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About me 

• MASc (2012) and BASc (2009) from UBC 
•  2 years of work experience at different 

companies Bcom, PMC, and Intrinsyc. 
•  Area of interest system validation and test 

+ formal methods for debug + physical 
design. 

•  I am new in embedded software design 
– A firmware guy but mostly on the hardware 

side. 
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What we learn today? 
•  We look at the hardware examination of a very 

dominant test practice on today’s industrial 
microprocessors 
– That is coverage of a popular test “Linux boot bring-

up” on an industrial size system on chip called LEON3 
•  You will expect to learn how we did this 

(methodology) and how you can do it if interested. 
•  You will also see our interesting results achieved. 

– We conclude that Linux boot is a necessary test for 
today’s state-of-the-art designs, but not enough. 
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•  Motivation 
– Why post-silicon validation? 
– Why post-silicon coverage? 

•  Proposed techniques for post-silicon 
coverage 

•  Using Linux for post-silicon code coverage 
– Why code coverage? Code Coverage Types 
– Instrumentation 
– Case Study and Results 

•  Conclusion and Future Work 
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Why post-silicon validation? 
•  Post-silicon is everything that happens   

between tape-out and high-volume 
manufacturing. 

•  Fact: in a short time-to-market, SoC 
complexity continues to increase 
– Industry attempts to make more complex designs 

at shorter time to allow for: 
• Decreasing manufacturing and labor costs  
• Making low-power (clk-gating, power-gating, cloning, 

multi-bit register cells) designs while at higher speeds 
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Why post-silicon validation? 
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Yet, all these come at a price 
Bugs are harder to detect 

(It’s easy to have bugs on silicon) 

Miron Abramovici, Paul Bradley, Kumar Dwarakanath, Peter Levin, Gerard Memmi, and Dave Miller. 
2006. A reconfigurable design-for-debug infrastructure for SoCs. In Proceedings of the 43rd annual 
Design Automation Conference (DAC '06). ACM, New York, NY, USA, 7-12. 
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Data from Mentor Graphics… 
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Source:  Harry Foster, Chief Technologist, Mentor Graphics 
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Data from Intel… 
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Post-Silicon vs. Pre-Silicon 
•  Pre-silicon techniques: 

– Advantages: 
•  Very good visibility of internal events  better controllability  

better feeling for debugging 
–  Inexpensive bug fixing by setting breakpoints, etc. 
–  Quick turnout time 
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–  Disadvantages: 
-- Difficult to model complex electrical behaviors and off-

chip interactions  requires very good understanding of 
the behavior of the chip for different functional modes…
(some tools from Cadence/Synopsys/AtopTech)… 

3 million gates takes about 8 hours to simulate timing. 

Slow  up to nine orders of magnitude against real 
hardware 

-- 
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Post-Silicon vs. Pre-Silicon 

Simulation is SLOW. 
Consider Linux boot that takes 1 minute on actual 

hardware…it takes 1900 years in simulation! 
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1st Silicon success is only 30% 

•  More bugs are reported as complexity continues to 
increase 

•  Simulation is slow 
•  Therefore, there are more chances for  bugs escaping 

into post-silicon (see figure above) 
•   Without a doubt, post-silicon validation is a must. 
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Why post-silicon coverage? 

•  Typical Post-Silicon Validation Process 
– In post-silicon, because it runs at full speed, we 

run real software applications to determine that 
the chip works as intended. 

– …run specialized test programs 
– Or random instruction streams 
– Check functionality while at different functional 

modes(func, scan_cap, rambist, etc.), and 
extreme process-voltage-temperature (PVT) 
corners. 

– Regression suites… 
– Prepare and run drivers… 
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And the question is…Did I 
do enough????? 

I mean, if a software hangs, 
is it all from the software 
side, or hardware? 
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Why post-silicon coverage? 

Did I do enough????? 

(And if not, am I making progress?  What areas 
need more verification? …) 

How can I get a feeling about the effectiveness 
of my validation scheme…on the chip 
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The Solution is……………. 

We can check for validation effectiveness with 
Coverage. 

•  This is similar to what is being done in pre-
silicon verification  they all use coverage. 

•  Coverage is any scheme that measures the 
thoroughness of validation process. 

•  In post-silicon validation, due to limited 
observability 
– Coverage instrumentation in post-silicon is done by 

adding some on-chip monitors. 
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Proposed techniques for post-
silicon coverage 

Industry has integrated some coverage metrics onto their chips: 
•  Intel Core2 Duo Family 

–  Bojan, T.; Arreola, M.A.; Shlomo, E.; Shachar, T.; , "Functional coverage measurements and 
results in post-Silicon validation of Core™2 duo family," High Level Design Validation and Test 
Workshop, 2007. HLVDT 2007. IEEE International , vol., no., pp.145-150, 7-9 Nov. 2007 

•  IBM POWER7 
–  Adir, A.; Nahir, A.; Shurek, G.; Ziv, A.; Meissner, C.; Schumann, J.; , "Leveraging pre-

silicon verification resources for the post-silicon validation of the IBM POWER7 
processor," Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE , vol., 
no., pp.569-574, 5-9 June 2011 
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 There is a need for a complete coverage 
technique. 
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We employ Linux boot as a standard 
test to examine our code coverage 

analyses 
•  The mostly known and used test for chip 

bring up 
– Linux boot is widely used, widely accepted as 

a good test for first silicon chip. 
– Code coverage is a standard, objective 

coverage technique. 
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Code Coverage Types 

•  Statement 
•  Branch 
• Condition 
•  Expression 
•  Finite State Machine (FSM) 
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We instrument Statement and Branch 
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Measuring Code Coverage on Chip 

1. We instrument HDL code by adding flags 
per “basic block”. 

2. Then run Linux. 
3. Then count the number of flags that are 

set divided by the total number of flags in 
each block. 
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Instrumenting for Statement Coverage 

•  Add one flag per “basic block”: 
process (example) 
S1; 
S2; 
S3; 
if (s4) begin 
  s5; 
  s6; 
  s7; 
else 
  s8; 
  s9; 
end if; 
s9; 
end process; 
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“Bas ic B lock” i s a sequence o f 
consecutive statements with a single 
branch or return statement at the end. 
The flow of control enters and leaves the 
basic block without any branching into or 
out of the sequence. 

SFlag2=1; 

SFlag3=1; 

SFlag4=1; 

SFlag0=1; 

SFlag1=1; 
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Instrumenting for Branch Coverage 

•  Add two flags per branch: 
process (example) 
S1; 
S2; 
S3; 
if (s4) begin 
  s5; 
  s6; 
  s7; 
else 
  s8; 
  s9; 
end if; 
s9; 
end process; 
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BFlag0=1; 

BFlag1=1; 
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Case Study 

• We pick an industrial-size SoC that is 
synthesizable to FPGA. 

•  Instrument code coverage in 9 blocks 
• Measure post-silicon coverage 
•  Also compare with pre-silicon simulation 

results 
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SoC Platform 
•  Built from Aeroflex Gaisler open-source IP 

–  Aeroflex Gaisler IP used in real European Space Agengy (ESA) 
projects 

–  All in VHDL 
•  Features: 

–  Leon3 processor 
•  OpenSPARC V8, 7-stage pipeline 

–  IEEE-754 FPU 
–  SPARC V8 reference MMU 
–  Multiway D- and I-caches 
–  DDR2 SDRAM controller/interface 
–  DVI Display Controller 
–  10/100/1000 Ethernet MAC 
–  PS2 Keyboard and Mouse 
–  Compact Flash Interface 
–  Can be fabricated to 0.18um ASIC technology. 
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It’s a notebook-on-chip 
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SoC Platform at Block Diagram 
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LOGAN GRMON 
JTAG 
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Xilinx University platform (XUP) 
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We instrumented 9 blocks from 
different clusters 
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Post-Silicon Statement Coverage 
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•  We boot Linux with kernel version 2.6.21.1, Debian 
etch distribution. It takes 45 seconds to boot up (at 
speed 75MHz)  about 3.4 billion clk cycles. 
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Post-Silicon vs. Pre-Silicon Statement 
Coverage 
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• Running Gaisler system level tests 
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Post-Silicon Branch Coverage 
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Post-Silicon vs. Pre-Silicon Branch 
Coverage 
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Post-Silicon 
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Conclusions 

• Demonstrated a practical and an effective 
technique to measure coverage for post-
silicon validation effectiveness. 
– Measured and compared pre- and post-silicon 

code coverage on a realistic SoC. 
– Results show Linux boot is a very good test to 

run in post-silicon, but the results also show 
that Linux boot is not a sufficient test to claim 
our chip is working completely fine. 
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List of Publications, Demo, and 
Poster Presentations 

•  Conference Paper 
–  M. Karimibiuki, K. Balston, A.J. Hu, and A. Ivanov. "Post-

silicon code coverage evaluation with reduced area 
overhead for functional verification of SoC". In IEEE 
International High Level Design Validation and Test 
Workshop (HLDVT), pages 92 –97, Nov. 2011.  
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•  Journal Paper 
–  Kyle Balston, Mehdi Karimibiuki, Alan J Hu, Andre Ivanov, and 

Steve Wilton. "Post-silicon code coverage for multiprocessor 
system-on-chip designs".  IEEE Transactions on Computers, to 
appear (accepted June 17, 2012). 

•  Demo and Poster Presentation 
–  University Booth, DAC 2011, San Diego. 
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Future Work 
•  Explore monitoring for other code coverage metrics 

– Expression and condition 

•  Compare code coverage results with other 
techniques 
– Assertion, mutation, etc. 

•  Apply more expensive techniques to reduce 
monitoring overhead, without sacrificing accuracy. 
– Software techniques intended to be lightweight, only 

explore graph properties of CFG. 
–  In post-silicon, overhead reduction more important, could 

try e.g., formal analysis of the code. 
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End. 
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Area overhead calculation 
•  Area overhead is not reported in any coverage paper 

that we surveyed!!! 
•  Why area overhead is important? 

– Direct effect on cost 
– Direct effect on speed 
– We want minimal change to the intended functionality of 

the chip 

We calculate area based on two components:  
•  Based on FFs before routing and optimization but after 

synthesis 
•  LUTs after routing and optimization 
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Overhead -- FFs (Percent) 
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Overhead -- LUTs (Percent) 
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Agrawal’s method 

•  Code coverage is a classic concept in software 
testing 

•  We use a classic technique devised by Agrawal for 
control flow graphs. (Reference: Hiralal Agrawal. Dominators, super 
blocks, and program coverage. In Proceedings of the 21st ACM SIGPLAN-SIGACT 
symposium on Principles of programming languages, POPL ’94, pages 25–34, New 
York, NY, USA, 1994. ACM.) 

•  How much overhead reduction can we achieve by 
using state-of-the-art techniques from the software 
testing world? 

•  The technique reduces the per-basic-block-
instumentation by inspecting control flow graphs 
(CFG). Yet it preserves data accuracy. 
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module example 
… 
always @ (posedge clk) 
     begin 
 if(s1) then 
  s2; 
 else 
  s3; 
 endif; 
  s4;         
endmodule;  

2 

1 

3 

begin 

end 

4 

Control Flow Graph 
(CFG) 

Agrawal’s method 



How does it works: 
two relations: pre-dominance and 

post-dominance 

• Definition 1: Basic block X pre-dominates 
basic block Y if every path from begin to Y 
goes through X. 

51 CFG 

module example 
… 
always @ (posedge clk) 
     begin 
 if(s1) then 
  s2; 
 else 
  s3; 
 endif; 
  s4;         
endmodule;  

2 

1 

3 

begin 

end 

4 Pre-dominator tree 
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How does it works: 

•  Definition 2: Basic block X post-dominates basic 
block Y if every path from Y to exit goes through X. 
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Post-dominator tree 
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CFG 

module example 
… 
always @ (posedge clk) 
     begin 
 if(s1) then 
  s2; 
 else 
  s3; 
 endif; 
  s4;         
endmodule;  
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end 
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leaves 
So far...50% overhead 

savings 
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CFG 

module example 
… 
always @ (posedge 
clk) 
     begin 
 if(s1) then 
  s2; 
 else 
  s3; 
 endif; 
  s4;         
endmodule;  
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Overall, 50% area 
saving in this example 

CFG 

module example 
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endmodule;  
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begin 

end 
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Outline 
•  Motivation 

–  Why post-silicon validation needed? 
–  Why post-silicon coverage? 

•  Proposed techniques for post-silicon coverage 
•  Using Linux for post-silicon code coverage 

–  Why code coverage? Code Coverage Types 
–  Instrumentation 
–  Case Study and Results 

•  Area overhead investigation 
–  Area Overhead Results 
–  Area overhead reduction methodology 
–  Reduction results 

•  Conclusion and Future Work 
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FF overhead reduced (Percent) 
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LUT overhead reduced (Percent) 
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Agrawal’s Algorithm       (POPL 1994) 

• Merge to form dominance graph. 
•  Find strongly connected components in 

graph 
– Every basic block in SCC dominates others in 

SCC. 
– Therefore, basic block covered iff others 

covered. 
– Therefore, one flag per SCC. 
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tree 

•  All nodes are minimally connected 
• N nodes and n-1 edges 
• No more than one edge to a node  

61 
Leveraging Linux: Code Coverage for 

Post-Silicon Validation --- Mehdi 
Karimibiuki 

2/22/2013 



Linearly ordered 

•  a linearly ordered or totally ordered group is 
an ordered group G such that the order 
relation "≤" is total. This means that the 
following statements hold for all a, b, c ∈ G: 

•  if a ≤ b and b ≤ a then a = b (antisymmetry) 
•  if a ≤ b and b ≤ c then a ≤ c (transitivity) 
•  a ≤ b or b ≤ a (totality) 
•  the order relation is translation invariant: if a ≤ 

b then a + c ≤ b + c and c + a ≤ c + b. 
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Partial order vs total order 

•  Partial order elements not comparable in 
general but comparable to each other 
– A relation R on a set S is called a partial order 

if it is reflexive, antisymmetric and transitive. A 
set S together with a partial ordering R is 
called a partially ordered set or poset for short 
and is denoted  

•  Total order elements are comparable in 
terms of less than, greater than, etc. 
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