
Designing for 
Optimisation

Måns Rullgård



Why optimise?

● Increase throughput

● Reduce latency

● Reduce power consumption

● Meet deadlines



How to optimise

● Help the compiler

● Write key functions in assembly



Modular code

● Isolate basic operations

● Use simple interfaces

● Simplifies use of libraries and hardware



Simple interfaces

● Never use struct arguments

● Prefer multiple functions over conditionals

● Split out common cases



SIMD-friendly data

● Align arrays

● Pad to multiple of SIMD size

● Arrange for linear access



SIMD-friendly algorithms

● Allow 16-bit arithmetic (integer / fixed-point)

● Allow single precision floating-point

● Avoid division



SIMD-friendly algorithms

● Consider available rounding modes

● Can slight variations be tolerated?



Compiler-friendly code

● Use constant loop iterations

● Use const and restrict qualifiers

● Don't be too clever

● Avoid aliasing, use local variables



memcpy is murder

● Careless copying costs cycles

● Avoid in-place transformations

● Support user-supplied buffers



Integration

● Allow optimising individual functions

● Activate optimised versions at runtime

● Use function pointers



Tools

● Benchmarking

● Profiling

● Code analysis



Benchmarking

● Full application

● Micro-benchmarks



Benchmarking

● Disable power management

● Pin to single CPU (taskset)

● Run at full speed



Profiling

● Disable PM, pin to single CPU

● Linux perf



Linux perf

● Non-invasive profiling framework

● perf stat: global statistics

● perf record: collect and save profile

● perf report: display recorded profile

● perf annotate: display annotated code



Code analysis

● Assembly: objdump, gcc -S

● readelf

● dwarves



Questions?


