1) (A,U) is initially closed in (B,V),
(2) (A,U) is concretely reflective in (B, V).

Proof: (1) = (2) follows from Theorem 21.24 applied to the inclusion functor G.

(2) = (1). Let § = (B Ji, ;)1 be a V-initial source with each A; in A and let
B B, Abe an identity-carried A-reflection arrow for B. Then each A = A; is a

morphism. Thus, by initiality of S, it follows that A B, Bisa morphism. Hence, by
amnesticity of (B, V), A= B. Thus B belongs to A. O

21.32 PROPOSITION

If a topological category (A,U) is a finally dense full concrete subcategory of (B,V),
then (A,U) is concretely reflective in (B, V).

Proof: For each B-object B consider the source (B fi, i), consisting of all morphisms
Sy A; with 4; in A, and let S = (4 L5 A;); be a Usinitial lift of the Usstructured

source (VB Ji, UA;)r. By Proposition 10.71, S is V-initial. Thus VB VB, VA s a
morphism; hence it is an identity-carried A-reflection arrow for B. O

21.33 THEOREM

For a full concrete subcategory (A,U) of a topological category (B,V) the following
conditions are equivalent:

(1) (A,U) is topological,

(2) there exists a concretely reflective subcategory (C, W) of (B,V') such that (A,U) is
concretely coreflective in (C, W),

(3) there exists a concretely coreflective subcategory (C,W) of (B, V) such that (A,U)
is concretely reflective in (C, W),

(4) there exists a concrete functor (B, V) £, (A,U) that leaves each A-object fixed.

Proof: (1) = (2). Let (C, W) be the full concrete subcategory of (B, V') that consists of

all B-objects B for which there exists a V-initial source (B ti, A;)r with domain B and
codomain in A. Then (C, W) is initially closed in (B, V'), hence concretely reflective in
(B, V). Moreover, (A, U) is initially dense in (C, W), so that by the dual of Proposition
21.32 it is concretely coreflective in (C, W).

(2) = (4). If (B, V) (C,W) is a concrete reflector and (C, W) (A,U) is a
concrete coreflector, then R = Ry o Ry has the desired properties.

18th January 2005



372 Topological and Algebraic Categories [Chap. VI

(4) = (1). Let S = (X ti, UA;)r be a U-structured source. Considered as a V-

structured source it has a V-initial lift 7 = (B RN i)1- Then RT = (RB RN i) 18

easily seen to be a U-initial lift of S.
(1) & (3) follows from (1) < (2) by duality (21.9). O

FIBRE-SMALL TOPOLOGICAL CATEGORIES

21.34 PROPOSITION

For fibre-small concrete categories (A, U), the following conditions are equivalent:
(1) (A,U) is topological,
(2) every small structured source (X ti, UA;)r has a unique initial lift,

(3) every small structured sink (UA; Ji, X)1 has a unique final lift.
Proof: (1) = (2) is obvious.

(2) = (1). Let (X LN UA;)r be a structured source. For each i € I there exists an
initial lift B; N A; of X LR UA,;. By fibre-smallness { B; } i €1} is aset. Thus
there exists a subset J of I with {B; | j€ J} ={B; | i€ I}. Let (A i, Aj)j be the
initial lift of (X Ji, UA;j)j. Then A < Bj for each j € J; hence A < B; for each i € I.
Thus each A LN A; is a morphism. Consequently, by Proposition 10.46, (A LN )1 is

initial. Uniqueness is immediate.

(1) & (3) follows from (1) < (2) by duality. O

21.35 PROPOSITION

A fibre-small concrete category (A,U) over a category X with products is topological if
and only if it satisfies the following conditions:

(1) (A,U) has concrete products,

(2) (A,U) has initial subobjects, i.e., every structured X-monomorphism X —— UA
has a unique initial lift,

(8) (A,U) has indiscrete objects.

Proof: The conditions (1) — (3) are obviously necessary. To see that they are sufficient,

suppose that (X ELN UA;)r is a small structured source. Choose an element j, with
Jjo & I, use Aj, to denote the indiscrete object with UA;; = X, let fj, = idx, let

J = TIU{jo}, and let (P LN Aj); be a concrete product. Then X LN UP is

a structured X-section, and so has an initial lift A RSN P. By 10.53 and 10.45(1)
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the source (A LN Aj)y is initial. Since Aj, is indiscrete, (A LN A;)1 is initial too.
Uniqueness follows from the uniqueness requirement in condition (2). Thus Proposition
21.34 implies that (A, U) is topological. O

21.36 PROPOSITION

In a fibre-small topological category, a source (A i, A is initial if and only if there

exists a subset J of I such that (A ELIN Aj)y is initial.

Proof: Immediate from the proof of (2) = (1) in Proposition 21.34. O

21.37 PROPOSITION

Let (A,U) be a full concrete subcategory of a fibre-small topological category (B, V') over
a category X with products. Then (A,U) is concretely reflective in (B, V) if and only if
it 1s closed