
 Data-Driven Challenges in
Scientific Computing at PNNL
PNNL-SA-72116

David Cowley
Senior Research Scientist

Pacific Northwest National Laboratory

EMSL is a national scientific user facility

2

William R. Wiley’s
Vision:
An innovative
multipurpose user
facility providing
“synergism between
the physical,
mathematical, and
life sciences.”

Dr. William R. Wiley
PNNL Director
1984-1994

Mission
EMSL, a national scientific user facility at Pacific
Northwest National Laboratory, provides integrated
experimental and computational resources for
discovery and technological innovation in the
environmental molecular sciences to support the needs
of DOE and the nation.

Characteristics of EMSL

3

   Scientific expertise that enables scientific discovery and innovation.
   Distinctive focus on integrating computational and experimental

capabilities and collaborating among disciplines.
   A unique collaborative environment that fosters synergy between

disciplines and a complimentary suite of tools to address the science
of our users.

   An impressive suite of state-of-the-art instrumentation that pushes the
boundaries of resolution and sensitivity.

   An economical venue for conducting non-proprietary research.

EMSL capabilities

4

The user program is focused on three
science themes

5

Developing & verifying
predictive models for
interfacial processes

and advancing
understanding of
structure-function

relationships in
complex systems.

Understanding and
optimizing the response
of biological systems to

their environment.

Unraveling molecular-
level phenomena to

determine their impact
on contaminant
migration and

transformation.

Sample application:
Carbon Dioxide (CO2) Sequestration

   It's a simple idea
   Problem: burning fossil fuels has increased the

amount of CO2 in the atmosphere
   Solution: capture it and put it back in the

ground!
   Would it work?
   Computer modeling is the best way to

figure that out
   But to really model this, we need to

understand a lot!
   How CO2 will react chemically with minerals

and fluids in the ground
   How CO2 will interact with biology in the

ground
   Heat, temperature, and physical stresses
   Changes in permeability of rock, clay, and soil
   Geological effects such as cracking,

fracturing, and sealing
   This illustrates the multi-scale nature of this

type of science problem

6

Sample application:
Biofuels from cellulose
   Another simple idea
   We need chemical fuels for their energy capacity, and

fossil fuels have a lot of problems with them
   We can get around this by making ethanol from plants
   Problem: It's proving to be a really bad idea to use

potential food crops as a fuel source
   Solution: Use cellulose!

   It's Renewable and plentiful (10x the world's energy needs)
   It's not food and doesn't release fossil carbon
   There's a lot of it already in waste products

   We know certain enzymes can be used to break cellulose
down into ethanol (certain fungi and bacteria make
these enzymes)

   To make this ethanol at useful scales, we must understand
at the molecular level how these enzymes work, which is
a major computational biology challenge

   We are going to need far more computational power
than we currently have in order to do the simulation that’s
needed!

7

A major new challenge: Computational
Biology

   Computational biology is coming on strong
   In some ways it’s “big chemistry”: more molecules,

more complexity, larger systems
   Chemists can just now do high-quality Molecular

Dynamics (MD) simulations on a hundred atoms
   Biologists want to do this on at least many thousands!
   Biologists want to keep and compare MD trajectory data

sets (we’ve always treated these as “too big to keep”)
   In other ways it’s nothing like chemistry

   Many applications involve searching databases of
proteins & peptides for matches

   Experiments are now highly automated, creating a flood
of large, growing, complex data sets

   Challenges calling for exascale systems:
   analysis of mass spectrometry data for whole

genome scale proteomics measurements
   structure and dynamics of molecular machines
   discovery of cellular networks and their

reconstruction from high-throughput data
   simulation of the dynamic properties of cellular

networks

8

EMSL’s flagship HPC system: Chinook

2323 node HP cluster

9

Feature Detail
Interconnect DDR InfiniBand (Voltaire, Mellanox)
Node Dual Quad-core AMD Opteron

32 GB memory
Local scratch
filesystems

440 MB/s, 1 TB/s aggregate
440 GB per node. 1 PB aggregate

Global scratch
filesystem

30 GB/s
250 TB total

User home
filesystem

1 GB/s
20 TB total

Computational
Unit 1

288
port IB
Switch

GigE

192 nodes
11 Racks

Chinook cluster architecture

10

/mscf
SFS

(Lustre)

20 TB
1GB/s

/dtemp
SFS

(Lustre)

250 TB
30 GB/s

Chinook Ethernet
Core

Chinook InfiniBand Core

288
port IB
Switch

288
port IB
Switch

288
port IB
Switch

288
port IB
Switch

Computational
Unit 2

288
port IB
Switch

GigE

Computational
Unit 3

288
port IB
Switch

GigE

Computational
Unit 4

288
port IB
Switch

GigE

Computational
Unit 5

288
port IB
Switch

GigE

Computational
Unit 6 (CU6)

288
port IB
Switch

GigE Computational
Unit 7

288
port IB
Switch

GigE

Computational
Unit 8

288
port IB
Switch

GigE

Computational
Unit 9

288
port IB
Switch

GigE

Computational
Unit 10

288
port IB
Switch

GigE

Computational
Unit 11

288
port IB
Switch

GigE

Computational
Unit 12 (CU12)

288
port IB
Switch

GigE

2323 nodes, ~192 per CU

Login

40 Gbit

Central Storage

EMSL &
PNNL

Network

Admin

Experiences with Chinook

   Full system in production for just over a year now
   Lots of good science is getting done on it
   Strengths:

   4 GB RAM/core
   Lots of local disk bandwidth/core

   Weaknesses:
   Version lag in the software stack
   Our Infiniband topology is a little weird, which limits our options for

optimizing its performance
   We’d still like more RAM per processor

   Use of large pages is still a feature we’d like to use
   other work has drained staff time away
   reinforces the idea that it’s more cumbersome than it ought to be

11

EMSL’s new test bed system: Barracuda

   Barracuda was procured with
Recovery Act funds via DOE’s Office
of Science

   It’s got all the latest hardware toys
to serve as a testbed for scaling
parallel codes towards exascale:
   Multicore Nehalem processors
   QDR Infiniband
   Nvidia Tesla GPGPUs
   Fusion IO PCE-Express SSDs

   This new system will be crucial to
develop and test software that will
allow NWChem and other software
to exascale

12

Next stop: Exascale computing

   The previous examples (and many others!) call for
exascale computing

   Today’s fastest computers have just beaten the
petaflop barrier
   Petaflop = 1015 operations/second
   Exaflop = 1018 operations/second

   Current hardware trends will take us to exascale in
the 2018 time frame

   Current software and computational techniques will
not get us there!
   There’s too much complexity in the programming models for

today’s tools
   We have no way of even supporting enough processes

13

A note about recent evolution of HPC
software

   Terascale to petascale transition:
   Hardware got dramatically faster
   System architecture stayed about the same
   degree of parallelism increased ~10x

   Petascale to exascale transition:
   Physics put the brakes on ever-increasing clock speeds
   Node architecture changes dramatically – we get more

parts instead of faster ones
   Degree of parallelism must increase by ~1000x

14

Computation is likely to become data-
starved

   A core needs a constant stream of data in and out
to do anything efficiently
   Memory speeds are not keeping pace with processor

speeds
   If core counts double as memory speed increases by 50%,

each core has less and less effective RAM bandwidth in
newer and newer machines

   Data rates will throttle performance
   Do we move the data to where the work is done?
   Do we move the work to where the data is?
   Can we even keep all the values we compute?
   How is a filesystem going to behave when it's got a million

processes banging on it?

15

Internet Exascale Software Project (IESP)

   http://www.exascale.org
   Studying issues associated with exascale software and

developing a roadmap for getting there
   They call out 3 areas where system architectures will need

to be improved:
   Concurrency – increasing the number of processes/threads

doing work
   Reliability – mitigating the probabilistic error rates that are

inevitable in a system containing billions of transistors
   Power Consumption – Reducing power consumption of

exascale system from projected 65 – 100 megawatts
   Concurrency will give us plenty to talk about today!
   Open source has a role to play here

   It’s a good model for the level of collaboration that’s needed
   They do feel it’s going to need to be a very coordinated kind of

collaboration

16

A compute node in the “good old days”

   Processor, RAM, Disk storage, maybe instruction or data
caches.

   Simple!
   But we needed more

Ram

Multiprocessing

   Add more processors, get more work done!
   Processors have level 1 level 2 caches, with hardware cache coherency
   This works – to a point. But hooking more processors to the same memory

gets expensive fast!!
   Systems were built up to about 64-way like this, but they were very pricey

Ram

Distributed Memory

   OK, big multiprocessors are expensive, so lash together economical smaller
machines with a network

   Run parallel code on sets of machines
   Use message passing to move data between the machines when needed
   This is where we were a couple of years ago, and it gets us just into teraflops territory
   This is hard to program, because it puts all the job of correctly managing data on the

programmer’s shoulders!

Ram

Multicore!

•  Four cores/socket is common today, but 8- and 12-way chips
are in stores now!

•  Note the added complexity and what happens with memory:
•  It’s now connected to the processor socket
•  A given memory location may be on your socket, or on a remote one
•  Cores tend to have their own level 1 and level 2 caches, with level 3

cache shared socket-wide

Coming soon: even more multicore and
GPGPU

•  Between all those cores and the GPU, there is tremendous raw processor power
•  The price to be paid is:

•  Tremendous complexity in programming (multiprocessing, message passing, GPU
programming and dispatch)

•  Making sure hundreds to thousands of processes can be scheduled and serviced effciently
•  Memory and storage speed per core is 1 / #cores: approaches zero as core count increases!

The process model problem

   Silicon is not getting faster anymore
   Since the manufacturers can't give us

faster cores, they give us more
   Parallelism is the only way to go

significantly faster, and it's going to
have to be massive parallelism

   Apply Moore's law to the number of
processor cores!

   Today we can do thousands or tens
of thousands of processes on the
most scalable applications

   That's just not enough
   Consider: if a chip has 100 cores on

it, each core gets 1/100th the
memory (or cache speed) that we
enjoy today!

   Exaflop applications will require
million-way parallelism

   We don't have ways to do that yet!

22

Time Core count

Now 8

+18 months 16

+36 months 32

+54 months 64

+72 months 128

+90 months 256
+108 months

(2018) 512

Computation on GPGPU

   Nvidia “Fermi” 400 series offers ECC, improved
double-precision floating point math

   So now it looks really good for HPC
   512 concurrent hardware threads, peak

performance of 600 GF/sec per chip
   200 GB/sec inside GPU, but the bus it's in maxes out

at 8 GB/sec
   “application kernel” based programming model –

you write GPU code , then push it into the GPU to be
run, along with the data it's supposed to operate on

   Need to balance kernel runtime against startup time
against CPU performance & workload

23

So in this picture, what’s going on with the
data?

   All these flops and so little bandwidth!
   We’re on track to have 10-2 less effective memory bandwidth

per flop than we do now
   We need to maximize concurrency (i.e. keep as many things as

busy as possible at the same time)
   Consider that it may make more sense to recalculate than to

fetch from memory!
   So where’s the data? The programmer now has to care!

   Recently:
   It’s in local memory somewhere
   It’s on a remote node

   Today and tomorrow:
   Maybe it’s in this socket’s memory
   Maybe it’s in another socket’s memory
   Maybe it’s down in the GPU
   Maybe it’s in one of those places on another node

24

Kernel Issues

   Can the kernel support 102 or 103 processors with at least that
many busy threads?

   All of those processes will want to do things like:
   Get scheduled and run
   Allocate memory
   Use shared memory
   Do I/O to block devices and network interfaces
   Dispatch work to accelerators

   The kernel will need to use as much asynchrony as it possibly
can as it goes about its business

   Oh, and hardware cache coherency?
   It's probably gone once we have multiple dozens of cores in a socket
   So expect that not all processors will see the same value in the same

memory address unless you fix it yourself

•  “...the scalability requirements for even a single socket of an extreme scale system will be two
orders of magnitude higher than what can be supported by Linux today. It is clear that future
scalability improvements in Linux are expected to be harder to achieve, as evidenced by the RCU
[(read-copy update API)] experience and the complexities uncovered by ongoing efforts to
reduce the scope of the Linux big kernel lock.” – Software Challenges at Extreme Scale, Dongarra,
et al, SciDAC review #16 Special Issue 2010

25

Takeaway messages

   Energy and environmental problems (and many
others) are crying out for exascale computing

   The hardware will take us there within the next
decade

   But that hardware will demand that we have a
software stack that:
   Runs 1000x more processes than we can now
   Does sensible things with insensible quantities of data
   Relieves the programmers and users from having to know

the details of a system’s memory architecture, general
purpose processors, accelerators, and interconnect

   Further reading:
   http://www.emsl.pnl.gov/capabilities/computing
   http://www.exascale.org
   http://www.scidacreview.org/1001/index.html

26

27

Questions? Comments?

