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Abstract

Will the United Kingdom’s ageing population be fit and independent, or suffer

from greater chronic ill health? Healthy life expectancy represents the expected

number of years of healthy well-being a life table cohort would experience if age

specific rates of mortality and disability prevailed throughout the cohort’s lifetime.

Robust estimation of healthy life expectancy is thus essential for examining whether

additional years of life are spent in good health and whether life expectancy is in-

creasing faster than the decline of disability rates. This paper examines a means of

generating estimates of healthy and unhealthy life expectancy for the United King-

dom that are consistent with exogenous population mortality data. The method

takes population transition matrices and adjusts these in a statistically coherent

way so as to render them consistent with aggregate life tables.
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1 Introduction

While it is plain that life expectancy has increased considerably over the last thirty years

or so in many advanced countries, it is much less clear how healthy life expectancy has

developed. Questions have therefore arisen about the quality of life. Are we living longer

but in worse health? Are the increases in life expectancy at older ages because we are

keeping sick or disabled people alive longer or because we are saving people from death but

leaving them in states of disability? These are important questions both for individuals

and also for government policies on social and health services provision for the elderly.

A shift in emphasis, from increasing survival to improving both the length and quality

of people’s lives, has led to a greater policy interest in the issue in the UK. The government

projects that the overall number and proportion of older people will rise significantly in

the coming decades, primarily due to increased longevity. However, there is a debate over

whether these people will live longer, healthier lives, longer but more disabled lives, or

something in between (Wanless 2002). The Treasury’s long-term projections of the costs

of an ageing population assume that the proportion of life spent in long-term care will

remain constant but acknowledge that this is a cautious assumption and do not rule out

an expansion of morbidity in the future (Treasury 2004).

A crucial question therefore is whether the proportion of life spent in disability is

rising or declining. Existing data can be used to support either case. While there have

been clear rises in overall life expectancy over time, there are concerns that not all years

gained are in healthy well-being and that a proportion of extra years lived are being spent

in ill-health (Bissett (2002) and Breakwell & Bajekal (2005)). The conclusions from UK

data sources appears to point to these trends reflecting increased years of mild disability,

and a decline in severe disability (Bajekal et al. (2004) and Kelly et al. (2000)).

Traditional estimations of healthy life expectancy based on single-state life tables, more

popularly termed Sullivan’s method, have served reasonably well as tools of measurement

and projections of healthy life (Sullivan (1966) and Sullivan (1971) - see appendix A for

a detailed account of the Sullivan method and its uses). In his seminal article, Sullivan

(1971) developed a method for combining mortality and morbidity rates into a single

summary measure of a population’s health status. The concern about his method however

is the fact that it uses current morbidity prevalence rates, and not current incidence rates.

The Sullivan method assumes the current mortality prevalence rates will prevail in future

cohorts as they reach the same age. The state of well-being of the elderly today may

indeed reflect damage done in the past - such as injuries sustained by soldiers and civilians

during the Second World War. Hence, Sullivan’s method cannot reflect sudden changes in

disability transition rates. It may therefore be a poor indication of the risks of ill-health
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faced by the younger generation.

However, multi-state models based on transition probabilities between health states

differentiate current and future stocks and flows of individuals by previous health states of

existence (Rogers et al. (1990) and Brouard & Robine (1992)) and thus allow the construc-

tion of incidence-based measures of healthy life expectancy. Panel data are required for

their construction; this typically requires either occasional epidemiological studies (Spiers

et al. (2005) and Jagger et al. (2003)) which, because they are occasional, cannot provide

a regular indication of any change in the pattern of healthy life expectancy, or the inclu-

sion of questions about health in a portmanteau panel survey. This paper focuses on the

construction of incidence-based measures of healthy life expectancy from the questions

about health states included in the British Household Panel Survey, which has been con-

ducted annually in Great Britain since 1991, and the coherence between these measures

and information on survival contained in the official life tables for the United Kingdom.

The structure of the paper is as follows. Section 2 introduces the British Household

Panel Survey and sets out our preferred measure of healthy life expectancy. Section

3 presents a means of generating estimates of healthy and unhealthy life expectancy

consistent with exogenous population mortality data. In section 4 we set out the method of

least-squares that takes population transition matrices and adjusts these in a statistically

coherent way so as to render them consistent with death rates in aggregate life tables.

Section 5 reports and discusses the results from our models and section 6 concludes.

2 Data and Measures

2.1 The British Household Panel Survey Dataset

Our study focuses on the panel data that are available for the first fourteen waves, 1991-

2004, of the British Household Panel Survey. The British Household Panel Survey is

a standardised multi-purpose annual longitudinal survey of each person aged 16+ in a

nationally representative sample of more than five thousand private households comprising

about ten thousand individuals in Great Britain. The same individuals are re-interviewed

each successive year and, if they split off from their original households to form new

households, they are followed and also re-interviewed along with all adult members of

their new households. New households are introduced in each year to compensate for

attrition.

While the British Household Panel Survey serves as a useful tool in providing infor-

mation on socioeconomic and health variables, there are a number of drawbacks of its

uses. First, sub-groups, such as ethnic minorities, with relatively low prevalence in the

general population are too small for robust inference. Second, age cohorts within the pan-
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els, including those formed from panel members’ children, have to be too broadly defined

for the effective assessment of cohort effects. If they are focused on single ages the data

have to be aggregated over many years confounding the cohort effects with period effects.

Finally, the issue of sample attrition over the life of the panel has reduced numbers in the

main panel and is a potential source of bias. This concern is tackled in detail below.

2.2 Self-Assessed Health

From the range of health status variables available in the British Household Panel Survey

we have chosen as our measure of healthy life expectancy the self-assessed health variable

which is given as a response to: ‘Please think back over the last 12 months about how your

health has been. Compared to people of your own age, would you say that your health

has on the whole been (i) excellent; (ii) good; (iii) fair; (iv) poor; or (v) very poor?’

This matches, as closely as possible, the question used in the General Household Survey

which provides the basis for the official estimates of healthy life expectancy (although

with the important difference that the General Household Survey does not invite people

to compare themselves with people of their own age). The British Household Panel Survey

also attempts to identify people who have died since the previous interview, distinguishing

them from people who drop out for other reasons; we treat death as a sixth ‘health state’

ranked below “very poor”.

Whilst self-assessed health is the closest possible match of healthy life expectancy to

official estimates, a number of concerns have been raised about the validity of this subjec-

tive measure of health. It has long been argued that perceived health does not correspond

with actual health (Bound (1990) and Crossley & Kennedy (2002)). An individual’s own

understanding of his health may not accord with the appraisal of not only medical experts

but also other individuals of the same age.

Nevertheless whilst self-assessed health has been used frequently in previous studies

in examining health dynamics (e.g. Ettner (1996), Benzeval et al. (2000), Contoyannis

et al. (2004a), Deaton & Paxson (1998) and Smith (1999)) not much work has been

devoted to estimate transition probabilities using self-assessed health (see Bebbington &

Shapiro (2005) for an application with European Household Panel Survey data). It can

be widely thought of as a simple subjective measure of health that provides an ordinal

ranking of perceived health status. It has received extensive coverage in recent years

largely attributed to the authority deriving from the robustness of its predictive capacity

for mortality (Idler & Benyamini 1997). Also, categorical measures of self-assessed health

have been shown to be good predictors of subsequent use of medical care (van Doorslaer

et al. 2000). Nevertheless there are obvious concerns that changes over time may be

a result of changing perceptions and expectations rather than a true deterioration or
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improvement in health.

As mentioned, the self-assessed health question at each wave of the British Household

Panel Survey is measured following an ordinal scale, with polychotomous response cate-

gories. However, in wave 9 there was a notable change in the wording of the self-assessed

health question. For waves 1-8 and 10-14, the self-assessed health variable represents

‘health status over the last 12 months’. In wave 9 the self-assessed health variable uses

the question: ‘In general, would you say your health is (i) excellent, (ii) very good, (iii)

good, (iv) fair, or (v) poor?’. Two important differences can be distinguished between

the wordings of the self-assessed health measure in wave 9 and the other waves. First, the

question is not framed in terms of a comparison with cohorts of the same age. Secondly,

the five possible responses are labelled differently. Hernandez-Quevedo et al. (2004) have

examined the sensitivity of ordered probit models of self-assessed health to this change

in wording and have suggested that item non-response is greater for self-assessed health

at wave 9 than for the other waves. They argue that there tends to be a bias in report-

ing better health status in wave 9, in that, individuals who report their health status as

“poor” in wave 9, may well have assessed their health as “very poor” had this option

been offered. In order to avoid our estimated transition probabilities being corrupted by

this, we omit the transitions from 1998 to 1999 and 1999 to 2000 from our data, with the

consequence that healthy life expectancy estimates are not available for 1999 and 2000.

3 Initial Transition Matrix Estimates

3.1 Modelling transitions in health

Were the sample of the British Household Panel Survey large enough it would be possible

to draw transition matrices for each age separately directly from the panel. However the

number of people classified by age and health category is not large with the consequence

that such an approach would yield very erratic estimates of the transition matrices. In-

stead therefore we treat underlying health status as a latent variable and fit a dynamic

ordered probit model to the panel data, explaining health status in one year as a function

of age, age2 and health state in the previous year. We also introduce time dummies.

The resulting probit equations can be used to produce initial estimates of the transition

probabilities as a function of initial health state and age.

The latent variable specification of the reduced form model that we estimate can be

written as

h∗
i,t = β′xi,t + γ ′hi,t−1 + ηi + w′ζt + ei,t (1)

(i = 1, ..., Nt; t = 1992, ..., 2004), where h∗
i,t is an underlying continuous latent variable for
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the ith individual that underlies reported self-assessed health at wave t. The observed

variables, age and age2, which may be associated with the health indicator are captured

by the vector xi,t. hi,t−1 is a six dimensional vector of dummies for the individual’s health

state in the previous wave (in estimation one dummy is excluded to avoid the dummy

variable trap) and γ are coefficients to be estimated. The element of γ relating to death

is constrained to −∞. This ensures death is an absorbing state in the sense that once

a person dies she will remain in that state. ηi is an individual specific time-invariant

random effect and ζt is a vector of time dummies included to capture cross-sectional

dependence explained by common (aggregate) shocks, with w denoting the associated

vector of estimable coefficients. Finally, ei,t is a random independently distributed error

term following a N(0, 1) distribution. The variance is set to unity for identification given

the categorical nature of the observed health outcome.

Unfortunately, as mentioned above, there was a change in the wording of the self-

assessed health question at wave nine of the British Household Panel Survey which has

led to wave nine being dropped from our analysis. Given the consideration of lagged

health hi,t−1 in (1), this means wave ten is considered only when explaining h∗
i,t in wave

eleven. Since h∗
i,t, is unobserved but the self-assessed health data indicate the category

in which the latent indicator fell, we use ordered discrete choice models based on the

latent regression (1). Specifically, the observed health states, hi,t, are triggered by h∗
i,t as

it crosses unknown cut points (thresholds) αj (j = 1, ..., 5) such that:

hi,t = j if αj < h∗
i,t ≤ αj+1, (j = 0, 1, ..., 5), (2)

corresponding to “death”, “very poor”, “poor”, “fair”, “good” and “excellent”, respec-

tively, where α0 = −∞, αj ≤ αj+1 and α6 = ∞. So each observed health state corre-

sponds to a value range within the unobserved latent distribution for health, such that

the entire range of the distribution is covered by one health state. The transition proba-

bilities derived from the conditional distribution of hi,t+1 given the state k (k = 1, ..., 5),

corresponding to “very poor” through to “excellent” health, at time t are

P (hi,t+1 = j | hi,t = k) = Φ(αj+1−β′xi,t−γ ′e−ηi−w′ζt)−Φ(αj−β′xi,t−γ ′e−ηi−w′ζt),

(3)

where Φ(·) denotes the cumulative standardised normal distribution and e is a six dimen-

sional vector of zeros with unity on the k + 1-th element, relating to the dummy variable

on the k-th lagged health state (k = 1, ..., 5).

When estimating the dynamic ordered probit model, (1), following Wooldridge (2005)

the initial conditions problem is dealt with by letting ηi = γ ′
1hi,1991 + υi, where hi,1991 is

a five dimensional vector of dummies for the individual’s health state in the first wave
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(1991). Note that since an individual must be alive in this first wave, hi,1991 is of lower

dimension than hi,t−1 (t = 1993, ..., 2004). The five dimensional vector of coefficients γ1

indicates the relationship between the individual effect and initial health. It is assumed

that υi ∼ N(0, σ2
υ). Again in estimation one of the dummy variables is excluded to avoid

multi-collinearity.

To account for possible health-related sample attrition in the data, with individuals

in poor health perhaps more likely to drop out of the British Household Panel Survey

leading to upwardly biased estimates of life expectancy, we also consider dynamic panel

ordered probit models that correct for sample selection. See Appendix B for a detailed

account of the modelling procedure and model estimates. In fact, in line with Contoyannis

et al. (2004b), comparisons of estimates based on models with and without a correction

for sample attrition, suggest that differences are relatively small. But there is statistical

evidence of heterogeneity across individuals, in the sense that σ2
υ > 0, and we therefore

prefer a random effects rather than a pooled specification.

At time t = 1991 an individual must be in one of the health states hi,1991 = j (j =

1, ..., 5). Over time (t = 1992, ..., 2004) she may remain where she is or enter and leave

any other state, and she may well reach the state of death, hi,t = 0.

3.2 Estimation of transition matrices

We calculate transition matrices as a function of age from equation (3). Since time

dummies are included in the probit model these transition probabilities are functions of

time and age. Mr,t is the transition probability matrix for someone aged r in year t, where

the elements of Mr,t = {mr,t
jk} = P (hi,t+1 = j | hi,t = k), (j = 1, ..., 5; k = 1, ..., 5), where r

is the age of the i-th individual in year t and due to the homogeneity restrictions (across

i) imposed on (1) essentially we consider a representative individual of each age r. We

express the population vector as yT,t; its pth element, yT,t,p shows the number of people

in health state j (j = 1, ..., 5) at age T in year t. If we denote by i a vector of 1s with

length equal to the number of health states, then from an initial population yT,t at age

T in year t, the proportion surviving to age T + 1 depends on the proportion of people in

each health state in year T and is given as

sT+1,T,t =
i′MT+1,tyT,t

i′yT,t

(4)

More generally, the proportion surviving to age T ∗ is

sT ∗,T,t =
i′ΠT ∗−1

r=T Mr,tyT,t

i′yT,t

(5)

This is unlikely to match the corresponding proportion derived from the official life table
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which we denote s∗T ∗,T,t. In order to produce transition matrices and thus healthy life

expectancy estimates consistent with the official data we need to find new transition

matrices, ideally not too different from the existing ones. As equation (5) shows, the

survival rates generated by any set of transition matrices depend on the actual population

vector of people aged T in year t and thus the required transition matrices depend on the

age, T, for which survival rates and thus healthy life expectancies are to be calculated.

We denote the adjusted transition matrices M̃r,T,t indicating that these are specific to

the population aged T in year t and relate to all ages r ≥ T. These need to satisfy the

relationships

s∗T ∗,T,t =
i′ΠT ∗−1

r=T M̃r,T,tyT,t

i′yT,t

T ∗ > T (6)

It is obvious that sT ∗,T,t can be driven to s∗T ∗,T,t only by adjusting the transition matrices

Mr,t where r ≤ T ∗ − 1. But an adjustment to one of these matrices has implications

for sr,T,t for all r > T ∗. Thus, although it is obviously possible to address the prob-

lem sequentially, it is unlikely that sequential adjustment will offer the most satisfactory

solution.

4 A Least-Squares Approach

The adjustment of the transition matrices, Mr,t, so that conditions (6) are met, raises a

number of issues. With only one survival rate for each age but with each transition matrix

being a five by five array there is obviously an infinite number of possible adjustments

which could be made. It seems desirable to choose adjustments which are as small as

possible bearing in mind the constraints which need to be met. We define “as small as

possible” by looking at the sum of the squared adjustments made to all the elements of all

the transition matrices, measured relative to the magnitudes of the elements themselves.

Thus we tolerate a large adjustment to a large element more than a large adjustment

to a small element. This is the common weighted least squares criterion. Such an ap-

proach has been widely used in a variety of contexts– by statisticians following Deming

& Stephan (1940) who first proposed its use to estimate cell probabilities in a contin-

gency table subject to certain marginal constraints (a procedure known as raking) and

also by economists (Stone et al. (1942), Byron (1978) and Solomou & Weale (1993)) to

enhance estimates of data which should satisfy linear constraints. Zieschang (1990) sets

out the least-squares problem very clearly while DeVille et al. (1993) consider alternative

loss functions. However they all looked at situations where the constraints to be satisfied

were linear functions of the variables to be adjusted. In such a case there is an analytical

solution which takes a simple matrix form although it can be awkward to work out if the

problem is of large dimension.
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Our constraints are non-linear as equation (6) makes clear. The survival rate at

any given age depends on all of the transition matrices up to and including that age

and in a manner which is the outcome of matrix multiplication. This means that it is a

multiplicative function of the individual matrix elements in contrast to the linear function

which would be required for an analytical solution. We therefore derive an algorithm to

find the least-squares solution. The process uses the solution to the linear least squares

problem at each step on the way, making use of a Taylor series expansion at each interation.

The procedure works so that, at each step an extra increment to the transition matrices

is calculated. This is nevertheless done so as to minimise the overall weighted sum of

squares of the adjustments and not the weighted sum of squares of each increment.

We denote by the vector nr the vector constructed from the columns of transition

matrix Mr,t stacked in order. We omit the year subscript t since it is not needed in this

section; all variables are specific to year t. We further consider the vector

n =


nT

...

nr

...

n99

 (7)

We write the vector of survival proportions generated by the vector n as sT (n,yT )

with its rth element sr(n,yT ) = sr. Since the different health states have different death

rates associated with them, the proportion surviving to any age is a function of the initial

population vector, yT . The observed survival proportions are denoted s∗T . We then aim

to find n∗ = n0+∆n to minimise

1

2
∆n′V−1∆n + λ

{
s∗T − sT

(
n0 + ∆n,yT

)}
(8)

where V−1 is a weighting matrix with Vfg indicating the fth row and gth column of V

with nl the lth element of n0. We set Vff = n2
l and Vfg = 0 (f 6= g) . Differentiating with

respect to the elements of n

V−1∆n−
(

∂sT

∂n

)′

λ = 0 (9)

where ∂s
∂n

denotes a matrix whose fth row and gth column consists of
∂sf

∂ng
. This gives

∆n = V

(
∂s

∂n

)′

λ (10)
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We also note that by applying a Taylor series expansion we have

s∗T − sT

(
n0 + ∆n,yT

) ∼= s∗T − sT

(
n0,yT

)
−

(
∂sT

∂n
|n0

)
∆n (11)

Given that

s∗T − sT (n0,yT )−
(

∂s

∂n
|n0

)
∆n ∼= 0 (12)

The exogenous survival rates will be approximately delivered if

s∗T−sT

(
n0,yT

) ∼= (
∂s

∂n
|n0

)
∆n (13)

We then set ∂s
∂n
|n0 = S0 and λ0= {S0VS′

0}
−1

(s∗T−sT (n0,yT )). Therefore

∆n0= VS′
0 {S0VS′

0}
−1

(s∗T−sT (n0,yT )) (14)

This finalises the first stage of the iteration process.

We now put n1 = n0 + ∆n0 and seek to find a vector ∆n1 to minimise

1

2

(
∆n0 + ∆n1

)′
V−1

(
∆n0 + ∆n1

)
+ λ

{
s∗T − sT

(
n0 + ∆n0 + ∆n1,yT

)}
(15)

Thus, with ∂s
∂n
|n1 = S1, we then have

V−1
(
∆n0 + ∆n1

)
− S′

1λ =0 (16)

and approximately

s∗T−sT

(
n1,yT

) ∼= S1∆n1 (17)

This then yields

S1

(
∆n0 + ∆n1

)
= S1VS′

1λ (18)

whence we have

(
∆n0 + ∆n1

)
= VS′

1 {S1VS′
1}

−1 {
S1∆n0 + s∗T−sT

(
n1,yT

)}
(19)

A further increment ∆n2 is chosen to satisfy

V−1
(
∆n0 + ∆n1 + ∆n2

)
− S′

2λ = 0 (20)

and approximately

s∗T−sT

(
n2,yT

) ∼= S2∆n2 (21)

10



giving

(
∆n0 + ∆n1 + ∆n2

)
= VS′

2 {S2VS′
2}

−1 {
S2

(
∆n0 + ∆n1

)
+ s∗T−sT

(
n2,yT

)}
(22)

A recursive algorithm can be constructed

∆nx = VS′
x {SxVS′

x}
−1

{
Sx

x−1∑
w=0

∆nw + s∗T−sT (nx)

}
−

x−1∑
w=0

∆nw (23)

with nx= n0 +
∑x−1

w=0 ∆nw and subsequently, for any x, ∂s
∂n
|nx = Sx. When the process

has converged, the adjusted transition matrices are constructed by appropriate partitions

of nx.

Since the least-squares minimand is evaluated afresh at each value of nx an optimum

is reached as ∆nx converges towards zero and the iterations can be stopped when it is

close to zero as defined by an appropriate tolerance level. The adjusted vector nx provides

the transition matrices at the xth iteration and when these are consistent with observed

survival rates, so too will be the healthy and unhealthy life expectancies derived from

them. The least-squares adjustment set out here must be looked upon as a systematic

procedure for deriving appropriate results of the conditions imposed.

One important consequence of the approach should be mentioned. As the functional

specification s(n,yT ) makes clear, the adjusted transition matrices depend on the initial

population vector yT,t, a point also discussed above. In any year, this has to be based on

the contemporaneous observation. The health mix of people currently of age T is unlikely

to match that of people currently aged T − v when they reach age T ; indeed that is the

reason for focusing on incidence-based measures of healthy life expectancy. It follows that

the adjusted transition matrices at any age will depend on the current age of the cohort

in question. Ideally one would work with cohort rather than interim life tables, with the

survival rates being appropriate to the cohort in question. However official cohort life

tables are not available.

5 Application to British Household Panel Survey Data

We focus on the results for healthy life expectancy at age sixty-five for men and women,

although the method can obviously be applied to any age. Life expectancy in each health

state is calculated as set out in appendix A.2 and the results we present are generated

by equation (29) there, with T = 65. The initial population estimates are taken from

the proportions reporting each health state in the British Household Panel Survey of the

year in question. However, since the number of sixty-five year olds is small, we smooth
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the figures in two ways. First of all we use in place of the proportion of people aged

sixty-five, the mean of the proportions of people in each health state at each age from

sixty-three to sixty-seven. Secondly, as with the calculation of official life tables, in place

of the proportion in each year, we use the mean of the proportions for the year in question

and the year on either side. Even after this smoothing the proportions of people in each

health state appears erratic as table 1 shows.

Women
Excellent Good Fair Poor Very Poor

1992 0.027 0.076 0.262 0.451 0.184
1993 0.028 0.073 0.257 0.460 0.182
1994 0.026 0.067 0.235 0.487 0.186
1995 0.025 0.063 0.237 0.489 0.186
1996 0.021 0.066 0.242 0.489 0.181
1997 0.025 0.075 0.269 0.457 0.175
1998 0.043 0.131 0.280 0.398 0.149
2001 0.047 0.150 0.273 0.370 0.160
2002 0.037 0.108 0.254 0.410 0.190
2003 0.030 0.100 0.267 0.416 0.187
Men

Excellent Good Fair Poor Very Poor
1992 0.017 0.096 0.235 0.427 0.225
1993 0.016 0.086 0.243 0.443 0.213
1994 0.020 0.081 0.263 0.423 0.213
1995 0.023 0.083 0.268 0.415 0.211
1996 0.030 0.094 0.279 0.388 0.209
1997 0.039 0.100 0.280 0.388 0.194
1998 0.042 0.111 0.290 0.387 0.170
2001 0.030 0.109 0.283 0.396 0.182
2002 0.029 0.102 0.274 0.399 0.195
2003 0.024 0.094 0.274 0.420 0.188

Table 1: Proportion of People in Each Health Category. Age 65 after Smoothing

The unadjusted transition matrices for men and women are used as set out in appendix

A.2 to calculate average expected number of years in each health state shown in table

2. There is appreciable variation over time although the time dummies in the probit

equations in tables 5 and 6 are for the most part not statistically significant. The results

show life expectancy declining over time but at levels which are, except for men in 2002

and 2003, higher than those in the official life tables presented subsequently in table 3.

The associated low mortality rates may be due to three factors. First of all, the British

Household Panel Survey has trouble in identifying deaths, since they have to be reported

by some other household member. Secondly, the survey covers people living in households

and not those living in residential care; the death rate is likely to be higher among the

latter. Thirdly, following Contoyannis et al. (2004b) and Contoyannis et al. (2006) we
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have estimated transition rates using an ordered probit model. This smooths out what

would otherwise be erratic transformation rates. However this standard approach may not

be very good at representing death - our sixth ”health state”. In any case it is clear from

table 2 that one would be reluctant to trust the estimates of even the proportion of time

spent in each health state, given that the overall expected life span differs substantially

from that shown in the life tables.

We now move on to the estimates of expected time in each health state calculated

after adjusting the transition matrices to be consistent with the life tables centred round

each year in question. These are shown in table 3. The estimates of overall expected

life are the same as those shown in the life tables, and our figures decompose this into

the average amount of time expected to be spent in each health state. For women these

figures suggest that, over the period 1992-2003, although total life expectancy at sixty-five

has increased by 1.3 years, the increase in time expected to be spent in excellent, good

or fair health is negligible. For men the picture is more optimistic. Total life expectancy

rose by 2.2 years and expected time in excellent, good or fair health rose by 1.0 years.

However, it is still the case that the majority of the increased expected life span is spent

in poor or very poor health.

6 Comparison with Official Estimates

As noted earlier, the Office for National Statistics compiles estimates of healthy life

expectancy based on responses to a question in the General Household Survey (Kelly

et al. 2000). The estimates are based on prevalence rather than incidence of poor health

and are calculated using Sullivan’s method. Direct comparison with our results is com-

plicated by the fact that the question in the General Household Survey differs from that

in the British Household Panel Survey. The question asked is ‘Over the last 12 months

would you say your health has on the whole been good, fairly good or not good?’. Thus

people are asked an absolute question rather than one about their health relative to peo-

ple of their own age and they are given only three response categories as compared to the

‘excellent’, ‘good’, ‘fair’, ‘poor’ and ‘very poor’ of the British Household Panel Survey.

The estimates for 2001 and 2002 are adjusted in the light of the results of a question

about health in the 2001 Census to allow for the health states of people living in institu-

tions; these are disproportionately women and a reasonable assumption is that they live

in residential care because their health is poor.

The comparison is shown in table 4. For men the match between our results and the

official figures is remarkable given the very different ways in which they were calculated.

For women our figures suggest a longer expected period of healthy life in the 1990s al-
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though the two are much closer from 2001 onwards. The sharp jump in officially estimated

expected healthy life between 1999 and 2001 for women might, however, have some cause

other than a change in the underlying health of the population, given that none of the

other data are erratic.

7 Conclusions

The purpose of this paper is two-fold. First to provide estimates of healthy life ex-

pectancy based on the self-reported health assessment provided in the British Household

Panel Survey and secondly to assess the implications of adjusting these estimates so as

to be consistent with figures for overall life expectancy provided by the official life ta-

bles. Working from the raw data we find that, while we can use ordered probit methods

to estimate transition matrices between health states as a function of age, with death

treated as a state ranked below very poor health, the results point to a life expectancy at

age sixty-five which was generally considerably higher than the official figures. This casts

obvious doubt on the validity of the resulting estimates of healthy life.

However we use a non-linear least-squares method to adjust the transition matrices

derived from our probit equations so that the resulting overall life expectancy estimates

conform to the official figures. Having made this adjustment we then find a much more

satisfactory and stable pattern to the estimates of healthy life. For men our figures are

remarkably similar to the official estimates produced using prevalance-based measures of

poor health. For women our figures point to a healthy life expectation of about a year

longer in the early 1990s although the gap had substantially closed by 2002 because the

official figures show rising healthy life expectancy which we do not find.

Overall our results point to a healthy life expectancy for men aged sixty-five which has

risen less rapidly between 1992 and 2002 than the official estimates of total life expectancy.

For women unlike the official figures we find no increase in healthy life expectancy over

the period. A broad general conclusion which follows interpreting both our figures and the

official data together is that, while healthy life expectancy may have risen between 1992

and 2002, any increase is probably considerably smaller than the increase in overall life

expectancy; hence confirming the expansion of morbidity hypothesis (Gruenberg (1977)

and Olshansky et al. (1991)). If this pattern continues it has obvious implications for the

pressures on medical expenditure as the population ages.
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Women
Excellent Good Fair Poor Very Poor Total

1992 1.5 9.0 8.1 4.1 1.5 24.1
(6.2) (37.3) (33.6) (17.0) (6.2) (100)

1993 1.3 8.2 7.7 4.1 1.5 22.7
(5.7) (36.1) (33.9) (18.1) (6.6) (100)

1994 1.2 7.9 7.6 4.1 1.5 22.3
(5.4) (35.4) (34.1) (18.4) (6.7) (100)

1995 1.1 7.5 7.4 4.1 1.5 21.7
(5.1) (34.6) (34.1) (18.9) (6.9) (100)

1996 1.0 7.1 7.3 4.1 1.5 21.0
(4.8) (33.8) (34.8) (19.5) (7.1) (100)

1997 1.1 7.4 7.4 4.1 1.5 21.4
(5.1) (34.6) (34.6) (19.2) (7.0) (100)

1998 1.0 6.9 7.1 4.0 1.5 20.4
(4.9) (33.8) (34.8) (19.6) (7.4) (100)

2001 1.0 7.1 7.2 3.9 1.5 20.7
(4.8) (34.3) (34.8) (18.8) (7.2) (100)

2002 0.9 6.6 7.0 3.9 1.5 20.0
(4.5) (33.0) (35.0) (19.5) (7.5) (100)

2003 0.9 6.7 7.0 4.0 1.5 20.2
(4.5) (33.2) (34.7) (19.8) (7.4) (100)

Men
Excellent Good Fair Poor Very Poor Total

1992 1.3 7.1 6.2 3.1 1.1 18.8
(6.9) (37.8) (33.0) (16.5) (5.9) (100)

1993 1.2 6.8 6.1 3.1 1.1 18.3
(6.6) (37.2) (33.3) (16.9) (6.0) (100)

1994 1.1 6.5 5.9 3.1 1.1 17.7
(6.2) (36.7) (33.3) (17.5) (6.2) (100)

1995 1.0 6.0 5.7 3.0 1.1 16.8
(6.0) (35.7) (33.9) (17.9) (6.5) (100)

1996 1.1 6.2 5.8 3.0 1.1 17.1
(6.4) (36.3) (33.9) (17.5) (6.4) (100)

1997 1.1 6.3 5.9 3.0 1.1 17.3
(6.4) (36.4) (34.1) (17.3) (6.4) (100)

1998 0.9 5.6 5.6 3.0 1.0 16.1
(5.6) (34.8) (34.8) (18.6) (6.2) (100)

2001 1.0 5.9 5.7 3.0 1.0 16.7
(6.0) (35.3) (34.1) (18.0) (6.0) (100)

2002 0.9 5.5 5.5 3.0 1.1 15.9
(5.7) (34.6) (34.6) (18.9) (6.9) (100)

2003 0.8 5.2 5.4 3.0 1.0 15.4
(5.2) (33.8) (35.1) (19.5) (6.5) (100)

Notes: The expected percentage of total expected life is shown in parentheses
below the figures indicating the number of years spent in each state.

Table 2: Unadjusted Estimates of Expected Time in each Health State at Age 65 (in years
and percentages)
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Women
Excellent Good Fair Poor Very Poor Total

1992 1.3 7.1 5.8 2.7 0.9 17.9
(7.3) (39.7) (32.4) (15.1) (5.0) (100)

1993 1.1 6.9 6.0 3.0 1.0 18.0
(6.1) (38.3) (33.3) (16.7) (5.6) (100)

1994 1.1 6.8 6.1 3.0 1.1 18.0
(6.1) (37.8) (33.9) (16.7) (6.1) (100)

1995 1.0 6.7 6.2 3.2 1.1 18.2
(5.5) (36.8) (34.1) (17.6) (6.0) (100)

1996 1.0 6.6 6.3 3.3 1.2 18.2
(5.5) (36.3) (34.6) (18.1) (6.6) (100)

1997 1.0 6.7 6.3 3.2 1.2 18.4
(5.4) (36.4) (34.2) (17.4) (6.5) (100)

1998 0.9 6.5 6.4 3.4 1.2 18.4
(4.9) (35.3) (34.8) (18.5) (6.5) (100)

2001 1.0 6.8 6.6 3.4 1.3 19.0
(5.3) (35.8) (34.7) (17.9) (6.8) (100)

2002 0.9 6.6 6.7 3.6 1.4 19.1
(4.7) (34.6) (35.1) (18.8) (7.3) (100)

2003 0.9 6.7 6.7 3.6 1.4 19.2
(4.7) (34.9) (34.9) (18.8) (7.3) (100)

Men
Excellent Good Fair Poor Very Poor Total

1992 1.1 5.6 4.6 2.1 0.7 14.2
(7.7) (39.4) (32.4) (14.8) (4.9) (100)

1993 1.1 5.6 4.7 2.2 0.7 14.4
(7.6) (38.9) (32.6) (15.3) (4.9) (100)

1994 1.0 5.5 4.8 2.3 0.8 14.5
(6.9) (37.9) (33.1) (15.9) (5.5) (100)

1995 0.9 5.4 5.0 2.5 0.8 14.7
(6.1) (36.7) (34.0) (17.0) (5.4) (100)

1996 1.0 5.6 5.0 2.5 0.8 14.8
(6.8) (37.8) (33.8) (16.9) (5.4) (100)

1997 1.0 5.7 5.0 2.5 0.8 15.0
(6.7) (38.0) (33.3) (16.7) (5.3) (100)

1998 0.9 5.5 5.2 2.7 0.9 15.2
(5.9) (36.2) (34.2) (17.8) (5.9) (100)

2001 1.0 5.9 5.4 2.7 0.9 15.9
(6.3) (37.1) (34.0) (17.0) (5.7) (100)

2002 0.9 5.7 5.6 2.9 1.0 16.1
(5.6) (35.4) (34.8) (18.0) (6.2) (100)

2003 0.9 5.7 5.7 3.1 1.0 16.4
(5.5) (34.8) (34.8) (18.9) (6.1) (100)

Notes: The expected percentage of total expected life is shown in parentheses below the figures
indicating the number of years spent in each state. In 1994, 1996, 1998 and 2003 the total computed life
expectancies are 0.1 years below the published figures. The reason for this discrepancy is discussed in
section A.2.

Table 3: Adjusted Estimates of Expected Time in each Health State at Age 65 (in years
and percentages) 16



Women Total life Healthy life expectancy
expectancy Good or fairly good (GHS) Very Good, Good or Fair (BHPS)

Official Estimates
1992 17.9 13.0 14.2
1993 18.0 13.0 14.0
1994 18.1 12.9 13.9
1995 18.2 13.0 13.9
1996 18.3 ... 13.8
1997 18.4 13.1 14.0
1998 18.5 ... 13.9
1999 18.6 13.1
2000 18.8 ...
2001 19.0 14.0* 14.3
2002 19.1 14.0* 14.2
2003 19.3 14.3
Men Total life Healthy life expectancy

expectancy Good or fairly good (GHS) Very Good, Good or Fair (BHPS)
1992 14.2 10.8 11.4
1993 14.4 10.9 11.4
1994 14.5 11.0 11.4
1995 14.7 11.3 11.3
1996 14.8 ... 11.5
1997 15.0 11.7 11.7
1998 15.2 ... 11.6
1999 15.4 11.5
2000 15.7 ...
2001 15.9 11.9* 12.3
2002 16.1 12.0* 12.2
2003 16.4 12.3

Notes: Healthy life expectancy estimates for 2001 and 2002 are derived from the General Household
Survey and use a new methodology adopted by the Office for National Statistics which adjusts for the
actual size and age distribution of the communal establishment population from the 2001 Census.

Table 4: Life expectancy and healthy life expectancy estimates at age 65 between 1991
and 2003 (in years). Official General Household Survey estimates compared with British
Household Panel Survey incidence-based estimates.
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A Appendix: Estimation of Healthy Life Expectancy

Healthy life expectancy measures which combine mortality and morbidity into a single

composite indicator are a very useful tool for monitoring long term trends in the evolu-

tion of population health and for addressing the question of compression or expansion of

morbidity in populations. Over the last thirty years there has been a dramatic increase
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in the number of health expectancy calculations carried out, almost all using the Sullivan

method, which is dependent on past flows. More recently, multi-state life table methods

have been developed which require information on transitions between health states. It

has been claimed that Sullivan’s method produces biased estimates and so it is an incor-

rect method of monitoring health expectancies over time (Rogers et al. (1990) and van de

Water et al. (1995)). This section reviews the techniques used to incorporate healthy life

expectancy based on single-state life tables (Sullivan’s method based on the prevalence of

disability that is a stock that is dependent on past history) and incidence-based transition

probabilities (multi-state method which can adjust to represent current health problems

by accounting reversible transitions between health states).

A.1 The Single-State Method

The single-state approach requires only a population life table, constructed for a popula-

tion using the observed mortality rates at each age for a given time period, and prevalence

data for the health states of interest (see Bebbington (1991), Mathers et al. (1994) and

Mathers (1996) for an extensive discussion). Such prevalence rates can be obtained readily

from cross-sectional health or disability surveys carried out for a population at a point in

time. Surveys of this type are carried out regularly in the UK, both at the national (Robine

& Ritchie (1991) and Matthews et al. (2006)) and regional level (Congdon (2006)), and

indeed across the European Union member states (Robine & Jagger (2003) and Robine

et al. (2004)). Its interest lies in its simplicity, the availability of its basic data and its

independence of the size and age structure of the population.

Sullivan’s method calculates the expected life expectancy of individuals currently at

specified ages if they lived the rest of their lives experiencing the age specific mortality

rates observed for the population at a specific time. It uses age specific mortality figures

to calculate the proportion of individuals alive at the beginning of an age interval that

die before reaching the next age group. The method has proven to be an powerful tool

for estimating the remaining years of life that a group of individuals can expect to live

once they reach a certain age. The procedure for calculating Sullivan’s method is outlined

below. Once again, the results are specific to the year to which the data relate, although

we do not include time subscripts.

First, the population at each age in the life table needs to be separated into the

proportion experiencing an unhealthy condition, πT+v, and those considered as healthy,

1− πT+v. The number of healthy people of age T + v is given by

zT+v
H = zT+v(1− πT+v) (24)
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where zT+v is the size of the population of age T + v.

The expected number of healthy life years for people aged T is then given as

eT =
1

zT

Tmax∑
T

zT+v
H where Tmax is the maximum life-span. (25)

Hence equation (25) presents the proportion of years lived in a healthy state. However,

if multiple health states are given, the prevalence at each age for each of those states must

be computed which are then used to estimate separately the expected duration of life in

those health status.

Problems relating to the validity of the Sullivan method were first pointed out by

Bebbington (1992) and Barendregt et al. (1995). They suggest that Sullivan’s method

underestimates healthy life expectancy weighed against the multi-state method because

the bias in the estimation of disability prevalence reflects past experience of each cohort

and not the current incidence rates. Past wars, for instance, may continue to affect current

disablement rates, as may the past state of health care, as conditions such as polio and

thalidomide illustrate. The problems with Sullivan’s method arise not because it uses

prevalence and mortality data averaged over all health states, but because the data it

uses are dependent on past conditions in the population. Therefore, if public health is

changing, present prevalence may be a poor guide in predicting future long term care

needs.

While the Sullivan method cannot deal with interstate transfers and so it is not suit-

able for detecting abrupt adjustments in health trends, Mathers & Robine (1997) develop

simulation models using French data which suggest that it does however provide accurate

estimates of the multi-state value if there are smooth and relatively regular changes over

the longer term. They argue that Sullivan’s method is an acceptable method for moni-

toring relatively smooth long term trends in health expectancies at the population level

in non-stationary populations.

A.2 The Multi-State Method

Our understanding of patterns and behaviour of mortality, fertility and life expectancy is

enhanced by a focus on occurrences of events and transfers and on their association with

the populations that are exposed to the risk of experiencing them. The use of the multi-

state method which accounts for such an association, were first proposed by Newman

(1988), Rogers, Rogers & Branch (1989) and Rogers, Rogers & Belanger (1989) who

modelled reversible transitions of individuals of a specific cohort among non-absorbing

states. More recently, other authors have widely discussed the multi-state approach of

transitions among health states over age (see among others, Crimmins et al. (1994),
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Crimmins et al. (1996), Davis et al. (2001), Ledent (1990) and Diehr & Patrick (2001)).

Both theoretically and technically, the multi-state life table method is to be preferred

for calculating health expectancies since it is based on period transition rates and will

thus detect sudden or gradual changes in disability incidence rates over time. However,

since its implementation requires longitudinal data which are expensive and time con-

suming there are very few countries where national data are available. Whilst the British

Household Panel Survey, along with the European Household Panel Survey, has opened

up new prospects for calculating interstate transition probabilities, it does not cover the

institutional population.

The multi-state method applied here provides the critical link between information

on mortality and information on the spectrum of non-fatal health experiences among

the living. Whereas the Sullivan method gives only the average health expectancy for the

entire population at a given age, the multi-state approach provides transition probabilities

differentiated by origins and destinations at an individual level at a given age.

We set out here the calculation of expected time in each health state for the adjusted

transition matrices, M̃r,T,t for individuals aged T in year t; when the life expectancies

are calculated for the unadjusted transition matrices these are simply replaced by Mr,t.

Given that each element of M̃r,T,t = {m̃r,T,t
q,p } represents the probability that an individual

in health state p at age r in year t + r − T will be in health state q a year later (p =

1, ..., 5; q = 1, ..., 5), we define

NT+1,T,t = M̃T,T,t (26)

NT+v+1,T,t = M̃T+v,T,tNT+v,T,t (27)

where {nT+v,T,t
q,p }, the element in row q and column p of NT+v,T,t, is the probability that

an individual is in state q at age T + v conditional being in state p at age T . Hence given{
nT+v,T,t

q,p

}
, one can obtain the proportion of survivors at age T + v who are in state q at

age T + v + 1.

Following standard UK practice, we make the assumption that transitions occur evenly

throughout the year. Since we are concerned about healthy life expectancy of adults we

do not need to take account of the death rates, month by month of babies under one

year old. The official UK life tables do, however, incorporate an adjustment for this. We

denote by ZT+v,T,t the total number of years lived in each health state of the population

alive at age T + v as a function of its health state at age T predicted from the data and

transition matrices for year t. This satisfies the recursion

ZT+v,T,t = ZT+v+1,T,t + (NT+v,T,t + NT+v+1,T,t)/2 (28)
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with ZT ∗,T,t = NT ∗,T,t = 0 ∀ T ∗ ≥ Tmax, the maximum life-span. We denote lT+v,T,t= i′NT+v,T,t

and ̂lT+v,T,t the matrix with lT+v,T,t on its leading diagonal and zeros elsewhere. Then

the matrix ZT+v,T,t ̂lT+v,T,t
−1

indicates the expected number of years to be spent in each

health state at age i as a function of initial health state at age T.

However, the actual expected time in each category depends on the actual health of

the population at time T. With our vector yT,t showing the number of people in each

health state at age T in year t, the expected amount of time spent in each state averaged

across the population, is given as

eT+v,T,t =
ZT+v,T,t ̂lT+v,T,t

−1
yT,t

i′yT,t

(29)

The official life tables are published only for ages from 0 to 100. However they em-

body assumptions about survival rates of people over 100. Since these are not publicly

available, we assume that no one survives beyond one hundres. As a consequence the life

expectancies that we calculate can be slightly lower than those published, even though our

survival rates for people up to one hundred match the official figures once the transition

matrices are adjusted. However the error not of practical importance. To one decimal

place there is no effect on male life expectancy. Female life expectancy at age sixty-five is,

however, in some years computed to be 0.1 years below the published figure. The figures

for women are affected more than those for men because more women survive beyond one

hundred.

B Appendix: Ordered Probit Equations used to Con-

struct Transition Probabilities

To account for possible health-related sample attrition in the British Household Panel

Survey we consider augmenting (1) with the following sample selection equation

sel∗i,t = 1 if βs′xs
i,t + γs′hi,t−1 + ηs

i + ws′ζt + es
i,t > 0, (30)

= 0, otherwise

so that sel∗i,t is a selection (binary) indicator, equal to one when the i−th individual is

present in the British Household Panel Survey at time t, zero otherwise, and the vector

xs
i,t comprises xi,t plus the logarithm of annual individual income. It is assumed that

es
i,t ∼ N(0, 1). Only when sel∗i,t = 1 is h∗

i,t observed and hi,t = j (j = 0, 1, ..., 5). ρ denotes

the correlation between es
i,t and ei,t. (1) and (30) are jointly estimated by maximum
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likelihood. In practice this was achieved by adopting a generalised latent mixed modelling

framework (Skrondal & Rabe-Hesketh (2004)). This involves assuming the dependence

between ei,t and es
i,t is determined by a common factor fi,t, such that

ei,t = λfi,t + τ i,t (31)

es
i,t = fi,t + κi,t (32)

where fi,t, τ i,t and κi,t are independently distributed standard normal random variables

and λ is an estimable (factor loading) parameter. This implies the correlation coefficient,

ρ, equals

ρ =
λ√

2(λ2 + 1)
. (33)

A test of λ = 0 (ρ = 0) then amounts to a test for sample attrition. When λ = 0

consistent estimators of the parameters in (1) are obtained by estimating (1) without

reference to (30). The Stata programme gllamm, and the associated ssm ‘wrapper’, was

used for estimation (Skrondal & Rabe-Hesketh (2004) and Miranda & Rabe-Hesketh

(2006)).

We also follow Contoyannis et al. (2004b) and Contoyannis et al. (2006) in their analysis

of health related attrition in the British Household Panel Survey and employ an inverse

probability (IPW) estimator to correct for sample attrition; see Wooldridge (2002) and

Wooldridge (2005). This estimator cannot be applied to the random effects model (σ2
υ >

0), only to the pooled model (σ2
υ = 0). Again this relies on estimation of probit models

for sel∗i,t.

Tables 5 and 6 present the coefficient estimates for the ordered dynamic probit models

based on pooled and random effects specifications for men and women respectively. In

both tables column (i) gives the estimates for the pooled ordered probit model based on

estimation of (1) alone. Column (ii) then applies the IPW estimator to accommodate

sample attrition. Column (iii) then estimates (1) and (30) jointly for the pooled model.

Attempts to estimate jointly using gllamm allowing σ2
υ > 0 proved computationally too

burdensome. Results for the random effects model are therefore presented in column (iv)

based on estimation of (1) alone.

In both tables the estimated coefficients on the lagged categories of hi,t are highly sta-

tistically significant. There is an upward gradient across these lagged categories (starting

with “very poor” health and moving to “excellent” health). This evidence of positive

state dependence is consistent with related work on the dynamics of health in the British

Household Panel Survey; see Contoyannis et al. (2004b). Note that the baseline category

used here is “good” health. The dummies for the state of health in the initial wave (year
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1991) are also statistically significant and, like the dummies for the lagged health state,

current period health improves with better initial health. The statistical significance of

the squared term in age implies health deteriorates in a quadratic manner with older age.

Inspection of the time dummies reveals there is a tendency for health to decline over the

sample period 1991-2004. The time dummies tend to be more statistically significant for

the random effects specification (column (iv)) and for earlier waves.

Tables 5 and 6 reveal that one can reject the null hypothesis that λ = 0 at a 95% level

of significance for both men and women. This suggests there is health related sample

attrition. But in-line with Contoyannis et al. (2004b) and Contoyannis et al. (2006) this

does not appear to influence the parameter estimates in Tables 5 and 6. One can also

reject the hypothesis that σ2
υ = 0 using a likelihood-ratio test comparing column (i)

against column (iv). This is consistent with the statistical significance of σ2
υ. Column

(iv) is therefore the preferred model since accommodating individual-level heterogeneity

delivers an improved statistical fit relative to pooled comparators.
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(i) Pooled (ii) Pooled (iii) Pooled (iv) Random effects
with no sample selection sample selection with no

sample selection IPW joint estimation of sample selection
(1) and (30)

Dependent Var: No. obs. No. obs. No. obs. No. obs.
h∗

i,t 38553 36663 101301 38553

AGEi,t−1 0.011 (0.002) 0.011 (0.002) 0.012 (0.002) 0.030 (0.004)
AGE2

i,t−1 (× 10−4) -1.976 (0.189) -1.957 (0.224) -2.023 (0.195) -4.394 (0.358)

Health status for individual i at year t− 1 (base=Good)
EXCELLENT 0.852 (0.017) 0.869 (0.020) 0.865 (0.020) 0.481 (0.025)
FAIR -0.760 (0.017) -0.773 (0.018) -0.771 (0.020) -0.461 (0.021)
POOR -1.470 (0.027) -1.500 (0.030) -1.492 (0.033) -0.944 (0.037)
VERYPOOR -1.997 (0.457) -2.001 (0.048) -2.025 (0.052) -1.361 (0.059)
DEATH −∞ −∞ −∞ −∞
Health status for individual i in 1991 (base=Good)
EXCELLENT 0.322 (0.015) 0.327 (0.017) 0.326 (0.016) 0.589 (0.032)
FAIR -0.267 (0.018) -0.261 (0.018) -0.273 (0.019) -0.545 (0.036)
POOR -0.472 (0.030) -0.469 (0.029) -0.470 (0.031) -1.032 (0.054)
VERYPOOR -0.582 (0.052) -0.604 (0.050) -0.585 (0.053) -1.318 (0.104)
Time dummy effects
year 1992 0.027 (0.029) 0.029 (0.030) 0.056 (0.032) 0.178 (0.031)
year 1993 0.028 (0.029) 0.017 (0.030) 0.047 (0.031) 0.148 (0.032)
year 1994 0.015 (0.029) 0.017 (0.030) 0.027 (0.030) 0.112 (0.031)
year 1995 -0.020 (0.030) -0.020 (0.030) -0.015 (0.030) 0.054 (0.032)
year 1996 0.017 (0.030) 0.016 (0.030) 0.021 (0.030) 0.073 (0.031)
year 1997 0.033 (0.030) 0.033 (0.031) 0.035 (0.030) 0.085 (0.031)
year 1998 -0.037 (0.030) -0.041 (0.031) -0.040 (0.030) 0.005 (0.031
year 2001 0.034 (0.031) 0.036 (0.032) 0.022 (0.032) 0.044 (0.032)
year 2002 -0.021 (0.031) -0.028 (0.032) -0.037 (0.032) -0.005 (0.030)
year 2003 -0.042 (0.031) -0.039 (0.032) -0.062 (0.033) -0.037 (0.032)
Cut-Point 1 -3.08 (0.059) -3.104 (0.072) -3.048 (0.061) -3.095 (0.107)
Cut-Point 2 -2.61 (0.058) -2.640 (0.067) -2.573 (0.059) -2.586 (0.102)
Cut-Point 3 -1.818 (0.056) -1.844 (0.064) -1.768 (0.058) -1.701 (0.098)
Cut-Point 4 -0.722 (0.055) -0.726 (0.062) -0.655 (0.061) -0.462 (0.096)
Cut-Point 5 0.951 (0.055) 0.954 (0.062) 1.043 (0.072) 1.441 (0.097)

Log likelihood -37512.378 -34707.715 -70605.968 -36554.280
λ 0.195 (0.083)
σ2

υ 0.415 (0.020)

Notes: Robust estimated standard errors are reported in parentheses. Cut-Point 1 to Cut-Point 5 are
the estimated threshold parameters αj (j = 1, ..., 5). Estimates for the pooled model with sample
selection, based on joint estimation of (1) and (30), and the random effects model are re-scaled so that
the (composite) error term has a variance of unity. This ensures comparability across columns (i)-(iv).

Table 5: Dynamic ordered probit models with pooled and random effects specifications -
men
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(i) Pooled (ii) Pooled (iii) Pooled (iv) Random effects
with no sample selection sample selection with no

sample selection IPW joint estimation of sample selection
(1) and (30)

Dependent Var: No. obs. No. obs. No. obs. No. obs.
h∗

i,t 45127 43581 117437 45127

AGEi,t−1 0.011 (0.002) 0.010 (0.002) 0.012 (0.002) 0.030 (0.003)
AGE2

i,t−1 (× 10−4) -1.834 (0.184) -1.761 (0.200) -1.956 (0.178) -4.086 (0.286)

Health status for individual i at year t− 1 (base=Good)
EXCELLENT 0.851 (0.016) 0.878 (0.020) 0.867 (0.019) 0.496 (0.024)
FAIR -0.720 (0.015) -0.739 (0.016) -0.734 (0.017) -0.427 (0.020)
POOR -1.361 (0.022) -1.383 (0.025) -1.387 (0.028) -0.880 (0.031)
VERYPOOR -1.776 (0.037) -1.819 (0.041) -1.810 (0.043) -1.147 (0.049)
DEATH −∞ −∞ −∞ −∞
Health status for individual i in 1991 (base=Good)
EXCELLENT 0.295 (0.143) 0.284 (0.016) 0.301 (0.015) 0.555 (0.030)
FAIR -0.285 (0.154) -0.292 (0.016) -0.289 (0.016) -0.511 (0.029)
POOR -0.484 (0.023) -0.496 (0.025) -0.485 (0.024) -0.935 (0.045)
VERYPOOR -0.617 (0.042) -0.638 (0.043) -0.624 (0.043) -1.226 (0.074)
Time dummy effects
year 1992 0.070 (0.026) 0.069 (0.027) 0.096 (0.028) 0.206 (0.028)
year 1993 0.018 (0.026) 0.015 (0.027) 0.035 (0.027) 0.134 (0.028)
year 1994 0.015 (0.026) 0.013 (0.027) 0.024 (0.027) 0.110 (0.028)
year 1995 0.003 (0.027) 0.003 (0.027) 0.006 (0.027) 0.079 (0.028)
year 1996 -0.017 (0.027) -0.016 (0.027) -0.016 (0.027) 0.043 (0.027)
year 1997 0.017 (0.027) 0.010 (0.028) 0.015 (0.027) 0.064 (0.028)
year 1998 -0.032 (0.027) -0.034 (0.028) -0.038 (0.028) 0.077 (0.027)
year 2001 0.016 (0.028) 0.025 (0.029) 0.002 (0.029) 0.020 (0.027)
year 2002 -0.023 (0.028) -0.025 (0.029) -0.041 (0.029) -0.013 (0.027)
year 2003 -0.007 (0.028) -0.002 (0.028) -0.029 (0.029) -0.003 (0.028)
Cut-Point 1 -3.200 (0.055) -3.252 (0.069) -3.177 (0.058) -3.115 (0.093)
Cut-Point 2 -2.582 (0.053) -2.633 (0.063) -2.547 (0.055) -2.441 (0.087)
Cut-Point 3 -1.755 (0.052) -1.812 (0.060) -1.704 (0.053) -1.521 (0.084)
Cut-Point 4 -0.666 (0.051) -0.703 (0.059) -0.594 (0.055) -0.299 (0.083)
Cut-Point 5 1.032 (0.051) 1.003 (0.059) 1.137 (0.065) 1.618 (0.085)

Log likelihood -46070.606 -43161.870 -82487.680 -44956.598
λ 0.222 (0.067)
σ2

υ 0.382 (0.017)

Notes: Robust estimated standard errors are reported in parentheses. Cut-Point 1 to Cut-Point 5 are
the estimated threshold parameters αj (j = 1, ..., 5). Estimates for the pooled model with sample
selection, based on joint estimation of (1) and (30), and the random effects model are re-scaled so that
the (composite) error term has a variance of unity. This ensures comparability across columns (i)-(iv).

Table 6: Dynamic ordered probit models with pooled and random effects specifications -
women
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