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ABSTRACT

We examined elevation changes detected from two
successive sets of Light Detection and Ranging
(LiDAR) data in the northern Coast Range of Oregon.
The first set of LiDAR data was acquired during leaf-
on conditions and the second set during leaf-off
conditions. We were able to successfully identify and
map active landslides using a differential digital
elevation model (DEM) created from the two LiDAR
data sets, but this required the use of thresholds (0.50
and 0.75 m) to remove noise from the differential
elevation data, visual pattern recognition of landslide-
induced elevation changes, and supplemental QuickBird
satellite imagery. After mapping, we field-verified 88
percent of the landslides that we had mapped with high
confidence, but we could not detect active landslides
with elevation changes of less than 0.50 m. Volumetric
calculations showed that a total of about 18,100 m3 of
material was missing from landslide areas, probably as
a result of systematic negative elevation errors in the
differential DEM and as a result of removal of material
by erosion and transport. We also examined the
accuracies of 285 leaf-off LiDAR elevations at four
landslide sites using Global Positioning System and
total station surveys. A comparison of LiDAR and
survey data indicated an overall root mean square error

of 0.50 m, a maximum error of 2.21 m, and a
systematic error of 0.09 m. LiDAR ground-point
densities were lowest in areas with young conifer
forests and deciduous vegetation, which resulted in
extensive interpolations of elevations in the leaf-on,
bare-earth DEM. For optimal use of multi-temporal
LiDAR data in forested areas, we recommend that all
data sets be flown during leaf-off seasons.

INTRODUCTION

Topographic data from airborne Light Detection
and Ranging (LiDAR), also known as Airborne
Laser Scanning (Baltsavias, 1999; Wehr and Lohr,
1999) or Airborne Laser Swath Mapping (Harding
and Berghoff, 2000; Slatton et al., 2007), have
recently become the data of choice for landslide
detection and mapping (McKean and Roering, 2004;
Schulz, 2004; Glenn et al., 2006; Madin and Burns,
2006; Staley et al., 2006; Ardizzone et al., 2007;
McKenna et al., 2008; Scheidl et al., 2008; and
Wooten et al., 2008), process studies (Roering et al.,
2005; Chen et al., 2006; Corsini et al., 2007; and
Dewitte et al., 2008), and hazard assessments and
modeling (Baum et al., 2005; Haneberg et al., 2005;
and Schulz, 2007). In heavily forested areas, LiDAR
data are especially in demand (Haneberg, 2005;
Burns, 2007; and Gatziolis and Andersen, 2008)
because they can provide unprecedented regional
views of the ground surface (Haugerud et al., 2003)
that are impossible to obtain from other types of
remotely sensed data and that are extremely difficult

Environmental & Engineering Geoscience, Vol. XVI, No. 4, November 2010, pp. 315–341 315



to obtain from field surveys. In forested areas, the
relative accuracy (i.e., internal consistency between
overlapping swaths) of LiDAR data tends to be fairly
constant (Gatziolis and Andersen, 2008), although
the absolute accuracy of the data is highly variable.
This situation is typically not a concern for qualitative
landslide inventory mapping applications but can
have an adverse impact on landslide process, volu-
metric, and modeling studies (Haneberg, 2008). These
studies often have implications for environmental
(e.g., stream sediment and water-supply reservoirs)
and landslide hazard problems.

Previous assessments of the absolute accuracies of
elevations within single LiDAR data sets in a variety
of topographic settings within a range of land covers
indicate that root mean square errors (RMSEs) of
LiDAR elevations can range from 0.16 to 3.26 m.
Adams and Chandler (2002) compared LiDAR data
to conventional survey data at the Black Ven land-
slide on the Dorset coast in the United Kingdom and
found that the RMSE of LiDAR elevations was
0.26 m. Bowen and Waltermire (2002) used Global
Positioning System (GPS) measurements along the
Green River in Utah to document a RMSE of
LiDAR elevations of 0.43 m. Hodgson et al. (2003)
evaluated LiDAR elevation accuracies for a variety of
land covers during leaf-on conditions in North
Carolina. Their documented RMSEs were 0.33 m
for low grass, 0.37 m for high grass, 1.53 m for scrub/
shrubs, 0.45 m for pine tree cover, 1.22 m for
deciduous tree cover, and 1.13 m for mixed tree
cover. Reutebuch et al. (2003) compared LiDAR data
to conventional survey data (collected with a total
station) in a conifer forest in western Washington
State and found a RMSE of 0.32 m. Their document-
ed mean and maximum (shown in parentheses)
differences were 0.16 m (0.61 m) for clear-cuts,
0.18 m (0.41 m) for heavily thinned areas, 0.18 m
(0.69 m) for lightly thinned areas, and 0.31 m (1.31 m)
for uncut areas. Reusser and Bierman (2007) exam-
ined LiDAR data from a bedrock channel of the
Susquehanna River in the Appalachian Piedmont and
found that raw, unfiltered data provided more
accurate elevations than did data that were filtered
using Kriging. The RMSEs of unfiltered and filtered
data were 1.4 m and 3.26 m, respectively. Haneberg
(2008) compared LiDAR-derived 1-m digital eleva-
tion model (DEM) elevations to geodetic-level GPS
measurements within the City of Seattle, Washington,
and found that LiDAR elevation errors had a mean
of 20.11 m and a standard deviation (equivalent to
RMSE) of 0.75 m.

Multiple airborne LiDAR data sets covering the
same geographic area, but from successive time
periods (multi-temporal data), have recently become

available and are starting to be used for studies of
individual landslides (Corsini et al., 2007; Scheidl et
al., 2008) and morphometric changes along coastlines
(Woolard and Colby, 2002; White and Wang, 2003).
The future availability of such data has the potential
to provide unprecedented opportunities for studying
topographic changes associated with many different
types of earth surface processes. However, for
regional landslide applications in forested terrain,
the potential uses and quality of multi-temporal
LiDAR data have not yet been assessed.

In this article, we examined elevation changes
detected from two successive sets of LiDAR imagery
in a 23-km2 forested area in the northern Coast
Range of Oregon (Figure 1). We evaluated the ability
to identify active landslides (landslides that occurred
during the time between collections of the two
LiDAR data sets) and the vertical accuracy of the
elevation changes based on field surveys of recent
landslide scars, travel paths, and deposits. One of the
two LiDAR data sets was acquired during a leaf-off
season and the other during the leaf-on season.
Deciduous vegetation in Oregon leafs out during
April and loses leaves during November. Therefore,
part of our work focused on the impact that leaf-off/
leaf-on acquisition times have on the accuracy of
detected elevation changes.

BACKGROUND

The study area is located on the eastern flank of the
Oregon Coast Range. The area is bisected by Panther
Creek, which flows toward the east, between the
communities of the City of Carlton and the City of
McMinnville, as a tributary to the Willamette River
(Figure 1). Therefore, throughout this article we refer
to the study area as the Panther Creek study area. The
Panther Creek study area consists of the upper
portion of the Panther Creek Watershed, which is
the extent of the LiDAR data in this region
(Figure 1). The smaller drainages (first- and second-
order drainages), which generally are tributaries to
Panther Creek, Silver Creek, and several other
unnamed main drainages, tend to be relatively short,
on the order of 300–1,000 m long, and relatively
steep, with gradients generally greater than 15u.
Elevations in the study area range from 61 m to just
over 700 m. The majority of the slopes range from 5u
to 45u.

Vegetation in the area primarily consists of a
conifer forest, comprised of mainly fir, spruce, cedar,
and hemlock trees. In much smaller amounts, and
usually occupying low-lying ground adjacent to
drainages, deciduous trees, including maple, alders,
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Figure 1. Maps of the Panther Creek study area. Sites visited in September 2008 and historical and prehistoric landslide headscarps and
landslide deposits mapped using LiDAR-derived images prior to fieldwork are identified in both (A) and (B). Map A has a QuickBird
satellite image base that displays the diversity in land cover (including the range of tree stand ages). Map B has a September 2007 LiDAR-
derived hillshade image base that displays drainages, variation in slope gradient, and morphology.
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and cottonwoods, are present. Beneath the canopy
and in open areas, giant horsetail, vine maple, salal,
devils club, ferns, and Oregon grape are common
shrubs (Bureau of Land Management [BLM] and
U.S. Forest Service, 1997).

Timber harvesting in the Coast Range is considered
some of the most productive in the world, and much
of the study area has been harvested multiple times
since 1900. Harvesting has resulted in a wide range of
tree stand ages throughout the study area (Bureau of
Land Management and U.S. Forest Service, 1997)
(Figure 1). Based on tree planting data from the
BLM, the study area is divided into the following
three approximate tree stand age classifications
(Bureau of Land Management, 2005):

1. Mature Forest—Generally greater than 20 years
old and covering about 70 percent of the study
area. Most areas have tree canopy closure and
reduced understory vegetation.

2. Young Forest—Generally 5–20 years old and
covering roughly 15 percent of the study area.
Most areas have dense understory vegetation with
poorly developed tree canopy or no canopy.

3. Clear-cut—Generally 0 to 5 years old and covering
roughly 15 percent of the study area. These areas
have been recently harvested and are often about
0.25 km2 in size, with recently planted trees or no
trees.

Timber management in the study area has resulted
in the construction of many actively used roads and
old temporary roadbeds. These roads were built by a
bulldozer, which drove along a slope and side-casted
the excavated material (these roads are often referred
to as ‘‘cat’’ roads in the Pacific Northwest). This
extensive road network, constructed over the last
100 years, has resulted in numerous slopes that are
not engineered and/or engineered cuts and fills with
low factors of safety. Many of these older roads were
built for temporary access, and, therefore, long-term
drainage solutions (e.g., the installation of culverts)
were not implemented.

The study area is situated within 80 km of the
Pacific Ocean. Climate in the area is strongly
influenced by the close proximity to the ocean.
Average annual rainfall in the area is about 200 cm
(National Climatic Data Center, 2008) (Figure 2).

Figure 2. Graph of precipitation with respect to timing of LiDAR data collection between July 2007 and June 2008. The December 8, 2007,
LiDAR data were collected right after the large storm of December 2–4, 2007. This storm resulted in more than half (34 cm) of the rainfall
total for the month of December 2007 (National Climatic Data Center, 2008).
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During storm events, like one that occurred in
November 1996, 1-day rainfall totals can be as high
as 25 cm within the study area and in the Oregon
Coast Range in general (Hofmeister, 2000). During
the 3 months between the collection of the two
LiDAR data sets (September 3, 2007–December 8,
2007), 72 cm of rainfall was recorded at the dam at
Haskins reservoir (Figures 1 and 2). Almost half of
the cumulative rainfall (34 cm) in this period occurred
during a storm on December 2–4, 2007.

Bedrock underlying the study area is from the
middle Eocene Yamhill Formation. The Yamhill
Formation is a massive to thin bedded, marine
siltstone commonly containing thin tuff and sand-
stone beds. The surficial portion of the Yamhill
Formation tends to be highly weathered and frac-
tured and slakes when exposed to the atmosphere.
The Yamhill Formation is intruded with diabase
dikes and sills, many of which are exposed at the
surface (Wells et al., 1994). On top of weathered
bedrock are residual- to colluvial-derived soils that
range in thickness from 0 m to ,1 m (Otte et al.,
1974). Seven landslides and some isolated Quaternary
alluvium (along the lower extent of Panther Creek)
were mapped on a 62,500-scale regional geologic map
of the area (Wells et al., 1994).

The study area has multiple landowners, including
the federal government (BLM), two Oregon cities
(McMinnville and Carlton), and private timber
companies. Fifty-four percent of the land is private
and 46 percent is public. The city lands are all used to
collect drinking water that is stored in reservoirs,
including the McGuire Reservoir, located along the
western edge of the study area; the Haskins Reservoir,
located along the northern edge of the area; and the
Carlton Reservoir, located in the north-central
portion of the area (Figure 1). These reservoirs cover
roughly 0.8 percent of the study area.

Multi-Temporal LiDAR Data

The BLM contracted Watershed Sciences, Inc., to
collect airborne LiDAR data of the study area on
September 3, 2007 (leaf-on), and again on December
8, 2007 (leaf-off). Both data sets were collected using
identical acquisition and processing methods. A Leica
ALS50 Phase II laser was used to acquire $105,000
laser pulses per second (i.e., 105-kHz pulse rate) with
a scan swath of 28u in a downward direction below
the aircraft (i.e., a swing of 14u normal to the flight
direction about a vertically downward-oriented axis).
These instrument settings yielded an emitted laser
pulse density of $8 points per square meter. The
aircraft position was measured twice per second (2 Hz)
by an onboard differential GPS unit. Aircraft attitude

was measured 200 times per second (200 Hz) as pitch,
roll, and yaw (heading) from an onboard inertial
measurement unit (Watershed Sciences, 2008).

A GPS-based ground survey consisting of hundreds
(524) of real-time kinematic (RTK) points was
conducted at the same time as the airborne LiDAR
data collection. The LiDAR data points were
processed and tested for accuracy against the RTK
survey points. LiDAR points above the ground
surface were identified and removed using automated
and manual methods to create a data set containing
ground points. Automated identification and removal
of points above the ground was done using TerraScan
software (Soininen, 2004). Manual identification and
removal of points above the ground followed the
automated method and consisted of visual inspection
and editing, particularly in areas where the TerraScan
automated methodology was known to be deficient
(e.g., cliffs, incised stream banks, dense vegetation;
also see McKenna et al., 2008). For the leaf-on and
leaf-off data sets, the average pulse density was
9.25 points/m2 and 9.15 points/m2, respectively. The
average density of ground-classified points was
0.52 points/m2 and 0.84 points/m2 for leaf-on and
leaf-off data sets, respectively. First-return (above-
ground) points, sometimes called highest-hit points,
and the ground-classified points were used to create
separate triangulated irregular networks (TINs) that
were converted into 0.5-m pixel (grid) DEMs (a first-
return DEM and a bare-earth DEM) (Watershed
Sciences, 2008).

The horizontal datum and coordinate system for all
LiDAR data were the North American Datum of
1983 (NAD83) and the Universal Transverse Merca-
tor (UTM), zone 10, coordinate system (meters),
respectively. Elevations were provided as mean sea
level elevations (meters) in the North American
Vertical Datum of 1988 (NAVD88) and utilized the
GEOID03 model from the National Geodetic Survey
(Watershed Sciences, 2008).

The reported vertical, absolute RMSE (deviation
between elevations of the RTK survey points and
LiDAR points) of both LiDAR data sets used in
this study was 0.02 m (Watershed Sciences, 2008).
Watershed Sciences states that this accuracy should
be considered only for areas comprising permanent
flat hard surfaces and no vegetation (e.g., open paved
roads). The part of the study area with these surface
characteristics is very small (roughly 1 percent).

METHODS

We evaluated the suitability of the two successive
sets of LiDAR data for identifying active landslides
and the vertical accuracy of detected elevation
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changes based on a comparison to field surveys at
active landslides. Active landslides are defined in this
article as those that experienced movement between
September 2007 and December 2007. In order to
evaluate the LiDAR data, three primary tasks were
performed: 1) Geographic Information System (GIS)
mapping, 2) ground-based site reconnaissance visits
(28 sites) and/or simple site surveys (eight sites), and
3) ground-based detailed GPS and total station
surveys (four sites). GIS-based mapping consisted of
three parts: 1a) mapping predominately inactive
(historical and pre-historic landslides), 1b) mapping
probable active landslides, and 1c) calculation of
spatial attributes for verified active landslides.

To evaluate and compare elevations between the
two sets of LiDAR data, as well as the elevations
between LiDAR and survey data, we calculated
elevation difference values at individual cell or profile
point locations and then aggregated these values by
computing RMSEs, systematic errors, and maximum
difference values for the differential LiDAR data set,
individual profiles, or each individual landslide site
that was surveyed with the total station. RMSEs were
calculated using the frequently used (Slama et al.,
1980), common equation for RMSE:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i~1

(Xai{Xbi)
2

n

vuuut
,

where Xa and Xb are elevations from data sets a (e.g.,
December 2007 LiDAR) and b (e.g., September 2007
LiDAR) and n is the total number of elevations in
each data set.

Systematic errors are commonly defined as errors
or biases in measurements that occur in a definite
pattern (Slama et al., 1980). We define systematic
error (SE) as the average of elevation differences in
two data sets and calculate SE using the following
equation:

SE~

Pn
i~1

(Xai{Xbi)

n
:

Even though the terms RMSE and SE indicate that
we are evaluating errors, in this article, as in many
previous studies mentioned in the Introduction, we
use RMSE and SE to evaluate elevation differences
between data sets where neither data set represents an
exact (true) value. Therefore, for some readers, it may
be helpful to think of our RMSE and SE as a
standard deviation of elevation differences, and mean
bias of elevation differences, respectively.

GIS-Based Mapping

We initially mapped landslide deposits and scarps
(head and lateral) using the September 2007 LiDAR
data (Figure 1). This mapping was done in a GIS
using shaded relief maps (hillshades), a slope map, a
topographic contour map, ground-surface profiles,
and a June 2008 QuickBird satellite image with a 2.5-
m cell size. (QuickBird and ArcMap are registered
trademarks of DigitalGlobe, Inc., and ESRI, Inc.,
respectively. Any use of trade, product, or firm names
is for descriptive purposes only and does not imply
endorsement by the U.S. Government.) Utilization of
complementary data sets has been previously shown
to be reliable for accurately mapping landslides from
LiDAR data (Schulz, 2004; Burns, 2007; and
McKenna et al., 2008). Because landslides in the
study area are of various sizes, mapping was done at
several different scales, including the following scales:
1:24,000, 1:10,000, and 1:4,000. The protocol devel-
oped by Burns and Madin (2009) was followed to
map these landforms. Nearly all (greater than 98
percent) of the landslides mapped using this method
were found to be inactive.

To test the suitability for locating active landslides
using the multi-temporal LiDAR data, a computer-
based assessment was carried out. The first LiDAR
data set (September 2007, leaf-on) was subtracted
from the second set (December 2007, leaf-off) to
create an elevation-difference data set. In this data
set, negative values represented decreases in elevation
and positive values represented increases in elevation
from September to December. The results shown on
this map are referred to as differential data through-
out the article. To calculate statistics on this
differential DEM, we used only non-water areas
which included inactive landslides (i.e., we removed
all area encompassed by the three drinking water
reservoirs area and active landslide areas). This 0.5-m
resolution differential DEM contained 98,325,141
cells and had overall RMSE, SE, and maximum
negative and positive values of 0.28 m, 20.11 m,
28.31 m, and 12.68 m, respectively. The differential
data set has values of elevation change throughout 98
percent of the study area. Seventy-two percent of the
area had negative elevation changes and 26 percent
had positive changes. From field observations, we
knew that the large percentage of apparent elevation
changes was a gross overestimate of actual elevation
changes within the area. So we tested multiple cutoff
(threshold) values for removing noise within the
differential data set to increase our ability to locate
probable landslides. Threshold values close to zero
(starting with 60.02 m, the RMSE value reported by
Watershed Sciences [2008]) were used to sequentially
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remove data from the differential data set. These
threshold values included the following: 60.02 m,
60.15 m, 60.28 m, 60.50 m, and 60.75 m (Figure 3).
The percentages of the study area that showed changes
in elevation for each of these threshold values were 95
percent, 53 percent, 19 percent, 10 percent, and 4
percent, respectively. The five data sets (60.02 m,
60.15 m, 60.28 m, 60.50 m, and 60.75 m) were
visually examined, and two differential data sets were
selected (those with thresholds of 60.50 m and
60.75 m) and used to map probable active landslide
areas to be checked in the field (Figure 3). The
differential data sets that used the 60.50-m and
60.75-m threshold values were selected because these
threshold values eliminated obvious areas of differ-
ential noise, that is, areas with widespread contiguous
negative or positive changes or visually speckled
patterns caused by both positive and negative elevation
changes. The 60.75-m threshold value eliminated
more noise than the 60.50-m value, but we used both
thresholds for mapping to be sure that we did not
remove any probable landslide areas through the
exclusive use of the 60.75-m value.

The selection of these threshold values is further
supported by landslide depth data from a database of
9,582 landslides in Oregon that occurred during the
period from 1996 to 1997 (Hofmeister, 2000). Out of
the 9,582 landslides, 1,487 included recorded depths.
Eighty-eight percent of these depths were greater than
0.50 m. The threshold value of 0.50 m also helped us
to distinguish active landslides from rills and gulleys
caused by erosion from surface water runoff (gen-
erally less than 3 dm in depth).

Mapping from these two data sets consisted of
outlining probable active landslide areas (Figure 3)
and giving each area a high or low confidence value.
The confidence level was based primarily on the
presence or absence of the following parameters:

1. Contiguous positive or negative data in a down-
slope direction.

2. Presence of negative elevation change in an
upslope area with a positive change immediately
downslope.

3. Identification of a probable active landslide on the
June 2008 QuickBird image.

High confidence was applied if one or more of these
three parameters were present. If none of these
parameters were present then a low confidence level
was assigned.

This mapping identified relatively large (generally
.10,000 m2), deep-seated landslides and channelized
debris flows, including scars (initiation sites), travel
paths, and deposits. These probable active landslides

were then checked in the field using one of three
methods: reconnaissance, simple surveys, and/or
detailed surveys.

Once the active landslides were located and
polygons were created in a GIS, we calculated spatial
attributes of each polygon, including 1) area; 2) raw
and corrected negative, positive, and net volumes; 3)
average pre-failure slope angle; 4) depth to failure
surface; and 5) maximum negative elevation change.
All of these calculations were done in ArcMap GIS,
version 9.3. Corrected volumes were calculated using
a differential DEM shifted upward in elevation by
0.11 m to account for the SE of 20.11 m. The average
pre-failure slope angle and the depth to the failure
surface were estimated using procedures outlined by
Burns and Madin (2009). The slope angle was
estimated through measurement of the slope directly
adjacent to the landslide. The depth to the failure
surface was estimated by multiplying the vertical
height of the scarp (the average difference in elevation
between the bottom and top of the headscarp
measured on the December 2007 LiDAR DEM) by
the cosine of the slope angle to yield the depth
perpendicular to the slope. A secondary estimate to
the depth of failure surface was calculated by multi-
plying the maximum negative elevation change
(between the September 2007 and December 2007
bare-earth LiDAR DEMs) within the boundaries of
each landslide by the cosine of the slope angle. This
secondary estimate was especially useful for shallow
landslides where most of the material was evacuated
from the scar area.

Ground-Based Site Reconnaissance Visits and Simple
Site Surveys

In order to assess whether the GIS-based mapping
succeeded in identifying active landslides, we con-
ducted field-based reconnaissance at 33 sites in
September 2008. Simple site surveys were conducted
at eight of the 33 sites.

Field-based reconnaissance consisted of verifying
the presence or absence of an active landslide by
looking for the presence or absence of fresh landslide
characteristics or morphologies. Documentation at
each site consisted of recording basic landslide data,
including dimensions, type of material, type of move-
ment, surrounding vegetation, and possible causes. If
a landslide was not present, documentation of possible
reason(s) for misidentification were recorded, including
type and height of vegetation, presence and character-
istics of erosion, and human-related activities.

Simple site surveys consisted of measuring down-
slope profiles (Hall et al., 1994) using a tape measure
and clinometer at ground reconnaissance sites where
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Figure 3. Maps showing the reduction in spatial extent of elevation changes in the differential data set as a function of threshold values. (A)
Raw differential data set with no threshold value. (B–E) Maps showing elevation changes greater than 60.15 m, 60.28 m, 60.50 m, and
60.75 m, respectively. (F) Quickbird image showing variation in tree stand age for the area. Differential data sets with threshold values of
60.50 m and 60.75 m were used to located probable landslide areas.
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active landslides were identified. Elevations of pre-
failure landslide surfaces were estimated in the field.
The method resulted in a profile and plan-view map
at each site.

The profile data from simple site surveys were
compared to profiles generated using the two LiDAR
data sets. The simple site survey data have a much
lower spatial resolution (generally about 1 point per
10 m horizontal) than the LiDAR-derived DEM (0.5-
m horizontal grid spacing); thus, only two key
parameters were examined: horizontal extent of
primary elevation change areas (e.g., landslide scar
areas with a decrease in elevation and toe areas with
an increase in elevation) and the average elevation
change within each of these areas (Figure 4). This
comparison was performed at all eight simple site
survey locations.

Detailed Surveys Using a GPS and Total Station

In September 2008, detailed surveys of elevations at
four landslide sites (Figure 1, sites 3s5w29-1, 3s5w30-
10, 3s5w30-11, and 3s5w30-9) were done using
Ashtech dual-frequency GPS receivers and a Topcon
total station surveying unit. At each site, two control
points were installed and surveyed with the GPS
equipment using static surveying techniques with
differential positioning. We used two receivers for
the GPS survey, one receiver positioned at a base
station within the study area (point ‘‘Base Station,’’
Figure 1) and one receiver moving to control points
at the four individual landslide sites. The position of
the base station was determined by a static GPS
survey using a benchmark (Station Designation U98)
located in the town of Carlton, which is located about
14 km northeast of the landslide sites, as a base
station (point U98, inset map of Figure 1). The
position of station U98 was determined by a GPS
survey performed by Washington County, Oregon,
personnel in 2000. The coordinates that we used for
U98 were from the National Geodetic Survey’s
datasheet webpage (http://www.ngs.noaa.gov/cgi-bin/
datasheet.prl).

All GPS data were post-processed using Ashtech
Solutions software, version 2.70. Baselines and point
positions were calculated from the base station (point
Base Station, Figure 1) for each of the eight control
points. All baselines were less than 2 km in length.
Standard errors of computed point positions were
derived using Ashtech Solutions and were less than
1 cm in horizontal and 1.5 cm in vertical (elevation).
In order to directly compare our detailed survey data
to the LiDAR data, horizontal coordinate positions
for all control points were transformed into the
NAD83 datum and then projected into the UTM,

zone 10 coordinate system. GPS ellipsoid heights (i.e.,
elevations) of control points were transformed into
mean sea level elevations in the NAVD88 datum
using the GEOID03 model by the National Geodetic
Survey.

After the eight control points were surveyed using
GPS, we used the UTM coordinates and mean sea
level elevations to orient the Topcon total station at
each site. At each site, the instrument was set up over
one of the control points, and the other control point
was used as a backsight point. Once the total station
was set up and oriented, we surveyed four or five
topographic profiles at each site using a fixed-height
prism pole. One profile was done along the maximum
length of each landslide (i.e., a longitudinal profile),
and another three or four profiles were done across
the width of each landslide (i.e., cross sections).

Based on previous experience with this type of total
station survey using a prism pole in open areas (i.e.,
clear-cuts), the relatively short shot lengths between
the total station and the profile points (always less
than 300 m) and the precision specifications stated by
Topcon for the total station instrument (61 second
for horizontal and vertical angles, 6[2 mm + 2ppm 3

shot distance] for distance measurements), we esti-
mate that elevation error of individual surveyed
profile points at 0.03 m.

Once surveyed, profile data were imported into
ArcMap GIS and overlain directly on the LiDAR
data. At each profile point, elevations at the under-
lying 0.5-m LiDAR cells were extracted from
ArcMap. Elevations were extracted from the bare-
earth and first-return DEM data from the September
2007 and December 2007 LiDAR flights.

RESULTS

GIS-Based Mapping

Our map of historical and prehistoric landslides
from the September 2007 LiDAR data includes 93
landslide deposits, which cover about 28 percent of the
Panther Creek study area (Figure 1). The largest
mapped deposit covers an area of 2,052,830 m2, and
the smallest covers an area of 384 m2. These landslides
were classified as earth/debris slides (12 percent), earth
flows (68 percent), debris flows (12 percent), or
complex slope movements (8 percent) (see Varnes
[1978] for a further description of these landslide
types). Fifty-three of the landslides were classified as
historical and 36 as prehistoric. Only two of these 93
landslide deposits were found to have been active
between the collection of the two LiDAR data sets.
Both of these landslides represented reactivations of
older landslides. The average estimated pre-failure
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Figure 4. Comparison between LiDAR data and simple survey data at site 3s5w29-2. (A) Map showing areas of negative elevation changes
(red colors, landslide depletion areas) and positive elevation changes (blue colors, landslide deposition areas) derived from differential LiDAR
data. Inset shows photo taken looking downslope along profile a-a9. Landslide deposit is located in the upper center of the photo (near the dead
Douglas fir trees with brown needles). (B) Profile data from the leaf-on and leaf-off LiDAR data sets. (C) Profile data from simple survey.
‘‘After landslide’’ surface was collected by simple survey, and ‘‘before landslide’’ surface was estimated during the simple survey.
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slope angle in landslide source areas was 22u. The
maximum slope angle in source areas was 45u. Ninety-
eight percent of estimated depths to failure surfaces
ranged from roughly 4 m to 50 m, with an average of
15 m. There were two landslides with estimated depths
between roughly 80 m and 100 m. Debris-flow fans
were found on slopes ranging from 5u to 12u and had
estimated depths ranging from 5 m to 15 m.

Based on our mapping from the differential
LiDAR data sets and QuickBird imagery, we
identified 40 probable active landslides in the study
area. We visited 28 of the 40 sites in the field, as well
as five additional sites that were identified from
fieldwork alone (Table 1). Prior to fieldwork, we
ranked the presence of landslides at 16 of the 28 sites
with high confidence and at 12 of the sites with low
confidence (Table 1). We verified active landslides at
15 (54 percent) of the total 28 sites. However, 14 (88
percent) of the high-confidence sites and one (8
percent) of the low-confidence sites were verified as
active landslides in the field (Table 1).

At two-thirds of the verified sites, the relative forest
age was either mature or clear-cut. The other one-
third of sites were covered by young forest. Addi-
tionally, seven of the 13 (54 percent) misidentified
landslide sites were in young forest areas, and six (46
percent) were in mature forests. None were in clear-
cuts. Therefore, we suspect that the presence, age, and
type of vegetation at each site, or the change in this
vegetation from leaf-on to leaf-off, affected our
ability to correctly identify active landslides from
the differential LiDAR data set.

We investigated the possible reasons the two sites
with high confidence were falsely identified as land-
slides. At one of these two sites (3s5w19-1), elevation
differences were found to result from roughly 1.5 m of
erosion around a 30-cm culvert outlet, which could
not have been distinguished from a landslide without
field verification. At the other falsely identified site
(3s6w13-1) we found a combination of young forest
and deciduous vegetation (alder and devils club).

Additionally, we investigated the possible reasons
for the false identification of landslides at the sites
with low confidence by collecting vegetation data at
both the verified and falsely identified sites (Table 1).
At 11 of the 12 (92 percent) low-confidence sites, we
found relatively short (,5-m), deciduous vegetation,
including vine maple, devils club, and young alder
trees. These types of vegetation are dense and likely
cause a large reduction in LiDAR ground-point
densities during leaf-on season and a subsequent
increase in ground-point densities during leaf-off
season. This situation resulted in elevation changes
in the bare-earth differential LiDAR data set that
were not due to actual changes in the ground surface.

Five active landslides had not been identified
during the GIS mapping prior to fieldwork yet were
found in the field (Table 1; GIS mapping confidence
5 NA). Two of these five sites (3s5w30-7 and 3s5w30-6)
were found to lack all three factors (contiguous data,
presence of adjacent negative and positive elevation
change, and identification on the QuickBird imagery)
used to identify them as probable landslides with high
confidence. A third site (3s6w24-6) had roughly 15 cm
of vertical displacement and therefore was below the
60.50-m and 60.75-m threshold values. The other
two sites (3s6w24-2 and 3s6w24-5) were in a clear-cut
but were simply not visible in the LiDAR or Quick-
Bird imagery.

Ground-Based Surveys

Results from the simple site surveys are given in
Table 2, and an example of a comparison of these
results to the two LiDAR data sets is given in
Figure 4. The average elevation difference in zones of
depletion and accumulation between the LiDAR
DEMs and the simple site surveys was 0.5 m. The
average difference in horizontal distance between the
zone of depletion and accumulation was 3.7 m.

One of the sites (3s5w29-1) was surveyed by both
simple survey and detailed total station survey
methods. In the source area of this landslide, the
maximum elevation change in the differential LiDAR
was 23.54 m. In the simple survey, we found roughly
22 m of maximum elevation change. In the detailed
GPS and total station survey, we found a maximum
of about 22.5 m of elevation change.

Statistics for active landslides that were verified in
the field are given in Table 3. The total area of active
landslides was about 59,000 m2. Two rotational
landslides had volume increases (3s5w24-5 and
3s5w20-1), but all other landslides had volume
decreases. The total corrected net volume change for
all polygons was about 211,700 m3 (Table 3). About
80 percent of this missing material was from debris-
flow and earth-flow sites. One probable cause of
missing material, especially from flows in or near
drainages, was removal by erosion either during or
after the failure. During our fieldwork, we noted that
material in many debris-flow sites had traveled into
the stream system and out of the local polygon areas
(e.g., see Figures 5–8). Also, some landslide areas had
signs of significant post-deposition erosion or a
complete lack of a discrete deposition area. All of
these situations would result in negative net volumes
in Table 3. However, some landslides did not occur in
or near drainages and may have some volume loss
related to contraction or compaction of material,
especially in the cases where the majority of the
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material initiated from loose, road-fill embankments.
In other cases, the apparent missing material was
probably caused by local large negative systematic
elevation errors in the differential DEM due to local
vegetation types. For example, the area with young
forest around site 3s5w30-9 had a local SE of
20.30 m. The net volume change for this site was
22,730 m3 using the raw DEM, about 22,069 m3

using the corrected DEM, and about 2920 m3 using a
differential DEM corrected using the local SE of
20.30 m. Thus, we estimate that some of the net
volumes for individual sites (both raw and corrected)
probably have volumetric errors much larger than

those shown in Table 3. More fieldwork at individual
landslide sites would be needed before the volumes
shown in Table 3 could be used in landslide process
or hazards studies.

The average estimated pre-failure slope angle for all
active landslides was 35u, and the calculated average
pre-failure slope angle from the September (leaf-on)
LiDAR data set was 29u (Table 3). The average
estimated depth to the failure surface was 2.9 m, and
the average of secondary estimates of depth to failure
was 3.0 m (Table 3).

A large difference tends to exist between pre-failure
slope angles and LiDAR slope angles shown in

Table 1. Reconnaissance and simple survey results from 33 field sites.

Site ID No.

GIS Mapping
Confidence

(High or Low) Type of Fieldwork

Landslide Verified
in Field

(Yes or No)
Relative

Forest Age Comment(s)

3s5w19-1 High Reconnaissance No Mature Douglas fir; 1.5-m–deep erosion from
culvert outfall

3s6w13-1 High Reconnaissance No Young Alder and devils club
3s5w18-1 High Reconnaissance Yes Young Douglas fir, alder
3s5w18-2 High Reconnaissance, simple survey Yes Young Douglas fir, vine maple, alder, ferns
3s5w20-1 High Reconnaissance Yes Young Douglas fir
3s5w20-2 High Reconnaissance, simple survey Yes Mature Mixed maple and Douglas fir
3s5w29-1 High Reconnaissance, simple survey,

detailed survey
Yes Mature Recently thinned but mature Douglas fir

3s5w29-2 High Reconnaissance, simple survey Yes Young Douglas fir
3s5w30-1 High Reconnaissance, simple survey Yes Clear-cut —
3s5w30-10 High Reconnaissance, detailed survey Yes Clear-cut —
3s5w30-5 High Reconnaissance, simple survey Yes Clear-cut —
3s5w30-11 High Reconnaissance, detailed survey Yes Clear-cut —
3s5w30-2 High Reconnaissance, simple survey Yes Clear-cut —
3s5w30-8 High Reconnaissance Yes Young Douglas fir
3s5w30-9 High Reconnaissance, detailed survey Yes Young Douglas fir
3s6w24-1 High Reconnaissance Yes Mature Douglas fir
3s5w18-3 Low Reconnaissance No Mature Very little vegetation (ferns), near-vertical

rock cliff
3s5w20-3 Low Reconnaissance No Young 1.5- to 3-m–tall vine maple
3s5w20-5 Low Reconnaissance No Young Alder, maple, isolated Douglas fir
3s6e23-2 Low Reconnaissance No Young Alder, devils club
3s6w13-2 Low Reconnaissance No Mature Alder, devils club
3s6w14-1 Low Reconnaissance No Young 3-m–tall vine maple
3s6w14-2 Low Reconnaissance No Young 3-m–tall vine maple, 10-m–tall alder
3s6w23-1 Low Reconnaissance No Young Alder, devils club
3s6w24-3 Low Reconnaissance No Mature Vine maple, devils club
3s6w24-4 Low Reconnaissance No Mature 1.5- to 3-m–tall vine maple and alders
3s6w24-9 Low Reconnaissance No Mature Alder, devils club
3s5w30-3 Low Reconnaissance Yes Clear-cut —
3s5w30-7* NA Reconnaissance Yes Clear-cut Area lacked three confidence parameters

on differential data set
3s5w30-6* NA Reconnaissance Yes Clear-cut Area lacked three confidence parameters

on differential data set
3s6w24-5* NA Reconnaissance Yes Clear-cut Recent clear-cut (sometime after 2004)
3s6w24-2* NA Reconnaissance, simple survey Yes Clear-cut Recent clear-cut (sometime after 2004)
3s6w24-6* NA Reconnaissance Yes Clear-cut 15-cm drop in road fill embankment;

Not detected in 0.5-m or 0.75-m
differential

GIS 5 Geographic Information System; NA 5 not applicable.
*These five landslides were located in the field randomly. None of these areas was identified as a probable landslide during GIS work.
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Table 3. But most of the landslides with the largest
differences are debris flows, which tend to have long
travel paths and deposit areas. Thus, the large
differences in slope angles were caused by the inherent
difference in measurement methods. That is, pre-
failure slope angles were measured only in the scar
area, and the average slope from the LiDAR was
calculated over the entire length of the landslide,
including scar, travel path, and deposit.

Detailed GPS and Total Station Surveys

Results from our detailed surveys at the four
landslide sites are given in Figures 5 through 8 and
Table 4. Overall, we surveyed 285 points along 18
profiles at the four sites. A comparison of elevations
from the total station measurements with those from
the December 2007 bare-earth DEM indicate an
overall RMSE of 0.50 m (for the 285 points), a
maximum error of 2.21 m, and an SE of 0.09 m
(Table 4, last row). Results from our analysis at each
site are given below.

At site 3s5w30-9 (Figure 5), a large landslide
occurred between September 2007 and December
2007 (Figure 9). The landslide resulted from a failure
of fill material underlying an active logging road
through a forested area. A drainage culvert was
present at the site and was visible in the landslide
deposit when we visited in September 2008. Elevation
changes caused by this landslide are visible when

comparing profiles derived from bare-earth LiDAR
data from September 2007 and December 2007
(Figure 5). Maximum elevation changes were about
6 m in the landslide source area (Figure 5, profiles
A-A9 and B-B9) and about 1 m in the relatively flat
deposition area (Figure 5, profiles C-C9 and D-D9).
The maximum elevation changes in the source area at
this landslide represented some of the largest changes
within the differential LiDAR data in the entire
Panther Creek study area. The September 2007 bare-
earth LiDAR-derived DEM was subtracted from the
September 2007 first-return DEM in order to evaluate
vegetation cover. The differential DEM indicates that
tree cover in the area prior to the landslide ranged
from 4 to 8 m in height (Figure 5), which is in
agreement with field observations of tree heights
surrounding the landslide in September 2008 (Fig-
ure 9). These tree heights are consistent with a young
forest (e.g., Figure 3F). A comparison of post-land-
slide, bare-earth LiDAR data from December 2007
and total station survey data from September 2008
indicate that the overall RMSE of bare-earth LiDAR
data at the site is 0.27 m (site 3s5w30-9, All profiles;
Table 4). RMSEs of individual profiles at the site
range from 0.17 to 0.33 m. The maximum error
(1.30 m) is along profile A-A9 and is at the lip of the
retrogressing headscarp, but it is in the opposite
direction of what would be expected if the error was
caused by real elevation changes due to retrogression.
That is, the error is positive, indicating that the

Table 2. Summary of differences between December 2007 LiDAR DEM and simple surveys.

Site ID No. Data Collection Method
Total Horizontal

Distance (m)

Primary Zone of Depletion Primary Zone of Accumulation

Horizontal
Distance (m)

Average Vertical
Change (m)

Horizontal
Distance (m)

Average Vertical
Change (m)

3s5w29-2* LiDAR DEM 109.0 41.5 22.7 15.5 0.9
Simple survey 102 34 22 18 1

3s6w24-2 LiDAR DEM 29.9 12.5 22.6 11.3 1.0
Simple survey 27 11 21.5 8 1

3s5w29-1{ LiDAR DEM 45.1 16.2 22.2 16.5 0.6
Simple survey 35 13 21.5 10 0.5

3s5w30-5{ LiDAR DEM 127.6 22.2 22.7 ND ND
Simple survey 102 22 21 ND ND

3s5w20-2 LiDAR DEM 42 27 21.6 15 0.8
Simple survey 46 29 21 17 0.76

3s5w30-11 LiDAR DEM 39 17 21.7 ND ND
Simple survey 43 16 21.5 ND ND

3s5w18-21 LiDAR DEM 15.5 10.7 21.2 ND ND
Simple survey 6.5 6.5 20.6 ND ND

3s5w30-2 LiDAR DEM 24.6 19 21.5 2.3 0.3
Simple survey 28 10 20.9 7 0.6

LiDAR 5 Light Detection and Ranging; DEM 5 digital elevation model; ND 5 no data.
*Site included in Figure 4.
{Site surveyed by simple and detailed methods.
{ND; Site 3s5w30-5 deposit was likely removed by stream erosion prior to LiDAR or simple surveys.
1ND; Sites 3s5w30-1 and 3s5w18-2 landslide deposits were removed from roadways prior to LiDAR or simple surveys.
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Figure 5. Plan view map and profiles of site 3s5w30-9. A photo of the site is given in Figure 9. UTM coordinates are shown on plan view
map.

Analysis of Multi-Temporal LiDAR

Environmental & Engineering Geoscience, Vol. XVI, No. 4, November 2010, pp. 315–341 329



Figure 6. Plan view map and profiles of site 3s5w30-10. A photo of the site is given in Figure 10. UTM coordinates are shown on plan view
map.
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Figure 7. Plan view map and profiles of site 3s5w30-11. A photo of the site is given in Figure 11. UTM coordinates are shown on plan view
map.
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Figure 8. Plan view map and profiles of site 3s5w29-1. A photo of the site is given in Figure 12. A simple survey of this site was also done
(see Table 2). UTM coordinates are shown on plan view map.
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elevation from the September 2008 total station
survey was greater than the elevation from the
December 2007 bare-earth LiDAR data. Therefore,
we suspect that the error resulted from data process-
ing to create the bare-earth model. Errors in the bare-
earth DEMs are more common in very steep slope
areas such as the headscarp area found at this
landslide (e.g., McKenna et al., 2008).

The SE for all profile points at site 3s5w30-9 is
,20.01 m, which indicates that profile data from
LiDAR have a very slight, systematic tendency to be
at higher elevations than do data from the total
station. Of the four individual profiles at the site, two

have negative SEs and two have positive SEs
(Table 4), but all are relatively small (less than
0.20 m). Based on field observations in September
2008, we strongly suspect that the SEs are small
because there was very little to no vegetation present
in the landslide area (Figure 9) in December 2007
when LiDAR data were acquired, and, therefore,
minimal data processing was required to create the
bare-earth DEM.

At site 3s5w30-10 (Figure 6), a landslide mobilized
as a debris flow sometime between September 2007
and December 2007 (Figure 10). The landslide is
located in a large clear-cut area and resulted from a

Table 4. Comparison of elevations from total station data collected in September 2008 with bare-earth, leaf-off, Light Detection and Ranging
(LiDAR) data from December 2007. See Figures 1, 5, 6, 7, and 8 for locations of sites and profiles. Negative maximum values and systematic
errors (SEs) indicate that LiDAR data have higher elevations than do total station data. Positive maximum values and SEs indicate that
LiDAR data have lower elevations than do total station data. Rows highlighted in bold text contain summary data for all profiles at individual
sites or, in the case of the last row, all sites combined.

Site No./Profile
Name

No. of
Measured

Points

Maximum Error
in Elevations

(m)

Systematic Error
in Elevations

(m)

Root Mean Square
Error in Elevations

(m) Comment(s)

3s5w30-9, A-A9 35 1.30 , 20.01 0.28 Maximum error at lip of retrogressing
headscarp

3s5w30-9, B-B9 16 20.90 20.19 0.33 Maximum error on surface of internal
(moving) slide block in source area

3s5w30-9, C-C9 8 0.30 0.20 0.21 Maximum error on landslide deposit
3s5w30-9, D-D9 12 0.35 0.11 0.17 Maximum error on landslide deposit
3s5w30-9, All

profiles
71 1.30 , 20.01 0.27 Maximum error at lip of retrogressing

headscarp
3s5w30-10, A-A9 31 21.17 20.20 0.33 Maximum error at base of steepest part of

headscarp
3s5w30-10, B-B9 11 20.39 20.11 0.20 Maximum error on undisturbed ground on

west side of source area
3s5w30-10, C-C9 13 0.53 20.06 0.24 Maximum error at lip of incised channel
3s5w30-10, D-D9 9 20.30 20.15 0.19 Ground covered by thick, horsetail

vegetation at point of maximum error
3s5w30-10, E-E9 11 20.50 20.27 0.30 Ground covered by thick, horsetail

vegetation at point of maximum error
3s5w30-10, All

profiles
75 21.17 20.16 0.28 Maximum error at base of steepest part of

headscarp
3s5w30-11, A-A9 41 2.21 0.45 0.86 Maximum error at upper lip of incised, 2-m–

deep channel
3s5w30-11, B-B9 10 0.98 20.06 0.49 Maximum error at lip of lateral scarp in

slide source area
3s5w30-11, C-C9 8 0.80 0.17 0.34 Maximum error at lip of headscarp
3s5w30-11, D-D9 12 1.28 0.49 0.70 Maximum error at upper lip of incised

channel bank
3s5w30-11, E-E9 5 1.15 0.28 0.58 Maximum error on upper lip of channel

bank failure
3s5w30-11, All

profiles
76 2.21 0.35 0.74 Maximum error at upper lip of incised, 2-m–

deep channel
3s5w29-1, A-A9 31 1.48 0.21 0.60 Maximum error in landslide source area
3s5w29-1, B-B9 10 0.96 0.23 0.48 Maximum error in landslide source area
3s5w29-1, C-C9 11 1.35 0.44 0.60 Maximum error on deposit of soil/ boulders
3s5w29-1, D-D9 11 20.25 20.08 0.13 Maximum error on undisturbed ground
3s5w29-1, All

profiles
63 1.48 0.21 0.53 Maximum error in landslide source area

All sites, all
profiles

285 2.21 0.09 0.50 Maximum error at upper lip of incised, 2-m–
deep channel
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failure of fill material underlying an abandoned
logging road at a location where the road crosses a
small drainage. When we visited the site in September
2008, multiple springs were present in the landslide
source area. Elevation changes caused by the land-
slide and subsequent debris flow are visible when
comparing profiles derived from bare-earth LiDAR
data from September 2007 and December 2007
(Figure 6). Maximum elevation changes were about
3 m in the landslide source area (Figure 6, profiles
A-A9 and B-B9) and about 1 m in the relatively flat
debris-flow runout area (Figure 6, profile E-E9). The
difference between bare-earth and first-return LiDAR
data indicates that vegetation in the area prior to the
landslide ranged up to about 2 m in height (Figure 6),
which is in agreement with field observations of
vegetation surrounding the site in September 2008
(Figure 10). A comparison of post-event, bare-earth
LiDAR data from December 2007 and total station
survey data from September 2008 indicate that the
overall RMSE of bare-earth LiDAR data at the site is
0.28 m (site 3s5w30-10, All profiles; Table 4). RMSEs
of individual profiles at the site range from 0.19 to
0.33 m. The maximum error (21.17 m) is along

profile A-A9 and is at the base of the steepest part of the
landslide headscarp. The negative direction of the error
indicates that the December 2007 LiDAR elevation was
greater than the September 2008 total station eleva-
tion, a condition that could have been at least partly
caused by post-event erosion. However, based on field
observations and the magnitude and location of the
error, we suspect that this negative error was most
likely introduced by data processing to create the
December 2007 LiDAR bare-earth DEM.

The SE for all profile points at site 3s5w30-10 is
20.16 m, which indicates that profile data from
LiDAR have a systematic tendency to be at higher
elevations than data from the total station. All four of
the individual profiles at the site have negative SEs
(Table 4). Based on field observations, we suspect
that this SE was caused by the presence of thick giant
horsetail (Equisetum telmateia) in the area (Figure 10)
when the December 2007 LiDAR data were acquired.
This type of vegetation tends to spread quickly into
areas immediately after ground disturbance (such as a
landslide) and tends to grow in wet soil areas.

At site 3s5w30-11 (Figure 7), debris flows were
mobilized from two separate landslide source areas
(one downslope from point A and the other down-

Figure 9. Photo of site 3s5w30-9. Plan and profile data are shown
in Figure 5. Edge of road is visible in foreground. Note the young
forest surrounding the deposit and the lack of any remaining
vegetation in the landslide area.

Figure 10. Photo of site 3s5w30-10. Plan and profile data of the
site are shown in Figure 6.

Burns, Coe, S
˙
ener Kaya, and Ma

334 Environmental & Engineering Geoscience, Vol. XVI, No. 4, November 2010, pp. 315–341



slope from point C in Figure 7) between September
2007 and December 2007. Both landslides occurred
on natural slopes in a clear-cut area (Figure 11).
When we visited the site in September 2008, two small
springs were present in the landslide source area
downslope from point A, but none were observed in
the area downslope from point C. Elevation changes
caused by the landslides and subsequent debris flows
are visible when comparing profiles derived from
bare-earth LiDAR data from September 2007 and
December 2007 (Figure 7). Maximum elevation
changes were about 3 m in the landslide source areas
(Figure 7, profiles A-A9, B-B9, and C-C9) and about
0.5 m in the relatively flat debris-flow deposition area
near point A9. The difference between bare-earth and
first-return LiDAR data indicates that vegetation in
the area prior to the landslide ranged up to about 2 m
in height (Figure 7, B-B9), which is in agreement with
field observations of vegetation surrounding the site
in September 2008 (Figure 11). A comparison of post-
event, bare-earth LiDAR data from December 2007
and total station survey data from September 2008
indicates that the overall RMSE of bare-earth
LiDAR data at the site is 0.74 m (site 3s5w30-11,

All profiles; Table 4). RMSEs of individual profiles at
the site range from 0.34 to 0.86 m. The maximum
error (2.211 m) is along profile A-A9 and is at the
upper lip of a narrow, deeply incised channel. The
positive direction of the error indicates that the
September 2008 total station elevation was greater
than the December 2007 LiDAR elevation. From
field observations, we know that the channel is about
2 to 3 m in depth and width and that the total station
survey point was on the edge of the near-vertical
channel wall. At this location, a small error (0.05 m or
less) in the horizontal position of the LiDAR or total
station data would result in a very large difference (in
a positive direction) in the elevation value. We suspect
that this situation is what caused the 2.2-m maximum
error.

The SE for all profile points at site 3s5w30-11 is
0.35 m, which indicates that profile data from the
LiDAR data have a systematic tendency to be at
lower elevations than do data from the total station.
Of the five individual profiles at the site, four have
positive SEs, and one has a negative SE (Table 4).
Because the channels were deeply incised and often
covered by giant horsetail, many of our profile points
were located along the upper slope break of the near-
vertical channel wall. We suspect that the same
situation that caused the maximum error (as de-
scribed in the last paragraph) also caused the
relatively large positive SE at the site. In support of
this interpretation, the profile that had a negative SE
(20.06 m, B-B9) and the profile with the smallest
positive SE (0.17 m, C-C9), were both located in
landslide source areas, rather than along the incised
channel.

At site 3s5w29-1 (Figure 8), a large landslide
occurred between September 2007 and December
2007 (Figure 12). The landslide resulted from a failure
of fill material underlying an active logging road
through a partially thinned, forested area. A drainage
culvert was present at the site and was visible in the
landslide headscarp when we visited the site in
September 2008. Additionally, we observed scattered
large boulders (from a previous retaining wall) in the
landslide scar and an older, more vegetated landslide
deposit near the base of the slope. Both of these
characteristics indicate that the site had been affected
by a landslide prior to the late 2007 landslide.
Elevation changes caused by the late 2007 landslide
are visible when comparing profiles derived from
bare-earth LiDAR data from September and Decem-
ber 2007 (Figure 8). Maximum elevation changes
were about 3 m in the landslide source area (Figure 8,
profile B-B9) and only a few decimeters in the
relatively flat deposition area (Figure 8, profiles
C-C9 and D-D9). First-return LiDAR data from the

Figure 11. Photo of site 3s5w30-11. Plan and profile data of the
site are shown in Figure 7.
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same two dates indicate that tree cover in the area
prior to the landslide ranged up to 30 m in height
(Figure 8). A comparison of post-landslide, bare-
earth LiDAR data from December 2007 and total
station survey data from September 2008 indicates
that the overall RMSE of bare-earth LiDAR data at
the site is 0.53 m (site 3s5w29-1, All profiles; Table 4).
RMSEs of individual profiles at the site range from
0.13 to 0.60 m. The maximum error (1.48 m) is along
profile A-A9 and is in the landslide source area. The
error is positive, indicating that the elevation from the
September 2008 total station survey was greater than
the elevation from the December 2007 bare-earth
LiDAR data. Based on field observations, we suspect
that this error resulted from data processing to create
the bare-earth DEM, rather than from actual eleva-
tion changes in the source area.

The SE for all profile points at site 3s5w29-1 is
0.21 m, which indicates that profile data from LiDAR
have a systematic tendency to be at lower elevations
than data from the total station. Of the four
individual profiles at the site, one has a negative SE

and three have positive SEs (Table 4). Based on field
observations in September 2008, we suspect that these
SEs resulted from data processing to create the bare-
earth DEM, rather than from actual, post–December
2007 elevation changes.

DISCUSSION

Our map of primarily historical and prehistoric
landslides includes 93 landslide deposits that cover
about 28 percent of the study area (Figure 1).
Previous small-scale (1:62,500) geologic mapping
(performed roughly 15 years ago) resulted in the
identification of seven large landslides, which com-
prised roughly 5 percent of the study area (Wells et
al., 1994). The 0.5-m pixel resolution of the LiDAR
data allowed us to map at a much larger scale (a
maximum of about 1:2,000-scale) than the previous
mapping effort and significantly improved our ability
to identify large landslides in forested terrain.
Additionally, we found that large landslides could
be successfully identified and mapped from both leaf-
off and leaf-on LiDAR data, although it was more
difficult to accurately delineate landslide boundaries
and scarps in the leaf-on data because of the presence
of triangular facets where LiDAR point densities
were low and elevations had been extensively inter-
polated for the creation of the bare-earth DEM.

Our analyses of two successive sets of LiDAR data
(spaced 3 months apart) indicated that each individ-
ual LiDAR data set was very useful for mapping
small to large ($384 m2 of surface area) landslides,
but that the difference in data set created by
subtracting the first set of LiDAR data from the
second set was less useful for detecting active land-
slides that occurred between the acquisition times of
the two sets. Our analyses indicated that the detection
of elevation changes due to active landslides could be
improved through consistent acquisition of successive
LiDAR data sets only during leaf-off seasons. Such
acquisition would eliminate apparent elevation
changes caused by differing levels of LiDAR penetra-
tion, point densities, and interpolation of elevations
during processing to create a bare-earth DEM from
successive leaf-on and leaf-off data sets (Figure 13).
Compared to leaf-on conditions, leaf-off conditions
increase LiDAR penetration and point densities and
decrease the need for interpolation of elevations to
create the bare-earth DEM. This was found to be
especially true in areas with deciduous vegetation,
young forest areas where short deciduous vegetation
has the sunlight to grow, and/or areas with higher soil
moisture (such as drainages), where conifer trees
sometimes have a harder time growing and deciduous
trees tend to thrive (Figure 13).

Figure 12. Photo of site 3s5w29-1 taken looking upslope. Plan
and profile data of the site are shown in Figure 8. Note boulders
from previous retaining wall in the landslide scar, just below
yellow total station at top of photo.

Burns, Coe, S
˙
ener Kaya, and Ma

336 Environmental & Engineering Geoscience, Vol. XVI, No. 4, November 2010, pp. 315–341



Figure 13. Maps of the change in the bare-earth DEM (A and C) derived from leaf-on data (B) and leaf-off data (D), respectively. The
eastern portion of map A has the noticeable triangular faceted look as a result of the decrease in ground-classified points and the extensive
interpolation of elevations between ground-classified points. Differential data (E) were derived by subtracting A from C. Note that the
mixed conifer and deciduous trees in the drainage (F) that resulted in a significant reduction in ground-classified points.
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From the differential LiDAR data set we were able
to successfully identify and map active landslides, but
to do so required the use of 1) thresholds (60.50 m
and 60.75 m) to remove noise from the differential
LiDAR data, 2) visual pattern recognition of areas of
contiguous elevation changes and negative elevation
changes in upslope areas and positive elevation
changes in downslope areas, and 3) supplemental
optical satellite imagery (QuickBird). After mapping,
we field-verified 88 percent of landslides that we had
mapped with high confidence, but we could not detect
active landslides with elevation changes less than
0.50 m.

Our comparison of LiDAR elevations with eleva-
tions from simple surveys and total station surveys
indicated that the most accurate LiDAR elevations
were in areas that were clear-cut or had exposed bare
ground from landslides when the LiDAR data were
acquired. In these areas, our ground-based surveys
indicate that the overall RMSE of elevations (in a
single LiDAR data set) is about 0.5 m (Table 4).
Within the study area, as well as in most forested
areas in the Pacific Northwest, clear-cuts and areas of
bare ground (sometimes found in mature forest areas)
clearly represent the best ground conditions for
acquiring the highest quality elevation data from
airborne LiDAR.

In our study area, the RMSE of LiDAR elevations
under vegetation cover was greater than 0.5 m. We
make this inference on the basis of an observed
increase of triangular facets in LiDAR data under
vegetation, compared to a general lack of faceted
areas in clear-cuts and bare-ground areas (Figure 13).
Additionally, our two detailed survey sites that had
the most vegetation (site 3s5w30-11, thick vegetation
covering channels, Figure 11; and site 3s5w29-1, thin
tree cover, Figure 12) had the highest overall RMSE
values (0.74 m and 0.53 m, respectively) of the four
sites surveyed.

The overall RMSE of the differential LiDAR data
set (December 2007 minus September 2007 eleva-
tions) is 0.28 m. This RMSE is smaller than the
RMSE from our comparison of the December 2007
LiDAR data to our ground-based survey points (i.e.,
0.5 m). The relatively low RMSE of 0.28 m seems to
indicate that airborne LiDAR data are able to
produce relatively consistent elevation data in both
leaf-on and leaf-off seasons. However, to further
investigate the impact of leaf-on and leaf-off seasons
on LiDAR quality, we evaluated both data sets in a
representative area with active landslides, various
types of vegetation cover, and a drainage channel
(Figure 13). In Figure 13, the density of ground-
classified LiDAR points is clearly greater during the
leaf-off season than during the leaf-on season. For

data acquired during the leaf-on season, the eastern
portion of Figure 13 has a noticeable triangular
faceted appearance, primarily due to the reduction
of LiDAR ground-classified points in this area. The
lack of ground-classified points is likely due to the
blocking of the laser by relatively horizontal, broad
leaves of deciduous trees. This decrease in ground-
classified points results in an increase in the length of
linear interpolation to create the TINs, resulting in
poorer quality bare-earth DEMs.

Watershed Sciences (2008) reported that average
ground-point densities in the study area decreased
from 0.84 points/m2 during the leaf-off season to
0.52 points/m2 during the leaf-on season. In the area
of Figure 13, the average ground-point density in the
area of mixed conifers and deciduous vegetation
during the leaf-on season was 0.15 points/m2 (area
mapped as ,0.5 points/m2), whereas during the leaf-
off season, the average density of points in the same
area is 1.1 points/m2 (area mapped as 0.5 to 4.5 points/
m2). This difference in ground-point densities is
particularly striking in the drainage channel (average
leaf-on ground-point density just along the drainage
channel is 0.06 points/m2), where vegetation is
thickest. This observation is in agreement with results
from our ground-based survey data that showed that
channels created problems for LiDAR because they
often had steep walls and thick deciduous vegetation.
In the channel in Figure 13, the difference in ground-
point densities results in an extensive area of
triangular facets where elevations have been inter-
polated. Thus, in the differential LiDAR data set, the
channel area shows as an area of negative elevation
change of up to 2.95 m that was verified in the field as
completely false. Other portions of this channel area
showed elevation changes that were positive, which
were also false. These areas of false elevation change
make it difficult to identify real areas of elevation
changes caused by landslides (also shown in Fig-
ure 13) without fairly extensive fieldwork. This
problem could be significantly improved if both data
sets were flown in leaf-off seasons. In cases where
leaf-off acquisition is not possible, it may be possible
to increase the LiDAR pulse density (specifically, in
areas of dense vegetation) so that ground-point
densities are similar to those obtained during leaf-
off seasons. An important qualifier to this statement
is that, to our knowledge, no one has yet demon-
strated that increasing pulse density during leaf-on
seasons satisfactorily improves LiDAR penetration
through dense vegetation.

The problem with low point densities during leaf-
on season is reflected in the SE of the differential
LiDAR DEM (20.11 m) as well as in the calculated
net volumes at active landslides sites (18 of 20 sites, or
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90 percent, have negative net volumes; Table 3). The
negative SE and negative volumes indicate that
negative elevation changes outnumbered positive
changes in the differential DEM. These negative
changes were likely caused by lower elevations in the
leaf-off DEM than in the leaf-on DEM or, said
another way, by artificially high elevations in the leaf-
on DEM. Three possible reasons for systematically
lower elevations during leaf-off season are as follows.
First, the lower elevations could be due to more
LiDAR penetration to the ground surface during leaf-
off season; second, the lower elevations could be
caused by transport or erosion of loose, unvegetated
landslide material out of the landslide areas into the
active stream system and/or some contraction or
compaction of material; or, third, the problem could
be caused by an elevation indexing issue during data
acquisition or post-processing. That is, elevations
were indexed to a lower value in December 2007 than
in September 2007. Our observations indicate that the
systematically lower elevations were caused by the
first and second reasons, that is, lower systematic
elevations in the leaf-off DEM and removal of
material by debris-flow transport and post-landslide
erosion.

We found our RMSE value of 0.5 m (from our
comparison of the December 2007 LiDAR data to
our ground-based survey points) to be within the
lower end of the range (from 0.16 to 3.26 m) found by
previous assessments (discussed in the Introduction
section of this article). We also found the overall
RMSE of the differential LiDAR data set of 0.28 m
to be within the lower end of this range (0.16 to
3.26 m). However, as was the case with previous
studies, we found that the RMSE values can vary
significantly within a study area with varying areas of
steep slopes, heights and types of vegetation, and leaf
conditions. In general, we concur with the previous
studies that found an increase in RMSE values in
areas with short, dense vegetation and/or deciduous
tree cover (especially leaf-on conditions) and a
decrease in RMSE values in areas of clear-cuts (or
general lack of vegetation).

CONCLUSIONS

Results from this study lead us to make the
following conclusions regarding the utility and
limitations of LiDAR data in forested areas suscep-
tible to landslides. Both leaf-on and leaf-off data can
be used successfully to create inventories of historical
and prehistoric deep-seated landslides. Our LiDAR-
derived inventory map showed about 13 times more
landslides than did previously mapped using conven-
tional geologic mapping at a 1:62,500 scale.

Great care (caution) is needed when using
differential DEMs created from multi-temporal
LiDAR data to map, quantify, and interpret changes
due to landslides, as well as other earth surface
processes. Users of LiDAR data should not expect
to simply subtract one LiDAR data set from
another, at least in forested areas of the Pacific
Northwest, to obtain a reliable differential DEM.
We were able to successfully identify and map active
landslides using a differential DEM, but to do so
required the use of 1) thresholds (0.50 m and 0.75 m)
to remove noise from the differential LiDAR data,
2) visual pattern recognition of areas of contiguous
elevation changes and negative elevation changes in
upslope areas and positive elevation changes in
downslope areas, and 3) supplemental optical
satellite imagery (QuickBird). After mapping, we
field-verified 88 percent of landslides that we had
mapped with high confidence, but we could not
detect active landslides with elevation changes less
than 0.50 m.

We were able to estimate volumetric changes
caused by landslides, but, again, great care was
needed when interpreting these changes. The impact
of leaf-on/leaf-off conditions in the differential
LiDAR DEM and actual changes caused by removal
of material by transport and erosion must be taken
into account when interpreting LiDAR-derived volu-
metric data.

For the optimum use of multi-temporal LiDAR
data, all data sets should be flown during leaf-off
seasons. In cases in which leaf-off acquisition is not
possible, it may be possible to increase the LiDAR
pulse density so that ground-point densities (in dense
deciduous vegetation) are similar to those obtained
during leaf-off seasons, but to our knowledge, this
approach has not yet been successfully demonstrated.
For the purposes of active landslide detection and
mapping in the Pacific Northwest region of the
United States, we recommend that multi-temporal
LiDAR be collected during the early spring, before
the majority of leaves have grown and right after the
rainy season, when most landslides occur. Data
acquisition during leaf-off seasons increases the
density of LiDAR ground points used to interpolate
bare-earth DEMS. In our study area, the most
noticeable difference in the point densities between
leaf-on and leaf-off seasons was in the mature forest
and, especially, in young forest areas. Additionally,
areas with mixed conifer-deciduous and deciduous
types of vegetation displayed a noticeable decrease in
ground-point densities in the LiDAR data acquired
during the leaf-on season. This decrease in ground-
classified point density conditions resulted in inaccu-
rate elevations in the bare-earth DEM.
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