
Resource Management

Dave Hansen
IBM Linux Technology Center

Homework
• https://fedoraproject.org/wiki/Features/ControlGroups

Resource Management

• Long-standing feature request
CKRM, Beancounters, others...

• Single OS instance, multiple uses
Departments sharing a DB server
Containers
Linux as the hypervisor

• Datacenter-level management
Checkpoint/restart

Requirements

• Group arbitrary processes
Processes able to move between groups
Kernel->Webserver->DB->Disk

• Easy to add new subsystems
• Definable containment
• Low overhead
• Flexible userspace API
• Arbitrary numbers of groups

cgroups

• Got in through the back door
cooped existing cpusets interfaces
cpusets became one subsystem

• “task-oriented”
associates a set of tasks with a set of

parameters for one or more subsystems
• Subsystems contain “controllers”
• Linux-y interfaces: mount, echo, chmod

cgroup terminology

• cgroups associate tasks with
subsystems
example: “power users”

• subsystems utilize cgroups to treat
grouped tasks in a common way
example: “memory subsystem”

• hierarchies provide relationships
between cgroups (think inheritance)
tasks have 1 position in each

cgroups

• Got in through the back door
cooped existing cpusets interfaces
cpusets became one subsystem

• “task-oriented”
associates a set of tasks with a set of

parameters for one or more subsystems

CPU Controller

• Separate from CPUSets
• CFS (2.6.23 process scheduler)

People contributed to with cgroups in mind
Provides framework for CPU-based control

• “Share” model
more users mean smaller shares

• Hierarchies are supported
Users can subdivide their share

• Also: CPU Accounting subsystem
Accounting-only: no control

Memory Controller
• Barriers to acceptance:

Performance/space overhead
Impact to the core VM

• Each page has an “owner” cgroup
Assigned at allocation time

• Limits placed on ownership quantity
• Swap controller implemented
• Per-group swappiness
• RSS control
• cgroups can be out-of-memory targeted

context switch...

Out of Memory

• “Someone asked for memory and I'm
not making any progress helping”

• Causes:
All the memory/swap really is gone
Leaks in kernel or userspace
I/O is too slow to swap or write out
The kernel let too much get dirty

Memory Reclaim

• Scan each page on the LRU
• Find users... make them unuse
• Rinse, repeat...
• HPC? All mlocked()
• Progress?

Solutions?
• Split LRU (2.6.28)

Ignore mlock() during reclaim
• kernelcore= (2.6.23)

Specifies ceiling on kernel memory for “non-
movable allocations”

• oom_adj / oom_score
Documented ~2.6.18, around for a while
-17 adjustment “disables” OOM

• User jobs in a memory cgroup
• Large pages

Great talk in next hour!

</oom>

libcgroup

• Kernel interface is via ram-based fs
Not user friendly

• Abstraction
'mv' is not a user-acceptable interface

• Persistence
/etc/sysctl.conf vs. /proc/sys

• Automatic Classification

Checkpoint/Restart

• Resource management not limited to
a single system

• cgroups keeps different users in line
• What when users outgrow a cgroup?
• Many existing solutions
Zap, OpenVZ, IBM Metacluster, blcr
All out of tree – bad for customers

• Goals: Reliability, Flexibility

Expected Users

• OpenVZ-like virtual private servers
• Datacenter workload balancing
• Live kernel upgrades
• Clusters
Job management
Debugging

Checkpoint/Restart

• Step 1: Isolate
cgroups / containers
Namespaces: pid, uts, net, fs, ipc...
physical resources (MAC, IP, etc...)

• Step 2: Serialize
pick up those isolated objects
write to disk or send across network

Issues

• Filesystem state
rsync?
btrfs helps

• Infiniband
• New kernel features must be
continually supported

• Must not slow down other kernel
development

Community

• Participating: OpenVZ, IBM, Zap...
• Goal: same feature set as existing
out-of-tree implementations

• Rebuilding from scratch
Goals: simple, small, well-factored

• Oren Laadan (of Zap) maintaining
Pursuing -mm inclusion

• Alexey Dobriyan has another set

Current Feature Set

• Architectures: x86, x86_64, ppc, s390
• Single and multiple process support
• Self and external checkpoint
• “Simple” open files, pipes
• Shared memory (shmfs)
• Efficiently handles shared objects
Like pipe contents or file position

Credits

• Thanks to Balbir Singh and Dhaval
Giani for all the input and updates.

• Thanks to Paul Menage for letting me
steal his nice pictures

04/09/09

1

Click to add title

Resource Management

Dave Hansen
IBM Linux Technology Center

The Linux Foundation Confidential 2

Homework
• https://fedoraproject.org/wiki/Features/ControlGroups

The Linux Foundation Confidential 3

Resource Management

• Long-standing feature request
CKRM, Beancounters, others...

• Single OS instance, multiple uses
Departments sharing a DB server
Containers
Linux as the hypervisor

• Datacenter-level management
Checkpoint/restart

The Linux Foundation Confidential 4

Requirements

• Group arbitrary processes
Processes able to move between groups
Kernel->Webserver->DB->Disk

• Easy to add new subsystems
• Definable containment
• Low overhead
• Flexible userspace API
• Arbitrary numbers of groups

The Linux Foundation Confidential 5

cgroups

• Got in through the back door
cooped existing cpusets interfaces
cpusets became one subsystem

• “task-oriented”
associates a set of tasks with a set of

parameters for one or more subsystems
• Subsystems contain “controllers”
• Linux-y interfaces: mount, echo, chmod

The Linux Foundation Confidential 6

cgroup terminology

• cgroups associate tasks with
subsystems
example: “power users”

• subsystems utilize cgroups to treat
grouped tasks in a common way
example: “memory subsystem”

• hierarchies provide relationships
between cgroups (think inheritance)
tasks have 1 position in each

The Linux Foundation Confidential 7

cgroups

• Got in through the back door
cooped existing cpusets interfaces
cpusets became one subsystem

• “task-oriented”
associates a set of tasks with a set of

parameters for one or more subsystems

The Linux Foundation Confidential 8

CPU Controller

• Separate from CPUSets
• CFS (2.6.23 process scheduler)

People contributed to with cgroups in mind
Provides framework for CPU-based control

• “Share” model
more users mean smaller shares

• Hierarchies are supported
Users can subdivide their share

• Also: CPU Accounting subsystem
Accounting-only: no control

The Linux Foundation Confidential 9

Memory Controller
• Barriers to acceptance:

Performance/space overhead
Impact to the core VM

• Each page has an “owner” cgroup
Assigned at allocation time

• Limits placed on ownership quantity
• Swap controller implemented
• Per-group swappiness
• RSS control
• cgroups can be out-of-memory targeted

struct page: 32-byte object

The Linux Foundation Confidential 10

context switch...

struct page: 32-byte object

The Linux Foundation Confidential 11

Out of Memory

• “Someone asked for memory and I'm
not making any progress helping”

• Causes:
All the memory/swap really is gone
Leaks in kernel or userspace
I/O is too slow to swap or write out
The kernel let too much get dirty

struct page: 32-byte object

The Linux Foundation Confidential 12

Memory Reclaim

• Scan each page on the LRU
• Find users... make them unuse
• Rinse, repeat...
• HPC? All mlocked()
• Progress?

struct page: 32-byte object

The Linux Foundation Confidential 13

Solutions?
• Split LRU (2.6.28)

Ignore mlock() during reclaim
• kernelcore= (2.6.23)

Specifies ceiling on kernel memory for “non-
movable allocations”

• oom_adj / oom_score
Documented ~2.6.18, around for a while
-17 adjustment “disables” OOM

• User jobs in a memory cgroup
• Large pages

Great talk in next hour!

struct page: 32-byte object

The Linux Foundation Confidential 14

</oom>

The Linux Foundation Confidential 15

libcgroup

• Kernel interface is via ram-based fs
Not user friendly

• Abstraction
'mv' is not a user-acceptable interface

• Persistence
/etc/sysctl.conf vs. /proc/sys

• Automatic Classification

The Linux Foundation Confidential 16

Checkpoint/Restart

• Resource management not limited to
a single system

• cgroups keeps different users in line
• What when users outgrow a cgroup?
• Many existing solutions
Zap, OpenVZ, IBM Metacluster, blcr
All out of tree – bad for customers

• Goals: Reliability, Flexibility

Users:

1. system containers like OpenVZ does

2. workload migration in the datacenter – DB load grew too large to be

 on the same machine as the web server

3. Live kernel upgrades

4. Clusters: don't want to rewrite that 20-year-old fortran app, but want

 to be able to save its work

 Got a crash? Move it off the cluster for diagnosis

The Linux Foundation Confidential 17

Expected Users

• OpenVZ-like virtual private servers
• Datacenter workload balancing
• Live kernel upgrades
• Clusters
Job management
Debugging

The Linux Foundation Confidential 18

Checkpoint/Restart

• Step 1: Isolate
cgroups / containers
Namespaces: pid, uts, net, fs, ipc...
physical resources (MAC, IP, etc...)

• Step 2: Serialize
pick up those isolated objects
write to disk or send across network

The Linux Foundation Confidential 19

Issues

• Filesystem state
rsync?
btrfs helps

• Infiniband
• New kernel features must be
continually supported

• Must not slow down other kernel
development

The Linux Foundation Confidential 20

Community

• Participating: OpenVZ, IBM, Zap...
• Goal: same feature set as existing
out-of-tree implementations

• Rebuilding from scratch
Goals: simple, small, well-factored

• Oren Laadan (of Zap) maintaining
Pursuing -mm inclusion

• Alexey Dobriyan has another set

mention openvz's demo of a counterstrike server being migrated

or a whole vnc'd x server

The Linux Foundation Confidential 21

Current Feature Set

• Architectures: x86, x86_64, ppc, s390
• Single and multiple process support
• Self and external checkpoint
• “Simple” open files, pipes
• Shared memory (shmfs)
• Efficiently handles shared objects
Like pipe contents or file position

The Linux Foundation Confidential 22

Credits

• Thanks to Balbir Singh and Dhaval
Giani for all the input and updates.

• Thanks to Paul Menage for letting me
steal his nice pictures

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

