Flash-Friendly File System (F2FS)

Presented at KLF 2012
October 12, 2012
Jaegeuk Kim
S/W Development Team
Memory Division, Samsung Electronics Co., Ltd.

<P

TURN ON TOMORROW

* Introduction

* Log-structured File System
* Design Issues

« Design of F2FS

« Performance Evaluation

e Summary

Introduction

 NAND Flash-based Storage Devices

— SSD for PC and server systems
— eMMC for mobile systems
— SD card for consumer electronics

e The Rise of SSDs
— Much faster than HDDs
— Low power consumption

Application open Time (seconds) Figure-3 2008-2013 Solid-State Drive Market Forecast
30 o] 20%
mSSD e 80
25 { 18%
M 7,200 rpm Hard Drive 5o |
20 a0 | { 12%
15 o | { 8%
20 |
1 7.1 o | " [4%
2008 2009 2010 2011 20M2E 2013F
0 A : M ESD shipment (Units: million) =CmSSD % of total NAND demand
Adobe Reader X (500-page PDF) Excel 2010 (Large Spreadsheet) Photoshop CS 5.1 (400MB TIF)
Source: March 30th, 2012 by Avram Piltch, LAPTOP Online Editorial Director Source: DRAMeXchange, Jan., 2012

L

Introduction

 NAND Flash Memory
— Erase-before-write
— Sequential writes inside the erase unit
— Limited program/erase (P/E) cycle

INDILINX
Barefoot™ Controller
- Clock
* Flash Translation Layer (FTL) — N
. o ROM ARMgTDMI-S

— Garbage C-0||ect|0n Conttroller COmFuer T \ﬂ;“"i"

— Wear-leveling 1 7 wor

— Bad block management NAND Controller [4— ME;:“:‘;; —] 2T oA Memory Utility ; MU

) icu

DRAM Access Bus

. ! 4 4 -.JTAG

» Host-side Issues) ! d v!
— Poor random erte performance MAND Flash SATA Host interface DRAM JTAG debug port

— Life span and reliability

Source: INDILINX Barefoot controller

Introduction

* File System
— Serve directory and file operations to users
— Manage the whole storage space

open(/dir/file)

PR create(/dir/file) read(file, offset)
Applications unlink(/dir/file) write(file, offset)
* *
T . H
oS ~ Directory structure File structure
_ Memory management
File System
Space management
{} Power-Off Recovery
Super I “dir” “file”)

block inode inode inode

Log-structured File System

« Log-structured File System (LFS)!
— Assume the whole disk space as a big contiguous area
— Write all the data sequentially
— Recover quickly with “checkpoint”

[Traditional File System] [LFS]
Logical [4 BH8 MetadataAreaj
Block -
Address 8
N
I
E IE
1- e
User Data Area ' 3
B 6 B 2
m 2 g
] User-data Area
Time Time

[1] Mendel Rosenblum and John K. Ousterhout. 1992. The design and implementation of a log-structured file system. ACM Trans. Comput. Syst. 10, 1

(February 1992), 26-52. @
A o . -
/Align with your: imaginations e

Log-structured File System (Index Structure)

Fixed location, but separated

One big log

/J\
S C
B P v
Inode
Map

Segment
Usage

File Inode

Directory data

File data

File data

Used for cleaning)
Segment Indirect
Summary Pointer block

ay
ay
ay
"ay
ay
"ay
ay
L
.......
"ay
"y
"ay
ay
"ay
"y
ey
"y

Direct
Pointer block

.
.
.
.
.
.
.
Py
Py
Py
Py
..
"""
..
..
..
..
.
.
..
..
..
.
.
.

Design Issues |

« Wandering tree problem []
— Propagates index updates recursively

« Goal
— Eliminate or relax the update propagation

=3
mO
T g
£

Directory data

File data File data 4

Indirect Direct
Pointer block Pointer block

[2] BITYUTSKIY, A. 2005. JFFS3 design issues. http://www.linux-mtd.infradead.org/. @

Design Issues |l

« Cleaning Process
— Reclaim obsolete data scattered across the whole storage for new empty log space
— Get victim segments through referencing segment usage table
— Load parent index structures of there-in data identified from segment summary blocks
— Move valid data by checking their cross-reference

+ Goal
— Hide cleaning latencies to users
— Reduce the amount of valid data to be moved
— Move data quickly

» Specific Issues
— Cleaning in the background
— Victim selection policy
— Hot and cold data separation
— Instant valid data identification

/Align with your imagination: e

Design of F2FS

* Flash Awareness
— Enlarge the random write area for performance, but provide the high spatial locality
— Align FS data structures to the operational units in FTL

 Wandering tree problem
— Use a term, “node”, that represents inodes as well as various pointer blocks
— Introduce Node Address Table (NAT) containing the locations of all the “node” blocks

« Cleaning overhead
— Support a background cleaning process
— Support greedy and cost-benefit algorithms for victim selection policies
— Support multi-head logs for static hot and cold data separation
— Introduce adaptive logging for efficient block allocation

/Align with your imagination: e

Design of F2FS (On-disk Layout)

* Flash Awareness
— All the FS metadata are located together for locality
— Start address of main area is aligned to the zone size
— Cleaning operation is done in a unit of section

« Cleaning overhead
— Six active logs for static hot and cold data separation

Random writes Sequential writes

| Zone | Zone | Zone | Zone |

| Section | Section | Section | Section | Section | Section | Section | Section |

Segment Number o 1 2 ..
(tsegment=2vm8) [| [[[| [[L [[0 ¢ 0

Superblock 0 Main Area
Segment Node
Superblock 1 Info. Address
Table Table
(SIT) (NAT)
2 segments 0.4% over 0.2% over l l l v v v
Per 2044GB main area main area Hot/Warm/Cold Hot/Warm/Cold
of main area node segments data segments

L

Design of F2FS (Index Structure)

Fixed location w/ locality Multiple logs
//\

Dir Inode
Directory data

File data

=
==

I
o
Q
2
)

Direct
Node

Segment
Summary Used for cleaning

(SSA)

-Direct node blocks for dir -Dir data
-Direct node blocks for file -File data
-Indirect node blocks -Cleaning data

.
.
.
.
.
.
.
Py
Py
Py
Py
..
"""
..
..
..
..
.
.
..
..
..
.
.
.

Design of F2FS (Cleaning Process)

« Background cleaning process
— A kernel thread doing the cleaning job periodically at idle time

* Victim selection policies
— Greedy algorithm for foreground cleaning job
— Cost-benefit algorithm for background cleaning job

* Block allocation policy

— Threaded logging
— Reuse obsolete blocks without cleaning operations
— Cause random writes

— Copy-and-compaction
— Need cleaning operations with some latency
— Cause no random writes

— Adaptive logging
— Normally, copy-and-compaction is adopted
— If there is not enough free space, the policy is dynamically changed to threaded logging

: PSAmsuNG4

/Align with your imagination: e

Performance Evaluation (micro benchmark)

35
[System Specification] 30 -
g 25 -
CPU ARM Coretex-A9 1.2GHz S
=~ 20 -
DRAM 1GB g L.
2 4
Storage Samsung eMMC 64GB § 10 -
Kernel Linux 3.3 > !
O ,
ETNe a4 12 GB seq. Read seq. Write rand. Read rand. Write
M EXT4 30.753 17.066 5.06 4.15
M F2FS 30.71 16.906 5.073 15.204
[iozone]
7000 12000
6000 10000
@ >000 8000
“ 4000 g
@ 3000 5 6000
- 2000 = 4000
1000
0 2000
5000 10000 15000 20000 25000 0 . ——
seg.create seq.stat seg.delete | rand.create | rand.stat | rand.delete
W ext4| 5675.9 | 4741.6 3065 2439.5 2038.6 o EXT4 €92 1238 1370 c63 1250 915
mf2fs | 6167.3 | 5207.9 4815.9 45444 4382.9 M F2FS 631 7871 10832 620 7962 5992
[fs_mark] [bonnie++]

e

Performance Evaluation (Galaxy S2)

Quadrant ext4 | f2fs
1/0 Performance 3476 3724 248(7.13%)
RLBench extd f2fs
Overall(sec) 40.76 (0.98) 33.57 (2.01;| -7.18(17.62%
1000 INSERTs(sec) 20.59 (0.9) 11.96 (1.82)] -8.63(41.93%
Androbench exts i f2fs
Sequential Read(MB/s) 41.58 (2.72). 41.78 (2.05), 0.2(0.48%)
Sequential Write(MB/s) 4.81 (1.19) 5.63 (1.15), 0.82(17.05%)
Random Read(MB/s) 3.39 (0.06) 3.46 (0.07); 0.07(2.12%
Random Write(MB/s) 0.25 (0.01) 0.48 (0.01
SQLite Insert(s) 1505 (0.37) 16.63 (0.39) 1.58(-10.5%)
SQLite Update(s) 6.28 (0.27), 3.51 (0.31) -2.77(44.16%
SQLite Delete(s) 6.49 (0.19); 3.89 (0.56): -2.59(39.96%)

A . . L A..
/Align with yourimagination: e

* Flash-Friendly File System
— Focused on Performance and Reliability
— Not, on new fancy functionalities

 Ubuntu 12.04 LTS
— Format /" as F2FS
— Install & compile kernel & run several applications

« Galaxy S2, S3, and Nexus
— Format “/data” as F2FS
— Factory reset & run android apps

* Further Optimization
— Together!

Thank you!

