
Flash-Friendly File System (F2FS)

Presented at KLF 2012

October 12, 2012

Jaegeuk Kim

S/W Development Team

Memory Division, Samsung Electronics Co., Ltd.

Agenda

• Introduction

• Log-structured File System

• Design Issues

• Design of F2FS

• Performance Evaluation

• Summary

Introduction

• NAND Flash-based Storage Devices

– SSD for PC and server systems

– eMMC for mobile systems

– SD card for consumer electronics

• The Rise of SSDs

– Much faster than HDDs

– Low power consumption

Source: March 30th, 2012 by Avram Piltch, LAPTOP Online Editorial Director

Introduction

• NAND Flash Memory

– Erase-before-write

– Sequential writes inside the erase unit

– Limited program/erase (P/E) cycle

• Flash Translation Layer (FTL)

– Garbage collection

– Wear-leveling

– Bad block management

• Host-side Issues

– Poor random write performance

– Life span and reliability
Source: INDILINX Barefoot controller

Introduction

• File System

– Serve directory and file operations to users

– Manage the whole storage space

OS

storage

File System

Applications

open(/dir/file)

create(/dir/file)

unlink(/dir/file)

“/”

inode

“dir”

inode

“file”

inode
data

read(file, offset)

write(file, offset)

Super

block

Directory structure File structure

Memory management

Space management

Index structure

Power-Off Recovery

Memory Management

Log-structured File System

• Log-structured File System (LFS)[1]

– Assume the whole disk space as a big contiguous area

– Write all the data sequentially

– Recover quickly with “checkpoint”

Metadata Area

User Data Area

Metadata Area

Logical

Block

Address

Time

[Traditional File System]

1

2

3

4

5

6

7

8

Time

User-data Area

+ Metadata Area

[LFS]

1

2

3

4

5

6

7

8

[1] Mendel Rosenblum and John K. Ousterhout. 1992. The design and implementation of a log-structured file system. ACM Trans. Comput. Syst. 10, 1

(February 1992), 26-52.

Log-structured File System (Index Structure)

C

P

S

B

Inode

Map

Dir Inode

Directory data

File data

Indirect

Pointer block

Segment

Summary

Segment

Usage

File Inode

File data
…

Used for cleaning

Fixed location, but separated One big log

Direct

Pointer block

Design Issues I

• Wandering tree problem [2]

– Propagates index updates recursively

• Goal

– Eliminate or relax the update propagation

C

P

S

B

Inode

Map

Inode
Directory data

File data

Indirect

Pointer block

Inode
File data

…

[2] BITYUTSKIY, A. 2005. JFFS3 design issues. http://www.linux-mtd.infradead.org/.

Direct

Pointer block

Design Issues II

• Cleaning Process

– Reclaim obsolete data scattered across the whole storage for new empty log space

– Get victim segments through referencing segment usage table

– Load parent index structures of there-in data identified from segment summary blocks

– Move valid data by checking their cross-reference

• Goal

– Hide cleaning latencies to users

– Reduce the amount of valid data to be moved

– Move data quickly

• Specific Issues

– Cleaning in the background

– Victim selection policy

– Hot and cold data separation

– Instant valid data identification

Design of F2FS

• Flash Awareness

– Enlarge the random write area for performance, but provide the high spatial locality

– Align FS data structures to the operational units in FTL

• Wandering tree problem

– Use a term, “node”, that represents inodes as well as various pointer blocks

– Introduce Node Address Table (NAT) containing the locations of all the “node” blocks

• Cleaning overhead

– Support a background cleaning process

– Support greedy and cost-benefit algorithms for victim selection policies

– Support multi-head logs for static hot and cold data separation

– Introduce adaptive logging for efficient block allocation

Design of F2FS (On-disk Layout)

• Flash Awareness

– All the FS metadata are located together for locality

– Start address of main area is aligned to the zone size

– Cleaning operation is done in a unit of section

• Cleaning overhead

– Six active logs for static hot and cold data separation

Check

point

Area

Segment

Info.

Table

(SIT)

Node

Address

Table

(NAT)

Superblock 0

Superblock 1

Segment Number

(1 segment = 2MB)

Segment

Summary

Area

(SSA)

Main Area

2 segments

Per 2044GB

of main area

0.4% over

main area

0.2% over

main area Hot/Warm/Cold

node segments

Hot/Warm/Cold

data segments

0 1 2 …

Section

Zone Zone

Section Section Section Section Section Section

ZoneZone

Section

Random writes Sequential writes

Design of F2FS (Index Structure)

C

P

S

B
NAT

Dir Inode

Directory data

File data

Indirect

Node

Segment

Summary

(SSA)

Segment Info.

Table (SIT)

File Inode

File data…

Used for cleaning

Fixed location w/ locality Multiple logs

Direct

Node

-Direct node blocks for dir

-Direct node blocks for file

-Indirect node blocks

-Dir data

-File data

-Cleaning data

Design of F2FS (Cleaning Process)

• Background cleaning process

– A kernel thread doing the cleaning job periodically at idle time

• Victim selection policies

– Greedy algorithm for foreground cleaning job

– Cost-benefit algorithm for background cleaning job

• Block allocation policy

– Threaded logging

– Reuse obsolete blocks without cleaning operations

– Cause random writes

– Copy-and-compaction

– Need cleaning operations with some latency

– Cause no random writes

– Adaptive logging

– Normally, copy-and-compaction is adopted

– If there is not enough free space, the policy is dynamically changed to threaded logging

Performance Evaluation (micro benchmark)

seq. Read seq. Write rand. Read rand. Write

EXT4 30.753 17.066 5.06 4.15

F2FS 30.71 16.906 5.073 15.204

0

5

10

15

20

25

30

35

B
an

dw
id

th
 (

M
B

/s
)

CPU ARM Coretex-A9 1.2GHz

DRAM 1GB

Storage Samsung eMMC 64GB

Kernel Linux 3.3

Partition Size 12 GB

seq.create seq.stat seq.delete rand.create rand.stat rand.delete

EXT4 692 1238 1370 663 1250 915

F2FS 631 7871 10832 620 7962 5992

0

2000

4000

6000

8000

10000

12000

Fi
le

s
/

se
c

[iozone]

[fs_mark] [bonnie++]

[System Specification]

Performance Evaluation (Galaxy S2)

 ext4 f2fs

Overall(sec) 40.76 (0.98) 33.57 (2.01) -7.18(17.62%)

1000 INSERTs(sec) 20.59 (0.9) 11.96 (1.82) -8.63(41.93%)

25000 INSERTs in a transaction(sec) 1.79 (0.08) 1.71 (0.01) -0.08(4.48%)

25000 INSERTs into an indexable table in a t
ransaction(sec)

1.79 (0.08) 1.75 (0.03) -0.03(1.9%)

100 SELECTs without an index(sec) 0.08 (0.04) 0.05 (0.02) -0.03(34.21%)

100 SELECTs on a string comparison(sec) 0.07 (0.02) 0.15 (0.21) 0.08(-108.33%)

Creating an index(sec) 0.82 (0.04) 0.94 (0.09) 0.12(-14.08%)

5000 SELECTs with an index(sec) 1.47 (0.11) 1.54 (0.06) 0.07(-4.75%)

1000 UPDATEs without an index(sec) 4.48 (0.04) 4.48 (0.12) 0(0%)

25000 UPDATEs with an index(sec) 3.99 (0.08) 4.14 (0.18) 0.15(-3.81%)

INSERTs from a SELECT(sec) 1.62 (0.15) 1.81 (0.27) 0.19(-11.7%)

DELETE without an index(sec) 1.47 (0.25) 2.02 (0.43) 0.55(-37.41%)

DELETE with an index(sec) 1.43 (0.26) 1.64 (0.3) 0.21(-14.85%)

DROP TABLE(sec) 1.16 (0.11) 1.48 (0.2) 0.31(-26.98%)

 ext4 f2fs

Sequential Read(MB/s) 41.58 (2.72) 41.78 (2.05) 0.2(0.48%)

Sequential Write(MB/s) 4.81 (1.19) 5.63 (1.15) 0.82(17.05%)

Random Read(MB/s) 3.39 (0.06) 3.46 (0.07) 0.07(2.12%)

Random Write(MB/s) 0.25 (0.01) 0.48 (0.01) 0.23(93.5%)

SQLite Insert(s) 15.05 (0.37) 16.63 (0.39) 1.58(-10.5%)

SQLite Update(s) 6.28 (0.27) 3.51 (0.31) -2.77(44.16%)

SQLite Delete(s) 6.49 (0.19) 3.89 (0.56) -2.59(39.96%)

 ext4 f2fs

I/O Performance 3476 3724 248(7.13%)

Quadrant

RLBench

Androbench

Reduce total execution time by

18% over ext4

Reduce DB insertion time by

42% over ext4

Reduce DB update time by 44%

over ext4

Improve random write

performance by 94% over ext4

Summary

• Flash-Friendly File System

– Focused on Performance and Reliability

– Not, on new fancy functionalities

• Ubuntu 12.04 LTS

– Format “/” as F2FS

– Install & compile kernel & run several applications

• Galaxy S2, S3, and Nexus

– Format “/data” as F2FS

– Factory reset & run android apps

• Further Optimization

– Together!

Thank you!

