
CCI
0.1

Generated by Doxygen 1.5.6

Fri Jun 3 11:45:02 2011

Contents

1 CCI: The Common Communication Interface 1

1.1 Introduction . 1

1.2 Design Goals . 2

1.2.1 Portability . 2

1.2.2 Simplicity . 2

1.2.3 Performance . 3

1.2.4 Scalabity . 3

1.2.5 Robustness . 3

1.3 The CCI Interface . 4

1.3.1 Initialization . 4

1.3.2 Communication Endpoints 4

1.3.3 Event Handling . 5

1.3.4 Connections . 5

1.3.5 Connection Establishment 6

1.3.6 Active Messages . 6

1.3.7 Remote Memory Access . 7

2 Module Index 9

2.1 Modules . 9

3 Data Structure Index 11

3.1 Data Structures . 11

4 Module Documentation 13

ii CONTENTS

4.1 Initialization / Environment . 13

4.1.1 Define Documentation . 14

4.1.1.1 CCI_ABI_VERSION 14

4.1.2 Typedef Documentation . 14

4.1.2.1 cci_status_t . 14

4.1.3 Enumeration Type Documentation 14

4.1.3.1 cci_status . 14

4.1.4 Function Documentation . 16

4.1.4.1 cci_init . 16

4.1.4.2 cci_strerror . 17

4.2 Devices . 18

4.2.1 Typedef Documentation . 18

4.2.1.1 cci_device_t . 18

4.2.2 Devices . 18

4.2.3 Function Documentation . 20

4.2.3.1 cci_get_devices 20

4.2.3.2 cci_free_devices 20

4.3 Endpoints . 22

4.3.1 Typedef Documentation . 22

4.3.1.1 cci_endpoint_flags_t 22

4.3.1.2 cci_endpoint_t . 23

4.3.1.3 cci_os_handle_t 23

4.3.2 Enumeration Type Documentation 23

4.3.2.1 cci_endpoint_flags 23

4.3.3 Function Documentation . 24

4.3.3.1 cci_create_endpoint 24

4.3.3.2 cci_destroy_endpoint 25

4.4 Connections . 26

4.4.1 Define Documentation . 27

4.4.1.1 CCI_CONN_REQ_LEN 27

4.4.2 Typedef Documentation . 27

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

CONTENTS iii

4.4.2.1 cci_conn_attribute_t 27

4.4.2.2 cci_conn_req_t 28

4.4.2.3 cci_connection_t 28

4.4.3 Enumeration Type Documentation 28

4.4.3.1 cci_conn_attribute 28

4.4.4 Function Documentation . 29

4.4.4.1 cci_bind . 29

4.4.4.2 cci_unbind . 30

4.4.4.3 cci_get_conn_req 30

4.4.4.4 cci_accept . 31

4.4.4.5 cci_reject . 32

4.4.4.6 cci_connect . 32

4.4.4.7 cci_disconnect . 33

4.5 Endpoint / Connection Options . 35

4.5.1 Typedef Documentation . 36

4.5.1.1 cci_opt_handle_t 36

4.5.1.2 cci_opt_level_t . 36

4.5.1.3 cci_opt_name_t 36

4.5.2 Enumeration Type Documentation 36

4.5.2.1 cci_opt_level . 36

4.5.2.2 cci_opt_name . 36

4.5.3 Function Documentation . 37

4.5.3.1 cci_set_opt . 37

4.5.3.2 cci_get_opt . 38

4.6 Events . 39

4.6.1 Typedef Documentation . 40

4.6.1.1 cci_event_send_t 40

4.6.1.2 cci_event_recv_t 41

4.6.1.3 cci_event_other_t 41

4.6.1.4 cci_event_type_t 41

4.6.1.5 cci_event_t . 41

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

iv CONTENTS

4.6.2 Enumeration Type Documentation 42

4.6.2.1 cci_event_type . 42

4.6.3 Function Documentation . 42

4.6.3.1 cci_arm_os_handle 42

4.6.3.2 cci_get_event . 42

4.6.3.3 cci_return_event 44

4.7 Communications . 45

4.7.1 Typedef Documentation . 46

4.7.1.1 cci_sg_t . 46

4.7.2 Function Documentation . 46

4.7.2.1 cci_send . 46

4.7.2.2 cci_sendv . 47

4.7.2.3 cci_rma_register 48

4.7.2.4 cci_rma_deregister 49

4.7.2.5 cci_rma . 49

5 Data Structure Documentation 51

5.1 cci_conn_req Struct Reference . 51

5.1.1 Detailed Description . 51

5.1.2 Field Documentation . 52

5.1.2.1 devices . 52

5.1.2.2 devices_cnt . 52

5.1.2.3 data_ptr . 52

5.1.2.4 data_len . 52

5.1.2.5 attribute . 52

5.2 cci_connection Struct Reference . 53

5.2.1 Detailed Description . 53

5.2.2 Field Documentation . 53

5.2.2.1 max_send_size . 53

5.2.2.2 endpoint . 53

5.2.2.3 attribute . 53

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

CONTENTS v

5.3 cci_device Struct Reference . 54

5.3.1 Detailed Description . 54

5.3.2 Devices . 54

5.3.3 Field Documentation . 56

5.3.3.1 name . 56

5.3.3.2 info . 56

5.3.3.3 conf_argv . 56

5.3.3.4 max_send_size . 56

5.3.3.5 rate . 56

5.3.3.6 domain . 57

5.3.3.7 bus . 57

5.3.3.8 dev . 57

5.3.3.9 func . 57

5.3.3.10 pci . 57

5.4 cci_endpoint Struct Reference . 58

5.4.1 Detailed Description . 58

5.4.2 Field Documentation . 58

5.4.2.1 max_recv_buffer_count 58

5.5 cci_event Struct Reference . 59

5.5.1 Detailed Description . 59

5.5.2 Field Documentation . 59

5.5.2.1 type . 59

5.5.2.2 send . 59

5.5.2.3 recv . 60

5.5.2.4 other . 60

5.5.2.5 info . 60

5.6 cci_event_other Struct Reference . 61

5.6.1 Detailed Description . 61

5.6.2 Field Documentation . 62

5.6.2.1 context . 62

5.6.2.2 connection . 62

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

vi CONTENTS

5.6.2.3 connect . 62

5.6.2.4 u . 62

5.7 cci_event_recv Struct Reference . 63

5.7.1 Detailed Description . 63

5.7.2 Field Documentation . 63

5.7.2.1 header_len . 63

5.7.2.2 data_len . 64

5.7.2.3 header_ptr . 64

5.7.2.4 data_ptr . 64

5.7.2.5 connection . 64

5.8 cci_event_send Struct Reference . 65

5.8.1 Detailed Description . 65

5.8.2 Field Documentation . 66

5.8.2.1 connection . 66

5.8.2.2 context . 66

5.8.2.3 status . 66

5.9 cci_opt_handle Union Reference . 67

5.9.1 Detailed Description . 67

5.9.2 Field Documentation . 67

5.9.2.1 endpoint . 67

5.9.2.2 connection . 67

5.10 cci_service Struct Reference . 68

5.10.1 Detailed Description . 68

5.10.2 Field Documentation . 68

5.10.2.1 bogus . 68

6 Example Documentation 69

6.1 client.c . 69

6.2 devices.c . 73

6.3 init.c . 74

6.4 server.c . 75

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

Chapter 1

CCI: The Common
Communication Interface

1.1 Introduction

Over the years, many networking application programming interfaces (APIs) have be
developed. The most widely used is the BSD Sockets interface due to its implemen-
tation on nearly all hardware. Designed to provide an interface for TCP, the Sockets
interface does not allow applications to take advantage of newer hardware and the fea-
tures that they provide. These features include remote direct memory access (RDMA),
operating system (OS) bypass, "zero-copy" support, one-sided operations, and asyn-
chronous operations.

Many different APIs evolved to expose these features such as the Virtual Interface Ar-
chitecture (VIA), OpenFabrics Verbs, Myrinet Express (MX), and Portals. None have
had the widespread adoption that Sockets has had. Application developers are therefore
forced to make substantial tradeoffs in the selection of a user-level network interface
for their network-based applications. While the use of BSD Sockets guarantees porta-
bility across nearly every type of existing network, the emulation of the Sockets API
over an underlying network-native software API can substantially limit both perfor-
mance and scalability. On the other hand, the use of a native networking API may
satisfy performance and scalability requirements, but limit the application’s portability
to future platforms.

CCI balances the needs of portability and simplicity while preserving the performance
capabilities of advanced networking technologies. In designing CCI, we have drawn
upon prior research with a variety of low-level networking interfaces as well as our
experience in working directly with application developers in the use of these APIs.
Whenever possible, we adhered to our primary goal of simplicity in order to foster
wide-spread adoption, yet preserving both performance and portability.

2 CCI: The Common Communication Interface

1.2 Design Goals

In setting out to design a new communication’s interface, we had several goals in mind:
portability, simplicity, performance, scalability, and robustness.

1.2.1 Portability

Application and middleware developers do not have the resources to continuously port
their code on different communication interfaces. Selecting a vendor-specific API in-
troduces lock-in and reduces future migration options. At the same time, vendors do
not have the resources to properly support a large set of middleware. BSD Sockets and
MPI both provide this high-level of portability. For any new communication interface
to gain acceptance in the broader community, it needs to provide a similar breadth of
implementations on currently available hardware, by supporting the semantics that are
common to most vendor APIs.

1.2.2 Simplicity

Simplicity is paramount to the success of a programming interface. Critical mass can-
not be reached by limiting the targeted audience to a few networking experts. However,
ease of use involves many elements beyond just expertise. Code size is a common, al-
beit subjective, metric used to compare programming interfaces. The rationale is that
larger codes are harder to debug and maintain. For example, an analysis of the Open
MPI version 1.4.3 implementation shows substantial differences between the seven
supported communication APIs (excluding self and shared memory). The total lines of
code of each Byte Transfer Layer (BTL) for various APIs include:

• Elan 1,656

• MX 2,333

• Portals 2,469

• GM 2,779

• Sockets (TCP) 4,192

• UDAPL 6,208

• OpenIB (Verbs) 21,574

The Verbs BTL is the largest, five times the size of the TCP sockets BTL, third largest,
and 8 to 13 times larger than the BTLs of the vendor interfaces. Another indicator of
complexity is the number of functions available. Choice is good but too much choice
is worse. Fortunately, software programmers are efficient at reducing overly complex

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

1.2 Design Goals 3

interfaces to a minimum set of useful semantics. For example, MPI specifies over 300
functions but the vast majority of MPI applications only use a fraction of them.

Similarly, relative simplicity was the main drive behind the wide adoption of the BSD
Socket interface. A communication interface should aspire to find the right balance
between richness of semantics and ease of use.

1.2.3 Performance

Performance is major drive for innovation in networking, from HPC to Cloud Com-
puting. All modern network technologies leverage common techniques developed in
the last two decades: OS-bypass, zero-copy, one-sided, and asynchronous operations.
To deliver the best performance, a communication interface should present semantics
that can efficiently leverage all these techniques as provided by modern high-speed
networks.

1.2.4 Scalabity

Projections for leadership scale systems in HPC include hundreds of thousands of
nodes and millions of cores. In the commercial space, Cloud Computing data centers
are fast approaching these levels. In this context, scalability is an important require-
ment. The time and space overhead of a scalable communication interface should not
grow linearly with the number of communicating partners. BSD Sockets are ineffi-
cient in both dimensions, as buffers and file handles are allocated for each new socket.
Through adaptive socket buffering and use of epoll(), Sockets implementations have
so far managed to reasonably handle large number of connections. MPI is inherently
more scalable and it has successfully been deployed on large HPC machines. However,
it is not clear if MPI in its present form can efficiently scale to millions of cores. Scala-
bility of the Verbs interface was originally quite poor due to its Queue Pair model. MPI
implementations used various techniques such as connection on demand and dynamic
buffer management to work around the QPs memory footprint problem. Scalability
was further improved with the addition of Shared Receive Queues (SRQ), but distinct
QPs are still required on the send side. To address the Cloud Computing and leadership
class HPC requirements, a communication interface should aim for constant buffer and
polling overhead, independently of the number of nodes in the fabric.

1.2.5 Robustness

Hardware and software failures occur frequently, often proportional with the size of the
system. As system sizes continue to increase, ignoring such failures will no longer be
an option. Most MPI implementations currently abort on failures that an application
might otherwise tolerate. To address this, there have been several efforts aimed at de-
signing fault-tolerant MPI libraries and adding fault recovery to the MPI specification.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4 CCI: The Common Communication Interface

Thus far these efforts have had limited success. The loose semantic about status com-
pletions was actually a benefit in making MPI a simpler interface, developers would
send messages and trust MPI to always deliver them. Unfortunately, real-world appli-
cations eventually had to implement checkpoint/restart functionality to tolerate system
faults and it is the only practical solution available today on large HPC systems today.
Both Sockets and Verbs fare better than MPI on this issue. They use connections to
represent the state of communication channels without reliance on a single consistent
distributed process space (MPI_COMM_WORLD). Connections provide a simplified
model for robustness; they contain faults and allow for their recovery by resetting the
state of the affected communication channels. Unfortunately, both Sockets and Verbs
associate buffers to a connection, which negatively affects scalability. A robust and
scalable communication interface should provide connection-oriented semantics with-
out per-connection resources.

Communication reliability is often seen as a way to improve overall robustness. For
some applications such as Media Content Delivery (IPTV), Financial Trading (HFT)
or system-health monitoring, the provided reliability may be incompatible with their
timing requirements. Furthermore, the most scalable multicast implementations are
unreliable. For these reasons, a large share of applications use unreliable connec- tions.
A communication interface should provide different levels of connection reliability, as
well as support for multicast.

1.3 The CCI Interface

In this section, we provide a brief overview of the CCI API to allow us to discuss how
CCI can meet the goals outlined above.

1.3.1 Initialization

Before calling any function, the application must call cci_init(). The application may
call cci_init() multiple times with different parameters. The application can then call
cci_get_devices() to obtain an array of available devices. The devices are parsed from
a config file and each device has a name, an array keyword/value strings, a maximum
send size in bytes, and PCI information if needed. Each device’s maximum send size
is equivalent to the network MTU (less wire headers). When no more communication
is needed, the application calls cci_free_devices().

1.3.2 Communication Endpoints

All communication in CCI revolves around an endpoint. Each endpoint has some
number of device-sized buffers available for sending and receiving messages of small,
unexpected messages. The application calls cci_create_endpoint() and cci_destroy_-
endpoint(), respectively, to obtain or release an endpoint. The application may alter the

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

1.3 The CCI Interface 5

number of send and/or receive buffers using cci_get_opt() and cci_set_opt().

1.3.3 Event Handling

CCI is inherently asynchronous and all communication functions only initiate com-
munication. When a communication completes, it generates an event. There are
three event types: CCI_EVENT_SEND, CCI_EVENT_RECV, and CCI_EVENT_-
OTHER. The CCI_EVENT_OTHER event returns connection success, rejection or
timeout events as well as endpoint and/or device failure events.

An application can poll for an event with cci_get_event(), which returns an event struc-
ture of which the contents vary depending on the event’s type. When a process is
finished with an event, it uses cci_return_event() to release it resources, if any, back to
CCI.

In addition to returning an endpoint, cci_create_endpoint() also returns an operating
system-specific handle that can be passed to select() or other OS functions to allow
blocking until an event is available.

1.3.4 Connections

CCI defines a connection struct which includes the maximum send size negotiated by
the two instances of CCI, a pointer to the owning endpoint, and the connection attribute.

As mentioned above, some applications may need reliable delivery while other may
not. Among applications needing reliable delivery, some may need in-order comple-
tion (e.g. traditional SOCK_STREAM semantics) and others may accept out-of-order
completion as long as communications are initiated in-order (e.g. MPI point-to-point).

In order to provide applications with the level of service appropriate for their needs,
CCI provides multiple types of connection attributes:

• Reliable with Ordered completion (RO)

• Reliable with Unordered completion (RU)

• Unreliable with Unordered completion (UU)

• Unreliable with Unordered completion with multicast send (UU_MC_TX)

• Unreliable with Unordered completion with multicast receive (UU_MC_RX)

If a process needs a mix of types, it is allowed to open multiple connections to the other
process.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

6 CCI: The Common Communication Interface

1.3.5 Connection Establishment

CCI mirrors the client/server connection semantics of Sockets. A process willing to
accept connections will first cci_bind() a device to a name service at a specified port
with a backlog parameter. The call returns a pointer to a service. When a server no
longer wishes to receive connection requests, it can cci_unbind() from the service.

To initiate a connection, the client calls cci_connect() with parameters including an
endpoint, a string URI for the server, the port, optionally a pointer to a limited sized
payload and its length, the connection attribute, a pointer to an optional application
context, and a timeout.

The server then polls for connection requests using cci_get_conn_request() passing in
the service pointer. If one is ready, it returns a conn_req struct which contains an array
of compatible devices, the number of devices in the array, a pointer to the application
payload and its length if the client sent it, and the requested connection attribute.

The server then calls either cci_accept() or cci_reject(). The cci_accept() call binds
the connection request to an endpoint previously created from one of the compatible
devices and returns a connection pointer. The client gets an CCI_EVENT_OTHER
event with the type CONNECT_SUCCESS. If the server calls cci_reject(), the client
get an other event with the type CONNECT_REJECTED. On the server, the connection
request is stale after either call. If the server does not reply within the timeout set in
the client’s cci_connect(), the client gets an CCI_EVENT_OTHER event with a type
of CONNECT_TIMEOUT. When a process no longer needs a connection, it can call
cci_disconnect().

1.3.6 Active Messages

Once the connection is established, the two processes can start communicating. CCI
provides two methods, active messages and remote memory access (RMA), which we
discuss in the RMA section.

CCI’s version of active messages does not fully mirror Active Messages (AM). Like
the original AM, CCI’s active messages have a maximum size that is device dependent.
Ideally, the size is equal to the link MTU (less wire headers). The driving idea to
limiting the message size to a single MTU is that future networks may have many
paths through the network due to fabrics with high-radix switches and/or NICs with
multiple ports connected to redundant switches for fault-tolerance. Limiting the active
message size limited to a single MTU vastly simplifies the requirements for message
completion — either it arrives or it does not.

Where CCI differs from the original Active Messages is handling of incoming mes-
sages. In Active Messages, the message contains an address of the handler that will
process it, which assumes all processes have identical memory spaces. The difficulty
with invoking handlers is there is no bound on how long the handler will run. While
running, the communication library cannot process any more messages and could lead

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

1.3 The CCI Interface 7

to dropping messages. Instead, CCI returns an event of type CCI_EVENT_RECV.
The application can get the event and hold it without blocking CCI from continuing to
service other communications.

The cci_send() parameters include the connection, header and data pointers and their
respective lengths, an application context pointer, and flags. Either or both of the point-
ers may be NULL. The header is currently limited to a maximum length of 32 bytes.
The context pointer is returned in the CCI_EVENT_SEND completion event and can
be used to allow the application to retrieve its internal state.

The optional flags parameter can accept the following:

• CCI_FLAG_BLOCKING which means that the send should not return until the
send completes. The send completion status is passed in the function’s return
value.

• CCI_FLAG_NO_COPY is a hint to CCI that the application does not need the
buffer back until the send completes and is free to use zero-copy methods if
supported.

• CCI_FLAG_SILENT indicates that the process does not want a completion event
for this send.

On the receiver, a call to cci_get_event() returns a CCI_EVENT_RECV event which
includes pointers to the header and data, their lengths, and a pointer to the connection.
The receiving process can choose to simply inspect the data in-place, modify the data
in-place and send it to another process, or copy it out if it needs to keep the data long-
term. When the process no longer needs the buffer, it releases it back to CCI with
cci_return_event(). It should be noted that if the application does not process CCI_-
EVENT_RECV events and return them to CCI fast enough, that CCI may still need to
drop incoming messages.

CCI also provides cci_sendv() that takes an array of data pointers and an array of
lengths instead of the just the one data pointer and length in cci_send(). Lastly, CCI
does not require memory registration for sending or receiving active messages.

1.3.7 Remote Memory Access

Clearly, messages limited to a single MTU will not meet the needs of all applications.
Applications such as file systems which need to move large, bulk messages need much
more. To accommodate them, CCI also provides remote memory access (RMA). RMA
transfers are only allowed on reliable connections.

Before using RMA, the process needs to explicitly register the memory. CCI provides
cci_rma_register() which takes pointers to the endpoint, the connection, and the start
of the region to be registered as well as the length of the region and it returns a RMA

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

8 CCI: The Common Communication Interface

handle. If the connection pointer is set, RMA operations on that handle will be limited
to that one connection. If the connection is NULL, then RMA operations on that handle
will be limited to any connection on that endpoint. When a process no longer needs to
RMA in to or out of the region, it passes the handle to cci_rma_deregister().

For a RMA transfer to take place, both processes must register their local memory and
they need to pass the handle of the target process to the initiator process using one or
more active messages.

The cci_rma() call takes the connection pointer, an optional header pointer and length,
the local RMA handle and offset, the remote RMA handle and offset, the transfer
length, an application context pointer, and a set of flags.

If the header pointer and length are set, the initiator will send a completion message
to the target that arrives as an active message with the header set and no data payload.
Like with cci_send(), the header length is limited to 32 bytes.

The flag options include:

• CCI_FLAG_BLOCKING (see cci_send())

• CCI_FLAG_SILENT (see cci_send())

• CCI_FLAG_READ allows data to move from remote to local memory.

• CCI_FLAG_WRITE allows data to move from local to remote memory.

• CCI_FLAG_FENCE ensures that all previous RMA operations to complete re-
motely before this operation and all following RMA operations.

CCI does not guarantee delivery order within an operation (i.e. no last-byte-written-last
mandate), but order is guaranteed between data delivery and the remote receive event
if the header is specified.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

Initialization / Environment . 13
Devices . 18
Endpoints . 22
Connections . 26
Endpoint / Connection Options . 35
Events . 39
Communications . 45

10 Module Index

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

Chapter 3

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

cci_conn_req (Connection request) . 51
cci_connection (Connection handle) . 53
cci_device (Structure representing one CCI device) 54
cci_endpoint (Endpoint) . 58
cci_event (Generic event) . 59
cci_event_other (Other event) . 61
cci_event_recv (Receive event) . 63
cci_event_send (Send event) . 65
cci_opt_handle (Handle defining the scope of an option) 67
cci_service (Service handle) . 68

12 Data Structure Index

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

Chapter 4

Module Documentation

4.1 Initialization / Environment

Defines

• #define CCI_ABI_VERSION 1
This constant is passed in via the cci_init() function and is used for internal consis-
tency checks.

Typedefs

• typedef enum cci_status cci_status_t
Status codes that are returned from CCI functions.

Enumerations

• enum cci_status {

CCI_SUCCESS = 0, CCI_ERROR, CCI_ERR_DISCONNECTED, CCI_ERR_-
RNR,

CCI_ERR_DEVICE_DEAD, CCI_ERR_RMA_HANDLE, CCI_ERR_RMA_-
OP, CCI_ERR_NOT_IMPLEMENTED,

CCI_ERR_NOT_FOUND, CCI_EINVAL = EINVAL, CCI_ETIMEDOUT =
ETIMEDOUT, CCI_ENOMEM = ENOMEM,

CCI_ENODEV = ENODEV, CCI_EBUSY = EBUSY, CCI_ERANGE =
ERANGE, CCI_EAGAIN = EAGAIN,

14 Module Documentation

CCI_ENOBUFS = ENOBUFS, CCI_EMSGSIZE = EMSGSIZE, CCI_-
ENOMSG = ENOMSG, CCI_EADDRNOTAVAIL = EADDRNOTAVAIL }

Status codes that are returned from CCI functions.

Functions

• CCI_DECLSPEC int cci_init (uint32_t abi_ver, uint32_t flags, uint32_t ∗caps)

This is the first CCI function that must called; no other CCI functions can be invoked
before this function returns successfully.

• CCI_DECLSPEC const char ∗ cci_strerror (enum cci_status status)

Returns a string corresponding to a CCI status enum.

4.1.1 Define Documentation

4.1.1.1 #define CCI_ABI_VERSION 1

This constant is passed in via the cci_init() function and is used for internal consistency
checks.

Examples:

client.c, devices.c, init.c, and server.c.

4.1.2 Typedef Documentation

4.1.2.1 typedef enum cci_status cci_status_t

Status codes that are returned from CCI functions.

Note that status code names that are derived from <errno.h> generally follow the
same naming convention (e.g., EINVAL -> CCI_EINVAL). Error status codes that are
unique to CCI are of the form CCI_ERR_<foo>.

IF YOU ADD TO THESE ENUM CODES, ALSO EXTEND src/api/strerror.c!!

4.1.3 Enumeration Type Documentation

4.1.3.1 enum cci_status

Status codes that are returned from CCI functions.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.1 Initialization / Environment 15

Note that status code names that are derived from <errno.h> generally follow the
same naming convention (e.g., EINVAL -> CCI_EINVAL). Error status codes that are
unique to CCI are of the form CCI_ERR_<foo>.

IF YOU ADD TO THESE ENUM CODES, ALSO EXTEND src/api/strerror.c!!

Enumerator:

CCI_SUCCESS Returned from most functions when they succeed.

CCI_ERROR Generic error.

CCI_ERR_DISCONNECTED For both reliable and unreliable sends, this error
code means that cci_disconnect() has been invoked on the send side (in which
case this is an application error), or the receiver replied that the receiver in-
voked cci_disconnect().

CCI_ERR_RNR For a reliable send, this error code means that a receiver is
reachable, the connection is connected but the receiver could not receive the
incoming message during the timeout period.
If a receiver cannot receive an incoming message for transient reasons (most
likely out of resources), it returns an Receiver-Not-Ready NACK and drops
the message. The sender keeps retrying to send the message until the timeout
expires,
If the timeout expires and the last control message received from the receiver
was an RNR NACK, then this message is completed with the RNR status. If
the connection is both reliable and ordered, then all successive sends are also
completed in the order in which they were issued with the RNR status.
This error code will not be returned for unreliable sends.

CCI_ERR_DEVICE_DEAD The local device is gone, not coming back.

CCI_ERR_RMA_HANDLE Error returned from remote peer indicating that the
address was either invalid or unable to be used for access / permissions rea-
sons.

CCI_ERR_RMA_OP Error returned from remote peer indicating that it does not
support the operation that was requested.

CCI_ERR_NOT_IMPLEMENTED Not yet implemented.

CCI_ERR_NOT_FOUND Not found.

CCI_EINVAL Invalid parameter passed to CCI function call.

CCI_ETIMEDOUT For a reliable send, this error code means that the sender
did not get anything back from the receiver within a timeout (no ACK, no
NACK, etc.
). It is unknown whether the receiver actually received the message or not.
This error code won’t occur for unreliable sends.

CCI_ENOMEM No more memory.

CCI_ENODEV No device available.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

16 Module Documentation

CCI_EBUSY Resource busy (e.g.
port in use)

CCI_ERANGE Value out of range (e.g.
no port available)

CCI_EAGAIN Resource temporarily unavailable.

CCI_ENOBUFS The output queue for a network interface is full.

CCI_EMSGSIZE Message too long.

CCI_ENOMSG No message of desired type.

CCI_EADDRNOTAVAIL Address not available.

4.1.4 Function Documentation

4.1.4.1 CCI_DECLSPEC int cci_init (uint32_t abi_ver, uint32_t flags, uint32_t
∗ caps)

This is the first CCI function that must called; no other CCI functions can be invoked
before this function returns successfully.

Parameters:

← abi_ver,: A constant describing the ABI version that this application requires
(one of the CCI_ABI_∗ values).

← flags,: A constant describing behaviors that this application requires. Cur-
rently, 0 is the only valid value.

→ caps,: Capabilities of the underlying library: THREAD_SAFETY

Returns:

CCI_SUCCESS CCI is available for use.
CCI_EINVAL Caps is NULL or incorrect ABI version.
CCI_ENOMEM Not enough memory to complete.
CCI_ERR_NOT_FOUND No driver or CCI_CONFIG.
CCI_ERROR Unable to parse CCI_CONFIG.
Errno if fopen() fails.
Each driver may have additional error codes.

If cci_init() completes successfully, then CCI is loaded and available to be used in this
application. There is no corresponding "finalize" call.

If cci_init() fails, an appropriate error code is returned.

If cci_init() is invoked again with the same parameters after it has already returned
successfully, it’s a no-op. If invoked again with different parameters, if the CCI imple-
mentation can change its behavior to ∗also∗ accommodate the new behaviors indicated

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.1 Initialization / Environment 17

by the new parameter values, it can return successfully. Otherwise, it can return a
failure and continue as if cci_init() had not been invoked again.

Examples:

client.c, devices.c, init.c, and server.c.

4.1.4.2 CCI_DECLSPEC const char∗ cci_strerror (enum cci_status status)

Returns a string corresponding to a CCI status enum.

Parameters:

← status,: A CCI status enum.

Returns:

A string when the status is valid.
NULL if not valid.

Examples:

client.c, devices.c, init.c, and server.c.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

18 Module Documentation

4.2 Devices

Data Structures

• struct cci_device
Structure representing one CCI device.

Typedefs

• typedef struct cci_device cci_device_t
Structure representing one CCI device.

Functions

• CCI_DECLSPEC int cci_get_devices (cci_device_t const ∗∗∗const devices)
Get an array of devices.

• CCI_DECLSPEC int cci_free_devices (cci_device_t const ∗∗devices)
Frees a NULL-terminated array of (cci_device_t∗)’s that were previously allocated
via cci_get_devices().

4.2.1 Typedef Documentation

4.2.1.1 typedef struct cci_device cci_device_t

Structure representing one CCI device.

4.2.2 Devices

Device types and functions.

Before launching into detail, let’s first describe the CCI system configuration file. On
POSIX systems, it is likely a simple INI-style text file; on Windows systems, it may be
registry entries. The key thing is to support trivial namespaces and key=value pairs.

Here is an example text config file:

Comments are anything after the # symbols.

Sections in this file are denoted by [section name]. Each section

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.2 Devices 19

denotes a single CCI device.

[bob0]
The only mandated field in each section is "driver". It indicates
which CCI driver should be applied to this device.
driver = psm

The priority field determines the ordering of devices returned by
cci_get_devices(). 100 is the highest priority; 0 is the lowest priority.
If not specified, the priority value is 50.
priority = 10

The last field understood by the CCI core is the "default" field.
Only one device is allowed to have a "true" value for default. All
others must be set to 0 (or unset, which is assumed to be 0). If
one device is marked as the default, then this device will be used
when NULL is passed as the device when creating an endpoint. If no
device is marked as the default, it is undefined as to which device
will be used when NULL is passed as the device when creating an
endpoint.
default = 1

All other fields are uninterpreted by the CCI core; they’re just
passed to the driver. The driver can do whatever it wants with
these values (e.g., system admins can set values to configure the
driver). Driver documentation should specify what parameters are
available, what each parameter is/does, and what its legal values
are.

This example shows a bonded PSM device that uses both the ipath0 and
ipath1 devices. Some other parameters are also passed to the PSM
driver; it assumedly knows how to handle them.

device = ipath0,ipath1
capabilities = bonded,failover,age_of_captain:52
qos_stuff = fast

bob2 is another PSM device, but it only uses the ipath0 device.
[bob2]
driver = psm
device = ipath0

bob3 is another PSM device, but it only uses the ipath1 device.
[bob3]
driver = psm
device = ipath1
sl = 3 # IB service level (if applicable)

storage is a device that uses the UDP driver. Note that this driver
allows specifying which device to use by specifying its IP address
and MAC address -- assumedly it’s an error if there is no single
device that matches both the specified IP address and MAC
(vs. specifying a specific device name).
[storage]
driver = udp
priority = 5
ip = 172.31.194.1

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

20 Module Documentation

mac = 01:12:23:34:45

The config file forms the basis for the device discussion, below.

A CCI device is a [section] from the config file, above.

4.2.3 Function Documentation

4.2.3.1 CCI_DECLSPEC int cci_get_devices (cci_device_t const ∗∗∗const
devices)

Get an array of devices.

Returns a NULL-terminated array of (struct cci_device ∗)’s that are "up". The pointers
can be copied, but the actual cci_device instances may not. The array of devices is
allocated by the CCI library; there may be hidden state that the application does not
see.

Parameters:

→ devices Array of pointers to be filled by the function. Previous value in the
pointer will be overwritten.

Returns:

CCI_SUCCESS The array of "up" devices is available.
CCI_EINVAL Devices is NULL.
Each driver may have additional error codes.

If cci_get_devices() succeeds, the entire returned set of data (to include the data pointed
to by the individual cci_device instances) should be treated as const, and must be freed
with a corresponding call to cci_free_devices().

The order of devices returned corresponds to the priority fields in the devices. If two
devices share the same priority, their ordering in the return array is arbitrary.

If cci_get_devices() fails, the value returned in devices is undefined.

Examples:

client.c, devices.c, and server.c.

4.2.3.2 CCI_DECLSPEC int cci_free_devices (cci_device_t const ∗∗ devices)

Frees a NULL-terminated array of (cci_device_t∗)’s that were previously allocated via
cci_get_devices().

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.2 Devices 21

Parameters:

← devices,: array of pointers previously filled in via cci_get_devices().

Returns:

CCI_SUCCESS All CCI resources have been released.
CCI_EINVAL Devices is NULL.
Each driver may have additional error codes.

If cci_free_devices() succeeds, the data pointed to by the devices pointer will be stale
(and should not be accessed).

If cci_free_devices() fails, the state of the data pointed to by the devices parameter is
undefined.

Examples:

client.c, devices.c, and server.c.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

22 Module Documentation

4.3 Endpoints

Data Structures

• struct cci_endpoint
Endpoint.

Typedefs

• typedef enum cci_endpoint_flags cci_endpoint_flags_t
And endpoint is a set of resources associated with a single NUMA locality.

• typedef struct cci_endpoint cci_endpoint_t
Endpoint.

• typedef int cci_os_handle_t
OS-native handles.

Enumerations

• enum cci_endpoint_flags { bogus_must_have_something_here }
And endpoint is a set of resources associated with a single NUMA locality.

Functions

• CCI_DECLSPEC int cci_create_endpoint (cci_device_t ∗device, int flags, cci_-
endpoint_t ∗∗endpoint, cci_os_handle_t ∗fd)

Create an endpoint.

• CCI_DECLSPEC int cci_destroy_endpoint (cci_endpoint_t ∗endpoint)
Destroy an endpoint.

4.3.1 Typedef Documentation

4.3.1.1 typedef enum cci_endpoint_flags cci_endpoint_flags_t

And endpoint is a set of resources associated with a single NUMA locality.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.3 Endpoints 23

Buffers should be pinned by the CCI implementation to the NUMA locality where the
thread is located who calls create_endpoint().

Advice to users: bind a thread to a locality before calling create_endpoint().

Sidenote: if we want to someday make endpoints span multiple NUMA localities, we
can add a function to say "add this locality (or thread?) to this endpoint.

Endpoints are "thread safe" by default... Meaning multiple threads can call functions on
endpoints simultaneously and it’s "safe". No guarantees are made about serialization
or concurrency.

A set of flags that describe how the endpoint should be created.

4.3.1.2 typedef struct cci_endpoint cci_endpoint_t

Endpoint.

4.3.1.3 typedef int cci_os_handle_t

OS-native handles.

Examples:

client.c, and server.c.

4.3.2 Enumeration Type Documentation

4.3.2.1 enum cci_endpoint_flags

And endpoint is a set of resources associated with a single NUMA locality.

Buffers should be pinned by the CCI implementation to the NUMA locality where the
thread is located who calls create_endpoint().

Advice to users: bind a thread to a locality before calling create_endpoint().

Sidenote: if we want to someday make endpoints span multiple NUMA localities, we
can add a function to say "add this locality (or thread?) to this endpoint.

Endpoints are "thread safe" by default... Meaning multiple threads can call functions on
endpoints simultaneously and it’s "safe". No guarantees are made about serialization
or concurrency.

A set of flags that describe how the endpoint should be created.

Enumerator:

bogus_must_have_something_here For future expansion.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

24 Module Documentation

4.3.3 Function Documentation

4.3.3.1 CCI_DECLSPEC int cci_create_endpoint (cci_device_t ∗ device, int
flags, cci_endpoint_t ∗∗ endpoint, cci_os_handle_t ∗ fd)

Create an endpoint.

Parameters:

← device,: A pointer to a device that was returned via cci_get_devices() or NULL.

← flags,: Flags specifying behavior of this endpoint.

→ endpoint,: A handle to the endpoint that was created.

→ fd,: Operating system handle that can be used to block for progress on this
endpoint.

Returns:

CCI_SUCCESS The endpoint is ready for use.
CCI_EINVAL Endpoint or fd is NULL.
CCI_ENODEV Device is not "up".
CCI_ENOMEM Unable to allocate enough memory.
Each driver may have additional error codes.

This function creates a CCI endpoint. A CCI endpoint represents a collection of lo-
cal resources (such as buffers and a completion queue). An endpoint is associated
with a device that performs the actual communication (see the description of cci_get_-
devices(), above).

The device argument can be a pointer that was returned by cci_get_devices() to indicate
that a specific device should be used for this endpoint, or NULL, indicating that the
system default device should be used.

If successful, cci_create_endpoint() creates an endpoint and returns a pointer to it in
the endpoint parameter.

cci_create_endpoint() is a local operation (i.e., it occurs on local hardware). There is
no need to talk to name services, etc. To be clear, the intent is that this function can be
invoked many times locally without affecting any remote resources.

If it is desirable to bind the CCI endpoint to a specific set of resources (e.g., a NUMA
node), you should bind the calling thread before calling cci_create_endpoint().

Advice to users: if you want to set the send/receive buffer count on the endpoint, call
cci_set|get_opt() after creating the endpoint.

Examples:

client.c, and server.c.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.3 Endpoints 25

4.3.3.2 CCI_DECLSPEC int cci_destroy_endpoint (cci_endpoint_t ∗ endpoint)

Destroy an endpoint.

Parameters:

← endpoint,: Handle previously returned from a successful call to cci_create_-
endpoint().

Returns:

CCI_SUCCESS The endpoint’s resources have been released.
CCI_EINVAL Endpoint is NULL.
Each driver may have additional error codes.

Successful completion of this function makes all data structures and state associated
with the endpoint stale. All open connections are closed immediately – it is exactly as
if cci_disconnect() was invoked on every open connection on this endpoint.

Examples:

client.c, and server.c.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

26 Module Documentation

4.4 Connections

Data Structures

• struct cci_conn_req

Connection request.

• struct cci_connection

Connection handle.

Defines

• #define CCI_CONN_REQ_LEN (1024)

This constant is the maximum value of data_len passed to cci_connect().

Typedefs

• typedef enum cci_conn_attribute cci_conn_attribute_t

Connection request attributes.

• typedef struct cci_conn_req cci_conn_req_t

Connection request.

• typedef struct cci_connection cci_connection_t

Connection handle.

Enumerations

• enum cci_conn_attribute {

CCI_CONN_ATTR_RO, CCI_CONN_ATTR_RU, CCI_CONN_ATTR_UU,
CCI_CONN_ATTR_UU_MC_TX,

CCI_CONN_ATTR_UU_MC_RX }

Connection request attributes.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.4 Connections 27

Functions

• CCI_DECLSPEC int cci_bind (cci_device_t ∗device, int backlog, uint32_-
t ∗port, cci_service_t ∗∗service, cci_os_handle_t ∗fd)

Bind a service to the connection manager using specific service port.

• CCI_DECLSPEC int cci_unbind (cci_service_t ∗service, cci_device_t
∗device)

Unbind a previously-bound service.

• CCI_DECLSPEC int cci_get_conn_req (cci_service_t ∗service, cci_conn_req_t
∗∗conn_req)

Return the next connection request, if any.

• CCI_DECLSPEC int cci_accept (cci_conn_req_t ∗conn_req, cci_endpoint_-
t ∗endpoint, cci_connection_t ∗∗connection)

Accept a connection request and establish a connection with a specific endpoint.

• CCI_DECLSPEC int cci_reject (cci_conn_req_t ∗conn_req)

Reject a connection request.

• CCI_DECLSPEC int cci_connect (cci_endpoint_t ∗endpoint, char ∗server_uri,
uint32_t port, void ∗data_ptr, uint32_t data_len, cci_conn_attribute_t attribute,
void ∗context, int flags, struct timeval ∗timeout)

Initiate a connection request (client side).

• CCI_DECLSPEC int cci_disconnect (cci_connection_t ∗connection)

Tear down an existing connection.

4.4.1 Define Documentation

4.4.1.1 #define CCI_CONN_REQ_LEN (1024)

This constant is the maximum value of data_len passed to cci_connect().

4.4.2 Typedef Documentation

4.4.2.1 typedef enum cci_conn_attribute cci_conn_attribute_t

Connection request attributes.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

28 Module Documentation

Reliable connections deliver messages once. If the packet cannot be delivered after
a specific amount of time, the connection is broken; there is no guarantee regarding
which messages have been received successfully before the connection was broken.

Connections can be ordered or unordered, but note that ordered unreliable connections
are forbidden. Also, note that ordering of RMA operations only applies to target noti-
fication, not data delivery.

Unreliable unordered connections have no timeout.

Multicast is always unreliable unordered. Multicast connections are always unidirec-
tional, send ∗or∗ receive. If an endpoint wants to join a multicast group to both send
and receive, it needs to establish two distinct connections, one for sending and one for
receiving.

4.4.2.2 typedef struct cci_conn_req cci_conn_req_t

Connection request.

4.4.2.3 typedef struct cci_connection cci_connection_t

Connection handle.

4.4.3 Enumeration Type Documentation

4.4.3.1 enum cci_conn_attribute

Connection request attributes.

Reliable connections deliver messages once. If the packet cannot be delivered after
a specific amount of time, the connection is broken; there is no guarantee regarding
which messages have been received successfully before the connection was broken.

Connections can be ordered or unordered, but note that ordered unreliable connections
are forbidden. Also, note that ordering of RMA operations only applies to target noti-
fication, not data delivery.

Unreliable unordered connections have no timeout.

Multicast is always unreliable unordered. Multicast connections are always unidirec-
tional, send ∗or∗ receive. If an endpoint wants to join a multicast group to both send
and receive, it needs to establish two distinct connections, one for sending and one for
receiving.

Enumerator:

CCI_CONN_ATTR_RO Reliable ordered.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.4 Connections 29

Means that both completions and delivery are in the same order that they
were issued.

CCI_CONN_ATTR_RU Reliable unordered.
Means that delivery is guaranteed, but both delivery and completion may be
in a different order than they were issued.

CCI_CONN_ATTR_UU Unreliable unordered (RMA forbidden).
Delivery is not guaranteed, and both delivery and completions may be in a
different order than they were issued.

CCI_CONN_ATTR_UU_MC_TX Multicast send (RMA forbidden).

CCI_CONN_ATTR_UU_MC_RX Multicast recv (RMA forbidden).

4.4.4 Function Documentation

4.4.4.1 CCI_DECLSPEC int cci_bind (cci_device_t ∗ device, int backlog,
uint32_t ∗ port, cci_service_t ∗∗ service, cci_os_handle_t ∗ fd)

Bind a service to the connection manager using specific service port.

It returns a service handle and an OS-specific handle that can be used for blocking
(e.g., via POSIX poll(), select(), or Windows’ WaitOnMultipleObjects(), or other OS-
specific methods).

If a specific service port is not required, passing "0" will allocate an unused one. If the
requested service port is already used by another application, an error is returned. The
lowest 4096 (?) ports are reserved for privileged processes.

Parameters:

← device Device to bind to, can be NULL.

← backlog Incoming connection requests queue depth.

↔ port Port number used by client to identify the service accepting connection
requests.

→ service Handle representing the service accepting connection requests through
the connection manager.

→ fd OS-specific file descriptor/handle to block on incoming connection requests.

Returns:

CCI_SUCCESS Service successfully bound on that device.
CCI_EINVAL Port, service, or fd is NULL.
CCI_EINVAL Backlog is zero.
CCI_ENODEV Device is NULL and no default device found.
CCI_ENODEV Device is not "up".
CCI_ENOMEM Unable to allocate enough memory.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

30 Module Documentation

CCI_EBUSY The service port is already bound on that device.
Each driver may have additional error codes.

If you use the same service port, you get the same service, even for different devices.
The connection request will contain all the devices that are compatible for the connec-
tion.

Examples:

server.c.

4.4.4.2 CCI_DECLSPEC int cci_unbind (cci_service_t ∗ service, cci_device_t ∗
device)

Unbind a previously-bound service.

Parameters:

← service Service that was previously returned from cci_bind().

← device Specific device to unbind from the service. If 0, unbinds all devices
bound to that service.

Returns:

CCI_SUCCESS Device has been unbound from the service.
CCI_EINVAL Service or device is NULL.
CCI_ENODEV Device is not bound on the service.
Each driver may have additional error codes.

The service could become stale if there is no more device bound to that service. This
does not affect established connections.

Examples:

server.c.

4.4.4.3 CCI_DECLSPEC int cci_get_conn_req (cci_service_t ∗ service,
cci_conn_req_t ∗∗ conn_req)

Return the next connection request, if any.

Parameters:

← service Service to check for incoming requests.

→ conn_req New connection request.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.4 Connections 31

Returns:

CCI_SUCCESS A new connection request is available.
CCI_EINVAL Service or conn_req is NULL.
CCI_EAGAIN No connection request was ready.
Each driver may have additional error codes.

This function always returns immediately, even if nothing is available. The application
can block on the OS-specific handle returned by cci_bind(), if desired.

The connection request structure contains the connection information, including
pointer to the connection request data.

Examples:

server.c.

4.4.4.4 CCI_DECLSPEC int cci_accept (cci_conn_req_t ∗ conn_req,
cci_endpoint_t ∗ endpoint, cci_connection_t ∗∗ connection)

Accept a connection request and establish a connection with a specific endpoint.

Parameters:

← conn_req A connection request previously returned by cci_get_conn_req().

← endpoint The local endpoint to use for this connection. It must be bound to
one of the devices specified in the connection request.

↔ connection Pointer to a connection request structure.

Returns:

CCI_SUCCESS The connection has been established.
CCI_EINVAL Conn_req, endpoint, or connection is NULL.
CCI_EINVAL The endpoint is not bound to one of the devices in the connection
request.
CCI_ETIMEDOUT The incoming connection request timed out on the client.
Each driver may have additional error codes.

Upon success, the incoming connection request is bound to the desired endpoint and a
connection handle is filled in. The connection request handle then becomes stale.

Examples:

server.c.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

32 Module Documentation

4.4.4.5 CCI_DECLSPEC int cci_reject (cci_conn_req_t ∗ conn_req)

Reject a connection request.

Parameters:

← conn_req Connection request to reject.

Returns:

CCI_SUCCESS Connection request has been rejected.
CCI_ETIMEDOUT The incoming connection request timed out on the client.
Each driver may have additional error codes.

Rejects an incoming connection request. The connection request becomes stale after
this function returns successfully; no further interaction with this connection is possible
after rejecting it.

Examples:

server.c.

4.4.4.6 CCI_DECLSPEC int cci_connect (cci_endpoint_t ∗ endpoint, char
∗ server_uri, uint32_t port, void ∗ data_ptr, uint32_t data_len,
cci_conn_attribute_t attribute, void ∗ context, int flags, struct timeval ∗
timeout)

Initiate a connection request (client side).

Request a connection through a connection manager on a given machine for a given
CCI service port. The connection manager address is described by a Uniform Resource
Identifier. The use of an URI allows for flexible description (IP address, hostname, etc).

The connection request can carry limited amount of data to be passed to the server for
application-specific usage (identification, authentication, etc).

The connect call is always non-blocking, reliable and requires a decision by the server
(accept or reject), even for an unreliable connection, except for multicast.

Multicast connections don’t necessarily involve a discrete connection server, they may
be handled by IGMP or other distributed framework.

Upon completion, an ...

Parameters:

← endpoint Local endpoint to use for requested connection.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.4 Connections 33

← server_uri Uniform Resource Identifier of the server. The URI is flexible and
can encode different values. Coma-separated arguments can be added after a
colon.

• IP address: "ip://172.31.194.2"
• Resolvable name: "ip://foo.bar.com"
• IB LID or GID: "ib://TBD"
• Blah id: "blah://crap0123"
• With arguments: "ip://foo.bar.com:eth1,eth3"

← port The CCI port number use to identify the service on the server.

← data_ptr Pointer to connection data to be sent in the connection request (for
authentication, etc).

← data_len Length of connection data. Implementations must support a data_len
values <= 1,024 bytes.

← attribute Attributes of the requested connection (reliability, ordering, multi-
cast, etc).

← context Cookie to be used to identify the completion through an Other event.

← flags Currently unused.

← timeout NULL means forever.

Returns:

CCI_SUCCESS The request is buffered and ready to be sent or has been sent.
CCI_EINVAL Endpoint or server_uri is NULL.
CCI_EINVAL Data_ptr is NULL but data_len > 0.
Each driver may have additional error codes.

The server_uri is used to identify/reach a specific machine (it does not necessarily
imply a specific destination endpoint). The URIs are strings so that we can easily
accommodate special needs. The URIs are typically passed by the environment, as a
hostname, an IP address, or whatever makes sense to identify a remote machine. The
main part of the URI is device independent, it’s only the identification of the remote
machine. The arguments are device-specific. On the client side, the device to use is
dictated by the local endpoint. On the server side, multiple devices can be used for the
connection, depending on connectivity and arguments from the client.

Examples:

client.c.

4.4.4.7 CCI_DECLSPEC int cci_disconnect (cci_connection_t ∗ connection)

Tear down an existing connection.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

34 Module Documentation

Operation is local, remote side is not notified. From that point, both local and remote
side will get a DISCONNECTED communication error if sends are initiated on this
connection.

Parameters:

← connection Connection to sever.

Returns:

CCI_SUCCESS The connection’s resources have been released.
CCI_EINVAL Connection is NULL.
Each driver may have additional error codes.

Examples:

client.c.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.5 Endpoint / Connection Options 35

4.5 Endpoint / Connection Options

Data Structures

• union cci_opt_handle

Handle defining the scope of an option.

Typedefs

• typedef union cci_opt_handle cci_opt_handle_t

Handle defining the scope of an option.

• typedef enum cci_opt_level cci_opt_level_t

Level defining the scope of an option.

• typedef enum cci_opt_name cci_opt_name_t

Name of options.

Enumerations

• enum cci_opt_level { CCI_OPT_LEVEL_ENDPOINT, CCI_OPT_LEVEL_-
CONNECTION }

Level defining the scope of an option.

• enum cci_opt_name {

CCI_OPT_ENDPT_MAX_HEADER_SIZE, CCI_OPT_ENDPT_SEND_-
TIMEOUT, CCI_OPT_ENDPT_RECV_BUF_COUNT, CCI_OPT_ENDPT_-
SEND_BUF_COUNT,

CCI_OPT_ENDPT_KEEPALIVE_TIMEOUT, CCI_OPT_CONN_SEND_-
TIMEOUT }

Name of options.

Functions

• CCI_DECLSPEC int cci_set_opt (cci_opt_handle_t ∗handle, cci_opt_level_-
t level, cci_opt_name_t name, const void ∗val, int len)

Set an endpoint or connection option value.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

36 Module Documentation

• CCI_DECLSPEC int cci_get_opt (cci_opt_handle_t ∗handle, cci_opt_level_-
t level, cci_opt_name_t name, void ∗∗val, int ∗len)

Get an endpoint or connection option value.

4.5.1 Typedef Documentation

4.5.1.1 typedef union cci_opt_handle cci_opt_handle_t

Handle defining the scope of an option.

4.5.1.2 typedef enum cci_opt_level cci_opt_level_t

Level defining the scope of an option.

4.5.1.3 typedef enum cci_opt_name cci_opt_name_t

Name of options.

4.5.2 Enumeration Type Documentation

4.5.2.1 enum cci_opt_level

Level defining the scope of an option.

Enumerator:

CCI_OPT_LEVEL_ENDPOINT Flag indicating that the union is an endpoint.

CCI_OPT_LEVEL_CONNECTION Flag indicating that the union is a connec-
tion.

4.5.2.2 enum cci_opt_name

Name of options.

Enumerator:

CCI_OPT_ENDPT_MAX_HEADER_SIZE Max header size (in bytes) on the
endpoint, for both sends and RMA operations.
cci_get_opt() only.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.5 Endpoint / Connection Options 37

CCI_OPT_ENDPT_SEND_TIMEOUT Default send timeout for all new con-
nections.
cci_get_opt() and cci_set_opt().

CCI_OPT_ENDPT_RECV_BUF_COUNT How many receiver buffers on the
endpoint.
It is the max number of messages the CCI layer can receive without dropping.
cci_get_opt() and cci_set_opt().

CCI_OPT_ENDPT_SEND_BUF_COUNT How many send buffers on the end-
point.
It is the max number of pending messages the CCI layer can buffer before
failing or blocking (depending on reliability mode).
cci_get_opt() and cci_set_opt().

CCI_OPT_ENDPT_KEEPALIVE_TIMEOUT The "keepalive" timeout is to
prevent a client from connecting to a server and then the client disappears
without the server noticing.
If the server never sends anything on the connection, it’ll never realize that
the client is gone, but the connection is still consuming resources. But note
that keepalive timers apply to both clients and servers.
The keepalive timeout is expressed in microseconds. If the keepalive timeout
value is set:

• If no traffic at all is received on a connection within the keepalive time-
out, the CCI_EVENT_KEEPALIVE_TIMEOUT event is raised on that
connection.

• The CCI implementation will automatically send control hearbeats
across an inactive (but still alive) connection to reset the peer’s keepalive
timer before it times out.

If a keepalive event is raised, the keepalive timeout is set to 0 (i.e., it must
be "re-armed" before it will timeout again), but the connection is ∗not∗ dis-
connected. Recovery decisions are up to the application; it may choose to
disconnect the connection, re-arm the keepalive timeout, etc.
cci_get_opt() and cci_set_opt().

CCI_OPT_CONN_SEND_TIMEOUT Reliable send timeout in microseconds.
cci_get_opt() and cci_set_opt().

4.5.3 Function Documentation

4.5.3.1 CCI_DECLSPEC int cci_set_opt (cci_opt_handle_t ∗ handle,
cci_opt_level_t level, cci_opt_name_t name, const void ∗ val, int len)

Set an endpoint or connection option value.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

38 Module Documentation

Parameters:

← handle Endpoint or connection handle.

← level Indicates type of handle.

← name Which option to set the value of.

← val Pointer to the value.

← len Length of value to be set.

Returns:

CCI_SUCCESS Value successfully set.
CCI_EINVAL Handle or val is NULL or len is 0.
CCI_EINVAL Level/name mismatch.
CCI_ERR_NOT_IMPLEMENTED Not supported by this driver.
Each driver may have additional error codes.

Note that the set may fail if the CCI implementation cannot actually set the value.

Examples:

client.c.

4.5.3.2 CCI_DECLSPEC int cci_get_opt (cci_opt_handle_t ∗ handle,
cci_opt_level_t level, cci_opt_name_t name, void ∗∗ val, int ∗ len)

Get an endpoint or connection option value.

Parameters:

← handle Endpoint or connection handle.

← level Indicates type of handle.

← name Which option to set the value of.

← val Address of the pointer to the value.

← len Address of the length of value.

Returns:

CCI_SUCCESS Value successfully retrieved.
CCI_EINVAL Handle or val is NULL or len is 0.
CCI_EINVAL Level/name mismatch.
CCI_ERR_NOT_IMPLEMENTED Not supported by this driver.
Each driver may have additional error codes.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.6 Events 39

4.6 Events

Data Structures

• struct cci_event_send

Send event.

• struct cci_event_recv

Receive event.

• struct cci_event_other

Other event.

• struct cci_event

Generic event.

Typedefs

• typedef struct cci_event_send cci_event_send_t

Send event.

• typedef struct cci_event_recv cci_event_recv_t

Receive event.

• typedef struct cci_event_other cci_event_other_t

Other event.

• typedef enum cci_event_type cci_event_type_t

Event types.

• typedef struct cci_event cci_event_t

Generic event.

Enumerations

• enum cci_event_type {

CCI_EVENT_NONE, CCI_EVENT_SEND, CCI_EVENT_RECV, CCI_-
EVENT_CONNECT_SUCCESS,

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

40 Module Documentation

CCI_EVENT_CONNECT_TIMEOUT, CCI_EVENT_CONNECT_-
REJECTED, CCI_EVENT_KEEPALIVE_TIMEOUT, CCI_EVENT_-
ENDPOINT_DEVICE_FAIL }

Event types.

Functions

• CCI_DECLSPEC int cci_arm_os_handle (cci_endpoint_t ∗endpoint, int flags)
• CCI_DECLSPEC int cci_get_event (cci_endpoint_t ∗endpoint, cci_event_-

t ∗∗const event, uint32_t flags)

Get the next available CCI event.

• CCI_DECLSPEC int cci_return_event (cci_endpoint_t ∗endpoint, cci_event_t
∗event)

This function returns the buffer associated with an event that was previously obtained
via cci_get_event().

4.6.1 Typedef Documentation

4.6.1.1 typedef struct cci_event_send cci_event_send_t

Send event.

A completion struct instance is returned for each cci_send() that requested a completion
notification.

On a reliable connection, a sender will generally complete a send when the receiver
replies for that message. Additionally, an error status may be returned (UNREACH-
ABLE, DISCONNECTED, RNR).

On an unreliable connection, a sender will return CCI_SUCCESS upon local comple-
tion (i.e., the message has been queued up to some lower layer – there is no guarantee
that it is "on the wire", etc.). Other send statuses will only be returned for local errors.

The number of fields in this struct is intentionally limited in order to reduce costs
associated with state storage, caching, updating, copying. For example, there is no
field pointing to the endpoint used for the send because it can be obtained from the
cci_connection, or through the endpoint passed to the cci_get_event() call.

If it is desirable to match send completions with specific sends (it usually is), it is the
responsibility of the caller to pass a meaningful context value to cci_send().

The ordering of fields in this struct is intended to reduce memory holes between fields.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.6 Events 41

4.6.1.2 typedef struct cci_event_recv cci_event_recv_t

Receive event.

A completion struct instance is returned for each message received.

The number of fields in this struct is intentionally limited in order to reduce costs
associated with state storage, caching, updating, copying. For example, there is no
field pointing to the endpoint because it can be obtained from the cci_connection or
through the endpoint passed to the cci_get_event() call.

The ordering of fields in this struct is intended to reduce memory holes between fields.

4.6.1.3 typedef struct cci_event_other cci_event_other_t

Other event.

Other event.

A completion struct to handle non-send and non-receive events.

It contains a context pointer for application-specific data such as the state of a con-
nection request waiting for a connection accept or reject message (i.e., passed to cci_-
connect()).

The event also contains a union depending on the type of other event. If it is
CONNECT_SUCCESS (i.e. the server accepted the connection request), the new con-
nection is returned in the union. For all other events, the union has no meaning.

Note:

We will need to add a union member for keepalive timeouts that will have a pointer
to the connection that timed out.

4.6.1.4 typedef enum cci_event_type cci_event_type_t

Event types.

There are three board categories of events: send, receive, and other. The other class
includes connect success, rejected, and timeout as well as a generic endpoint device
failure.

The NONE event type is never passed to the application and is for internal CCI use
only.

4.6.1.5 typedef struct cci_event cci_event_t

Generic event.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

42 Module Documentation

This is the union of Send, Recv and Other events.

4.6.2 Enumeration Type Documentation

4.6.2.1 enum cci_event_type

Event types.

There are three board categories of events: send, receive, and other. The other class
includes connect success, rejected, and timeout as well as a generic endpoint device
failure.

The NONE event type is never passed to the application and is for internal CCI use
only.

Enumerator:

CCI_EVENT_NONE Never use - for internal CCI use only.

CCI_EVENT_SEND A send or RMA has completed.

CCI_EVENT_RECV An active message has been received.

CCI_EVENT_CONNECT_SUCCESS A new outgoing connection was suc-
cessfully accepted at the peer; a connection is now available for data transfer.

CCI_EVENT_CONNECT_TIMEOUT A new outgoing connection did not
complete the accept/connect handshake with the peer in a finite time.
CCI has therefore given up attempting to continue to create this connection.

CCI_EVENT_CONNECT_REJECTED A new outgoing connection was re-
jected by the server.

CCI_EVENT_KEEPALIVE_TIMEOUT This event occurs when the keepalive
timeout has expired (see CCI_OPT_ENDPT_KEEPALIVE_TIMEOUT for
more details).

CCI_EVENT_ENDPOINT_DEVICE_FAIL A device on this endpoint has
failed.

4.6.3 Function Documentation

4.6.3.1 CCI_DECLSPEC int cci_arm_os_handle (cci_endpoint_t ∗ endpoint,
int flags)

4.6.3.2 CCI_DECLSPEC int cci_get_event (cci_endpoint_t ∗ endpoint,
cci_event_t ∗∗const event, uint32_t flags)

Get the next available CCI event.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.6 Events 43

This function never blocks; it polls instantly to see if there is any pending event of any
type (send completion, receive, or other events – errors, incoming connection requests,
etc.). If you want to block, use the OS handle to use your OS’s native blocking mech-
anism (e.g., select/poll on the POSIX fd). This also allows the app to busy poll for a
while and then OS block if nothing interesting is happening. The default OS handle
returned when creating the endpoint will return the equivalent of a POLL_IN when any
event is available.

This function borrows the buffer associated with the event; it must be explicitly re-
turned later via cci_return_event().

Parameters:

← endpoint Endpoint to poll for a new event.

← event New event, if any.

← flags • CCI_PE_SEND_EVENT
• CCI_PE_RECV_EVENT
• CCI_PE_OTHER_EVENT
• CCI_PE_I_SET_THE_DATA_BUFFER_PLEASE_COPY Flag value

of 0 means (CCI_PE_SEND_EVENT | CCI_PE_RECV_EVENT |
CCI_PE_OTHER_EVENT).

Returns:

CCI_SUCCESS An event was retrieved.
CCI_EINVAL Endpoint or event is NULL.
CCI_EAGAIN No event is available.
Each driver may have additional error codes.

To discuss:

• How do we know if the event was filled? Via the function return value?

• it may be convenient to optionally get multiple OS handles; one each for send
completions, receives, and "other" (errors, incoming connection requests, etc.).
Should that be part of endpoint creation? If we allow this concept, do we need a
way to pass in a different CQ here to get just those types of events?

• How do we have CCI-implementation private space in the event – bound by size?
I.e., how/who determines the max inline data size?

Examples:

client.c, and server.c.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

44 Module Documentation

4.6.3.3 CCI_DECLSPEC int cci_return_event (cci_endpoint_t ∗ endpoint,
cci_event_t ∗ event)

This function returns the buffer associated with an event that was previously obtained
via cci_get_event().

The data buffer associated with the event will immediately become stale to the appli-
cation.

Events may be returned in any order; they do not need to be returned in the same order
that cci_poll_event() issued them. All events must be returned, even send completions
and "other" events – not just receive events. However, it is possible (likely) that return-
ing send completion and "other" events will be no-ops.

Parameters:

← endpoint Endpoint that provided the event.

← event Event to return.

Returns:

CCI_SUCCESS The event was returned to CCI.
CCI_EINVAL Endpoint is NULL.
CCI_EINVAL Event did not come from endpoint.
Each driver may have additional error codes.

Examples:

client.c, and server.c.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.7 Communications 45

4.7 Communications

Data Structures

• struct cci_sg

This data structure should map to the native scatter/gather list that is used down in
the kernel.

Typedefs

• typedef struct cci_sg cci_sg_t

This data structure should map to the native scatter/gather list that is used down in
the kernel.

Functions

• CCI_DECLSPEC int cci_send (cci_connection_t ∗connection, void ∗header_ptr,
uint32_t header_len, void ∗data_ptr, uint32_t data_len, void ∗context, int flags)

Send a short message.

• CCI_DECLSPEC int cci_sendv (cci_connection_t ∗connection, void ∗header_-
ptr, uint32_t header_len, struct iovec ∗data, uint8_t iovcnt, void ∗context, int
flags)

Send a short vectored (gather) message.

• CCI_DECLSPEC int cci_rma_register (cci_endpoint_t ∗endpoint, cci_-
connection_t ∗connection, void ∗start, uint64_t length, uint64_t ∗rma_handle)

Register memory for RMA operations.

• CCI_DECLSPEC int cci_rma_deregister (uint64_t rma_handle)

Deregister memory.

• CCI_DECLSPEC int cci_rma (cci_connection_t ∗connection, void ∗header_-
ptr, uint32_t header_len, uint64_t local_handle, uint64_t local_offset, uint64_-
t remote_handle, uint64_t remote_offset, uint64_t data_len, void ∗context, int
flags)

Perform a RMA operation between local and remote memory.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

46 Module Documentation

4.7.1 Typedef Documentation

4.7.1.1 typedef struct cci_sg cci_sg_t

This data structure should map to the native scatter/gather list that is used down in the
kernel.

4.7.2 Function Documentation

4.7.2.1 CCI_DECLSPEC int cci_send (cci_connection_t ∗ connection, void ∗
header_ptr, uint32_t header_len, void ∗ data_ptr, uint32_t data_len,
void ∗ context, int flags)

Send a short message.

am_max_size maximum, no order guaranteed, completion is local.

Two segments for Header and Data. When CCI_FLAG_ASYNC is used and the call
returns, data has been buffered.

A short message may have two segments, header and data. The header has a lim-
ited size which is retrievable using cci_get_opt() with the CCI_OPT_ENDPT_MAX_-
HEADER_SIZE flag. The data length is limited to the cci_connection::max_send_size,
which may be lower than the cci_device::max_send_size. The application may specify
both the header and data, only one, or neither (although nothing will be delivered, the
peer will still ack the message on a reliable connection).

If the application needs to send a message larger than cci_connection::max_send_size,
the application is responsible for segmenting and reassembly or it should use cci_rma().

When cci_send() returns, the application buffer is reusable. By default, CCI will buffer
the data internally.

Parameters:

← connection Connection (destination/reliability).

← header_ptr Pointer to local header segment.

← header_len Length of local header segment (limited to 32 bytes).

← data_ptr Pointer to local data segment.

← data_len Length of local data segment (limited to max send size).

← context Cookie to identify the completion through a Send event when non-
blocking.

← flags Optional flags: CCI_FLAG_BLOCKING, CCI_FLAG_NO_COPY,
CCI_FLAG_SILENT. These flags are explained below.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.7 Communications 47

Returns:

CCI_SUCCESS The message has been queued to send.
CCI_EINVAL Connection is NULL.
CCI_EINVAL header_ptr is NULL and header_len is > 0.
CCI_EINVAL data_ptr is NULL and data_len is > 0.
Each driver may have additional error codes.

The send will complete differently in reliable and unreliable connections:

• Reliable: only when remote side ACKs complete delivery – but not necessary
consumption (i.e., remote completion).

• Unreliable: when the buffer is re-usable (i.e., local completion).

When cci_send() returns, the buffer is re-usable by the application.

If the CCI_FLAG_BLOCKING flag is specified, cci_send() will also block until the
send completion has occurred. In this case, there is no event returned for this send via
cci_get_event(); the send completion status is returned via cci_send().

If the CCI_FLAG_NO_COPY is specified, the application is indicating that it does
not need the buffer back until the send completion occurs (which is most useful when
CCI_FLAG_BLOCKING is not specified). The CCI implementation is therefore free
to use "zero copy" types of transmission with the buffer – if it wants to.

CCI_FLAG_SILENT means that no completion will be generated for non-CCI_-
FLAG_BLOCKING sends. For reliable ordered connections, since completions are
issued in order, the completion of any non-SILENT send directly implies the comple-
tion of any previous SILENT sends. For unordered connections, completion ordering
is not guaranteed – it is not safe to assume that application protocol semantics imply
specific unordered SILENT send completions. The only ways to know when unordered
SILENT sends have completed (and that the local send buffer is "owned" by the ap-
plication again) is either to close the connection or issue a non-SILENT send. The
completion of a non-SILENT send guarantees the completion of all previous SILENT
sends.

Examples:

client.c, and server.c.

4.7.2.2 CCI_DECLSPEC int cci_sendv (cci_connection_t ∗ connection, void ∗
header_ptr, uint32_t header_len, struct iovec ∗ data, uint8_t iovcnt,
void ∗ context, int flags)

Send a short vectored (gather) message.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

48 Module Documentation

Like cci_send(), cci_sendv() sends a short message bound by cci_connection::max_-
send_size. Instead of a single data buffer, cci_sendv() allows the application to gather
an array of iovcnt buffers pointed to by struct iovec ∗data.

Parameters:

← connection Connection (destination/reliability).

← header_ptr Pointer to local header segment.

← header_len Length of local header segment (limited to 32 bytes).

← data Array of local data buffers.

← iovcnt Count of local data array.

← context Cookie to identify the completion through a Send event when non-
blocking.

← flags Optional flags: CCI_FLAG_BLOCKING, CCI_FLAG_NO_COPY,
CCI_FLAG_SILENT. See cci_send().

Returns:

CCI_SUCCESS The message has been queued to send.
CCI_EINVAL Connection is NULL.
CCI_EINVAL header_ptr is NULL and header_len is > 0.
CCI_EINVAL data is NULL and iovcnt is > 0.
Each driver may have additional error codes.

4.7.2.3 CCI_DECLSPEC int cci_rma_register (cci_endpoint_t ∗ endpoint,
cci_connection_t ∗ connection, void ∗ start, uint64_t length, uint64_t ∗
rma_handle)

Register memory for RMA operations.

The intent is that this function is invoked frequently – "just register everything" before
invoking RMA operations.

In the best case, the implementation is cheap/fast enough that the invocation time
doesn’t noticeably affect performance (e.g., MX and PSM). If the implementation is
slow (e.g., IB/iWARP), this function should probably have a registration cache so that
at least repeated registrations are fast.

If the connection is provided, the memory is only exposed to that connection. If it is
NULL, then any reliable connection on that endpoint can access that memory.

It is allowable to have overlapping registerations.

Parameters:

← endpoint Local endpoint to use for RMA.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

4.7 Communications 49

← connection Restrict RMA to this connection.

← start Pointer to local memory.

← length Length of local memory.

→ rma_handle Handle for use with cci_rma().

Returns:

CCI_SUCCESS The memory is ready for RMA.
CCI_EINVAL endpoint, start, or rma_handle is NULL.
CCI_EINVAL connection is unreliable.
CCI_EINVAL length is 0.
Each driver may have additional error codes.

4.7.2.4 CCI_DECLSPEC int cci_rma_deregister (uint64_t rma_handle)

Deregister memory.

If an RMA is in progress that uses this handle, the RMA may abort or the deregistera-
tion may fail.

Once deregistered, the handle is stale.

Parameters:

← rma_handle Handle for use with cci_rma().

Returns:

CCI_SUCCESS The memory is deregistered.
Each driver may have additional error codes.

4.7.2.5 CCI_DECLSPEC int cci_rma (cci_connection_t ∗ connection, void
∗ header_ptr, uint32_t header_len, uint64_t local_handle, uint64_t
local_offset, uint64_t remote_handle, uint64_t remote_offset, uint64_t
data_len, void ∗ context, int flags)

Perform a RMA operation between local and remote memory.

Initiate a remote memory WRITE access (move local memory to remote memory) or
READ (move remote memory to local memory). Adding the FENCE flag ensures all
previous operations are guaranteed to complete remotely prior to this operation and all
subsequent operations. Remote completion does not imply a remote completion event,
merely a successful RMA operation.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

50 Module Documentation

Optionally, send a remote completion event to the target. If header_ptr and header_len
are provided, send a completion event to the target after the RMA has completed. It is
guaranteed to arrive after the RMA operation has finished.

CCI makes no guarantees about the data delivery within the RMA operation (e.g., no
last-byte-written-last).

Only a local completion will be generated.

Parameters:

← connection Connection (destination).
← header_ptr Pointer to local header segment.
← header_len Length of local header segment (limited to 32 bytes)
← local_handle Handle of the local RMA area.
← local_offset Offset in the local RMA area.
← remote_handle Handle of the remote RMA area.
← remote_offset Offset in the remote RMA area.
← data_len Length of data segment.
← context Cookie to identify the completion through a Send event when non-

blocking.
← flags Optional flags:

• CCI_FLAG_BLOCKING: Blocking call (see cci_send() for details).
• CCI_FLAG_READ: Move data from remote to local memory.
• CCI_FLAG_WRITE: Move data from local to remote memory
• CCI_FLAG_FENCE: All previous operations are guaranteed to com-

plete remotely prior to this operation and all subsequent operations.
• CCI_FLAG_SILENT: Generates no local completion event (see cci_-

send() for details).

Returns:

CCI_SUCCESS The RMA operation has been initiated.
CCI_EINVAL connection is NULL.
CCI_EINVAL connection is unreliable.
CCI_EINVAL header_ptr is NULL and header_len > 0.
CCI_EINVAL data_len is 0.
CCI_EINVAL Both READ and WRITE flags are set.
CCI_EINVAL Neither the READ or WRITE flag is set.
Each driver may have additional error codes.

Note:

CCI_FLAG_FENCE only applies to RMA operations for this connection. It does
not apply to sends on this connection.
READ may not be performance efficient.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

Chapter 5

Data Structure Documentation

5.1 cci_conn_req Struct Reference

Connection request.

#include <cci.h>

Data Fields

• cci_device_t const ∗∗const devices
Array of compatible devices.

• uint32_t devices_cnt
Number of compatible devices.

• const void ∗ data_ptr
Pointer to connection data received with the connection request.

• uint32_t data_len
Length of connection data.

• cci_conn_attribute_t attribute
Attribute of requested connection.

5.1.1 Detailed Description

Connection request.

52 Data Structure Documentation

Examples:

server.c.

5.1.2 Field Documentation

5.1.2.1 cci_device_t const∗∗ const cci_conn_req::devices

Array of compatible devices.

5.1.2.2 uint32_t cci_conn_req::devices_cnt

Number of compatible devices.

5.1.2.3 const void∗ cci_conn_req::data_ptr

Pointer to connection data received with the connection request.

5.1.2.4 uint32_t cci_conn_req::data_len

Length of connection data.

5.1.2.5 cci_conn_attribute_t cci_conn_req::attribute

Attribute of requested connection.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

5.2 cci_connection Struct Reference 53

5.2 cci_connection Struct Reference

Connection handle.

#include <cci.h>

Data Fields

• uint32_t max_send_size
Maximum send size for the connection.

• cci_endpoint_t ∗ endpoint
Local endpoint associated to the connection.

• cci_conn_attribute_t attribute
Attributes of the connection.

5.2.1 Detailed Description

Connection handle.

Examples:

client.c, and server.c.

5.2.2 Field Documentation

5.2.2.1 uint32_t cci_connection::max_send_size

Maximum send size for the connection.

Examples:

server.c.

5.2.2.2 cci_endpoint_t∗ cci_connection::endpoint

Local endpoint associated to the connection.

5.2.2.3 cci_conn_attribute_t cci_connection::attribute

Attributes of the connection.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

54 Data Structure Documentation

5.3 cci_device Struct Reference

Structure representing one CCI device.

#include <cci.h>

Data Fields

• const char ∗ name

Name of the device from the config file, e.g., "bob0".

• const char ∗ info

Human readable description string (to include newlines); should contain debugging
info, probably the network address of the device at a bare minimum.

• const char ∗∗ conf_argv

Array of "key=value" strings from the config file for this device; the last pointer in the
array is NULL.

• uint32_t max_send_size

Maximum send size supported by the device.

• uint64_t rate

Data rate per specification: data bits per second (not the signaling rate).

• struct {
uint32_t domain
uint32_t bus
uint32_t dev
uint32_t func

} pci

The PCI ID of this device as reported by the OS/hardware.

5.3.1 Detailed Description

Structure representing one CCI device.

5.3.2 Devices

Device types and functions.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

5.3 cci_device Struct Reference 55

Before launching into detail, let’s first describe the CCI system configuration file. On
POSIX systems, it is likely a simple INI-style text file; on Windows systems, it may be
registry entries. The key thing is to support trivial namespaces and key=value pairs.

Here is an example text config file:

Comments are anything after the # symbols.

Sections in this file are denoted by [section name]. Each section
denotes a single CCI device.

[bob0]
The only mandated field in each section is "driver". It indicates
which CCI driver should be applied to this device.
driver = psm

The priority field determines the ordering of devices returned by
cci_get_devices(). 100 is the highest priority; 0 is the lowest priority.
If not specified, the priority value is 50.
priority = 10

The last field understood by the CCI core is the "default" field.
Only one device is allowed to have a "true" value for default. All
others must be set to 0 (or unset, which is assumed to be 0). If
one device is marked as the default, then this device will be used
when NULL is passed as the device when creating an endpoint. If no
device is marked as the default, it is undefined as to which device
will be used when NULL is passed as the device when creating an
endpoint.
default = 1

All other fields are uninterpreted by the CCI core; they’re just
passed to the driver. The driver can do whatever it wants with
these values (e.g., system admins can set values to configure the
driver). Driver documentation should specify what parameters are
available, what each parameter is/does, and what its legal values
are.

This example shows a bonded PSM device that uses both the ipath0 and
ipath1 devices. Some other parameters are also passed to the PSM
driver; it assumedly knows how to handle them.

device = ipath0,ipath1
capabilities = bonded,failover,age_of_captain:52
qos_stuff = fast

bob2 is another PSM device, but it only uses the ipath0 device.
[bob2]
driver = psm
device = ipath0

bob3 is another PSM device, but it only uses the ipath1 device.
[bob3]
driver = psm
device = ipath1
sl = 3 # IB service level (if applicable)

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

56 Data Structure Documentation

storage is a device that uses the UDP driver. Note that this driver
allows specifying which device to use by specifying its IP address
and MAC address -- assumedly it’s an error if there is no single
device that matches both the specified IP address and MAC
(vs. specifying a specific device name).
[storage]
driver = udp
priority = 5
ip = 172.31.194.1
mac = 01:12:23:34:45

The config file forms the basis for the device discussion, below.

A CCI device is a [section] from the config file, above.

Examples:

client.c, devices.c, and server.c.

5.3.3 Field Documentation

5.3.3.1 const char∗ cci_device::name

Name of the device from the config file, e.g., "bob0".

5.3.3.2 const char∗ cci_device::info

Human readable description string (to include newlines); should contain debugging
info, probably the network address of the device at a bare minimum.

5.3.3.3 const char∗∗ cci_device::conf_argv

Array of "key=value" strings from the config file for this device; the last pointer in the
array is NULL.

5.3.3.4 uint32_t cci_device::max_send_size

Maximum send size supported by the device.

5.3.3.5 uint64_t cci_device::rate

Data rate per specification: data bits per second (not the signaling rate).

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

5.3 cci_device Struct Reference 57

5.3.3.6 uint32_t cci_device::domain

5.3.3.7 uint32_t cci_device::bus

5.3.3.8 uint32_t cci_device::dev

5.3.3.9 uint32_t cci_device::func

5.3.3.10 struct { ... } cci_device::pci

The PCI ID of this device as reported by the OS/hardware.

All values will be ((uint32_t) -1) for non-PCI devices (e.g., shared memory)

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

58 Data Structure Documentation

5.4 cci_endpoint Struct Reference

Endpoint.

#include <cci.h>

Data Fields

• uint32_t max_recv_buffer_count
Maximum number of receive buffers on this endpoint that can be loaned to the appli-
cation.

5.4.1 Detailed Description

Endpoint.

Examples:

client.c, and server.c.

5.4.2 Field Documentation

5.4.2.1 uint32_t cci_endpoint::max_recv_buffer_count

Maximum number of receive buffers on this endpoint that can be loaned to the appli-
cation.

When this number of buffers have been loaned to the application, incoming messages
may be dropped.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

5.5 cci_event Struct Reference 59

5.5 cci_event Struct Reference

Generic event.

#include <cci.h>

Data Fields

• cci_event_type_t type
Type of the event.

• union {
cci_event_send_t send
cci_event_recv_t recv
cci_event_other_t other

} info

union of event types

5.5.1 Detailed Description

Generic event.

This is the union of Send, Recv and Other events.

Examples:

client.c, and server.c.

5.5.2 Field Documentation

5.5.2.1 cci_event_type_t cci_event::type

Type of the event.

Examples:

client.c, and server.c.

5.5.2.2 cci_event_send_t cci_event::send

Examples:

client.c.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

60 Data Structure Documentation

5.5.2.3 cci_event_recv_t cci_event::recv

Examples:

client.c, and server.c.

5.5.2.4 cci_event_other_t cci_event::other

5.5.2.5 union { ... } cci_event::info

union of event types

Examples:

client.c, and server.c.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

5.6 cci_event_other Struct Reference 61

5.6 cci_event_other Struct Reference

Other event.

#include <cci.h>

Data Fields

• void ∗ context

Context value.

• union {
struct cci_event_connect {

cci_connection_t ∗ connection
} connect

new connection if peer accepted our connection request
} u

union of possible other items

5.6.1 Detailed Description

Other event.

Other event.

A completion struct to handle non-send and non-receive events.

It contains a context pointer for application-specific data such as the state of a con-
nection request waiting for a connection accept or reject message (i.e., passed to cci_-
connect()).

The event also contains a union depending on the type of other event. If it is
CONNECT_SUCCESS (i.e. the server accepted the connection request), the new con-
nection is returned in the union. For all other events, the union has no meaning.

Note:

We will need to add a union member for keepalive timeouts that will have a pointer
to the connection that timed out.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

62 Data Structure Documentation

5.6.2 Field Documentation

5.6.2.1 void∗ cci_event_other::context

Context value.

5.6.2.2 cci_connection_t∗ cci_event_other::connection

5.6.2.3 struct { ... } ::cci_event_connect cci_event_other::connect

new connection if peer accepted our connection request

5.6.2.4 union { ... } cci_event_other::u

union of possible other items

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

5.7 cci_event_recv Struct Reference 63

5.7 cci_event_recv Struct Reference

Receive event.

#include <cci.h>

Data Fields

• const uint32_t header_len

The length of the header part of the message (in bytes).

• const uint32_t data_len

The length of the data part of the message (in bytes).

• void ∗const header_ptr

Pointer to the header part of the received message.

• void ∗const data_ptr

Pointer to the data part of the received message.

• cci_connection_t ∗ connection

Connection that this message was received on.

5.7.1 Detailed Description

Receive event.

A completion struct instance is returned for each message received.

The number of fields in this struct is intentionally limited in order to reduce costs
associated with state storage, caching, updating, copying. For example, there is no
field pointing to the endpoint because it can be obtained from the cci_connection or
through the endpoint passed to the cci_get_event() call.

The ordering of fields in this struct is intended to reduce memory holes between fields.

5.7.2 Field Documentation

5.7.2.1 const uint32_t cci_event_recv::header_len

The length of the header part of the message (in bytes).

This value may be 0.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

64 Data Structure Documentation

Examples:

client.c, and server.c.

5.7.2.2 const uint32_t cci_event_recv::data_len

The length of the data part of the message (in bytes).

This value may be 0.

Examples:

client.c, and server.c.

5.7.2.3 void∗ const cci_event_recv::header_ptr

Pointer to the header part of the received message.

The pointer always points to an address that is 8-byte aligned, unless (header_len ==
0), in which case the value is undefined.

Examples:

client.c, and server.c.

5.7.2.4 void∗ const cci_event_recv::data_ptr

Pointer to the data part of the received message.

The pointer always points to an address that is 8-byte aligned, unless (header_len ==
0), in which case the value is undefined.

Examples:

client.c, and server.c.

5.7.2.5 cci_connection_t∗ cci_event_recv::connection

Connection that this message was received on.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

5.8 cci_event_send Struct Reference 65

5.8 cci_event_send Struct Reference

Send event.

#include <cci.h>

Data Fields

• cci_connection_t ∗ connection

Connection that the send was initiated on.

• void ∗ context

Context value that was passed to cci_send().

• cci_status_t status

Result of the send.

5.8.1 Detailed Description

Send event.

A completion struct instance is returned for each cci_send() that requested a completion
notification.

On a reliable connection, a sender will generally complete a send when the receiver
replies for that message. Additionally, an error status may be returned (UNREACH-
ABLE, DISCONNECTED, RNR).

On an unreliable connection, a sender will return CCI_SUCCESS upon local comple-
tion (i.e., the message has been queued up to some lower layer – there is no guarantee
that it is "on the wire", etc.). Other send statuses will only be returned for local errors.

The number of fields in this struct is intentionally limited in order to reduce costs
associated with state storage, caching, updating, copying. For example, there is no
field pointing to the endpoint used for the send because it can be obtained from the
cci_connection, or through the endpoint passed to the cci_get_event() call.

If it is desirable to match send completions with specific sends (it usually is), it is the
responsibility of the caller to pass a meaningful context value to cci_send().

The ordering of fields in this struct is intended to reduce memory holes between fields.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

66 Data Structure Documentation

5.8.2 Field Documentation

5.8.2.1 cci_connection_t∗ cci_event_send::connection

Connection that the send was initiated on.

5.8.2.2 void∗ cci_event_send::context

Context value that was passed to cci_send().

Examples:

client.c.

5.8.2.3 cci_status_t cci_event_send::status

Result of the send.

Examples:

client.c.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

5.9 cci_opt_handle Union Reference 67

5.9 cci_opt_handle Union Reference

Handle defining the scope of an option.

#include <cci.h>

Data Fields

• cci_endpoint_t ∗ endpoint
Endpoint.

• cci_connection_t ∗ connection
Connection.

5.9.1 Detailed Description

Handle defining the scope of an option.

Examples:

client.c.

5.9.2 Field Documentation

5.9.2.1 cci_endpoint_t∗ cci_opt_handle::endpoint

Endpoint.

Examples:

client.c.

5.9.2.2 cci_connection_t∗ cci_opt_handle::connection

Connection.

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

68 Data Structure Documentation

5.10 cci_service Struct Reference

Service handle.

#include <cci.h>

Data Fields

• int bogus
unused

5.10.1 Detailed Description

Service handle.

Examples:

server.c.

5.10.2 Field Documentation

5.10.2.1 int cci_service::bogus

unused

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

Chapter 6

Example Documentation

6.1 client.c

This application demonstrates opening an endpoint, connecting to a server, sending
messages, and polling for events.

/*
* Copyright (c) 2011 UT-Battelle, LLC. All rights reserved.

* Copyright (c) 2011 Oak Ridge National Labs. All rights reserved.

*
* See COPYING in top-level directory

*
* $COPYRIGHT$

*
*/

#include "cci.h"
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>

char *proc_name = NULL;

void
usage(void)
{

fprintf(stderr, "usage: %s -h <server_uri>\n", proc_name);
fprintf(stderr, "where server_uri is a valid CCI uri\n");
fprintf(stderr, "such as ip://1.2.3.4\n");
exit(EXIT_FAILURE);

}

static void
poll_events(cci_endpoint_t *endpoint, cci_connection_t **connection, int *done)
{

70 Example Documentation

int ret;
char buffer[8192];
cci_event_t *event;

ret = cci_get_event(endpoint, &event, 0);
if (ret == CCI_SUCCESS) {

switch (event->type) {
case CCI_EVENT_SEND:

printf("send %d completed with %s\n",
(int)((uintptr_t) event->info.send.context),
cci_strerror(event->info.send.status));

break;
case CCI_EVENT_RECV:

memcpy(buffer, event->info.recv.header_ptr, event->info.recv.header_len);
buffer[event->info.recv.header_len] = ’\0’;
fprintf(stderr, "received header\"%s\"\n", buffer);
memcpy(buffer, event->info.recv.data_ptr, event->info.recv.data_len);
buffer[event->info.recv.data_len] = ’\0’;
fprintf(stderr, "received data\"%s\"\n", buffer);

*done = 1;
break;

case CCI_EVENT_CONNECT_SUCCESS:

*done = 1;

*connection = event->info.other.u.connect.connection;
break;

case CCI_EVENT_CONNECT_TIMEOUT:
case CCI_EVENT_CONNECT_REJECTED:

*done = 1;

*connection = NULL;
break;

default:
fprintf(stderr, "ignoring event type %d\n", event->type);

}
cci_return_event(endpoint, event);

}
}

int main(int argc, char *argv[])
{

int done = 0, ret, i = 0, c;
uint32_t caps = 0;

char *server_uri = NULL; /* ip://1.2.3.4 */
cci_os_handle_t fd;
cci_device_t **devices = NULL;
cci_endpoint_t *endpoint = NULL;
cci_connection_t *connection = NULL;

cci_opt_handle_t handle;
uint32_t timeout_us = 30 * 1000000; /* microseconds */

proc_name = argv[0];

while ((c = getopt(argc, argv, "h:")) != -1) {
switch (c) {

case ’h’:
server_uri = strdup(optarg);
break;

default:

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

6.1 client.c 71

usage();
}

}

/* init */
ret = cci_init(CCI_ABI_VERSION, 0, &caps);

if (ret) {
fprintf(stderr, "cci_init() returned %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

/* get devices */
ret = cci_get_devices((const cci_device_t *** const)&devices);

if (ret) {
fprintf(stderr, "cci_get_devices() returned %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

/* create an endpoint */
ret = cci_create_endpoint(NULL, 0, &endpoint, &fd);

if (ret) {
fprintf(stderr, "cci_create_endpoint() returned %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

/* set endpoint tx timeout */
handle.endpoint = endpoint;
cci_set_opt(&handle, CCI_OPT_LEVEL_ENDPOINT, CCI_OPT_ENDPT_SEND_TIMEOUT,

(void *) &timeout_us, (int) sizeof(timeout_us));
if (ret) {

fprintf(stderr, "cci_set_opt() returned %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

/* initiate connect */
ret = cci_connect(endpoint, server_uri, 54321, server_uri,

strlen(server_uri), CCI_CONN_ATTR_UU, NULL, 0, NULL);
if (ret) {

fprintf(stderr, "cci_connect() returned %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

/* poll for connect completion */
while (!done)
poll_events(endpoint, &connection, &done);

if (!connection) {
fprintf(stderr, "no connection\n");
exit(EXIT_FAILURE);

}

/* begin communication with server */
for (i = 0; i < 10; i++) {

char hdr[32];
char data[128];

memset(hdr, 0, sizeof(hdr));

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

72 Example Documentation

memset(data, 0, sizeof(data));
sprintf(hdr, "%4d", i);
sprintf(data, "Hello World!");
ret = cci_send(connection, hdr, (uint32_t) strlen(hdr),

data, (uint32_t) strlen(data), (void *)(uintptr_t) i, 0);
if (ret)

fprintf(stderr, "send %d returned %s\n", i, cci_strerror(ret));

done = 0;
while (!done)

poll_events(endpoint, &connection, &done);
}

/* clean up */
ret = cci_disconnect(connection);

if (ret) {
fprintf(stderr, "cci_disconnect() returned %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}
ret = cci_destroy_endpoint(endpoint);

if (ret) {
fprintf(stderr, "cci_destroy_endpoint() returned %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}
ret = cci_free_devices((const cci_device_t ** const)devices);

if (ret) {
fprintf(stderr, "cci_free_devices() returned %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

return 0;
}

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

6.2 devices.c 73

6.2 devices.c

This is an example of using get_devices and free_devices. It also iterates over the
conf_argv array.

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>

#include "cci.h"

int main(int argc, char *argv[])
{

int ret, i = 0;
uint32_t caps;
cci_device_t const ** const devices, **d;

ret = cci_init(CCI_ABI_VERSION, 0, &caps);
if (ret != CCI_SUCCESS) {

fprintf(stderr, "cci_init() returned %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

ret = cci_get_devices((cci_device_t const *** const) &devices);
if (ret != CCI_SUCCESS) {

fprintf(stderr, "cci_get_devices() returned %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

for (d = devices; *d != NULL; d++) {
char **keyval;

printf("device %d is %s\n", i, (*d)->name);
i++;
for (keyval = (char **) (*d)->conf_argv; *keyval != NULL; keyval++)

printf("\t%s\n", *keyval);
}

ret = cci_free_devices(devices);
if (ret != CCI_SUCCESS) {

fprintf(stderr, "cci_free_devices() returned %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

return 0;
}

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

74 Example Documentation

6.3 init.c

This is an example of using init and strerror.

#include <stdio.h>
#include <stdint.h>

#include "cci.h"

int main(int argc, char *argv[])
{

int ret;
uint32_t caps;

ret = cci_init(CCI_ABI_VERSION, 0, &caps);
if (ret != CCI_SUCCESS)

fprintf(stderr, "cci_init() returned %s\n", cci_strerror(ret));

return 0;
}

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

6.4 server.c 75

6.4 server.c

This application demonstrates opening an endpoint, binding to a service, getting con-
nection requests, accepting connections, polling for events, and echoing received mes-
sages back to the client.

/*
* Copyright (c) 2011 UT-Battelle, LLC. All rights reserved.

* Copyright (c) 2011 Oak Ridge National Labs. All rights reserved.

*
* See COPYING in top-level directory

*
* $COPYRIGHT$

*
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>

#include "cci.h"

int main(int argc, char *argv[])
{

int ret;
uint32_t caps = 0, port = 54321;
cci_device_t **devices = NULL;
cci_endpoint_t *endpoint = NULL;
cci_os_handle_t ep_fd, bind_fd;
cci_service_t *service = NULL;
cci_connection_t *connection = NULL;

/* init */
ret = cci_init(CCI_ABI_VERSION, 0, &caps);
if (ret) {

fprintf(stderr, "cci_init() failed with %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

/* get devices */
ret = cci_get_devices((cci_device_t const *** const) &devices);
if (ret) {

fprintf(stderr, "cci_get_devices() failed with %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

/* create an endpoint */
ret = cci_create_endpoint(NULL, 0, &endpoint, &ep_fd);
if (ret) {

fprintf(stderr, "cci_create_endpoint() failed with %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

/* bind first device to the service at port 54321 */
ret = cci_bind(devices[0], 10, &port,&service, &bind_fd);

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

76 Example Documentation

if (ret) {
fprintf(stderr, "cci_bind() failed with %s\n", cci_strerror(ret));
exit(EXIT_FAILURE);

}

while (1) {
int accept = 1;
char *buffer;
cci_conn_req_t *conn_req;
cci_event_t *event;

ret = cci_get_conn_req(service, &conn_req);
if (ret == CCI_SUCCESS) {

/* inspect conn_req_t and decide to accept or reject */

if (accept) {
/* associate this connect request with this endpoint */
ret = cci_accept(conn_req, endpoint, &connection);
if (ret != CCI_SUCCESS) {

fprintf(stderr, "cci_accept() returned %s",
cci_strerror(ret));

} else if (!buffer) {
buffer = calloc(1, connection->max_send_size + 1);
/* check for buffer ... */

}

} else {
cci_reject(conn_req);

}
}

/* check for next event...

* handle communication over existing connections */

again:
ret = cci_get_event(endpoint, &event, 0);
if (ret == CCI_SUCCESS) {

switch (event->type) {
case CCI_EVENT_RECV:
{

memcpy(buffer, event->info.recv.header_ptr, event->info.recv.header_len);
buffer[event->info.recv.header_len] = 0;
printf("recv’d:\n");
printf("\theader: \"%s\"\n", buffer);
memcpy(buffer, event->info.recv.data_ptr, event->info.recv.data_len);
buffer[event->info.recv.data_len] = 0;
printf("\tdata: \"%s\"\n", buffer);

/* echo the message to the client */
ret = cci_send(connection,

event->info.recv.header_ptr,
event->info.recv.header_len,
event->info.recv.data_ptr,
event->info.recv.data_len,
NULL, 0);

if (ret != CCI_SUCCESS)
fprintf(stderr, "send returned %s\n", cci_strerror(ret));

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

6.4 server.c 77

break;
}
case CCI_EVENT_SEND:

printf("completed send\n");
break;

default:
fprintf(stderr, "unexpected event %d", event->type);
break;

}
cci_return_event(endpoint, event);
goto again;

}
}

/* clean up */
cci_unbind(service, NULL);
cci_destroy_endpoint(endpoint);
cci_free_devices((cci_device_t const **) devices);

return 0;
}

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

Index

attribute
cci_conn_req, 52
cci_connection, 53

bogus
cci_service, 68

bogus_must_have_something_here
endpoints, 23

bus
cci_device, 57

CCI_CONN_ATTR_RO
connection, 28

CCI_CONN_ATTR_RU
connection, 29

CCI_CONN_ATTR_UU
connection, 29

CCI_CONN_ATTR_UU_MC_RX
connection, 29

CCI_CONN_ATTR_UU_MC_TX
connection, 29

CCI_EADDRNOTAVAIL
env, 16

CCI_EAGAIN
env, 16

CCI_EBUSY
env, 15

CCI_EINVAL
env, 15

CCI_EMSGSIZE
env, 16

CCI_ENOBUFS
env, 16

CCI_ENODEV
env, 15

CCI_ENOMEM
env, 15

CCI_ENOMSG
env, 16

CCI_ERANGE
env, 16

CCI_ERR_DEVICE_DEAD
env, 15

CCI_ERR_DISCONNECTED
env, 15

CCI_ERR_NOT_FOUND
env, 15

CCI_ERR_NOT_IMPLEMENTED
env, 15

CCI_ERR_RMA_HANDLE
env, 15

CCI_ERR_RMA_OP
env, 15

CCI_ERR_RNR
env, 15

CCI_ERROR
env, 15

CCI_ETIMEDOUT
env, 15

CCI_EVENT_CONNECT_REJECTED
events, 42

CCI_EVENT_CONNECT_SUCCESS
events, 42

CCI_EVENT_CONNECT_TIMEOUT
events, 42

CCI_EVENT_ENDPOINT_DEVICE_-
FAIL

events, 42
CCI_EVENT_KEEPALIVE_TIMEOUT

events, 42
CCI_EVENT_NONE

events, 42
CCI_EVENT_RECV

events, 42

INDEX 79

CCI_EVENT_SEND
events, 42

CCI_OPT_CONN_SEND_TIMEOUT
opts, 37

CCI_OPT_ENDPT_KEEPALIVE_-
TIMEOUT

opts, 37
CCI_OPT_ENDPT_MAX_HEADER_-

SIZE
opts, 36

CCI_OPT_ENDPT_RECV_BUF_-
COUNT

opts, 37
CCI_OPT_ENDPT_SEND_BUF_-

COUNT
opts, 37

CCI_OPT_ENDPT_SEND_TIMEOUT
opts, 36

CCI_OPT_LEVEL_CONNECTION
opts, 36

CCI_OPT_LEVEL_ENDPOINT
opts, 36

CCI_SUCCESS
env, 15

CCI_ABI_VERSION
env, 14

cci_accept
connection, 31

cci_arm_os_handle
events, 42

cci_bind
connection, 29

cci_conn_attribute
connection, 28

cci_conn_attribute_t
connection, 27

cci_conn_req, 51
attribute, 52
data_len, 52
data_ptr, 52
devices, 52
devices_cnt, 52

CCI_CONN_REQ_LEN
connection, 27

cci_conn_req_t
connection, 28

cci_connect
connection, 32

cci_connection, 53
attribute, 53
endpoint, 53
max_send_size, 53

cci_connection_t
connection, 28

cci_create_endpoint
endpoints, 24

cci_destroy_endpoint
endpoints, 24

cci_device, 54
bus, 57
conf_argv, 56
dev, 57
domain, 56
func, 57
info, 56
max_send_size, 56
name, 56
pci, 57
rate, 56

cci_device_t
devices, 18

cci_disconnect
connection, 33

cci_endpoint, 58
max_recv_buffer_count, 58

cci_endpoint_flags
endpoints, 23

cci_endpoint_flags_t
endpoints, 22

cci_endpoint_t
endpoints, 23

cci_event, 59
info, 60
other, 60
recv, 60
send, 59
type, 59

cci_event_other, 61
connect, 62
connection, 62
context, 62
u, 62

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

80 INDEX

cci_event_other_t
events, 41

cci_event_recv, 63
connection, 64
data_len, 64
data_ptr, 64
header_len, 63
header_ptr, 64

cci_event_recv_t
events, 40

cci_event_send, 65
connection, 66
context, 66
status, 66

cci_event_send_t
events, 40

cci_event_t
events, 41

cci_event_type
events, 42

cci_event_type_t
events, 41

cci_free_devices
devices, 20

cci_get_conn_req
connection, 30

cci_get_devices
devices, 20

cci_get_event
events, 42

cci_get_opt
opts, 38

cci_init
env, 16

cci_opt_handle, 67
connection, 67
endpoint, 67

cci_opt_handle_t
opts, 36

cci_opt_level
opts, 36

cci_opt_level_t
opts, 36

cci_opt_name
opts, 36

cci_opt_name_t

opts, 36
cci_os_handle_t

endpoints, 23
cci_reject

connection, 31
cci_return_event

events, 43
cci_rma

communications, 49
cci_rma_deregister

communications, 49
cci_rma_register

communications, 48
cci_send

communications, 46
cci_sendv

communications, 47
cci_service, 68

bogus, 68
cci_set_opt

opts, 37
cci_sg_t

communications, 46
cci_status

env, 14
cci_status_t

env, 14
cci_strerror

env, 17
cci_unbind

connection, 30
Communications, 45
communications

cci_rma, 49
cci_rma_deregister, 49
cci_rma_register, 48
cci_send, 46
cci_sendv, 47
cci_sg_t, 46

conf_argv
cci_device, 56

connect
cci_event_other, 62

connection
CCI_CONN_ATTR_RO, 28
CCI_CONN_ATTR_RU, 29

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

INDEX 81

CCI_CONN_ATTR_UU, 29
CCI_CONN_ATTR_UU_MC_RX,

29
CCI_CONN_ATTR_UU_MC_TX,

29
cci_accept, 31
cci_bind, 29
cci_conn_attribute, 28
cci_conn_attribute_t, 27
CCI_CONN_REQ_LEN, 27
cci_conn_req_t, 28
cci_connect, 32
cci_connection_t, 28
cci_disconnect, 33
cci_get_conn_req, 30
cci_reject, 31
cci_unbind, 30
cci_event_other, 62
cci_event_recv, 64
cci_event_send, 66
cci_opt_handle, 67

Connections, 26
context

cci_event_other, 62
cci_event_send, 66

data_len
cci_conn_req, 52
cci_event_recv, 64

data_ptr
cci_conn_req, 52
cci_event_recv, 64

dev
cci_device, 57

Devices, 18
devices

cci_device_t, 18
cci_free_devices, 20
cci_get_devices, 20
cci_conn_req, 52

devices_cnt
cci_conn_req, 52

domain
cci_device, 56

endpoint

cci_connection, 53
cci_opt_handle, 67

Endpoint / Connection Options, 35
Endpoints, 22
endpoints

bogus_must_have_something_here,
23

cci_create_endpoint, 24
cci_destroy_endpoint, 24
cci_endpoint_flags, 23
cci_endpoint_flags_t, 22
cci_endpoint_t, 23
cci_os_handle_t, 23

env
CCI_EADDRNOTAVAIL, 16
CCI_EAGAIN, 16
CCI_EBUSY, 15
CCI_EINVAL, 15
CCI_EMSGSIZE, 16
CCI_ENOBUFS, 16
CCI_ENODEV, 15
CCI_ENOMEM, 15
CCI_ENOMSG, 16
CCI_ERANGE, 16
CCI_ERR_DEVICE_DEAD, 15
CCI_ERR_DISCONNECTED, 15
CCI_ERR_NOT_FOUND, 15
CCI_ERR_NOT_IMPLEMENTED,

15
CCI_ERR_RMA_HANDLE, 15
CCI_ERR_RMA_OP, 15
CCI_ERR_RNR, 15
CCI_ERROR, 15
CCI_ETIMEDOUT, 15
CCI_SUCCESS, 15
CCI_ABI_VERSION, 14
cci_init, 16
cci_status, 14
cci_status_t, 14
cci_strerror, 17

Events, 39
events

CCI_EVENT_CONNECT_-
REJECTED, 42

CCI_EVENT_CONNECT_-
SUCCESS, 42

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

82 INDEX

CCI_EVENT_CONNECT_-
TIMEOUT, 42

CCI_EVENT_ENDPOINT_-
DEVICE_FAIL, 42

CCI_EVENT_KEEPALIVE_-
TIMEOUT, 42

CCI_EVENT_NONE, 42
CCI_EVENT_RECV, 42
CCI_EVENT_SEND, 42
cci_arm_os_handle, 42
cci_event_other_t, 41
cci_event_recv_t, 40
cci_event_send_t, 40
cci_event_t, 41
cci_event_type, 42
cci_event_type_t, 41
cci_get_event, 42
cci_return_event, 43

func
cci_device, 57

header_len
cci_event_recv, 63

header_ptr
cci_event_recv, 64

info
cci_device, 56
cci_event, 60

Initialization / Environment, 13

max_recv_buffer_count
cci_endpoint, 58

max_send_size
cci_connection, 53
cci_device, 56

name
cci_device, 56

opts
CCI_OPT_CONN_SEND_-

TIMEOUT, 37
CCI_OPT_ENDPT_KEEPALIVE_-

TIMEOUT, 37

CCI_OPT_ENDPT_MAX_-
HEADER_SIZE, 36

CCI_OPT_ENDPT_RECV_BUF_-
COUNT, 37

CCI_OPT_ENDPT_SEND_BUF_-
COUNT, 37

CCI_OPT_ENDPT_SEND_-
TIMEOUT, 36

CCI_OPT_LEVEL_-
CONNECTION, 36

CCI_OPT_LEVEL_ENDPOINT, 36
cci_get_opt, 38
cci_opt_handle_t, 36
cci_opt_level, 36
cci_opt_level_t, 36
cci_opt_name, 36
cci_opt_name_t, 36
cci_set_opt, 37

other
cci_event, 60

pci
cci_device, 57

rate
cci_device, 56

recv
cci_event, 60

send
cci_event, 59

status
cci_event_send, 66

type
cci_event, 59

u
cci_event_other, 62

Generated on Fri Jun 3 11:45:02 2011 for CCI by Doxygen

	CCI: The Common Communication Interface
	Introduction
	Design Goals
	Portability
	Simplicity
	Performance
	Scalabity
	Robustness

	The CCI Interface
	Initialization
	Communication Endpoints
	Event Handling
	Connections
	Connection Establishment
	Active Messages
	Remote Memory Access

	Module Index
	Modules

	Data Structure Index
	Data Structures

	Module Documentation
	Initialization / Environment
	Define Documentation
	CCI_ABI_VERSION

	Typedef Documentation
	cci_status_t

	Enumeration Type Documentation
	cci_status

	Function Documentation
	cci_init
	cci_strerror

	Devices
	Typedef Documentation
	cci_device_t

	Devices
	Function Documentation
	cci_get_devices
	cci_free_devices

	Endpoints
	Typedef Documentation
	cci_endpoint_flags_t
	cci_endpoint_t
	cci_os_handle_t

	Enumeration Type Documentation
	cci_endpoint_flags

	Function Documentation
	cci_create_endpoint
	cci_destroy_endpoint

	Connections
	Define Documentation
	CCI_CONN_REQ_LEN

	Typedef Documentation
	cci_conn_attribute_t
	cci_conn_req_t
	cci_connection_t

	Enumeration Type Documentation
	cci_conn_attribute

	Function Documentation
	cci_bind
	cci_unbind
	cci_get_conn_req
	cci_accept
	cci_reject
	cci_connect
	cci_disconnect

	Endpoint / Connection Options
	Typedef Documentation
	cci_opt_handle_t
	cci_opt_level_t
	cci_opt_name_t

	Enumeration Type Documentation
	cci_opt_level
	cci_opt_name

	Function Documentation
	cci_set_opt
	cci_get_opt

	Events
	Typedef Documentation
	cci_event_send_t
	cci_event_recv_t
	cci_event_other_t
	cci_event_type_t
	cci_event_t

	Enumeration Type Documentation
	cci_event_type

	Function Documentation
	cci_arm_os_handle
	cci_get_event
	cci_return_event

	Communications
	Typedef Documentation
	cci_sg_t

	Function Documentation
	cci_send
	cci_sendv
	cci_rma_register
	cci_rma_deregister
	cci_rma

	Data Structure Documentation
	cci_conn_req Struct Reference
	Detailed Description
	Field Documentation
	devices
	devices_cnt
	data_ptr
	data_len
	attribute

	cci_connection Struct Reference
	Detailed Description
	Field Documentation
	max_send_size
	endpoint
	attribute

	cci_device Struct Reference
	Detailed Description
	Devices
	Field Documentation
	name
	info
	conf_argv
	max_send_size
	rate
	domain
	bus
	dev
	func
	pci

	cci_endpoint Struct Reference
	Detailed Description
	Field Documentation
	max_recv_buffer_count

	cci_event Struct Reference
	Detailed Description
	Field Documentation
	type
	send
	recv
	other
	info

	cci_event_other Struct Reference
	Detailed Description
	Field Documentation
	context
	connection
	connect
	u

	cci_event_recv Struct Reference
	Detailed Description
	Field Documentation
	header_len
	data_len
	header_ptr
	data_ptr
	connection

	cci_event_send Struct Reference
	Detailed Description
	Field Documentation
	connection
	context
	status

	cci_opt_handle Union Reference
	Detailed Description
	Field Documentation
	endpoint
	connection

	cci_service Struct Reference
	Detailed Description
	Field Documentation
	bogus

	Example Documentation
	client.c
	devices.c
	init.c
	server.c

