
Inside The RT Patch

Steven Rostedt
(Red Hat)

Darren V Hart
(IBM)

Talk:

Benchmarks:

Inside The RT Patch

Steven Rostedt
(Red Hat)

Darren V Hart
(IBM)

Talk:

Benchmarks:

Understanding PREEMPT_RT

Steven Rostedt
(Red Hat)

Darren V Hart
(IBM)

Talk:

Benchmarks:

Understanding PREEMPT_RT

Steven Rostedt
(Red Hat)

Darren V Hart
(Intel)

Talk:

Benchmarks:

Understanding PREEMPT_RT

Steven Rostedt
(Red Hat)

Darren V Hart
(Intel)

Talk:

Benchmarks:

ELC-EU

● http://free-electrons.com/blog/elce-2012-videos/

http://free-electrons.com/blog/elce-2012-videos/

So what should I talk about?

So what should I talk about?

Wikimedia Commons

Trebuchet

Wikimedia Commons

Trebuchet

Wikimedia Commons

Trebuchet

Trebuchet

Trebuchet

Where to get the RT patch

● Stable Repository
– git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable-rt.git

● Patches
– http://www.kernel.org/pub/linux/kernel/projects/rt/

● Wiki

– https://rt.wiki.kernel.org/index.php/Main_Page

http://www.kernel.org/pub/linux/kernel/projects/rt/

What is a Real-time OS?

● Deterministic
– Does what you expect to do

– When you expect it will do it

● Does not mean fast
– Would be nice to have throughput

– Guarantying determinism adds overhead

– Provides fast “worst case” times

● Can meet your deadlines
– If you have done your homework

What is a Real-time OS?

● Dependent on the system
– SMI

– Cache

– Bus contention

● hwlat detector
– New enhancements coming

The Goal of PREEMPT_RT

● 100% Preemptible kernel
– Not actually possible, but lets try regardless

– Remove disabling of interrupts

– Removal of disabling other forms of
preemption

● Quick reaction times!
– bring latencies down to a minimum

Menuconfig

No Preemption

● Server
– Do as most possible with as little scheduling

overhead

● Never schedule unless a function explicitly
calls schedule()

● Long latency system calls.
● Back in the days of 2.4 and before.

Voluntary Preemption

● might_sleep();
– calls might_resched(); calls _cond_resched()

– Used as a debugging aid to catch functions that
might schedule called from atomic operations.

– need_resched – why not schedule?

– schedule only at “preemption points”.

Preemptible Kernel

● Robert Love's CONFIG_PREEMPT
● SMP machines must protect the same critical

sections as a preemptible kernel.
● Preempt anywhere except within spin_locks

and some minor other areas
(preempt_disable).

● Every spin_lock acts like a single “global
lock” WRT preemption.

Preemptible Kernel
(Basic RT)

● Mostly to help out debugging
PREEMPT_RT_FULL

● Enables parts of the PREEMPT_RT options,
without sleeping spin_locks

● Don't worry about it (It will probably go away)

Fully Preemptible Kernel
The RT Patch

● PREEMPT_RT_FULL
● Preempt everywhere! (except from

preempt_disable and interrupts disabled).
● spin_locks are now mutexes.
● Interrupts as threads

– interrupt handlers can schedule

● Priority inheritance inside the kernel (not just
for user mutexes)

Sleeping spin_lock

● CONFIG_PREEMPT is a global lock (like the
BKL but for the CPU)

● sleeping spin_locks contains critical sections
that are localized to tasks

● Must have threaded interrupts
● Must not be in atomic paths

(preempt_disable or local_irq_save)
● Uses priority inheritance

– Not just for futexes

PREEMPT_LAZY

● RT can preempt almost anywhere
● Spinlocks that are now mutexes can be

preempted
– Much more likely to cause contention

● Do not preempt on migrate_disable()
– used by sleepable spinlocks

● Increases throughput on non-RT tasks

Priority Inheritance

● Prevents unbounded priority inversion
– Can't stop bounded priority inversion

● Is a bit complex
– One owner per lock

– Why we hate rwlocks
● will explain more later

Unbounded Priority Inversion

preempted preempted

A

B

C

blocked

Priority Inheritance

preempted releases lock

A

B

C

wakes up

blocked sleeps

raw_spin_lock
● Some spin_locks should never be converted

to a mutex
● Same as current mainline spin_locks
● Should only be used for scheduler, rtmutex

implementation, debugging/tracing
infrastructure and for timer interrupts.

● Timer drivers for clock events (HPET, PM
timer, TSC)

● Exists today in current mainline, with no other
purpose as to annotate what locks are
special (Thank you Linus!)

Threaded Interrupts

● Lowers Interrupt Latency
● Prioritize interrupts even when the hardware

does not support it.
● Less noise from things like “updatedb”

Interrupt Latency
Task

interrupt
device handler

Interrupt Thread
Task

interrupt

device handler

sleep

wake up device thread

Non-Thread IRQs
● Timer interrupt

– Manages the system (sends signals to others
about time management)

● IRQF_TIMER
– Denotes that a interrupt handler is a timer

● IRQF_NO_THREAD
– When the interrupt must not be a thread

– Don't use unless you know what you are
doing

– Must not call spin_locks

Threaded Interrupts

● Now in mainline
– Per device interrupts

– One big switch (all irqs as threads)

● Per device is still preferred
– except for non shared interrupts

– Shared devices can have different priorities

● One big switch
– Handlers the same, but just threaded

Threaded Interrupts
● request_threaded_irq()

– Tells system driver wants handler as thread

● Driver registers two functions
– handler

● If NULL must have thread_fn
– Disables irq lin
– handler assigned by system

● non-NULL is called by hard irq

– thread_fn (optional)
● When set makes irq threaded
● non-NULL to disable device only

Threaded Interrupts

● The kernel command line parameter
– threadirqs

● threadirqs forces all IRQS to have a
“special” handler” and uses the handler as
thread_fn

– except IRQF_NOTHREAD,
IRQF_PER_CPU and IRQF_ONESHOT

local_irq_disable

● EVIL!!!
● This includes local_irq_save
● No inclination to what it's protecting
● SMP unsafe
● High latency

spin_lock_irqsave

● The Angel
● PREEMP_RT does NOTNOT disable interrupts

– Remember, in PREEMPT_RT spin_locks are
really mutexes

– low latency

● Tight coupling between critical sections and
disabling interrupts

● Gives a hint to what it's protecting
– (spin_lock name)

preempt_disable

● local_irq_disable's younger sibling
● Also does not give a hint to what it protects
● preempt_enable_no_resched

– only should be used within preempt_disabled
locations

– __preempt_enable_no_resched
● Only use before directly calling schedule()

per_cpu
● Avoid using:

– local_irq_save

– preempt_disable

– get_cpu_var (well, you can, but be nice – it calls
preempt_disable)

● Do:
– pinned CPU threads

– get_cpu_light()

– get_local_var(var)

– local_lock[_irq[save]](var)

get_cpu_light()

● Non PREEMPT_RT is same as get_cpu()
● On PREEMPT_RT disables migration

get_local_var(var)

● Non PREEMPT_RT is same as
get_cpu_var(var)

● On PREEMPT_RT disables migration

local_lock[_irq[save]](var)

● Non PREEMPT_RT is just preempt_disable()
● On PREEMPT_RT grabs a lock based on var

– disables migration

● Use local_unlock[_irq[restore]](var)
● Labels what you are protecting

rwlocks

● Death of Determinism
● Writes must wait for unknown amount of

readers
● Recursive locking
● Possible strange deadlock due to writers

– Yes, affects mainline too!

NOHZ

● idle nohz best for power management
● Not nice for responses from idle
● Process nohz coming soon (nothing to do

with idle nohz, but uses same ideas and in
some cases, same code)

Real-Time User Space

● Don't use priority 99
● Don't implement spin locks

– Use priority inheritance futexes

– PTHREAD_PRIO_INHERIT

● Avoid slow I/O
● mmap passing data
● mlock_all()

– at least the stuff you know you need

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

