

Adventures in (simulated)
Asymmetric Processing

Pantelis Antoniou
panto@antoniou-consulting.com
panto@irc.freenode.net / #beagle

mailto:panto@antoniou-consulting.com
mailto:panto@irc.freenode.net

What is Asymmetric Processing, and
what the big.LITTLE idea?

● Vanilla Asymmetric processing
– Performance, power-envelope, micro-architecture differ

wildy.

– Typically the instruction set architecture is different, see
CPU/DSP, PS3 CELL, TI's PRU etc.

● big.LITTLE is the combo of a low power Cortex-A7
with a high performance Cortex-A15 which both have
the ISA.
– Single kernel – same userspace.

– Migration costs are cheap (a few 100s of usecs)

– Trivial programmer visible differences (L1 I-cache size,
PMU differences etc.)

Optimum CPU selection curve

Cortex-A7 vs Cortex-A15 Overview

Complete big.LITTLE system

S/W reflects H/W architecture

● Scheduling algorithms need to measure 'work done' in a
'unit of time'.

● Measuring 'work done' is not easy
– Differences in micro-architecture

– Cache size effects

– I/O bandwidth differences

– PMUs are not standard, and have pretty high overhead.

● When you don't care about power, 'work done' in a unit
of time, is directly proportional to the 'unit of time'

Power Scheduling Bogo-Example

● Simplified system
– 1 Cortex-A15, 2 bogomips/sec, 3 bogowatts/sec

– 1 Cortex-A7, 1 bogomip/sec, 1 bogowatt/sec

● Simplified workload
– Task A, 16 bogomips

– Task B, 20 bogomips

● A real system is considerably more complex
– Tasks are memory bound? I/O bound? Cache effects?

Micro-architectural differences...

Power Bogo-Example Legend

Most power efficient sched policy

Most power efficient (cont)

● Tasks execute sequentially on the most power
efficient core, the Cortex-A7.

● Unfortunately it takes the most amount of time.
– Total power consumed 36 bogowatts

– Total amount of time 36 secs.

● Cortex-A15 might as well be shut down.
– Only useful as a last resort (i.e. Battery is dying..)

Most performant sched policy

Most performant (cont)

● Tasks use all the computing resources.
● Tasks get allocated on the fastest Cortex-A15 first.
● Tasks not 'fitting' are put to the slower Cortex-A7 if possible.
● It is the fastest policy, but also the most power hungry.

– Total amount of time 13 secs.

– Total power consumed 49 bogowatts

● If connected to mains power, makes sense for high
performance workloads.
– You wouldn't want to use it on your phone on battery power

Power Vs Performance (1)

Power Vs Performance (2)

● Two extremes
– 100% Performance, 0% Power Efficiency

– 0% Performance, 100% Power Efficiency

● The ideal scheduling policy should lie on the line/curve
between those two points.

● System policy dictates where the operation point should
be:
– On battery power

– On DC power

– System specific policy
● Android Home screen – low performance
● Per application policy, etc.

Power Vs Performance (3)

Power Vs Performance (4)

● No generic way to predict the amount of
processing (MIPS of work) a task will do.

● We can only infer from the history of the task.
● Average task load is a reasonably good metric.
● We (currently) have no way to measure power, we

can deduce by amount of time a task was
executing on a CPU.

● The scheduler does not track MIPS either, so we
have to deduce bogoMIPS with a similar manner.

The Linux CFS scheduler and time

● Uses balanced RB trees keyed by 'virtual runtime'
● Fairness is achieved by math calculations.
● No time-slices.

– No feedback/stimulus for PM decisions.
– Time == 'work done'
– Assumption false, even on non asymmetric systems

(think CPUFREQ with independently clocked CPUs).
– Works OK on SMP
– Simple (comparatively)

Per-entity load average tracking

● Recent development by Paul Turner
● Tracks load by summing per sched entity load

instead of per CFS run queue.
● More accurate, less prone to weird artifacts

affecting the old algorithm.
● Is the basis for all current work on asymmetric

processing.

The Linaro Angle

● The focal point for big.LITTLE MP scheduler development.
● HMP (Hybrid Multiprocessing) scheduler patchset

– Uses per-entity load tracking to assign tasks to LITTLE or big CPU
domains.

– ARM topology provides CPU-power of each core.

– Scales load average factor with both CPU-power & CPU-freq

● Perhaps too invasive and big.LITTLE specific.
● WIP – moves fast

Alex Shi's power aware patches

● Generic power framework.
● Not big.LITTLE specific, should offer

improvements on any power aware system.
● Relies on per-entity load average patchset too.
● Assumes run-to-idle is beneficial.
● Packs tasks in as few as possible cores/clusters.
● Better chances of landing in mainline.

Miscellaneous power saving ideas

● Paul McKenney's hot-plug cleanup/faster operation
patches
– Significantly speeds up hot-plug path

– Latencies down from worst case of seconds.

● Cluster aware idle patches
– Typically power domains are per-cluster.

● Nicolas Pitre's big.LITTLE switcher
– big.LITTLE is just a different OPP

– One to one mapping of Cortex A7-Cortex-A15

– Not as efficient as MP scheduling, but it works.

Sounds great! Where can I get it?

● ARM's Versatile Core Tile Express
– 2xCortex-A15 + 3xCortex-A7

– Available but $$$...

● Samsung's Exynos 5 Octa
– 4xCortex-A15 + 4xCortex-A7

– Available RSN

● TI's OMAP6
– Secret!

– Available never. RIP.

You probably have to simulate

● ARM's FastModel emulator
– Can be used to verify the h/w design

– Can be used to verify the s/w design

– Horribly slow for anything else

● Pandaboard ES (OMAP4460)
– 2xCortex-A9

– Not really big.LITTLE but when there's a will...

– Mainline kernel / Android

– Cheap!

How do I check how and what is
running on which CPU?

● Use perf – part of the Linux kernel
● Perf can do more than poll hardware

performance counters
● Not portable between arches nor different

kernel versions.
● Perf timechart is nice – if you like multi

megabyte SVG graphic files.

Perf capture & time chart generation

$ perf sched record -e sched:* \

-e:power*

^Ctrl-C

$ perf timechart

$ ls -sh output.svg

10M output.svg

Perf timechart

Perf timechart fallout (1)

● The SVG files generated are HUGE
● Inkscape works (albeit slowly) well enough to

export a PNG
● It seems it's a mess, you can figure out what's

going on.
● You can roughly see per CPU utilization and

the tasks running (and waiting).
● You can even see power events (C-states)

Perf timechart zoom

Perf timechart fallout (2)

● The most interesting statistic from a scheduler
evaluation point is the utilization of each of the
CPUs. It is impossible to discern from the
chart.

● If you've looked closely you'd see that the
capture is from Android.

● <FLAME>Android is the de-facto consumer
level Linux API</FLAME>

Perf analyze

● Simple perf command to summarize per CPU
utilization

$ perf sched analyze

CPU utilization chart

CPU | Duration | Busy |

--- | -------- | ---- |

 0 | 14160217285 | 7934204109 %56.0 |

 1 | 14160217285 | 7037750235 %49.7 |

Scheduler workload capture

● Kernel scheduler hacking must take place on
the latest mainline kernel.

● Interesting user workloads will come from
wildly different kernels, distributions or even
Android versions.

● Need to have a portable method to capture a
workload's behavior and replay it in the kernel
scheduler development box.

Perf spr-replay (1)

● SPR = Scheduler Playback Replay
● Addition to perf
● Captures scheduler workload and converts to a list of

simplified scheduler instructions
● Instructions are simple and user modifiable
● Playback of scheduler instructions on a different

system is possible
● Capture on Android, playback on a normal Linux

distribution (Angstrom) using a mainline Linux kernel.

Perf spr-replay (2)

● Each run is a list of parallel executing process with
each process having it's own instruction list:

[NAME/PID]

 [INSN]

 [INSN]...

 END

● Portable and easy to understand
● Different that the sched replay already present in perf

Perf spr-replay Instructions
● burn <nsecs>

– Loop burning CPU power for <nsecs>

● sleep <nsecs>
– Sleep for <nsecs>

● spawn <nsecs>
– Spawn a task after <nsecs>

● clone-parent <child-pid>
– Parent side of fork for <child-pid>

● clone-child <parent-pid>
– Child side of fork for <parent-pid>

● wait-id <id>
– Wait until the event with <id> is signaled by another task.

● signal-id <id>
– Signal the event with <id>

Perf spr-replay usage
$ perf sched record

run workload (i.e. cpucyle cpu0)

Ctrl-C perf

$ perf timechart

$ perf sched spr-replay -n -l

[perf/1571] R:0

[kworker/1:1/38] R:640868

[init/1] R:183105

[kworker/0:1/39] R:1159667

[sh/1546] R:4211426

[cpucycle/1572] R:2007263185

[migration/0/8] R:61035

[flush-0:11/1386] R:30517

[dropbear/1550] R:274659

Perf spr-replay usage (cont)
$ perf sched spr-replay -n -s1572 -g >spr.txt

$ cat spr.txt

[cpucycle/1572]

 burn 2007263185

 exit 0

 end

$ time perf sched spr-replay -f spr.txt

#1 tasks, #0 futexes, total work area size 12288

0.00user 2.02system 0:02.18elapsed 92%CPU

big.LITTLE simulation

● Real big.LITTLE H/W is generally unavailable
(although that will change shortly)

● Needed a way to simulate in acceptable speeds.
● Collect data about scheduler changes for an

Android game / graphics heavy workloads.
● Late Intel & AMD CPUs have per CPU CPUFREQ

control.
● Most ARM (well TI) SoCs have per CPU cluster

frequency controls.

Virtual CPUFREQ (1)

● Generating interrupts on a given processor has the
apparent effect of slowing that processor down.

● VCPUFREQ is a method of generating carefully controlled
interrupt load so the result simulates a real CPU cluster with
individually controlled CPU frequencies.

● OMAP specific backend using DMTIMERs is more
accurate.

● Generic backend uses hrtimers (somewhat less accurate).

Virtual CPUFREQ (2)

● CONFIG_VCPUFREQ
– Enable Virtual CPUFREQ governor

● CONFIG_VCPUFREQ_OMAP2PLUS
– OMAP governor backend – accurate/not portable

● CONFIG_VCPUFREQ_HRTIMER
● Generic HRTIMER backend – portable/not accurate

Virtual CPUFREQ (3)
cpufreq-info

analyzing CPU 0:

 driver: vcpufreq

 CPUs which run at the same hardware frequency: 0

 CPUs which need to have their frequency coordinated by software: 0

 maximum transition latency: 500 ns.

 hardware limits: 350 MHz - 920 MHz

 available frequency steps: 350 MHz, 700 MHz, 920 MHz

 available cpufreq governors: conservative, ondemand, powersave,
userspace, performance

 current policy: frequency should be within 350 MHz and 920 MHz.

 The governor "userspace" may decide which speed to use

 within this range.

 current CPU frequency is 700 MHz (asserted by call to hardware).

 cpufreq stats: 350 MHz:0.00%, 700 MHz:100.00%, 920 MHz:0.00%

analyzing CPU 1:

SAME as CPU 0

Virtual CPUFREQ (4)
cpufreq-set -f 920000

cpucycle cpu0

87089263

cpucycle cpu1

87134518

cpufreq-set -c 0 -f 700000

cpucycle cpu0

65753329

● Pretty accurate emulation

● 700/920 =~ 0.76 - 65753329 / 87134518 =~ 0.755

Conclusion

● Asymmetric scheduling is very much a WIP
● Slow progress is being made
● Competing ideas about how to do power-

aware scheduling
● Still a long way to go for mainline acceptance
● Hope you like working on hard problems!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

