
Leveraging Linux:
 Code Coverage for Post-Silicon

Validation
Mehdi Karimi-biuki

Embedded Linux Conference 2013
San Francisco, CA

22 Feb, 2013

About me

• MASc (2012) and BASc (2009) from UBC
•  2 years of work experience at different

companies Bcom, PMC, and Intrinsyc.
•  Area of interest system validation and test

+ formal methods for debug + physical
design.

•  I am new in embedded software design
– A firmware guy but mostly on the hardware

side.

2
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

What we learn today?
•  We look at the hardware examination of a very

dominant test practice on today’s industrial
microprocessors
– That is coverage of a popular test “Linux boot bring-

up” on an industrial size system on chip called LEON3
•  You will expect to learn how we did this

(methodology) and how you can do it if interested.
•  You will also see our interesting results achieved.

– We conclude that Linux boot is a necessary test for
today’s state-of-the-art designs, but not enough.

3 Leveraging Linux: Code Coverage for Post-
Silicon Validation --- Mehdi Karimibiuki 2/22/2013

Outline

•  Motivation
– Why post-silicon validation?
– Why post-silicon coverage?

•  Proposed techniques for post-silicon
coverage

•  Using Linux for post-silicon code coverage
– Why code coverage? Code Coverage Types
– Instrumentation
– Case Study and Results

•  Conclusion and Future Work

4
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Outline

•  Motivation
– Why post-silicon validation?
– Why post-silicon coverage?

•  Proposed techniques for post-silicon
coverage

•  Using Linux for post-silicon code coverage
– Why code coverage? Code Coverage Types
– Instrumentation
– Case Study and Results

•  Conclusion and Future Work

5
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Why post-silicon validation?
•  Post-silicon is everything that happens

between tape-out and high-volume
manufacturing.

•  Fact: in a short time-to-market, SoC
complexity continues to increase
– Industry attempts to make more complex designs

at shorter time to allow for:
• Decreasing manufacturing and labor costs
• Making low-power (clk-gating, power-gating, cloning,

multi-bit register cells) designs while at higher speeds

6
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Why post-silicon validation?

7

Yet, all these come at a price
Bugs are harder to detect

(It’s easy to have bugs on silicon)

Miron Abramovici, Paul Bradley, Kumar Dwarakanath, Peter Levin, Gerard Memmi, and Dave Miller.
2006. A reconfigurable design-for-debug infrastructure for SoCs. In Proceedings of the 43rd annual
Design Automation Conference (DAC '06). ACM, New York, NY, USA, 7-12.

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Data from Mentor Graphics…

8

Source: Harry Foster, Chief Technologist, Mentor Graphics

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Data from Intel…

9
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Post-Silicon vs. Pre-Silicon
•  Pre-silicon techniques:

– Advantages:
•  Very good visibility of internal events  better controllability 

better feeling for debugging
–  Inexpensive bug fixing by setting breakpoints, etc.
–  Quick turnout time

10

–  Disadvantages:
-- Difficult to model complex electrical behaviors and off-

chip interactions  requires very good understanding of
the behavior of the chip for different functional modes…
(some tools from Cadence/Synopsys/AtopTech)…

3 million gates takes about 8 hours to simulate timing.

Slow up to nine orders of magnitude against real
hardware

--

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

11

Post-Silicon vs. Pre-Silicon

Simulation is SLOW.
Consider Linux boot that takes 1 minute on actual

hardware…it takes 1900 years in simulation!
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

12

1st Silicon success is only 30%

•  More bugs are reported as complexity continues to
increase

•  Simulation is slow
•  Therefore, there are more chances for bugs escaping

into post-silicon (see figure above)
•  Without a doubt, post-silicon validation is a must.

re
sp

on
se

s

of spins

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Outline

•  Motivation
– Why post-silicon validation?
– Why post-silicon coverage?

•  Proposed techniques for post-silicon
coverage

•  Using Linux for post-silicon code coverage
– Why code coverage? Code Coverage Types
– Instrumentation
– Case Study and Results

•  Conclusion and Future Work

13
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Why post-silicon coverage?

•  Typical Post-Silicon Validation Process
– In post-silicon, because it runs at full speed, we

run real software applications to determine that
the chip works as intended.

– …run specialized test programs
– Or random instruction streams
– Check functionality while at different functional

modes(func, scan_cap, rambist, etc.), and
extreme process-voltage-temperature (PVT)
corners.

– Regression suites…
– Prepare and run drivers…

14
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

And the question is…Did I
do enough?????

I mean, if a software hangs,
is it all from the software
side, or hardware?

15
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Why post-silicon coverage?

Did I do enough?????

(And if not, am I making progress? What areas
need more verification? …)

How can I get a feeling about the effectiveness
of my validation scheme…on the chip

16
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

The Solution is…………….

We can check for validation effectiveness with
Coverage.

•  This is similar to what is being done in pre-
silicon verification  they all use coverage.

•  Coverage is any scheme that measures the
thoroughness of validation process.

•  In post-silicon validation, due to limited
observability
– Coverage instrumentation in post-silicon is done by

adding some on-chip monitors.

17

COVERAGE

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Outline

•  Motivation
– Why post-silicon validation needed?
– Why post-silicon coverage?

•  Proposed techniques for post-silicon
coverage

•  Using Linux for post-silicon code coverage
– Why code coverage? Code Coverage Types
– Instrumentation
– Case Study and Results

•  Conclusion and Future Work

18
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Proposed techniques for post-
silicon coverage

Industry has integrated some coverage metrics onto their chips:
•  Intel Core2 Duo Family

–  Bojan, T.; Arreola, M.A.; Shlomo, E.; Shachar, T.; , "Functional coverage measurements and
results in post-Silicon validation of Core™2 duo family," High Level Design Validation and Test
Workshop, 2007. HLVDT 2007. IEEE International , vol., no., pp.145-150, 7-9 Nov. 2007

•  IBM POWER7
–  Adir, A.; Nahir, A.; Shurek, G.; Ziv, A.; Meissner, C.; Schumann, J.; , "Leveraging pre-

silicon verification resources for the post-silicon validation of the IBM POWER7
processor," Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE , vol.,
no., pp.569-574, 5-9 June 2011

19

 There is a need for a complete coverage
technique.

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Outline

•  Motivation
– Why post-silicon validation needed?
– Why post-silicon coverage?

•  Proposed techniques for post-silicon
coverage

•  Using Linux for post-silicon code coverage
– Why code coverage? Code Coverage Types.
– Instrumentation
– Case study and results

•  Conclusion and Future Work

20
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

We employ Linux boot as a standard
test to examine our code coverage

analyses
•  The mostly known and used test for chip

bring up
– Linux boot is widely used, widely accepted as

a good test for first silicon chip.
– Code coverage is a standard, objective

coverage technique.

21
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Code Coverage Types

•  Statement
•  Branch
• Condition
•  Expression
•  Finite State Machine (FSM)

22

We instrument Statement and Branch

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Outline
•  Motivation

– Why post-silicon validation needed?
– Why post-silicon coverage?

•  Proposed techniques for post-silicon
coverage

•  Using Linux for post-silicon code coverage
– Why code coverage? Code Coverage Types
– Instrumentation
– Case study and results

•  Conclusion and Future Work

23
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Measuring Code Coverage on Chip

1. We instrument HDL code by adding flags
per “basic block”.

2. Then run Linux.
3. Then count the number of flags that are

set divided by the total number of flags in
each block.

24
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Instrumenting for Statement Coverage

•  Add one flag per “basic block”:
process (example)
S1;
S2;
S3;
if (s4) begin
 s5;
 s6;
 s7;
else
 s8;
 s9;
end if;
s9;
end process;

25

“Bas ic B lock” i s a sequence o f
consecutive statements with a single
branch or return statement at the end.
The flow of control enters and leaves the
basic block without any branching into or
out of the sequence.

SFlag2=1;

SFlag3=1;

SFlag4=1;

SFlag0=1;

SFlag1=1;

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Instrumenting for Branch Coverage

•  Add two flags per branch:
process (example)
S1;
S2;
S3;
if (s4) begin
 s5;
 s6;
 s7;
else
 s8;
 s9;
end if;
s9;
end process;

26

BFlag0=1;

BFlag1=1;

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Outline

•  Motivation
– Why post-silicon validation needed?
– Why post-silicon coverage?

•  Proposed techniques for Post-silicon
coverage

•  Post-silicon code coverage
– Why code coverage? Code Coverage Types
– Instrumentation
– Case study and results

•  Conclusion and Future Work

27
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Case Study

• We pick an industrial-size SoC that is
synthesizable to FPGA.

•  Instrument code coverage in 9 blocks
• Measure post-silicon coverage
•  Also compare with pre-silicon simulation

results

28
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

SoC Platform
•  Built from Aeroflex Gaisler open-source IP

–  Aeroflex Gaisler IP used in real European Space Agengy (ESA)
projects

–  All in VHDL
•  Features:

–  Leon3 processor
•  OpenSPARC V8, 7-stage pipeline

–  IEEE-754 FPU
–  SPARC V8 reference MMU
–  Multiway D- and I-caches
–  DDR2 SDRAM controller/interface
–  DVI Display Controller
–  10/100/1000 Ethernet MAC
–  PS2 Keyboard and Mouse
–  Compact Flash Interface
–  Can be fabricated to 0.18um ASIC technology.

29

It’s a notebook-on-chip

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

SoC Platform at Block Diagram

30

LOGAN GRMON
JTAG

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Xilinx University platform (XUP)

31
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

We instrumented 9 blocks from
different clusters

32
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Post-Silicon Statement Coverage

33

•  We boot Linux with kernel version 2.6.21.1, Debian
etch distribution. It takes 45 seconds to boot up (at
speed 75MHz)  about 3.4 billion clk cycles.

86.00%

89.20%

92.90%

40.30%

90.20%

94.40%

92.70%

88.70%

96.10%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

i2cmst
div32

mmutw
mul32

uart
mmutlb
svgactrl

mmu
iu3

Statement

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Post-Silicon vs. Pre-Silicon Statement
Coverage

34

• Running Gaisler system level tests

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

i2cmst
div32

mmutw
mul32

uart
mmutlb
svgactrl

mmu
iu3

86.00%

89.20%

92.90%

40.30%

90.20%

94.40%

92.70%

88.70%

96.10%

90.00%

92.80%

90.50%

41.20%

88.60%

92.30%

57.60%

84.00%

89.80%

pre-silicon stmt

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Post-Silicon Branch Coverage

35

81.80%
73.30%

94.70%
35.70%

72.50%
81.00%

90.50%
85.90%

95.00%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

i2cmst
div32

mmutw
mul32

uart
mmutlb
svgactrl

mmu
iu3

post-silicon branch

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Post-Silicon vs. Pre-Silicon Branch
Coverage

36

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

i2cmst

div32

mmutw

mul32

uart

mmutlb

svgactrl

mmu

iu3

81.80%

73.30%

94.70%

35.70%

72.50%

81.00%

90.50%

85.90%

95.00%

86.40%

80.00%

78.90%

39.10%

68.30%

74.60%

32.20%

63.20%

69.40%

pre-silicon branch post-silicon branch
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Post-Silicon

37

86.00%

89.20%

92.90%

40.30%

90.20%

94.40%

92.70%

88.70%

96.10%

81.80%

73.30%

94.70%

35.70%

72.50%

81.00%

90.50%

85.90%

95.00%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

i2cmst

div32

mmutw

mul32

uart

mmutlb

svgactrl

mmu

iu3

post-silicon branch post-silicon stmt

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Outline

•  Motivation
– Why post-silicon validation needed?
– Why post-silicon coverage?

•  Proposed techniques for post-silicon
coverage

•  Using Linux for post-silicon code coverage
– Why code coverage? Code Coverage Types
– Instrumentation
– Case Study and Results

•  Conclusion and Future Work

38
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Conclusions

• Demonstrated a practical and an effective
technique to measure coverage for post-
silicon validation effectiveness.
– Measured and compared pre- and post-silicon

code coverage on a realistic SoC.
– Results show Linux boot is a very good test to

run in post-silicon, but the results also show
that Linux boot is not a sufficient test to claim
our chip is working completely fine.

39
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

List of Publications, Demo, and
Poster Presentations

•  Conference Paper
–  M. Karimibiuki, K. Balston, A.J. Hu, and A. Ivanov. "Post-

silicon code coverage evaluation with reduced area
overhead for functional verification of SoC". In IEEE
International High Level Design Validation and Test
Workshop (HLDVT), pages 92 –97, Nov. 2011.

40

•  Journal Paper
–  Kyle Balston, Mehdi Karimibiuki, Alan J Hu, Andre Ivanov, and

Steve Wilton. "Post-silicon code coverage for multiprocessor
system-on-chip designs". IEEE Transactions on Computers, to
appear (accepted June 17, 2012).

•  Demo and Poster Presentation
–  University Booth, DAC 2011, San Diego.

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Future Work
•  Explore monitoring for other code coverage metrics

– Expression and condition

•  Compare code coverage results with other
techniques
– Assertion, mutation, etc.

•  Apply more expensive techniques to reduce
monitoring overhead, without sacrificing accuracy.
– Software techniques intended to be lightweight, only

explore graph properties of CFG.
–  In post-silicon, overhead reduction more important, could

try e.g., formal analysis of the code.

41
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

End.

42
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

43
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Outline
•  Motivation

–  Why post-silicon validation needed?
–  Why post-silicon coverage?

•  Proposed techniques for post-silicon coverage
•  Using Linux for post-silicon code coverage

–  Why code coverage? Code Coverage Types
–  Instrumentation
–  Case study and Results

•  Area overhead investigation
–  Area Overhead Results
–  Area overhead reduction methodology
–  Reduction results

•  Conclusion and Future Work

44
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Area overhead calculation
•  Area overhead is not reported in any coverage paper

that we surveyed!!!
•  Why area overhead is important?

– Direct effect on cost
– Direct effect on speed
– We want minimal change to the intended functionality of

the chip

We calculate area based on two components:
•  Based on FFs before routing and optimization but after

synthesis
•  LUTs after routing and optimization

45
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Overhead -- FFs (Percent)

46

21.7%
31.0%

38.4%

65.0%
60.0% 61.4%

21.9%

134.7%

9.6%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

i2cmst div32 mmutw mul32 uart mmutlb svgactrl mmu iu3

overhead

overhead

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Overhead -- LUTs (Percent)

47

3.5%

5.6%

21.7%

6.3%

18.6%

4.5%

12.9%

4.2%

1.2%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

20.0%

22.0%

i2cmst div32 mmutw mul32 uart mmutlb svgactrl mmu iu3

overhead

overhead

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Outline
•  Motivation

–  Why post-silicon validation needed?
–  Why post-silicon coverage?

•  Proposed techniques for post-silicon coverage
•  Using Linux for post-silicon code coverage

–  Why code coverage? Code Coverage Types
–  Instrumentation
–  Case Study and Results

•  Area overhead investigation
–  Area Overhead Results
–  Area overhead reduction methodology
–  Reduction results

•  Conclusion and Future Work

48
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Agrawal’s method

•  Code coverage is a classic concept in software
testing

•  We use a classic technique devised by Agrawal for
control flow graphs. (Reference: Hiralal Agrawal. Dominators, super
blocks, and program coverage. In Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’94, pages 25–34, New
York, NY, USA, 1994. ACM.)

•  How much overhead reduction can we achieve by
using state-of-the-art techniques from the software
testing world?

•  The technique reduces the per-basic-block-
instumentation by inspecting control flow graphs
(CFG). Yet it preserves data accuracy.

49
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

module example
…
always @ (posedge clk)
 begin
 if(s1) then
 s2;
 else
 s3;
 endif;
 s4;
endmodule;

2

1

3

begin

end

4

Control Flow Graph
(CFG)

Agrawal’s method

How does it works:
two relations: pre-dominance and

post-dominance

• Definition 1: Basic block X pre-dominates
basic block Y if every path from begin to Y
goes through X.

51 CFG

module example
…
always @ (posedge clk)
 begin
 if(s1) then
 s2;
 else
 s3;
 endif;
 s4;
endmodule;

2

1

3

begin

end

4 Pre-dominator tree

2

1

3 4

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

How does it works:

•  Definition 2: Basic block X post-dominates basic
block Y if every path from Y to exit goes through X.

52

Post-dominator tree

1

4

3 2

CFG

module example
…
always @ (posedge clk)
 begin
 if(s1) then
 s2;
 else
 s3;
 endif;
 s4;
endmodule;

2

1

3

begin

end

4

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

53

leaves
So far...50% overhead

savings

2

1

3

Basic block dominator
graph

4

CFG

module example
…
always @ (posedge
clk)
 begin
 if(s1) then
 s2;
 else
 s3;
 endif;
 s4;
endmodule;

2

1

3

begin

end

4 Post-dominator
tree

1

4

3 2

Pre-dominator
tree

2

1

3 4

2

1, 4

3

Superblock dominator
graph

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

54

Overall, 50% area
saving in this example

CFG

module example
…
always @ (posedge
clk)
 begin
 if(s1) then
 s2;
 else
 s3;
 endif;
 s4;
endmodule;

2

1

3

begin

end

4

2

1, 4

3

Superblock dominator
graph

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

Outline
•  Motivation

–  Why post-silicon validation needed?
–  Why post-silicon coverage?

•  Proposed techniques for post-silicon coverage
•  Using Linux for post-silicon code coverage

–  Why code coverage? Code Coverage Types
–  Instrumentation
–  Case Study and Results

•  Area overhead investigation
–  Area Overhead Results
–  Area overhead reduction methodology
–  Reduction results

•  Conclusion and Future Work

55
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

FF overhead reduced (Percent)

56

21.70%
31.00%

38.40%

65.00%
60.00% 61.40%

21.90%

134.70%

9.60%
20.30%

21.40%

32.90%

52.50%
45.60% 45.50%

17.10%

63.00%

6.70%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

i2cmst div32 mmutw mul32 uart mmutlb svgactrl mmu iu3

overhead reduced overhead

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

LUT overhead reduced (Percent)

57

3.50%

5.60%

21.70%

6.30%

18.60%

4.50%

12.90%

4.20%

1.20%

4.10% 4.50%

20.30%

6.30%

15.80%

3.30%

12.10%

4.00%

1.20%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

i2cmst div32 mmutw mul32 uart mmutlb svgactrl mmu iu3

overhead reduced overhead

Leveraging Linux: Code Coverage for
Post-Silicon Validation --- Mehdi

Karimibiuki
2/22/2013

58
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

59
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Agrawal’s Algorithm (POPL 1994)

• Merge to form dominance graph.
•  Find strongly connected components in

graph
– Every basic block in SCC dominates others in

SCC.
– Therefore, basic block covered iff others

covered.
– Therefore, one flag per SCC.

60
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

tree

•  All nodes are minimally connected
• N nodes and n-1 edges
• No more than one edge to a node

61
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Linearly ordered

•  a linearly ordered or totally ordered group is
an ordered group G such that the order
relation "≤" is total. This means that the
following statements hold for all a, b, c ∈ G:

•  if a ≤ b and b ≤ a then a = b (antisymmetry)
•  if a ≤ b and b ≤ c then a ≤ c (transitivity)
•  a ≤ b or b ≤ a (totality)
•  the order relation is translation invariant: if a ≤

b then a + c ≤ b + c and c + a ≤ c + b.

62
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

Partial order vs total order

•  Partial order elements not comparable in
general but comparable to each other
– A relation R on a set S is called a partial order

if it is reflexive, antisymmetric and transitive. A
set S together with a partial ordering R is
called a partially ordered set or poset for short
and is denoted

•  Total order elements are comparable in
terms of less than, greater than, etc.

63
Leveraging Linux: Code Coverage for

Post-Silicon Validation --- Mehdi
Karimibiuki

2/22/2013

