

Cheap Sonar Range Finder Design
Description

Everything is controlled by a PIC16F84. The circuit has very few parts, and the parts are
cheap.

The quit description. Send out 16 pulses at 40Khz through one ultrasonic transducer.
Time the echos as they come back. Send the time in ASCII out the serial port at 9600
baud. Repeat.

Parts list

1. 1 Microchip PIC 16F84: an 18 pin cpu with 68 bytes of RAM and 1024 words of
on-chip EEPROM program memory.

2. 1 muRata MA40A3R ultrasonic receiver The reciever and transmitter were
$2.50 a pair from a surplus catalog. I don't know any of the specs on these, I just
guessed. I originally used Mouser part number 251-1603 Ultrasonic Transducers,

but these are $6.20 each. And I managed to fry one in a overly powerfull circuit.
Oops

3. 1 muRata MA40A3S ultrasonic transmitter.
4. 1 1 KOhm resistor Limits current on RB1 charging the capacitor. This resistor

can be anything greater than 250 Ohms.
5. 1 1 KOhm resistor Limits current on RS232 Send. This protects the PIC if the

RS232 cable is wired up wrong. It's not needed for folks who always get their
cables right the first time.

6. 1 1 KOhm resistor Pullup resistor for MCLR, Master Clear, what other chips call
"Reset". You can reset the PIC by shorting this pin to ground. The resistor limits
the current when the pin is shorted to ground. This resistor is optional. If MCLR
is tied directly to Vdd, then you have use the power switch to reset the circuit.

7. 1 22 KOhms resistor Limits current from the remote RS232 line to something
that the PIC input pin can safely handle. Any value from 10 KOhms to 1MOhm
will probably work. Really high values make the circuit susceptible to noise.

8. 1 1 MOhm resistor This biases the ultrasonic receiver pin to the same voltage as
the tantalum capacitor, without putting much load on the receiver. Any value from
50KOhms on up will probably work.

9. 1 .1 Microfarad capacitor This should be connected as closely as possible to the
Vdd and Vss pins of the PIC. Which is to say, the circuit on my breadboard had a
lot of noise when the capacitor was near the power supply and away from the PIC.

10. 1 47 Microfarad tantalum capacitor, a 1 Microfarad disk capacitor was too
small, or had too much leakage. This size capacitor worked. Really large values
will slow down the circuit.

11. 1 10Mhz crystal see the PIC databook for crystal selection rules (in other words,
I've forgotten what type of crystal it is.)

12. 2 small capacitors these capacitors are the right size to let the PIC drive the
10Mhz crystal. I figured out the right size long ago. I have a bunch of them with
matching crystals. I can't read the little tiny writing on the capacitors to see the
value. Oops.

Theory

A PIC input pin has a really high impedance. It switches at something around 1.2 volts.
So, a PIC input pin is all you need to sense a signal of a few dozen millivolts, provided
you can bias the signal to near the switch point.

First, pretend I did a good job drawing a sinewave. Also realize that the picture is not to
scale.

The thick green line is at the transition between zero and one. That transition happens to
be at 1.23volts in my picture, but it slowly changes. I doesn't change much in 3
milliseconds. It does vary part to part, and with temperature and probably many other
factors. The circuit self calibrates before each reading. That voltage can drift without
affecting operation. Likewise, the resistors and capacitors in the circuit can drift. The
circuit doesn't need precision components, or manual adjustment.

Ok, the "N" in N pulses is adjustable. But that is in software and can be changed over the
serial port.

Transmitter

The ultrasonic transmitter is connected directly to pins RB7 and RB6 of the PIC. The pins
are left as inputs except when actually transmitting. To transmit, the pins are set to
outputs and driven at 40Khz 180 degrees out of phase, ie. RB7 is a logic one whenever
RB6 is a logic zero and vice versa.

A 40Khz squarewave has 80,000 transitions per second. This is one transition every 12.5
microseconds. With a 10 Mhz crystal, the PIC needs to make one transition every 31.2
cycles. Reality gets in the way. The code actually does one transition every 31 cycles,
Making the output frequency be 40.3Khz.

I arbitrarily chose 16 cycles. This works, so I haven't experimented with other values.

Here is the code for the output routine "osc16". Copies of TRISB and the output bits of
PORTB are kept in file registers shadowtb and shadowb respectively. The loop counter is

kept in the file register ocnt. The subroutine del26 takes exactly 26 cycles, including the
call and return statement.

Instructions that change the program counter take 2 cycles, the rest take 1 cycle. So a nop
instruction takes 1 cycle, jumping to the next instruction, goto $+1, takes 2 cycles.

UTX1 equ 7
UTX2 equ 6

osc16
 movlw 16 ; 16 cycles at 40Khz
 movwf ocnt
 movlw 1
 bsf shadowb,UTX1 ;
 bcf shadowb,UTX2 ; This pin is the negation of UTX1
 bcf shadowtb,UTX1
 bcf shadowtb,UTX2
 movf shadowtb,w
 tris PORTB
oloop ;0
 movf shadowb,w ;1
 movwf PORTB ;2
 call del26 ;28
 movf shadowb,w ;29
 xorlw (1<<UTX1)|(1<<UTX2) ;30
 goto $+1 ;31
 movwf PORTB ;33 Should be 31 cycles between
writes to PORTB
 call del26 ;59
 decfsz ocnt,F ;60
 goto oloop ;61/62
 bsf shadowtb,UTX1
 bsf shadowtb,UTX2
 movf shadowtb,w
 tris PORTB
 return

Receiver

In the real circuit, the transducers are on foot long cables. The transducer naturally filters
out everything that isn't close to 40Khz. The cables are not so selective. The cables act
like antennas. Rather than upgrade to fancier cables, the receive routine uses a crude
digital filter.

The input routine wants to see an alternating like pattern 10101 when it samples at
80Khz. That scheme will fail if the samples are close to the zero crossing of the input
wave. The input routine actually samples at 160Khz, keeping 2 independent counters,
hits1 and hits2. If either counter sees 4 transitions at 80Khz, the routine returns
success. I check to see if a counter has reached 4 by checking bit number 2 of the counter.

The loop is 31 cycles long, 12.4 microseconds, one half of a 40.3Khz wave. The receiver
routine counts each time through the loop. After 255 passes through the loop, it gives up.

The speed of sound is about 1 foot per millisecond. This system times the round trip of
the sound pulse. If there is an object 1 foot away, the sound will take a millisecond to get
there, and a millisecond to come back, for a total of 2 milliseconds. That is a count of
about 160. So the maximum range of this software is only 18 inches. The drive circuit is
wimpy enough, that 18 inches is also about the range of the hardware.

echotime ; Time until we see an echo.
 clrf ecnt
 clrf hitsa
 clrf hitsb
 ; This loop is exactly 31 cycles long, which is half of a
40Khz cycle
echoa ; 0
 btfsc flags,LASTA ; 1
 goto lasta1 ; 2/3

lasta0 ;2
 nop ; equalize path length ;3
 btfss PORTB,URX ;4
 goto samea ;5/6
 bsf flags,LASTA ;6
 goto diffa ;8
lasta1 ;3
 btfsc PORTB,URX ;4
 goto samea ;5/6
 bcf flags,LASTA ;6
 goto diffa ;8
samea ;6
 clrf hitsa ;7
 call del4 ;11
 goto echob ;13
diffa ;8
 incf hitsa,f ;9
 btfsc hitsa,2 ;10 Did we see 2 whole cycles
(4 half cycles)
 goto echofound ;11/12
 goto $+1 ;13
echob ;13
 goto $+1 ;15
 btfsc flags,LASTB ;16
 goto lastb1 ;17/18
lastb0 ;17
 nop ; equalize path length ;18
 btfss PORTB,URX ;19
 goto sameb ;20/21
 bsf flags,LASTB ;21
 goto diffb ;23
lastb1 ;18
 btfsc PORTB,URX ;19
 goto sameb ;20/21
 bcf flags,LASTB ;21
 goto diffb ;23
sameb ;21
 clrf hitsb ;22
 call del4 ;26

 goto next ;28
diffb ;23
 incf hitsb,f ;24
 btfsc hitsb,2 ;25 Did we see 2 whole
cycles (4 half cycles)
 goto echofound ;26/27
 goto $+1 ;28

next ;28
 incfsz ecnt,F ;29
 goto echoa ;30/31
 movlw 255
 return

echofound;
 movf ecnt,w
 return

The capacitor bias code

Here is the software for biasing the capacitor. I still need to write some notes on it. The
entry point is setcap, near the bottom. Note that pulseconstant is set by a command
over the serial port. I hope to automate away that kluge.
pulsecap ; make the cap pin an output for 3 cycles.
 bcf shadowtb,CAP
 movf shadowtb,w
 tris PORTB
 bsf shadowtb,CAP
 movf shadowtb,w
 tris PORTB
 return
longpulsecap ; make the cap pin an output for 29 cycles.
 bcf shadowtb,CAP
 movf shadowtb,w
 tris PORTB
 call del26
 bsf shadowtb,CAP
 movf shadowtb,w
 tris PORTB
 return

capto0
 btfss PORTB,CAP ; loop until the pin is at 0
 return
 bcf shadowb,CAP
 movf shadowb,w
 movwf PORTB
 call pulsecap
 goto capto0
capto1
 btfsc PORTB,CAP ; loop until the pin is at 1 on input
 return
 bsf shadowb,CAP ; Make cap pin a 1 when output
 movf shadowb,w
 movwf PORTB

 call pulsecap
 goto capto1

setcap ; Charge up the cap until it is right at the transition
from 0 to 1
 call capto1
 call capto0
 call capto1
 call capto0
 bsf shadowb,CAP ; Make cap pin a 1 when output
 movf shadowb,w
 movwf PORTB
 movf pulseconstant,w
 movwf ncnt
setcapl
 call longpulsecap
 decfsz ncnt,f
 goto setcapl
 return

What next?

The next thing to do is to add 3 more pairs of ultrasonic transducers. The other
transmitters can share RB7, so it takes 5 pins for 4 transmitters. Likewise, the capacitor
can be shared among the receivers, so they only need 5 pins for 4 receivers. The serial
port takes 2 pins, so there is still one pin left free.

Right now, the system checks for a start bit in the delay routines (del26 in the above
code snippits). The system should also be check during the echotime routine.

My hardware is pretty icky right now. The receiver sees a weak echo through the
mechanical transducer mounting. This is the real limit on range. If I get better mechanical
mounting for the transducers, I can improve the range dramatically.

I could get much longer range with a more powerfull driver circuit. I wanted to prove that
I didn't need all that stuff. Now that I've proved it, I can add some oomph.

I'm open to other suggestions.

	Cheap Sonar Range Finder Design
	
	Description
	Parts list
	Theory
	Transmitter
	Receiver
	The capacitor bias code
	What next?

