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ELC-EU

● http://free-electrons.com/blog/elce-2012-videos/

http://free-electrons.com/blog/elce-2012-videos/
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Where to get the RT patch

● Stable Repository
– git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable-rt.git

● Patches
– http://www.kernel.org/pub/linux/kernel/projects/rt/

● Wiki

– https://rt.wiki.kernel.org/index.php/Main_Page

http://www.kernel.org/pub/linux/kernel/projects/rt/


  

What is a Real-time OS?

● Deterministic
– Does what you expect to do

– When you expect it will do it

● Does not mean fast
– Would be nice to have throughput

– Guarantying determinism adds overhead

– Provides fast “worst case” times

● Can meet your deadlines
– If you have done your homework



  

What is a Real-time OS?

● Dependent on the system
– SMI

– Cache

– Bus contention

● hwlat detector
– New enhancements coming



  

The Goal of PREEMPT_RT

● 100% Preemptible kernel
– Not actually possible, but lets try regardless

– Remove disabling of interrupts

– Removal of disabling other forms of 
preemption

● Quick reaction times!
– bring latencies down to a minimum



  

Menuconfig



  

No Preemption

● Server
– Do as most possible with as little scheduling 

overhead

● Never schedule unless a function explicitly 
calls schedule()

● Long latency system calls.
● Back in the days of 2.4 and before.



  

Voluntary Preemption

● might_sleep();
– calls might_resched(); calls _cond_resched()

– Used as a debugging aid to catch functions that 
might schedule called from atomic operations.

– need_resched – why not schedule?

– schedule only at “preemption points”.



  

Preemptible Kernel

● Robert Love's CONFIG_PREEMPT
● SMP machines must protect the same critical 

sections as a preemptible kernel.
● Preempt anywhere except within spin_locks 

and some minor other areas 
(preempt_disable).

● Every spin_lock acts like a single “global 
lock” WRT preemption.



  

Preemptible Kernel
(Basic RT)

● Mostly to help out debugging 
PREEMPT_RT_FULL

● Enables parts of the PREEMPT_RT options, 
without sleeping spin_locks

● Don't worry about it (It will probably go away)



  

Fully Preemptible Kernel
The RT Patch

● PREEMPT_RT_FULL
● Preempt everywhere! (except from 

preempt_disable and interrupts disabled).
● spin_locks are now mutexes.
● Interrupts as threads

– interrupt handlers can schedule

● Priority inheritance inside the kernel (not just 
for user mutexes)



  

Sleeping spin_lock

● CONFIG_PREEMPT is a global lock (like the 
BKL but for the CPU)

● sleeping spin_locks contains critical sections 
that are localized to tasks

● Must have threaded interrupts
● Must not be in atomic paths 

(preempt_disable or local_irq_save)
● Uses priority inheritance

– Not just for futexes



  

PREEMPT_LAZY

● RT can preempt almost anywhere
● Spinlocks that are now mutexes can be 

preempted
– Much more likely to cause contention

● Do not preempt on migrate_disable()
– used by sleepable spinlocks

● Increases throughput on non-RT tasks 



  

Priority Inheritance

● Prevents unbounded priority inversion
– Can't stop bounded priority inversion

● Is a bit complex
– One owner per lock

– Why we hate rwlocks
● will explain more later



  

Unbounded Priority Inversion

preempted preempted

A

B

C

blocked



  

Priority Inheritance

preempted releases lock

A

B

C

wakes up

blocked sleeps



  

raw_spin_lock
● Some spin_locks should never be converted 

to a mutex
● Same as current mainline spin_locks
● Should only be used for scheduler, rtmutex 

implementation, debugging/tracing 
infrastructure and for timer interrupts.

● Timer drivers for clock events (HPET, PM 
timer, TSC)

● Exists today in current mainline, with no other 
purpose as to annotate what locks are 
special (Thank you Linus!)



  

Threaded Interrupts

● Lowers Interrupt Latency
● Prioritize interrupts even when the hardware 

does not support it.
● Less noise from things like “updatedb”



  

Interrupt Latency
Task

interrupt
device handler



  

Interrupt Thread
Task

interrupt

device handler

sleep

wake up device thread



  

Non-Thread IRQs
● Timer interrupt

– Manages the system (sends signals to others 
about time management)

● IRQF_TIMER
– Denotes that a interrupt handler is a timer

● IRQF_NO_THREAD
– When the interrupt must not be a thread

– Don't use unless you know what you are 
doing

– Must not call spin_locks



  

Threaded Interrupts

● Now in mainline
– Per device interrupts

– One big switch (all irqs as threads)

● Per device is still preferred
– except for non shared interrupts

– Shared devices can have different priorities

● One big switch
– Handlers the same, but just threaded



  

Threaded Interrupts
● request_threaded_irq()

– Tells system driver wants handler as thread

● Driver registers two functions
– handler

● If NULL must have thread_fn
– Disables irq lin
– handler assigned by system

● non-NULL is called by hard irq

– thread_fn (optional)
● When set makes irq threaded
● non-NULL to disable device only



  

Threaded Interrupts

● The kernel command line parameter
– threadirqs

● threadirqs forces all IRQS to have a 
“special” handler” and uses the handler as 
thread_fn

– except IRQF_NOTHREAD, 
IRQF_PER_CPU and IRQF_ONESHOT



  

local_irq_disable

● EVIL!!!
● This includes local_irq_save
● No inclination to what it's protecting
● SMP unsafe
● High latency



  

spin_lock_irqsave

● The Angel
● PREEMP_RT does NOTNOT  disable interrupts

– Remember, in PREEMPT_RT spin_locks are 
really mutexes

– low latency

● Tight coupling between critical sections and 
disabling interrupts

● Gives a hint to what it's protecting
–  (spin_lock name)



  

preempt_disable

● local_irq_disable's younger sibling
● Also does not give a hint to what it protects
● preempt_enable_no_resched

– only should be used within preempt_disabled 
locations

– __preempt_enable_no_resched
● Only use before directly calling schedule()



  

per_cpu
● Avoid using:

– local_irq_save

– preempt_disable

– get_cpu_var (well, you can, but be nice – it calls 
preempt_disable)

● Do:
– pinned CPU threads

– get_cpu_light()

– get_local_var(var)

– local_lock[_irq[save]](var)



  

get_cpu_light()

● Non PREEMPT_RT is same as get_cpu()
● On PREEMPT_RT disables migration



  

get_local_var(var)

● Non PREEMPT_RT is same as 
get_cpu_var(var)

● On PREEMPT_RT disables migration



  

local_lock[_irq[save]](var)

● Non PREEMPT_RT is just preempt_disable()
● On PREEMPT_RT grabs a lock based on var

– disables migration

● Use local_unlock[_irq[restore]](var)
● Labels what you are protecting



  

rwlocks

● Death of Determinism
● Writes must wait for unknown amount of 

readers
● Recursive locking
● Possible strange deadlock due to writers

– Yes, affects mainline too!



  

NOHZ

● idle nohz best for power management
● Not nice for responses from idle
● Process nohz coming soon (nothing to do 

with idle nohz, but uses same ideas and in 
some cases, same code)



  

Real-Time User Space

● Don't use priority 99
● Don't implement spin locks

– Use priority inheritance futexes

– PTHREAD_PRIO_INHERIT

● Avoid slow I/O
● mmap passing data
● mlock_all()

– at least the stuff you know you need



  

Questions?
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