
olibc: Another C Library
optimized for embedded Linux

Jim Huang (黃敬群) <jserv@0xlab.org>

Developer, 0xlab
Feb 22, 2013 / Embedded Linux Conference

Rights to copy

Attribution – ShareAlike 3.0
You are free

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

© Copyright 2013 0xlab
http://0xlab.org/

contact@0xlab.org

Corrections, suggestions, contributions and translations
are welcome!

Latest update: Feb 22, 2013

http://creativecommons.org/licenses/by-sa/3.0/legalcode

What I will discuss about...

• I learned a bit about the toolchain and system library
optimizations while developing Android based
projects.

• It might be a good idea to “reuse” them in ordinary
embedded Linux projects.

• Therefore, I plan to emphasize on how to leverage
the engineering efforts originally from Android world.
– Review C library characteristics

– Toolchain optimizations

– Build configurable runtime

– Performance evaluation

Related talks

• Android Builders Summit 2013
– LLVMLinux: Compiling Android with LLVM - Behan

Webster, Converse in Code - Behan Webster

• Embedded Linux Conference 2013
– Toybox: Writing a new Linux Command Line from

Scratch - Rob Landley

– System-wide Memory Management without Swap -
Howard Cochran

– Bringing kconfig to EGLIBC - Khem Raj

Agenda (1) Take from Android

(2) olibc: configurable

(3) Optimizations

(4) Action Items

Take from Android
bionic libc, dynamic linker, debugging facilities

We know, Android is not Linux, but...

≠
We're __taking__ someting useful

back to embedded Linux.

from Rob Landley's talk

Source: http://www.landley.net/talks/celf-2013.txtSource: http://www.landley.net/talks/celf-2013.txt

Our "something useful" is the base to launch Dalvik Virtual Machine
and the above Android Framework

• “Dalvik is the new ROM basic"
• …
• “why not extend toolbox/bionic instead of replace?

– just enough to run dalvik. (The new ROM BASIC.)"

Why build bionic-derived libc?

• License
– glibc (LGPL), uClibc (LGPL), dietlibc (GPL), musl (MIT)

• Optimized for major (consumer) targets
– ARMv7 + MIPS + Intel Atom optimizations

– glibc (good arm/mips/atom), uClibc (simpler
arm/mips/x86), dietlbc (N/A), musl (simple x86)

• API coverage is getting more complete by versions.
• Catch up with latest SoC technologies

– Contributors: Google, Intel, Qualcomm, Texas
Instruments, NVIDIA, ST-Ericsson, Linaro, MIPS, etc.

• The problem is, Android is not a community project.

“Copyleft is dying.
 GPLv2 was category killer, synonymous with copyleft." – Rob Landley

Goals of olibc

• Create small, fast, free, and standard-compliant
implementation for C Library.

• Offer configurable levels of functionality and should
scale from tiny embedded Linux up to general
purpose environments such as Android-powered
smart devices.

• Provide system utilities around C library
– benchmarking, validation, prelinker, ...

• Introduce steady security, performance, and
comformance fixes.

Programming Model
#include <stdio.h>

int main() {

 printf(“Hello Wolrd\n”);

 return 0;

}

#include <stdio.h>

int main() {

 printf(“Hello Wolrd\n”);

 return 0;

}

hello.c

(Source)

hello

(ELF)

arm-gcc

(Compiler)

“Text” Section

“Data” Section

“BSS” Section

“Stack” Section

Memory
SoC

loading

Execute

 fetch

decode

execute

Memory
access

Write
back

PC

Reg

runtime

Let's review the programming model...

Programming Model (multi-threaded)

Bare-metal Multi-Thread

“Data” Section

BSS

………………………………

Text TextText

Stack StackStack

scheduler

“Text” Section

“Data” Section

“BSS” Section

“Stack” Section

………

Programming Model (multi-process)
Multi-Process [Linux]

scheduler

kernel

Library

application application application

application application application

Framework & VM

middleware & Library

kernel

scheduler

Multi-Process [Android]

bionic libc

• Small C Library implementation
– mixture of NetBSD (libc) and FreeBSD (libm)

• BSD license
• Partially POSIX compatible; not compatible with glibc
• No SysV IPC support (due to Binder IPC)
• Support for ARM (w/ Thumb), x86, MIPS
• Fast pthread implementation (based on futexes)
• Small footprint

glibc 2.11 : /lib/libc.so → 1,208,224 bytes

uClibc 0.9.30 : /lib/libuClibc.so → 424,235 bytes

bionic 2.1 : /system/lib/libc.so → 243,948 bytes

Not in bionic libc

• Complete wide chars
• C++ exceptions (limited since NDKr5)
• Full C++ STL
• Full POSIX Thread

Memory Map [Android pre-4.x]

app_process

Java apps and
resource data

.apk,.jar,*.ttf etc.

Shared lib; libc,
libwecore etc.

various .so files

/system/bin/linker

Stack

0x00008000

0x40000000

0xB0000000

0x00000000

0xBEFFFFFF

File mapping direction

File mapping direction

No memory with execution attribute

Some memory are of execution attribute

Memory related changes

• ASLR (Address space layout randomization) since
Android 4.0
– help protect system and third party applications from

exploits due to memory-management issues

– PIE (Position Independent Executable) is added since
Android 4.1

– original ELF prelinker was removed

• AddressSanitizer since 4.1

AddressSanitizer vs. Valgrind

Valgrin AddressSanitizer

Heap out-of-bounds Yes Yes

Stack out-of-bounds No Yes

Global out-of-bounds No Yes

Use-after-free Yes Yes

Use-after-return No Sometimes/Yes

Uninitialized reads Yes No

Overhead 10x-30x 1.5x-3x

Host platform Linux, Mac OS X where (latest)
GCC/LLVM runs

AddressSanitizer

int global_array[100] = {-1};
int main(int argc, char **argv) {
 return global_array[argc + 100]; /* BOOM */
}

===
==7161== ERROR: AddressSanitizer global-buffer-overflow on address 0x2a002194 at
pc 0x2a00051b bp 0xbeeafb0c sp 0xbeeafb08
READ of size 4 at 0x2a002194 thread T0
 #0 0x40022a4b (/system/lib/libasan_preload.so+0x8a4b)
 #1 0x40023e77 (/system/lib/libasan_preload.so+0x9e77)
 #2 0x4001c98f (/system/lib/libasan_preload.so+0x298f)
 #3 0x2a000519 (/system/bin/global-out-of-bounds+0x519)
 #4 0x4114371d (/system/lib/libc.so+0x1271d)
0x2a002194 is located 4 bytes to the right of global variable 'global_array
(external/test/global-out-of-bounds.cpp)' (0x2a002000) of size 400
Shadow byte and word:
 0x05400432: f9
 0x05400430: 00 00 f9 f9
More shadow bytes:
 0x05400420: 00 00 00 00
 0x05400424: 00 00 00 00
 0x05400428: 00 00 00 00
 0x0540042c: 00 00 00 00
=>0x05400430: 00 00 f9 f9
 0x05400434: f9 f9 f9 f9
 0x05400438: 00 00 00 00
 0x0540043c: 00 00 00 00
 0x05400440: 00 00 00 00
Stats: 0M malloced (0M for red zones) by 35 calls
Stats: 0M realloced by 0 calls

Shared library issues

• Older Android dynamic linker has an arbitrary low
(for larger applications such as GStreamer,
LibreOffice) limit on number of shared libs: 128
– Until Sep 12, 2012, dynamically allocating soinfo-structs

in linker is implemented.

• Mozilla: Use a hacked-up copy of the bionic linker
in our own code, in addition to the system one.
– two run-time linkers not aware of each others ended up a

failure

C++ Integrations

C++ Exception C++ RTTI Standard Library

system No No No

gabi++ No Yes No

stlport No Yes Yes

gnustl Yes Yes Yes

• olibc provides stlport, which depends on wchar
support in libc.

Debuggerd

• Nice embedded-specific crash handler
– used on all Android devices

• Crash report data placed in log/tombstone
• Debuggerd also facilitates connecting debugger to

dying process
– Can halt and wait for gdb to attach to the process

• Apache license

How Debuggerd works

• Debuggerd acts as a crash-handling daemon
• Adds default signal handler to each process, which handles

any signals that generate core
– included in bionic, thus every application gets it

• Signal handler captures deadly signal and contacts
debuggerd

• Debuggerd records information using ptrace (registers,
stack, memory areas), and /proc

• Has builtin ARM stack unwinder for generating a backtrace
• Automatically rotates a fixed number of crash reports
• Reference:

https://wiki.linaro.org/WorkingGroups/ToolChain/Outputs/LibunwindDebuggerd

unwinding

• Unwinding = processing stack and memory image
to create a backtrace

• Backtrace is very compact - summarizes stack
information nicely

• Local variables usually not available
• Different methods available, depending on

compilation flags

Crash Handler

• New crash handler written by Tim Bird of Sony
– Based on debuggerd from Android

• Implemented as a core file handler
• Writes crash report to a “tombstone_0x” file in

/tmp/tombstones
• Writes information from /proc, ptrace, and kernel

log buffer
• Also writes some information to the kernel log
• Information: http://elinux.org/Crash_handler

http://elinux.org/Crash_handler

License Issue

• THE BIONIC LIBRARY: DID GOOGLE WORK AROUND
THE GPL? brownrudnick, Mar 2011

• Bionic Revisited: What the Summary Judgment Ruling in
Oracle v. Google Means for Android and the GPL,
brownrudnick, Nov 2011
– Google tries to “clean” Linux kernel headers to avoid the

GPL

olibc: configurable
Kernel

Kernel headers

C Library

Applications

Major problem: broken toolchain

How Toolchain works

External Toolchain Issues

• CodeSourcery Toolchain doesn't use gold linker,
and Android's original build flags are a bit
aggressive.
– e.g. ICF (Identical Code Folding), which is gold only

redundancy elimination

– Option: --icf (known to bring 5% size reduction)

• Default link script doesn't take olibc into
consideration.

• Sometimes, toolchains have optimization bugs

Build Android compatible toolchain

• Barebone-style building:
– Inside Android tree

– Specify all system and bionic header file paths, shared
library, paths, libgcc.a, crtbegin_*.o, crtend_*.o, etc.

• Standalone-style building:
– Convenient for native developers:
 arm-xxx-eabi-gcc -mandroid --sysroot=<path-to-sysroot > hello.c -o hello

 (<path to sysroot> is a pre-compiled copy of Bionic)

olibc: Configurable and Optimized

• Configured using the Kconfig language pioneered by
the Linux kernel
– Extensions, Library settings, crash handler, ...

• Encapulate the Android build system to become
simpler and dedicated one.

• Allow full optimization techniques originally applied by
Android including implementation and toolchain
– SoC enhancements

• Use repo to manage source tree
– repo init -u https://github.com/olibc/manifest.git

– repo sync

https://github.com/olibc/manifest.git

Optimizations

Build Tweaks: Symbol Visibility

1. Goal: Visibility of a function should match the
API spec in programmer’s design.

2. Solution:
First, systematically applying the 5 steps.
Fundamentally, need to go through the
APIs of each library:

 Consciously decide what should be
“public” and what shouldn’t.

3. Result: ~500 KB savings for opencore libs

4. Key: The whole hidden functions can be
garbage collected if unused locally:

5. Toolchain’s options:
 -ffunction-sections,
 -Wl,--gcsections,

-fvisibi-lity=hidden

Linux-arm.mk

Android.mk

*.h
__attribute__((visibility(“public”)))

function decl

$ make -j5

/tmp/GoOgLe.o: In function foo

src.c: undefined reference to “z”

__attribute__((visibility(“public”)))

Int z;

Until no failure

1

2

3

4

5

Build Tweaks: code size

• Android default inline options:
-finline-functions

-fno-inline-functions-called-once

Use genetic algorithm to find best-fit:
-finline

-fno-inline-functions

-finline-functions-called-once

--param max-inline-insns-auto=62

--param inline-unit-growth=0

--param large-unit-insns=0

--param inline-call-cost=4

GCC-4.2.1 GCC-4.4.3 GCC-4.4.3
(tuned inline options)

Native
system
image

23,839,29
1

23,027,032

 22,087,436

(unit: byte)

GCC-4.2.1 GCC-4.4.3 GCC-4.4.3(tuned)
Native system image size

Source: Smaller and Faster Android, Shih-wei Liao, Google Inc.Source: Smaller and Faster Android, Shih-wei Liao, Google Inc.

Instrumentation-based FDO (Feedback-Directed
Optimization)

1. Build twice.
2. Find representative input
3. Instrumentation run: 2~3X slower but this perturbation is OK, because

threading in Android is not that time sensitive
4. 1 profile per file, dumped at application exit.

 arm-xxx-eabi-gcc

 –fprofile-generate=./profile
 arm-xxx-eabi-gcc

 –fprofile-generate=./profile

 arm-xxx-eabi-gcc

 –fprofile-use=./profile.zip
 arm-xxx-eabi-gcc

 –fprofile-use=./profile.zip

Optimized
Binary

with FDO

Optimized
Binary

with FDO

Run the instrumented
binary

Run the instrumented
binary Profile.zipProfile.zip

Instrumented
Binary

Instrumented
Binary

Representative
Input Data

Representative
Input Data

1

2

3

FDO Performance

• Global hotness for ARM (HOT_BB_COUNT_FRACTION, Branch
prediction routine for the GNU compiler, gcc-4.4.x/gcc/predict.c)
– 1% improvement on Android's skia library as belows.

– smaller effects on smaller Android benchmarks.

Content Work default fdo-default fdo-modified

Size of libskia 7,879,646 7,396,032 7,319,668

Size reduction 0.00% 6.14% 7.11%

Stdev (over 100 runs) 0.28 0.63 0.26

Speedup 1 0.98 0.97

(unit: bytes)

Source: Smaller and Faster Android, Shih-wei Liao, Google Inc.Source: Smaller and Faster Android, Shih-wei Liao, Google Inc.

Dynamic Linker Optimizations

• Why?
– The major reason to optimize dynamic linker is to speed

up application startup time.

• How?
– Implement GNU style hash support for bionic linker

– Prelinker improvements: incremental global prelinking

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lp
gp
re.gp
re.pe.gp
re.pe.pgp.gp
re.pe.pgp.gp.are

(normalized) Dynamic Link time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

elf.lp
elf.gp
elf.re.gp
elf.re.pe.gp
elf.re.pe.pgp.gp
elf.re.pe.pgp.gp.are

(normalized) Symbol Lookup number

libc.so
printf

libfoo.so
foo
bar

void foo (){
 printf(“fooooo”);
 bar();
}

DT_GNU_HASH
foo
bar

DT_HASH
foo
bar
printf

libfoo.so

DT_GNU_HASH: visible dynamic linking improvement =
 Better hash function (few collisions)
 + Drop unnecessary entry from hash
 + Bloom filter

GNU-style Hash

name 2sym collision # 3sym collision # 3+sym collision #
sysv 1749 5
libiberty 42
dcache 37
djb2 29
sdbm 39
djb3 31
rot 337 39 61
sax 34
fnv 40
oat 30

SysV ELF hash

GNU-style hash

Experiment by Jakub Jelinek
http://cygwin.com/ml/libc-alpha/2006-06/msg00098.html

http://cygwin.com/ml/libc-alpha/2006-06/msg00098.html

Symbol
s
in ELF

lookup
#

fail# gnu
hash

filtered by bloom

gnu.gp 3758 23702 19950 23310 18234(78%)

gnu.gp.re 3758 20544 16792 19604 14752(75%)

gnu.lp 61750 460996 399252 450074 345032(76%)

gnu.lp.re 61750 481626 419882 448492 342378(76%)

Bit array

H = {x, y, z} = hash functions

Hash function may collision
 → Bloom filter may got false positives

NOTE: Android 4.0 removes the support of prelinker,
but gnu style hash is still useful.

Action Items

TODO

• Use eglibc-like Option Group
– based on POSIX.1-2001 specifications

• Comply with relevant standards
• Resolve external toolchain issues

– Allow arm-none-eabi- and arm-none-linux-gnueabi-

– Don't depend on prebuilt toolchain anymore

• Collaboration: crosstool-ng, buildroot, yocto, ...
• Validation: improve unit-test, bench, ABI test
• More SoC enhancements
• Extensions

– BioMP: Migrating OpenMP into Bionic

http://code.google.com/p/biomp/

Reference

• olibc hosted at GitHub: http://olibc.github.com/
• Optimizing Android Performance with GCC Compiler, Geunsik

Lim
• Embedded-Appropriate Crash Handling in Linux, Tim Bird
• Smaller and Faster Android, Shih-wei Liao, Google Inc.

http://0xlab.org

	Slide 1
	Rights to copy
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

