
1

We concentrate our efforts on “critical infrastructure” on the big, obvious utility
networks – power and water plants and networks, as well as on the internet backbones
and the like. I think we’re missing the boat a bit – there are numerous “networks of
little things” that also, in aggregate, add up to large critical infrastructure networks –
the network in our cars being one of those. In fact, on it’s own, the network inside my
car is as critical (or more so, if I happen to be driving at the time) as power to my
house.

Unfortunately, the On Board Diagnostic (OBD) network in our cars is completely open ,
completely documented, and is being pushed more and more to open, documented
and unauthenticated wireless access.

We’ll discuss this, current security work and future trends in this presentation, with
some nifty (if I do say so myself) python code and demos !

2

The OBD (On Board Diagnostic) network in our individual cars follow the Henry Ford
tradition of mass production. Everyone’s OBD network must conform to a standard
protocol, with a minimum set of supported instructions. This minimum set is defined in
SAE Standard J2012-200712, and is mirrored exactly in the ISO Standard 15031-6:2005
(latest version).

Light duty vehicles (less than 8,500 lbs) in North America have been legislated to
implement OBD-II since 1996, Medium Duty Vehicles (8,500 – 14,000 lbs) since 2005
and Heavy Duty Vehicles (heavier than 14,000 lbs) since 2010.

3

So, what does the OBD network look like? Like a slower, dumber ethernet (sorta).
It’s CSMA / CD (Collision Sense Multiple Avoidance / Collision Detect) – with arbitration
based on sender Unit or CAN ID (more or less the MAC address). For instance, Ford
uses a CAN ID of 720 for the dashboard instrument cluster
 It’s cheap, it’s fast, and manufacturers seem compelled to hang everything off the
network. It seems to be human nature that if there’s a network at hand, everything
close to it MUST be connected to it.

4

The traditional interface to the OBD network for enthusiasts and researchers is via a
big, ugly serial interface – the connector is roughly 4cm across, so it’s not like any serial
interface you’re familiar with. It’s usually located under the dash, often directly under
the steering wheel. This interface can, depending on the SAE network standard being
used, be as slow as 4800bps, but is usually interfaced to at 115kbps. Speeds up to
2mbps can be attained with the proper interface hardware.

The most common interfaces to this serial port are based on the ELM327 chipset, and
run anywhere from $20 to $200, depending on speed, features and buffering.

Unfortunately, the nominal speed of the network is 10Mpbs, and buffering is minimal,
so when larger datasets are being processed this needs to be accounted for - more on
this later.

Recent updates to the standards force all modern cars to have wireless Tire Pressure
Monitor Sensors (TPMS). This standard has been on the books since 2001, and
legislated since 2005 (

Fortunately, the TPMS link is not an 802.11 wireless link. It’s a proprietary wireless
protocol, usually at 315MHz. Unfortunately, you can buy a sensor reader for around
$300. These readers can be easily torn down and repurposed as a general purpose
OBD interface, capable of wireless reads and writes to the in-car network. So, security

5

by obscurity, nothing new to us here.

What’s worse is the trend we’re seeing more and more today. Cars with Bluetooth, cars
with 802.11 hotspots might seem innocuous – what’s so bad about interfacing your
phone to your car you say? Remember what we said about folks networking everything
they can lay their hands on? If you think that your car’s bluetooth only talks to the dash
and speakers, you’re sadly mistaken !

5

So we’ve painted the picture it’s pretty bleak for security on your car network. What’s
coming.
You’d think things would be getting better, but no, it’s getting worse.

A current concern is that while Law Enforcement has not used the “flight recorder”
functions on the ECU (Engine Control Units), there is nothing stopping them from doing
that. On the good side, after an accident they could record speed, accelerator and
brake activity leading up to the event. On the bad side, they could cruise the parking
lot at the mall, or residential streets, and look for folks who were speeding prior to
being parked.

The current guidance on Remote OBD (ie – roadside collection of OBD data from
moving cars) does have a chapter on Security. However, it’s entirely concerned with
people falsifying their OBD readings, for instance to make their emmissions appear
compliant when in fact they are not (by clearing codes for instance). There is a brief
section on putting a password on any database of collected information, but not even a
hint on authentication or encryption of the wireless communications.

Even worse, there is loads of research on Peer-to-Peer roadside networks. As in peer to
peer between moving cars, including fixed position roadside wireless stations. The
thinking is that these will be used for analyzing traffic patterns, automated braking for
accident avoidance, and even heads-up display advertising for local businesses. Again,

6

this research is all function based, focusing on how cool data collection and accident
avoidance would be, and how the range of these networks could be extended, operated
at lower power, and made more reliable with better handoffs as network members
move at high speed relative to each other. Again, if you think there is a ton of research
on security challenges in a mobile network, think again.

6

What does an OBD Instruction look like?
It’s usually a 2 or 3 Hex digit code, with a 6-10 byte response code.

Diagnostic codes are usually much simpler, where you are querying for a static “trouble
code” rather than a dynamic status of a running component.

SAE / ISO “Standard” OBD codes all start with “01”
Each manufacturer has their own set of OEM Extensions to OBD. These extensions all
start with different digits (for instance, Ford uses 21 and 22 a lot). A typical vehicle will
implement 30-40 ISO codes, and 200-300 OEM codes.

OEM extensions are typically not public. The manufacturers charge real dollars for
access to their codes.

For instance to get codes for GM, Honda, Suzuki or BMW:
GM $50,000
Honda $5,000
Suzuki $1,000
BMW $7,000 plus $1,000 per update. Updates occur every quarter

Ford publishes their codes via the ETI (Equipment and Tool Institute) –
http://www.etools.org. ETI has dues of $5,000 per year.

7

In this example, we’ll use putty on the serial port (COM14) and query for the RPM and
Speed.
The RPM value is returned in quarter revolutions per minute, so must be divided by 4
for the final result.

As discussed, all sent and received values are in ASCII hex representation, so usually
need to be converted back to decimal.

8

So this seems like a really simple interface to program against. And it actually is – sort
of.

The main thing to keep track of is the Idiosyncrasies of the language and libraries you
are writing in. Differences between \r and \n are especially important.

In Pyserial for instance, “readline” wants to see a \n before it will return a value.
In a time-sensitive application like an OBD based dashboard, it’s much safer to execute
a read(80), to read the buffer, to a maximum of ‘xx’ characters, then process that. If no
characters are there, or if there are 10 or 20 characters, at least the read completes
immediately and passes control back to the next instruction, rather than waiting
forever for a ‘\n’ that might never come

Pyserial also (most correctly and properly) counts serial ports from 0. So COM14 is
actually port 13 for Pyserial.

9

As you might have guessed, we’re getting to “the code part”

Setting all the OBD queries up in a Python library made the final applications much
cleaner. Each OBD call is in the library, obd.py

All the serial calls are done by pyserial. The example snip here shows two calls to get
the speed and RPM.

10

This shows a more complete example, which will actually run a short bit of python code
using the OBD library

The printed program output is shown in italics

11

So we can issue commands and get responses – how do we find out about all those
other OEM codes we don’t know? What else can we do on this network.

Two birds with one stone – we can write a “packet sniffer” – a short bit of code to
capture all the codes traveling on the bus !

I added a “Time Mark” function – when you press a key, a string of Asterixes is added to
the capture. This makes it easy to bound an area of traffic with a known function in it
(like the door lock command for instance).

12

As you can see by how fast this whizzes past, it’s much more effective to use I/O
redirection to a file, then process the file using grep and the time-mark feature in
OBDCAP!

13

What else can we do? I wrote a couple of custom dashboards.

The PyQt and PyQwt libraries to do the graphics. They do an admirable job, but you
need to be a graduate from the Daystrom Institute to understand the examples
included with the libraries!
So you’ll note that my code looks suspiciously like the PqQt examples (exactly like in
some sections!)

Use was made of “signals” in these examples. Each gauge is tied to a variable. Rather
than loop and redraw the gauge, the gauge monitors the variable and redraws itself
when a change is detected ! Very neat !

14

DASH1 monitors the Speed in km/hr, the engine RPMs, and the MAF (Mass Air Flow), a
measure of the airflow through the injectors in grams/sec

15

Dash2 monitors less “lively” parameters:
The Ambient Temperature in Degrees C
The Intake Temperature in Degrees C
The Coolant Temperature in Degrees C
Spark Timing Advance from Cylinder 1

Short term Fuel Trim – This is the temporary “adjustment” in the closed feedback loop
that controls the fuel flow. In my car, there are two Short Term Fuel Trim sensors (both
are shown here). There is also a pair of Long Term Fuel Trim Sensors, but unless you’re
doing something foolish, you can expect them to usually read Zero. The range for STFT
is -100 (Lean) and +100 (rich). The “Trim” value is actually a measurement of the
Oxygen Sensor Voltage, and the value is expressed as a Percentage

16

University of Michigan Work:
http://www.autosec.org/publications.html

UCSD / University of Washington
http://it.slashdot.org/story/11/03/12/0114219/Hacking-a-Car-With-
Music?from=rss&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%
3A+Slashdot%2Fslashdot+%28Slashdot%29
http://fortcollinswebworks.com/news/car-malware.html
http://www.itworld.com/security/139794/with-hacking-music-can-take-control-your-
car

17

Obviously, you could spend the rest of your days reverse-engineering the OEM codes,
then rewriting Wireshark for OBD.
Something tells me I won’t be going down this road !

Though writing an OBD plugin for Wireshark might be fun!

But …

Combining some of the concepts from this presentation, think about a tennis-ball sized
device, powered by batteries and magnetic. Inside, imagine a small computer – maybe
a PWNY, maybe an android device. Combine that with decodes for the ignition and
access via the wireless Tire Pressure Sensors, and it should be very possible to make a
“killswitch” – a toss-able device that will kill the ignition of any car it sticks to, then lock
the doors.

I could see law enforcement applications, but some evil applications also (the police
already can do this with OnStar)

18

