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Abstract: Detailed knowledge of the flow and boundary shear stress fields near the banks of natural channels is essential for making
accurate calculations of rates of near-bank sediment transport and geomorphic adjustment. This paper presents a high-resolution laboratory
data set of velocity and boundary shear stress measurements and uses it to test a relatively simple, fully predictive, numerical method for
determining these distributions across the cross-section of a straight channel. The measurements are made in a flume with a fairly complex
cross-section that includes a simulated, cobble-roughened floodplain. The method tested is that reported by Kean and Smith in Riparian
Vegetation and Fluvial Geomorphology in 2004, which is modified here to include the effects of drag on clasts located in the channel. The
calculated patterns of velocity and boundary shear stress are shown to be in reasonable agreement with the measurements. The principal
differences between the measured and calculated fields are the result of secondary circulations, which are not included in the calculation.
Better agreement with the structure of the measured streamwise velocity field is obtained by distorting the calculated flow field with the
measured secondary flow. Calculations for a variety of narrower and wider configurations of the original flume geometry are used to show

how the width-to-depth ratio affects the distribution of velocity and boundary shear stress across the channel.
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Introduction

Accurate determination of the distribution of boundary shear
stress on and near the banks of natural channels is essential for
addressing a variety of problems in fluvial geomorphology and
stream restoration. These problems include (1) calculation of rates
of lateral erosion in rivers; (2) determination of sediment trans-
port in rills and gullies; and (3) calculation of accurate stage-
discharge relations in narrow streams. Determination of the near-
bank boundary shear stress in natural channels requires (1) the
ability to quantify the roughness and form drag of irregular banks;
and (2) a means to determine how both the bank geometry and the
relative roughness of the bed and the bank affect the distribution
of stress. Recently, a series of methods have been developed with
the goal of addressing these important aspects of the problem.
The form drag and hydrodynamic resistance of small-scale topo-
graphic features commonly found on the banks of natural chan-
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nels can be calculated using the approaches of Kean and Smith
(2006a,b). Drag on the stems and branches of rigid vegetation,
which is another roughness element commonly found on banks of
natural channels, can be determined using the method of Kean
and Smith (2004). The Kean and Smith method determines the
distribution of streamwise boundary shear stress across the entire
wetted-perimeter of the channel cross section, and testing this
feature of their model is the primary focus of this paper.

Much work concerning the distribution of near-bank boundary
shear stress in channels has been conducted in laboratory flumes
with prismatic cross sections. A basic understanding of how the
perimeter-averaged stress is partitioned between the bed and the
walls of rectangular channels has come from classic flume sedi-
ment transport studies, which required methods to account for the
effects of sidewall friction on the rates of sediment transport (e.g.,
Einstein 1942; Vanoni and Brooks 1957; Williams 1970; Cheng
and Chua 2005). Other studies have made detailed measurements
of velocity and boundary shear stress in straight laboratory flumes
to study the complex patterns of boundary shear stress distribu-
tion across the channel (e.g., Knight et al. 1984; Tominaga and
Nezu 1991; Knight et al. 1994). Such measurements have been
used subsequently to validate three-dimensional numerical flow
and turbulence models (e.g., Naot et al. 1993). These nonsediment
transport related investigations have placed particular emphasis
on resolving secondary circulations in the flume and determining
their effects on the distribution of boundary shear stress. Some of
the secondary circulations documented by these studies are gen-
erated by the distinct corners of the flume boundaries (e.g., the
corner between the flume wall and the bed) (see Liggett 1994).
These types of circulations (classified as Prandtl’s second kind of
secondary circulation) are produced by turbulent anisotropy of the
cross-stream and vertical velocity fluctuations (Nezu and Naka-
gawa 1993). In natural channels, which do not have such corners,
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Fig. 1. Example cross section showing ray-isovel orthogonal coordi-
nate system

other more dominant types of secondary circulations associated
with channel irregularity are usually present and have a substan-
tial effect on the distribution of boundary shear stress. One of the
most common of these latter types of secondary circulations is
produced by channel curvature (Prandtl’s first kind of secondary
circulation).

Early work regarding the determination of near-bank boundary
shear stress in natural channels focused on straight channels with
gradually sloping banks. Lundgren and Jonsson (1964) and later
Parker (1978) developed analytic solutions for the streamwise
distributions of stress across the channel, which included the ef-
fects of the bank on the stress. Although simple analytic methods
are available to determine the distribution of stress in prismatic
channels with steep banks (e.g., Yang and Lim 2005), the calcu-
lation of boundary shear stress distributions in channels of arbi-
trary cross-sectional geometry currently requires the use of
numerical methods. One approach, which is beginning to be used
more extensively, is to apply fully three-dimensional computa-
tional fluid dynamical (CFD) algorithms to resolve near-bank pat-
terns of boundary shear stress. A current drawback to this
approach is that it is computationally very intensive, which limits
the domain that can be modeled. This limitation, however, will
become less of an issue as available computing power continues
to increase.

An alternative to the above-mentioned methods for determin-
ing near-bank boundary shear stress is to distribute stress along
lines (rays) that are perpendicular to lines of constant velocity
(isovels) as shown in Fig. 1. Leighly (1932) first used the ray-
isovel approach empirically to determine the stress distribution in
natural channels from measured velocity fields. The theoretical
work of Houjou et al. (1990) developed a turbulence closure
based on the ray-isovel concept and applied it in the form of a
numerical model to determine the distributions of velocity and
shear stress in straight, rectangular channels with known bed and
bank roughnesses. An alternative approach for calculating isovels
in channels based on an analogy with electromagnetic theory has
been developed by Maghrebi and Ball (2006). Unlike the com-
pletely predictive model of Houjou et al. (1990), this latter ap-
proach requires a single measurement of velocity to scale the
calculated velocity field. The Houjou et al. (1990) model was
generalized recently by Kean and Smith (2004) to accommodate
channels of arbitrary cross section and to include the effects of
drag on rigid bank vegetation. Although, flow models employing
the ray-isovel turbulence closure do not determine secondary cir-
culations, they require substantially less computational effort than
fully three-dimensional flow models, and they can more easily
accommodate downstream and cross-stream variations of physi-
cal and biological roughness elements. Moreover, in order to cal-
culate “secondary circulations” in a general flow problem the
primary flow and its associated turbulence field must be accu-
rately resolved. Despite the relative simplicity of the ray-isovel

framework compared to CFD approaches, the ray-isovel approach
can be used for determining distributions of velocity and bound-
ary shear stress in complex natural channels (see Griffin et al.
2005; Kean and Smith 2005), and it provides a foundation for
“secondary circulation” calculations.

The purpose of this paper is to (1) make a comprehensive
laboratory data set collected by three of the authors available to
the research community for making detailed tests of predictive
flow models and (2) perform a specific test of the ray-isovel ap-
proach employed by Kean and Smith (2004). The measurements
were made in a straight flume with a simulated, cobble-roughened
floodplain. A minor extension to the method of Kean and Smith
(2004) is made here to determine the form drag on the floodplain
cobbles and their effects on the velocity and boundary shear
stress. The high resolution of the measurements and the relatively
complex shape and roughness characteristics of the flume provide
data for a rigorous test of a flow model, such as Kean and Smith
(2004). Owing to the predictive nature of the model and the com-
prehensive nature of the data set, the discrepancies are identified
and their likely causes are examined. The model is then applied to
examine the patterns of boundary shear stress in hypothetical nar-
rower and wider channels having similar geometric and rough-
ness characteristics as the study flume.

Ray-Isovel Model

The momentum equation for steady, streamwise uniform flow in a
channel with lateral boundaries is

0=pg sin(6)+ﬁﬂ+& (1)
ay = az

where p=fluid density; g=acceleration of gravity; and 6=angle
deviation of the water surface from horizontal. The stress terms
7, and T, are the zx and yx components of the deviatoric stress
tensor [see Kundu (1990)], where x, y, and z are the downstream,
cross-stream, and vertical directions, respectively. Despite the
lack of a general analytic solution, the distribution of fluid stress
throughout a channel of arbitrary cross section can be defined in
an intuitive manner using the natural, curvilinear coordinate sys-
tem of the flow. This coordinate system consists of rays that are
perpendicular to isovels as shown in Fig. 1. The rays, which are
perpendicular to the boundary and extend to the water surface,
define streamwise surfaces of zero cross-ray shear. Consequently,
the downstream component of the weight of water between two
adjacent rays is balanced completely by friction on the length of
wetted perimeter that separates the rays at the boundary. The
boundary shear stress defined by that force balance is given by

Jop(l,)dl,

b

7 = pg sin(B) 2)
where [ represents the distance along a ray from the boundary
(l;=dummy integration variable along the path of a ray), p(l,)
=length along an isovel between two rays, and p,=perimeter
length along the boundary between two rays. Note that p(0)=p,.
The integral in the numerator represents the total area between
two rays. The limits of integration follow the length of a ray from
the boundary (/=0) to the surface (/=L). This formulation can be
originally attributed to Leighly (1932), and it is analogous to the
expression for the average boundary shear stress in a channel
given by T,=pg sin(8)A/ P, where A is the total area of the cross
section and P is the full-wetted perimeter. The shear stress along
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Fig. 2. View looking up the USDA-NSL 100 ft flume. The acoustic Doppler current velocimeter is shown on the right side of picture. The width

of the flume including the floodplain is 1.22 m.

each ray in the interior of the channel, 7, is given by a similar
expression to (2), which is

Jip(a)dly
p(l)
The ray-isovel coordinate system also is used to define a scalar

eddy viscosity that relates 7;, to the mean velocity gradient along

a ray through the expression T, =pK(du/dl). The functional form
of K near the boundary used by Kean and Smith (2004) is

K=Ku*l<ﬁ) (4)

Tp

T1 = pg sin(6) 3)

where k is von Karman’s constant, which equals 0.408 (Long et
al. 1993); and u, is the shear velocity, which equals \/’Tb_/p. In
their formulation, the eddy viscosity increases along each ray ac-
cording to (4) until it reaches the channel scale eddy viscosity, K,,.
For the channel of concern in this paper, the appropriate length
scale for K, is the maximum flow depth, H. This gives K,
=«[g sin(0)R]"?>H/ B, where B is a constant equal to 6.24 and R is
the hydraulic radius, R=A/P. The constant 6.24 is the value of 3
shown by Shimizu (1989) to give the best agreement with the
laboratory-measured velocity profile of Einstein and Chien
(1955).

By defining the spatial variation of the eddy viscosity for an
entire streamwise uniform channel, Eq. (1) can be rewritten as

0 in(6) a( Kau) a( Kau> )
pg sin +0_’y p PN +0z p %

The boundary conditions for Eq. (5) are that du/dz=0 at the water
surface and u=0 at the roughness length /=/,. For homogenous
surfaces, such as the boundaries of the study flume, /, can be
specified as a function of u, and the equivalent grain size diam-
eter of the surface, k, based on the experimental work of Ni-
kuradse (1933). Different techniques are required to estimate [,
for the hydraulically rough flow conditions present near irregular
surfaces characteristic of natural channels [see Kean and Smith
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(2005, 2006a,b) for a discussion of determining [, for natural bed
and bank surfaces].

Form Drag on Roughness Elements

Kean and Smith (2004) extended the ray-isovel model framework
of Houjou et al. (1990) to include the effects of form drag due to
roughness elements. This was accomplished by incorporating the
drag force per unit volume on the roughness elements directly
into the momentum equation. The roughness elements in that
study were rigid stems and branches of woody vegetation and
were modeled as circular cylinders. In this paper, the roughness
elements are similar-sized cobbles fixed to the boundary of the
laboratory flume in a regular staggered array (see Figs. 2 and 3).
The effects of the cobbles on the velocity and boundary shear
stress fields can be determined using an approach similar to the
one taken by Kean and Smith (2004) for rigid vegetation. The
drag force per unit volume on the cobbles is given by

1 d
F= EPCDFuzef (6)

where Cp=drag coefficient of a single cobble; u,s=reference ve-
locity; A=mean distance between cobbles; and d=local width of
the cobbles at an elevation z. The ratio d/\? represents the local
cross-sectional area of the cobbles oriented perpendicular to the
flow direction (d-dz) divided by the volume that slice affects
(N2-dz). This ratio can vary as a function of y and z to accommo-
date changes in cobble size and spatial density. In this application,
the cobbles are modeled as identical spheres of diameter D. For
the situation where the spheres rest on a surface of elevation z
=0, the variation of the local cobble width with z is given by d
=D?>-(2z-D)?. The basic approach used here to model the
natural floodplain cobbles can be generalized to accommodate a
size distribution of particles and/or other particle geometries, such
as ellipsoids.

The square of the reference velocity for determining drag on
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Fig. 3. Flume dimensions. The mean diameter of the cobbles is 4.5 cm. The bank slope is 45°. Cross-sectional view is looking downstream. The
dashed line in the plan view denotes the cross section, where velocity measurements were taken.

an individual cobble is defined to be the average squared velocity
that would be present if the cobble were removed from the flow,
with the average taken over the volume the object occupied. De-
fining u, in this manner allows us to use Cp for an individual
cobble. The Reynolds numbers of the experiment are in the tur-
bulent range where Cp, for a sphere is nearly constant and equal to
about 0.45 (Wiberg and Smith 1991). If, as is the case in this
study, the drag force is expressed on a per volume basis rather
than for an entire cobble, then the same value of Cj, should be
used, but u,; can be approximated by the local mean velocity
u(y,z). Including the drag per unit volume in the momentum
balance gives

0=pgsi (e)+i< K‘;—”)+i( K‘?—”) ey L (7)
PSS o \PR oy ) T \PR g ) T 2Pt

In addition to reducing flow velocities, drag on the cobbles
also affects the turbulence and the shear stress. Owing to the fact
that the cobbles occupy only a very small fraction of the total
cross-sectional area of the study channel, the local effects of the
cobbles on the turbulence are not considered in this paper. The
appropriate length scale of turbulent mixing within a field of
clasts, however, can be estimated using an approach suggested by
Wiberg and Smith (1991). The effects of the cobbles on boundary
shear stress (7,,) are determined in this paper by subtracting the

total drag force within the area between two adjacent rays from
the downstream component of the weight of water in that area.
This may be expressed as

_ Jilpg sin(0) = F(1,)Ip(L)dl,
= , )
b

where F(I)=average drag force per unit volume along the length
of an isovel between two adjacent rays.

In summary, the required inputs to the model are geometric
parameters: channel cross-sectional geometry (which is arbitrary),
flow depth (H), angle deviation of the water surface from hori-
zontal (0), roughness height of the boundary (/,), and the diam-
eter (D), and spacing (\) of the cobbles. These parameters are
known from the experimental setup, which will be described in
the next section. Solutions for the velocity and boundary shear
stress fields can be obtained by numerical solution of Egs.
(2)—(8). Starting with an initial guess of the boundary shear stress
distribution and the velocity in the interior, the computation alter-
natively solves the momentum Eq. (7) for u and Egs. (8), (3), and
(4) for T,, T, and K until the flow solution converges. To reduce
the number of grid points required in the calculation, the velocity
within a short distance of the boundary (0.01 m) is computed
using the law of the wall [u=(u,/x)In(l/1,)]. It is important to
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Table 1. Summary of Flow Conditions in Experiment

Discharge® Slopeb Depth Area kg kg Cobble

S H A walls/bed floodplain/slope mean diam.
(m*/s) (m/m) (m) (m?) (mm) (mm) (cm)
0.396 0.00036 0.555 0.57 0.235 0.8 4.5

“From flume’s Venturi meter.

°Based on perimeter average of measured stress, S=7,/(pgR).

note that in this paper the model is applied without making any
empirical adjustments to model parameters (i.e., no model tuning
or fitting is conducted).

Laboratory Measurements

Measurements of velocity and boundary shear stress measure-
ments were made in a 30.5 m long, 1.22 m wide flume at the U.S.
Department of Agriculture National Sedimentation Laboratory
(USDA-NSL). A steady discharge was maintained for the entire
time period over which the measurements were collected. A pho-
tograph and diagram of the flume geometry is shown in Figs. 2
and 3. The vertical walls and bed of the flume are made of alu-
minum and the slope and horizontal surface of a simulated flood-
plain are constructed of sheet metal with a layer of sand (0.8 mm
median diameter) glued to the surface. The horizontal surface of
the “floodplain” contains a staggered array of similar-sized
cobbles having a mean diameter of 4.5 cm and a spacing shown
in Fig. 3. A summary of the flow conditions during the measure-
ments is given in Table 1.

Over 1500 measurements of the downstream, cross-stream,
and vertical components of velocity were made in a single cross
section using an acoustic Doppler velocimeter (ADV). The ADV
was rigidly mounted on a precision three-axis computer-
controlled positioning system. The ADV was moved to all of the
measurement locations by sending commands to the stepper mo-
tors, and the mounting was not changed over the course of data
collection. Each velocity measurement was averaged for 120 sec
at a sampling rate of 50 Hz. The velocity measurements were
processed using the public domain software WinADV (Wahl
2000), which filtered the data to reject points with correlation
coefficient of <0.70. Repeated measurements (n=6) at the same
location (0.919 m from left wall viewed downstream, 0.300 m
above the bed, and 19.5 m downstream from the flume entrance)
yielded standard errors of 0.1, 3.9, and 1.0% of the mean velocity
in the streamwise (x), cross-stream (y), and vertical (z) directions,
respectively.

The measurement cross section was located 19.5 m down-
stream of the entrance to the flume. In the interior of the flume,
measurements were spaced 3 cm apart in both the y and z direc-
tions. Within 2 cm of the flume boundaries, velocity measure-
ments were spaced 0.5 cm apart in the directions normal and
parallel to the boundary. No velocity measurements were made
within 7.5 cm of the water surface due to the size of the ADV.
The cross-stream and vertical velocities in the flume, which are
almost two orders of magnitude smaller than the downstream ve-
locity, are particularly sensitive to the angle alignment of the
ADV relative to the y- and z-axes. On the basis of the computer-
controlled ADV mounting and positioning system that was used,
we are confident the ADV alignment was constant for all mea-
surements. In order to account for possible constant alignment
error, the orientation of the ADV about the y- and z-axes was
adjusted to minimize both the vertical discharge across all hori-
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zontal transects of the measurement section and the cross-stream
discharge across all vertical transects. This adjustment resulted in
<1° of rotation about the y- and z-axes.

Measurements of boundary shear stress were made with a
2.35 mm diam Preston tube (Preston 1954). The approach uses
the law of the wall to convert measurements of dynamic pressure
obtained using a total head tube to boundary shear stress (e.g.,
Patel 1965; Hwang and Larsen 1963; Nece and Smith 1970; Head
and Rechenberg 1972). Measured pressures were converted to
shear stress using the efficient computational procedure of Wu
and Rajaratnam (2000), which is based on the pressure-stress cali-
bration of Hollingshead and Rajaratnam (1980) for uniformly
rough boundaries. Preston tube measurements were made every
0.5 cm along the entire wetted perimeter of the flume at the same
cross section, where the velocity measurements were made. To
verify the streamwise uniformity of the flow field, a second set of
Preston tube measurements, spaced 2 cm apart, was made at a
cross section 1.55 m upstream.

Comparison to Measurements

Velocity

Measured and calculated streamwise velocity fields are shown in
Figs. 4(a and b). Contours are drawn without smoothing using the
computer software IDL. In general, the calculated velocity is in
reasonable agreement with the magnitude and structure of the
measured field. With respect to discharge, the calculated dis-
charge (0.405 m?/s) is close to two independent measurements:
(1) the discharge obtained from integrating the velocity measure-
ments over the cross section (0.373 m3/sec, 8.6% difference) and
(2) the discharge obtained from the flume’s Venturi meter
(0.396 m?/sec, 2.3% difference). Two possible reasons the pre-
dicted discharge is slightly higher than the measurements are that
(1) there is more turbulent mixing in the flume than is present in
the calculation and/or (2) the actual roughness (k,) of the flume
boundaries is greater than the roughness used in the calculation.

Additional turbulent mixing can be incorporated into the
model by increasing the channel-scale eddy viscosity (K,
=«[g sin(0)R]"?H/B) through a change in B. Perfect agreement
between the calculated discharge and the Venturi discharge mea-
surement requires changing the value of 3 from 6.24 to 3, which
more than doubles K,,. The relative insensitivity of the calculated
discharge to substantial changes in K, indicates that the magni-
tude of interior mixing is probably not the primary cause of the
discharge discrepancy, and, for this reason, the original formula-
tion for K, will be retained.

Perfect agreement with the discharge also can be achieved by
increasing the values of k, used in the model by 50%. The original
calculation employed standard values of k, for the two distinct
types of planar surfaces: aluminum and glued sand (see Table 1).
Minor corrosion on the flume walls and irregularities in the sand
surface could produce roughness heights 50% greater than was
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Fig. 4. (Color) (a) Calculated downstream velocity; (b) measured downstream velocity; and (c) measured secondary circulation

assumed. Spatial variability in the roughness along the boundaries
also would likely have an effect on the structure of the velocity
field. Given the fairly good agreement between modeled and mea-
sured discharge based on the original values of kg however, no
empirical adjustments in roughness will be made in remaining
calculations of this paper. A test of validity of the roughness as-
sumptions will be described in the next section.

In terms of the structure of the calculated and measured veloc-
ity fields, the agreement is best on the left side of the channel over
the cobble-roughened “floodplain.” The greatest difference in
structure is associated with the shape and location of the high-
velocity core (defined here to be the region of the velocity field,

where 1#>0.7 m/s). The outline of the calculated high-velocity
core roughly follows the shape of the flume boundary, whereas
the perimeter of the measured core is distorted away from the bed
near the center of the flume and away from the flume walls near
the surface. The complex shape of the measured high-velocity
core is related to a well-developed secondary flow in the flume
[Fig. 4(c)], which cannot be calculated from a ray-isovel model
alone. Secondary flows similar to the one shown in Fig. 4(c) are
common in straight flumes with prismatic cross-sections (e.g.,
Shiono and Knight 1991; Tominga and Nezu 1991). As men-
tioned earlier, many of these patterns are produced by geometric
characteristics of laboratory flumes, such as sharp corners and
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Table 2. Sum of Squared Error (SSE) for Calculated Velocity

SSE/n (m?/s?)

Low velocity Medium velocity High velocity All
Upeas < 0.5 0.5 <Uppeas < 0.7 Upeas > 0.7 measurements
(n=305) (n=872) (n=324) (n=1501)
Calculated velocity (Fig. 3(b)) 0.0053 0.0040 0.0041 0.0043
Perturb. of calculated velocity (Fig. 6) 0.012 0.0029 0.0033 0.0048

Note: SSE is normalized by the number of measurements (n) in each comparison.

long stretches of similar cross-sectional shape. Irregular natural
channels contain different types of secondary circulations, which
are generated from irregularities in the boundary and planform.
The secondary flow contains four main circulation cells: a pair
of large oppositely rotating cells immediately above the bed and
two smaller oppositely rotating cells located on either side of the
channel just below the surface. The cross-stream and vertical flow
in these cells redistributes the primary flow field by advecting low
downstream momentum into areas of higher momentum and vice
versa. The most noticeable example of this redistribution occurs
just above the central portion of the flume bed. There, a well-
defined stream of vertical flow transports near-bed low-
momentum fluid up into the interior, which, in turn, alters the
region of the high-velocity flow relative to what it would be if no
secondary flow was present. A similar redistribution of momen-
tum occurs near the surface, where low-momentum fluid near the
top of both of the vertical flume walls is advected toward the
center of the flume by the two near-surface circulation cells. This
transport causes the maximum downstream velocity to occur
below the surface and accounts for much of the difference be-
tween the measured and calculated velocity fields in the region
beside the top of both flume walls. Further down the right wall, at
about three-quarters of the flow depth, the measured high-velocity

core is closer to right wall of the flume than was calculated by the
model. This difference also is related to the secondary flow near
the right wall of the flume, which is directed toward the right wall
as seen in Fig. 4(c) and, thus, moves high momentum fluid from
the interior closer to the wall.

A quantitative measure of the agreement between the mea-
sured and calculated velocity fields can be made by computing
the sum of the squared error (SSE) of the calculation about the
measurements. The sum of squared error is defined as

o peas i—Heale 1)°> Where uq, is the measured velocity, uq is
the calculated velocity, and n is the number of measurements.
Table 2 contains a summary of the SSE normalized by » for all of
the measurements, as well as for three velocity ranges: low, me-
dium, and high. As seen in Table 2 there is not a substantial
difference in the total error for the three velocity ranges. The
average error in calculated velocity is 9.4% of the mean velocity.

Boundary Shear Stress

Measured and calculated boundary shear stress distributions are
shown in Fig. 5. The similarity between the two measured bound-
ary shear stress profiles made at x=19.5 m and x=18.0 m confirm
that the streamwise flow field is nearly uniform. The variability in
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Fig. 5. (Color) Comparison of measured and calculated boundary shear stress distributions across the entire wetted perimeter. The measurements
of boundary shear stress (“plus” and “diamond” symbols) were made with a Preston tube. The blue line is the stress distribution derived from the
measured velocity field using Eq. (9). The vertical dotted lines denote the locations of the corners along the flume perimeter.
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each measured stress profile demonstrates the importance of the
high-resolution sampling. Had the measurements been made at a
coarser resolution, it would have been impossible to distinguish
the complex structure of the profile from measurement noise.

Despite the differences in calculated and measured velocity
fields, the calculated boundary shear stress distribution (red line)
does a reasonable job capturing the structure of the measured
stress distributions. The model correctly predicts low-stress re-
gions near the three sub-180° corners (base of left wall, base of
slope, and base of right wall) and the high-stress area near the
>180° corner between the floodplain and slope. On the flood-
plain, the primary reason the calculated stress profile differs in
structure from the measured profile is due to the manner in which
the drag on the cobbles is incorporated into the calculation. The
ray-isovel model, which is designed for reach-averaged cross sec-
tions of natural channels, does not model the flow around indi-
vidual cobbles. Rather, the model determines the reach-averaged
velocity field in the cobble zone based on the assumption that the
cobbles are randomly distributed throughout the floodplain. In
contrast, the measured stress profiles on the floodplain, which
were made at cross sections where the Preston tube could be
positioned between the staggered cross-stream rows of cobbles,
depend on the location of the Preston tube relative to nearby
cobbles. The two measured low-stress regions along the flood-
plain correspond to measurement positions just downstream from
a cobble.

For reference, the calculated boundary shear stress distribution
without cobbles is shown with the green line in Fig. 5. Compari-
son of this distribution with the measurements and calculation
with cobbles (red line) shows that the drag on the cobbles has a
substantial effect on the boundary shear stress on the left half of
the flume. The form drag on the cobbles reduces the stress that is
transmitted directly to the left wall and floodplain surface of the
flume.

The greatest differences between the measured boundary shear
stress distribution and the calculation with cobbles are along the
bed and right wall of the flume. These differences are related to
the relative locations of the high-velocity core, which, in turn, are
related to the presence of secondary flow in the flume and the
absence of secondary flow in the calculation. On the bed, the
location of maximum boundary shear stress in both the measure-
ments and the calculation corresponds to the lateral position of
the maximum velocity. The calculated position of maximum ve-
locity is slightly left of the center of the bed, but the measured
position is close to the right wall, as a result of the circulation
field over the bed. Secondary flow patterns in the flume also have
pushed the high-velocity core closer to the right wall, resulting in
high wall stress. The calculated stress on the wall, which is
~20% lower than the measured stress, is similar in magnitude to
the calculated bed stress. This similarity is due to the facts that (1)
the calculation contains no secondary circulations that would re-
distribute downstream momentum; and (2) the roughness of the
bed and the wall area are assumed to be equal.

The boundary shear stress distribution also can be derived
from the measured velocity field. One way to do this is to com-
pute stress from the velocity field using the law of the wall. This
is done here to evaluate the roughness assumptions used in the
calculation and further investigate the connection between the
measured boundary shear stress distribution and the structure of
the velocity field. Velocity-derived estimates of boundary shear
stress at any point along the wetted perimeter can be determined
by

p— ( umeasK > 2 (9)
=P I eal,)

In Eq. (9), Upe,s 18 the velocity a short distance, [, from the
boundary, and [, is the local roughness height of the boundary.
The variable [, could be defined simply as a fixed perpendicu-
lar distance away from the boundary. Alternatively, /,.,; could be
defined using curvilinear rays, which provide a better representa-
tion of the stress in the corners. The latter approach is taken here
using the calculated ray field. Specifically, /., is defined to be
8% of the total length of a ray at the position for which the
boundary shear stress is being determined. This distance is suffi-
ciently close to the wall that the velocity profile along the rays is
nearly logarithmic.

The boundary shear stress distribution determined using Eq.
(9) is shown with the blue line in Fig. 5. The close agreement
between this distribution and the measurements reinforces several
important conclusions regarding the experiment. First, it demon-
strates that the independently measured velocity and boundary
shear stress fields are consistent with each other and that they are
measured accurately. Second, the agreement provides additional
evidence that the measured stress distribution is related to the
position of the high-velocity core. And lastly, the agreement
shows that the standard values of k, used to represent the rough-
ness of the flume boundaries are reasonable and that the major
differences between the calculations and the measurements can be
attributed to the secondary flow.

Another way to compute boundary shear stress from the mea-
sured velocity field is to apply the ray-isovel approach empirically
in the manner of Leighly (1932). This is done by first computing
the rays for a measured velocity and then applying Eq. (2) to
compute the stress based on area between the rays. Smoothing is
applied to the measured velocity field in order to reduce variabil-
ity in the computed boundary shear stress distribution. The
boundary shear stress computed using this method is shown with
the dashed line in Fig. 5. Over much of the wetted perimeter, the
boundary shear stress distribution computed using the empirical
rays (dashed line) is in poor agreement with the measurements.
The biggest discrepancy occurs over the bed where the empirical
application of the ray-isovel approach incorrectly predicts a large
spike in the bed stress. This spike is caused by the low-velocity
zone in the measurements above the left-center portion of the bed,
which distorts the rays to produce the high-stress zone on the bed.
The major discrepancy in boundary shear stress illustrates one of
the problems in calculating boundary shear stress distributions
from rays obtained from measured velocity fields containing sig-
nificant secondary circulations: small distortions in a measured
velocity field can result in large distortions to the calculated stress
distribution. A second albeit smaller problem associated with de-
riving boundary shear stress distributions using empirical rays
occurs when the highest velocity is below the free surface, as is
the case in the study flume. In this situation, strict application of
the ray-isovel approach assigns a portion of the boundary stress to
the free surface rather than to the solid boundary. Although, the
empirical application of the ray-isovel approach performs poorly
in the flume situation, it should be reiterated that the approach, as
applied theoretically in the flow model described above, provides
a reasonably accurate representation of the boundary shear stress
field.

As with the velocity field, a quantitative measure of the agree-
ment between the measured and calculated boundary shear stress
distributions can be made by computing the sum of the squared
error between measurements and the calculation. The normalized
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Table 3. Sum of Squared Error (SSE) for the Calculated Boundary Shear Stress Distributions Shown in Figs. 4 and 6

SSE/n (N?/m*)

Left wall Floodplain Slope Bed Right wall All meas.
Model with cobbles (red line, Fig. 5) 0.006 0.073 0.026 0.037 0.073 0.044
(76) (90) (63) (185) (103) (518)
Model w/out cobbles (green line, Fig. 5) 0.042 0.14 0.035 0.052 0.062 0.065
(76) (90) (63) (185) (103) (518)
From meas. Velocity (blue line, Fig. 5) 0.005 0.038 0.068 0.014 0.014 0.025
(51) (90) (63) (185) (81) (471)
From empirical rays (dashed line, Fig. 5) 0.012 0.092 0.062 0.75 0.35 0.38
(49) (90) (63) (185) (78) (466)
Perturb. of calculated velocity (Fig. 6) 0.011 0.072 0.019 0.028 0.034 0.033
(76) (90) (63) (185) (103) (518)

Note: SSE is normalized by the number of measurements in each comparison, which is listed in parentheses.

sum of squared error for each of the four boundary shear stress
calculation methods shown in Fig. 5 is given in Table 3, which
lists the normalized sum of squared error for each segment of the
wetted perimeter, as well as for the entire wetted perimeter.

Perturbation of Calculated Velocity Field

It is likely that better agreement with the measurements could be
achieved using a fully three-dimensional model capable of resolv-
ing the complex secondary flow field. Before adopting a more
complicated model, it is important to evaluate whether or not the
simple ray-isovel scheme produces a zero-order solution, which
can, if necessary, be perturbed with a known or estimated second-
ary flow to produce realistic first-order streamwise velocity fields
(i.e., a streamwise velocity field that includes the effects of the
secondary flow). A very simple test of this is done here by per-
turbing the calculated velocity field with the measured secondary
circulation. The perturbation assumes that (1) the secondary flow
patterns shown in Fig. 4(c) developed uniformly across the cross
section, (2) the circulation developed linearly after half the dis-
tance from the entrance to the measurement section, and (3) the
travel time to the measurement section is suitably approximated
by the average streamwise velocity at the section divided by the
travel distance (r=27 sec). Using these assumptions, a distortion
length and direction can be defined for every point where the
secondary flow is known. A small amount of smoothing is applied
to the measured secondary flow to reduce small-scale variability
in the measurements. The perturbed velocity field is created by
resampling the calculated velocity field at locations defined by the
distortion vectors. To illustrate the perturbation procedure, a

sample calculation of the distortion vector (/yigor) at one point in
the flume (0.085 m above the bed and 0.45 m away from the right
wall) is described. At this point the calculated primary flow is
0.72 m/s, and the measured secondary flow velocity has a verti-
cal component w=0.012 m/s and a negligible cross-stream com-
ponent. On the basis of the assumed rate of development for the

circulation, I corresponds to —w ¢/4, or —0.082 m in the ver-
tical direction. Resampling the calculated primary flow field at a

position /g away from the starting point gives a lower velocity
of 0.60 m/s. This calculation represents lower momentum fluid
near the boundary being transported upward to the interior by the
vertical secondary flow. Repeating the above calculation through-
out the entire cross section yields the distorted field shown in Fig.
6(a). Although the above algorithm does not employ the continu-
ity equation to impose a consistency on the secondary flow field,
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it does provide a simple way to evaluate whether or not the ray-
isovel model produces an acceptable zero-order flow field for use
in a perturbation analysis.

Although the distorted field shown in Fig. 6(a) is not in perfect
agreement with the measured field [Fig. 4(b)], it exhibits several
features in common with the measurements that were not present
in the original calculation. Above the bed, the high-velocity core
of the distorted velocity field is pushed away from the boundary
like that of the measurements. The core of the distorted field also
is in better agreement with the measurements near the top of the
right wall, as a result of being pushed closer to the right wall by
the secondary flow. Lastly, the distortion has shifted the eleva-
tions of maximum velocity across the flume from the surface to
approximately the same elevation as the maximum velocities in
the measurements (z=~3/4H). The discrepancies between dis-
torted and measured fields could be related to the manner in
which the secondary flow field evolved from the entrance of the
flume to the measurement section. No ADV velocity data are
available upstream of the measurement section to document that
evolution, and, in lieu of such data, the perturbation analysis
made the simple assumption that the centroids of the measured
circulation cells were stationary and that all circulation cells de-
veloped at the same rate. It is likely that the circulation developed
differently from what was assumed. For example, secondary flow
probably would have developed first in the lower right corner of
the flume such that it occupied most of the lower portion of the
channel, because the gradients in the turbulent properties for this
situation are greatest. The circulation cell in the lower left part of
the flume adjacent to the slope probably developed later. Pertur-
bation of the calculated field using this more complex evolution
of the secondary flow may produce better agreement with the
measured field; however, such an evolution is difficult to recon-
struct and impossible to verify without three-dimensional velocity
information from upstream.

Quantitative measures of the agreement between the distorted
velocity field and the measurements are given in Table 2 (sum-
mary of sum of squared error) and Fig. 6(b) (plot of error). Al-
though the sum of squared error in the low-velocity range is
greater than the original calculation, the error is considerably less
over the medium- and high-velocity ranges, which occupy over
90% of the measurement domain. Additional information regard-
ing the distribution of error across the cross section for the dis-
torted and original undistorted cases is shown in Figs. 6(b and ¢),
respectively. Both the error statistics listed in Table 2 and the
difference plots shown in Figs. 6(b and c) show that the perturbed
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Fig. 6. (Color) (a) Perturbation of calculated primary flow with measured secondary circulations (ugigo); (b) difference between ugigor and
measured velocity [uyeqs Fig. 4(b)]; (c) difference between original calculation [uqy., Fig. 4(a)] and u,; and (d) calculated boundary shear
stress distribution based on distorted velocity field. The measurements and the original stress calculation (from Fig. 5) are replotted for compari-

son.

velocity field is in better agreement with the measurements than
the original calculation over most of the measurement domain.

The law of the wall can be used to calculate the boundary
shear stress distribution for the perturbation of the calculated pri-
mary flow. The stress distribution computed with Eq. (9) using the
distorted velocity field in place of u,,., is shown in Fig. 6(d). For
comparison, the calculated stress from the original model (Fig. 5,
red line) also is shown. although the calculated stress based on the
distorted flow is not in perfect agreement with the measurements
of stress, it is in slightly better agreement than the measurements
than the original calculation, particularly over the bed and wall.
The sum of squared error for the calculated stress distribution is
listed in Table 3.

The improved agreement between the measured and distorted
flow and boundary shear stress fields suggest that the ray-isovel
model provides (1) a reasonable estimate of the flow field when
systematic secondary circulations are absent and (2) a zero-order

flow field that is suitable for perturbations using known or calcu-
lated secondary flows. Both of these features are important for
application to natural channels. Natural channels typically contain
a variety of boundary and planform irregularities, which produce
small-scale secondary flow patterns that are different from the
systematic circulation observed in the flume. The model is well
suited for computing reach averaged velocity and boundary shear
stress fields in these types of channels, because reach averaging
tends to remove the effects of the local secondary flow patterns
generated by the boundary irregularities.

Variation of Boundary Shear Stress with
Width-to-Depth Ratio

Provided the level of agreement between the modeled and mea-
sured boundary shear stress is considered acceptable, the model
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Fig. 7. (Color) (a) Calculated boundary shear stress and (b) mean flow velocity and discharge for flume channels with varying right wall
locations. The channel geometry for each case is shown with no vertical exaggeration at the top of the figure. The actual flume geometry
corresponds to the case W/H=2.2. The boundary shear stress is normalized by the depth-slope product, which is 1.96 N/m?.

can be used to generalize the experimental results to both wider
and narrower flume geometries. In this section, model results
from two different variations of the original flume configuration
are presented. The first scenario, shown in Fig. 7, depicts the
variation in boundary shear stress profiles for 12 different posi-
tions of the right wall of the flume. In each of these cases, the
depth, slope, roughness, and left bank geometry remains identical
to the original flume geometry. The second scenario, shown in
Fig. 8, presents a similar set of 10 cases in which the position of
only the left wall of the flume is changed. These latter cases have
floodplains of varying widths, which are roughened by cobbles
having the same mean diameter and spacing as was present in the
original flume. The calculated discharge for all of the cases varies
as function of width and is shown in Figs. 7(b) and 8(b). Figures
7(b) and 8(b) also contain the mean velocity and area for the
floodplain and main channel. The floodplain and main channel
portions of the channel are defined to be the respective sections to
the left and right of corner “C” in Figs. 7 and 8. Calculated
Reynolds numbers indicate the flow is turbulent for all cases.

To facilitate comparisons between the boundary shear stress
profiles of the cases in Figs. 7(a) and 8(a), the perimeter distance
(x-axis) has been normalized by the length of each segment of the
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boundary. Note in Fig. 7 that the walls, floodplain, and slope have
the same dimensions; only the bed segment of the wetted-
perimeter changes length with each case. Similarly, in Fig. 8, the
floodplain segment is the only portion of the wetted perimeter that
changes dimension with each case. Also, note in Fig. 7 that as the
flume widens (and the hydraulic radius increases), there is a cor-
responding increase in the average boundary shear stress due to
the integral constraint that the average boundary shear stress plus
the drag stress on the cobbles equals pg sin(6)R. Similar changes
in the average stress are not immediately apparent in Fig. 8, be-
cause the geometric variations of that scenario result in only
minor changes in the hydraulic radius with each case.

There are several common characteristics to the calculations
presented in Figs. 7 and 8. In both geometric scenarios, the
boundary shear stress in the central portion of the width-varying
segment (bed segment in Fig. 7, floodplain segment in Fig. 8)
does not reach its asymptotic limit until the width-to-local-depth
ratio is ~10. For the scenario shown in Fig. 7, this limit corre-
sponds to the depth-slope product, pg sin(8)H. For the changing
floodplain scenario (Fig. 8), the asymptotic limit of boundary
shear stress on the cobble roughened floodplain is the floodplain
depth-slope product minus the drag stress on the cobbles. In the
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Fig. 8. (Color) (a) Calculated boundary shear stress; (b) mean flow velocity and discharge for flume channels with varying left wall locations.
The boundary shear stress is normalized in the same manner as was done in Fig. 7. For reference, the floodplain depth-slope product is 57% of
pg sin(0)H. The asymptotic limit of stress on the floodplain is ~39% of the floodplain depth-slope product due to the drag on the floodplain
cobbles. Note that varying the width of the floodplain has essentially no effect on the stress on the bed and the right wall of the channel.

widest cases in Fig. 8, the drag stress is 39% of the floodplain
depth-slope product. A second feature common to both geometric
scenarios shown in Figs. 7 and 8 is that the stress in the three
sub-180° corners (B, E, and F) is very insensitive to the width-
to-depth ratio. This is because corner stresses are primarily con-
trolled by the geometry (specifically, the radius of curvature) of
the corner. Rounder flume corners would have produced more
gradual transitions in the stress between the linear segments of the
flume boundary. Another interesting feature shared by the two
sets of calculations, is that the stress on the opposite side of the
channel from the moveable wall is relatively insensitive to the
width-to-depth ratio. This feature is strongly present in the set of
calculations shown in Fig. 8(a) and weakly present in the scenario
shown in Fig. 7(a). The main reason the stress on the left side of
the channels in Fig. 7(a) is less sensitive to changes in the width-
to-depth ratio than the stress on the right side of the channels is
because the high roughness of the cobble-roughened floodplain
dominates the near-bank flow and boundary shear stress fields. In
Fig. 8(a), the boundary shear stress on the bed and right walls is
insensitive to changes in floodplain width, because the flow in the
main channel is controlled primarily by the flow depth and geom-

etry of the right side of the channel. Figs. 7(b) and 8(b) show
similar trends for the mean velocity of the two “halves” of the
channel. The mean velocity in the “half” of the channel that does
not vary in width quickly reaches a constant value.

Summary and Conclusions

A comprehensive data set of velocity and boundary shear stress
measurements made in a laboratory flume with a complex cross
section is presented. These measurements were used to test the
relatively simple model of Kean and Smith (2004) for determin-
ing the vertical and lateral distributions of streamwise velocity
and boundary shear stress in a channel. The high resolution of the
measurements makes this data set suitable for testing other flow
models, such as more complicated fully three-dimensional flow
models, which are not addressed here. The simple model tested in
this paper accommodates lateral boundaries and is extended here
to also determine the flow effects of drag on clasts in the study
channel. The model was applied in a fully predictive mode (i.e.,
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no parameters were adjusted empirically to achieve better agree-
ment with the data). Differences between the modeled and mea-
sured velocity and boundary shear stress distributions are
primarily due to secondary circulations in the flume, which are
not included in the model. In spite of this simplification, the mod-
eled velocity and boundary shear stress distributions were shown
to reproduce adequately the essential patterns of the measured
fields, as well as the discharge. The agreement with discharge
reinforces the utility of the approach for calculating theoretical
stage-discharge relations in narrow channels (see Kean and Smith
2005), which requires careful determination of the contributions
to flow resistance from the bed, walls, and large roughness ele-
ments in the channel.

Better agreement with the structure of the measured velocity
and stress fields was achieved by distorting the calculated field
using the measured secondary flow. This agreement demonstrates
that the ray-isovel model yields zero-order flow fields suitable for
perturbation analysis. This second step, which is not taken here
but is described in Kean (2003), is necessary for accurately re-
solving the near-bank velocity and boundary shear stress distribu-
tion in curved channels. Including the effects of secondary
circulations, however, is not required to adequately compute the
reach-averaged velocity and boundary shear stress distributions in
relatively straight natural channels (e.g., Griffin et al. 2005), be-
cause reach-averaging tends to remove the effects of the local
secondary flow patterns generated by the boundary irregularities.

After demonstrating that the model adequately reproduces the
measured velocity and shear stress distributions, the model was
then used to investigate the variability in the profiles of boundary
shear stress to changes in the width-to-depth ratio of a hypotheti-
cal channel having similar characteristics to the study channel.
These simulations demonstrated that the flow resistance of the
banks had a substantial effect on the bed boundary shear stress,
even for wide cases.

The aspects of this study that are unique include the commen-
surate high-resolution velocity field, high resolution of the bound-
ary shear stress cross-stream profiles, test of the assumption of
two-dimensional flow using paired boundary shear stress profiles,
and a predictive calculation that resolves the lateral shear stress
field. By combining procedures to quantify the roughness of the
bed and the banks with a model such as the one described in this
paper, it is possible to determine accurately the near-bank velocity
and boundary shear stress field in natural channels. This ability,
when combined with sediment transport algorithms, provides a
foundation for determining rates and patterns of geomorphic ad-
justment in streams, rivers, rills, and gullies.
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Notation

The following symbols are used in this paper:
A total cross-sectional area of channel;
Cp drag coefficient;
D = mean diameter of cobbles;
d mean width of the cobbles at an elevation z;
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F = drag force per unit volume;

F(I) = average of F along length of isovel between two
rays;

= acceleration of gravity;

maximum flow depth;

scalar eddy viscosity;

= channel scale eddy viscosity;

equivalent grain size of surface;

= length of the ray from the boundary to the
surface;

| = distance along a ray from the boundary;

|, = dummy integration variable along ray;

I, = boundary roughness height;

hu?wzw X T oe
|

lgsiorr = distortion vector;
P = full wetted perimeter;
p, = perimeter length along the boundary between
two rays;
p(l) = length along the isovel between two rays;
R = hydraulic radius;
u = downstream velocity;
= reference velocity;
shear velocity;
= cross-stream velocity;
= width of channel;
= vertical velocity;
downstream direction;
= cross-stream direction;
= vertical direction;
= constant;
= angle deviation of the water surface from
horizontal,
= von Karman’s constant;
N = mean spacing of the cobbles;
p = density of water;
7, = local boundary shear stress;
7, = shear stress along each ray in the interior of the
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channel;
Ty, = yx components of the deviatoric stress tensor;
T,. = zx components of the deviatoric stress tensor;
and

T, = average boundary shear stress.
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