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EMSL is a national scientific user facility 
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William R. Wiley’s 
Vision: 
An innovative 
multipurpose user 
facility providing 
“synergism between 
the physical, 
mathematical, and 
life sciences.” 

Dr. William R. Wiley 
PNNL Director 
1984-1994 

Mission 
EMSL, a national scientific user facility at Pacific 
Northwest National Laboratory, provides integrated 
experimental and computational resources for 
discovery and technological innovation in the 
environmental molecular sciences to support the needs 
of DOE and the nation. 



Characteristics of EMSL 
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   Scientific expertise that enables scientific discovery and innovation. 
   Distinctive focus on integrating computational and experimental 

capabilities and collaborating among disciplines. 
   A unique collaborative environment that fosters synergy between 

disciplines and a complimentary suite of tools to address the science 
of our users.  

   An impressive suite of state-of-the-art instrumentation that pushes the 
boundaries of resolution and sensitivity. 

   An economical venue for conducting non-proprietary research. 



EMSL capabilities 
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The user program is focused on three 
science themes 
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Developing & verifying 
predictive models for 
interfacial processes 

and advancing 
understanding of  
structure-function 

relationships in 
complex systems. 

Understanding and 
optimizing the response 
of  biological systems to 

their environment. 

Unraveling molecular-
level phenomena to 

determine their impact 
on contaminant 
migration and 

transformation. 



Sample application:   
Carbon Dioxide (CO2) Sequestration 

   It's a simple idea 
   Problem: burning fossil fuels has increased the 

amount of CO2 in the atmosphere 
   Solution: capture it and put it back in the 

ground! 
   Would it work? 
   Computer modeling is the best way to 

figure that out 
   But to really model this, we need to 

understand a lot! 
   How CO2 will react chemically with minerals 

and fluids in the ground 
   How CO2 will interact with biology in the 

ground 
   Heat, temperature, and physical stresses 
   Changes in permeability of rock, clay, and soil 
   Geological effects such as cracking, 

fracturing, and sealing 
   This illustrates the multi-scale nature of this 

type of science problem 
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Sample application:  
Biofuels from cellulose 
   Another simple idea 
   We need chemical fuels for their energy capacity, and 

fossil fuels have a lot of problems with them 
   We can get around this by making ethanol from plants 
   Problem: It's proving to be a really bad idea to use 

potential food crops as a fuel source 
   Solution: Use cellulose! 

   It's Renewable and plentiful (10x the world's energy needs) 
   It's not food and doesn't release fossil carbon 
   There's a lot of it already in waste products 

   We know certain enzymes can be used to break cellulose 
down into ethanol (certain fungi and bacteria make 
these enzymes) 

   To make this ethanol at useful scales, we must understand 
at the molecular level how these enzymes work, which is 
a major computational biology challenge 

   We are going to need far more computational power 
than we currently have in order to do the simulation that’s 
needed! 
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A major new challenge: Computational 
Biology 

   Computational biology is coming on strong 
   In some ways it’s “big chemistry”: more molecules, 

more complexity, larger systems 
   Chemists can just now do high-quality Molecular 

Dynamics (MD) simulations on a hundred atoms 
   Biologists want to do this on at least many thousands! 
   Biologists want to keep and compare MD trajectory data 

sets (we’ve always treated these as “too big to keep”) 
   In other ways it’s nothing like chemistry 

   Many applications involve searching databases of 
proteins & peptides for matches 

   Experiments are now highly automated, creating a flood 
of large, growing, complex data sets 

   Challenges calling for exascale systems: 
   analysis of mass spectrometry data for whole 

genome scale proteomics measurements 
   structure and dynamics of molecular machines 
   discovery of cellular networks and their 

reconstruction from high-throughput data 
   simulation of the dynamic properties of cellular 

networks 
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EMSL’s flagship HPC system: Chinook 

2323 node HP cluster 
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Feature Detail 
Interconnect DDR InfiniBand (Voltaire, Mellanox) 
Node Dual Quad-core AMD Opteron 

32 GB memory 
Local scratch 
filesystems 

440 MB/s, 1 TB/s aggregate 
440 GB per node. 1 PB aggregate 

Global scratch 
filesystem 

30 GB/s 
250 TB total 

User home 
filesystem 

1 GB/s 
20 TB total 



Computational 
Unit 1 

288 
port IB 
Switch 

GigE 

192 nodes 
11 Racks 

Chinook cluster architecture 
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/dtemp 
SFS 

(Lustre) 
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Chinook Ethernet 
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288 
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Switch 

288 
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Switch 

288 
port IB 
Switch 
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port IB 
Switch 
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288 
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Switch 
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Switch 
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288 
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Switch 
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288 
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Switch 
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288 
port IB 
Switch 
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port IB 
Switch 

GigE 

Computational 
Unit 8 

288 
port IB 
Switch 
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Computational 
Unit 11 
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port IB 
Switch 
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Computational 
Unit 12 (CU12) 

288 
port IB 
Switch 

GigE 

2323 nodes, ~192 per CU 

Login 

40 Gbit 

Central Storage 

EMSL & 
PNNL 

Network 

Admin 



Experiences with Chinook 

   Full system in production for just over a year now 
   Lots of good science is getting done on it 
   Strengths: 

   4 GB RAM/core 
   Lots of local disk bandwidth/core 

   Weaknesses: 
   Version lag in the software stack 
   Our Infiniband topology is a little weird, which limits our options for 

optimizing its performance 
   We’d still like more RAM per processor 

   Use of large pages is still a feature we’d like to use 
   other work has drained  staff time away 
   reinforces the idea that it’s more cumbersome than it ought to be 
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EMSL’s new test bed system: Barracuda 

   Barracuda was procured with 
Recovery Act funds via DOE’s Office 
of Science 

   It’s got all the latest hardware toys 
to serve as a testbed for scaling 
parallel codes towards exascale: 
   Multicore Nehalem processors 
   QDR Infiniband 
   Nvidia Tesla GPGPUs 
   Fusion IO PCE-Express SSDs 

   This new system will be crucial to 
develop and test software that will 
allow NWChem and other software 
to exascale 
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Next stop: Exascale computing 

   The previous examples (and many others!) call for 
exascale computing 

   Today’s fastest computers have just beaten the 
petaflop barrier 
   Petaflop = 1015 operations/second 
   Exaflop = 1018 operations/second 

   Current hardware trends will take us to exascale in 
the 2018 time frame 

   Current software and computational techniques will 
not get us there! 
   There’s too much complexity in the programming models for 

today’s tools 
   We have no way of even supporting enough processes 
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A note about recent evolution of HPC 
software 

   Terascale to petascale transition: 
   Hardware got dramatically faster 
   System architecture stayed about the same 
   degree of parallelism increased ~10x 

   Petascale to exascale transition: 
   Physics put the brakes on ever-increasing clock speeds 
   Node architecture changes dramatically – we get more 

parts instead of faster ones 
   Degree of parallelism must increase by ~1000x 
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Computation is likely to become data-
starved 

   A core needs a constant stream of data in and out 
to do anything efficiently 
   Memory speeds are not keeping pace with processor 

speeds 
   If core counts double as memory speed increases by 50%, 

each core has less and less effective RAM bandwidth in 
newer and newer machines 

   Data rates will throttle performance 
   Do we move the data to where the work is done? 
   Do we move the work to where the data is? 
   Can we even keep all the values we compute? 
   How is a filesystem going to behave when it's got a million 

processes banging on it? 
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Internet Exascale Software Project (IESP) 

   http://www.exascale.org 
   Studying issues associated with exascale software and 

developing a roadmap for getting there 
   They call out 3 areas where system architectures will need 

to be improved: 
   Concurrency – increasing the number of processes/threads 

doing work 
   Reliability – mitigating the probabilistic error rates that are 

inevitable in a system containing billions of transistors 
   Power Consumption – Reducing power consumption of 

exascale system from projected 65 – 100 megawatts 
   Concurrency will give us plenty to talk about today! 
   Open source has a role to play here 

   It’s a good model for the level of collaboration that’s needed 
   They do feel it’s going to need to be a very coordinated kind of 

collaboration 

16  



A compute node in the “good old days” 

   Processor, RAM, Disk storage, maybe instruction or data 
caches. 

   Simple! 
   But we needed more 

Ram 



Multiprocessing 

   Add more processors, get more work done! 
   Processors have level 1 level 2 caches, with hardware cache coherency 
   This works – to a point.  But hooking more processors to the same memory 

gets expensive fast!! 
   Systems were built up to about 64-way like this, but they were very pricey 

Ram 



Distributed Memory 

   OK, big multiprocessors are expensive, so lash together economical smaller 
machines with a network 

   Run parallel code on sets of machines 
   Use message passing to move data between the machines when needed 
   This is where we were a couple of years ago, and it gets us just into teraflops territory 
   This is hard to program, because it puts all the job of correctly managing data on the 

programmer’s shoulders! 
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Multicore! 

•  Four cores/socket is common today, but 8- and 12-way chips 
are in stores now! 

•  Note the added complexity and what happens with memory: 
•  It’s now connected to the processor socket 
•  A given memory location may be on your socket, or on a remote one 
•  Cores tend to have their own level 1 and level 2 caches, with level 3 

cache shared socket-wide 



Coming soon: even more multicore and 
GPGPU 

•  Between all those cores and the GPU, there is tremendous raw processor power 
•  The price to be paid is: 

•   Tremendous complexity in programming (multiprocessing, message passing, GPU 
programming and dispatch) 

•  Making sure hundreds to thousands of processes can be scheduled and serviced effciently 
•  Memory and storage speed per core is 1 / #cores: approaches zero as core count increases! 



The process model problem 

   Silicon is not getting faster anymore 
   Since the manufacturers can't give us 

faster cores, they give us more 
   Parallelism is the only way to go 

significantly faster, and it's going to 
have to be massive parallelism 

   Apply Moore's law to the number of 
processor cores! 

   Today we can do thousands or tens 
of thousands of processes  on the 
most scalable applications 

   That's just not enough 
   Consider:  if a chip has 100 cores on 

it, each core gets 1/100th the 
memory (or cache speed) that we 
enjoy today! 

   Exaflop applications will require 
million-way parallelism 

   We don't have ways to do that yet! 
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Time Core count 

Now 8 

+18 months 16 

+36 months  32 

+54 months 64 

+72 months  128 

+90 months 256 
+108 months 

(2018)  512 



Computation on GPGPU 

   Nvidia “Fermi” 400 series offers ECC, improved 
double-precision floating point math 

   So now it looks really good for HPC 
   512 concurrent hardware threads, peak 

performance of 600 GF/sec per chip 
   200 GB/sec inside GPU, but the bus it's in maxes out 

at 8 GB/sec 
   “application kernel” based programming model – 

you write GPU code , then push it into the GPU to be 
run, along with the data it's supposed to operate on 

   Need to balance kernel runtime against startup time 
against CPU  performance & workload 
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So in this picture, what’s going on with the 
data? 

   All these flops and so little bandwidth! 
   We’re on track to have 10-2 less effective memory bandwidth 

per flop than we do now 
   We need to maximize concurrency (i.e. keep as many things as 

busy as possible at the same time) 
   Consider that it may make more sense to recalculate than to 

fetch from memory! 
   So where’s the data?  The programmer now has to care! 

   Recently: 
   It’s in local memory somewhere 
   It’s on a remote node 

   Today and tomorrow: 
   Maybe it’s in this socket’s memory 
   Maybe it’s in another socket’s memory 
   Maybe it’s down in the GPU 
   Maybe it’s in one of those places on another node 
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Kernel Issues 

   Can the kernel support 102 or 103 processors with at least that 
many busy threads? 

   All of those processes will want to do things like: 
   Get scheduled and run 
   Allocate memory 
   Use shared memory 
   Do I/O to block devices and network interfaces 
   Dispatch work to accelerators 

   The kernel will need to use as much asynchrony as it possibly 
can as it goes about its business 

   Oh, and hardware cache coherency? 
   It's probably gone once we have multiple dozens of cores in a socket 
   So expect that not all processors will see the same value in the same 

memory address unless you fix it yourself 

•  “...the scalability requirements for even a single socket of an extreme scale system will be two 
orders of magnitude higher than what can be supported by Linux today.  It is clear that future 
scalability improvements in Linux are expected to be harder to achieve, as evidenced by the RCU 
[(read-copy update API)] experience and the complexities uncovered by ongoing efforts to 
reduce the scope of the Linux big kernel lock.” – Software Challenges at Extreme Scale, Dongarra, 
et al, SciDAC review  #16 Special Issue 2010 
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Takeaway messages 

   Energy and environmental problems (and many 
others) are crying out for exascale computing 

   The hardware will take us there within the next 
decade 

   But that hardware will demand that we have a 
software stack that: 
   Runs 1000x more processes than we can now 
   Does sensible things with insensible quantities of data 
   Relieves the programmers and users from having to know 

the details of a system’s memory architecture, general 
purpose processors, accelerators, and interconnect 

   Further reading: 
   http://www.emsl.pnl.gov/capabilities/computing 
   http://www.exascale.org 
   http://www.scidacreview.org/1001/index.html 
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Questions?  Comments? 


