
Containers and Namespaces
in the Linux Kernel

Kir Kolyshkin
<kir@openvz.org>

2

Agenda

 Containers vs Hypervisors

 Kernel components
– Namespaces
– Resource management
– Checkpoint/restart

3

Hypervisors

 VMware
 Parallels
 QEmu
 Bochs

Xen
UML

(User Mode Linux)

KVM

4

Containers

OpenVZ / Parallels Containers
FreeBSD jails
Linux-VServer
Solaris Containers/Zones
IBM AIX6 WPARs (Workload Partitions)

5

Comparison

Hypervisor (VM)
 One real HW, many virtual

HWs, many OSs
 High versatility – can run

different OSs
 Lower density,

performance, scalability
 «Lowers» are mitigated by

new hardware features
(such as VT-D)

Containers (CT)
 One real HW (no virtual

HW), one kernel, many
userspace instances

 High density
 Dynamic resource

allocation
 Native performance:

[almost] no overhead

6

Comparison: a KVM hoster

7

Comparison: bike vs car

Feature Bike Car

Ecological Yes No

Low price Low High

Needs parking space No Yes

Periodical maintenance cost Low Med

Needs refuelling No Yes

Can drive on a footpath Yes No

Lightweight aluminium frame Yes No

Easy to carry (e.g. take with you on a train) Yes No

Fun factor High Low

Source: http://wiki.openvz.org/Bike_vs_car

8

Comparison: car vs bike

Feature Car Bike

Speed High Low
Needs muscle power No Yes
Passenger and load capacity Med Low
In-vehicle music Yes No

Gearbox Auto Man

Power steering, ABS, ESP, TSC Yes No

Ability to have sex inside Yes No

Air conditioning Yes No

Fun factor High Low

Source: http://wiki.openvz.org/Car_vs_Bike

9

OpenVZ vs. Xen from HP labs

 For all the configuration and workloads we
have tested, Xen incurs higher virtualization
overhead than OpenVZ does

 For all the cases tested, the virtualization
overhead observed in OpenVZ is limited, and
can be neglected in many scenarios

 Xen systems becomes overloaded when
hosting four instances of RUBiS, while the
OpenVZ system should be able to host at
least six without being overloaded

10

You can have both!

• Create containers and VMs on the same box

• Best of both worlds

11

12

Kernel components

• Namespaces
– PID
– Net
– User
– IPC
– etc.

• Resource management (group-based)

• Fancy tricks – checkpoint/restart

13

Trivial namespace cases

• Filesystem:

chroot() syscall

• Hostname:

struct system_utsname per container

CLONE_NEWUTS flag for clone() syscall

14

PID namespace: why?

• Usually a PID is an arbitrary number

• Two special cases:
– Init (i.e. child reaper) has a PID of 1
– Can't change PID (process migration)

15

PID NS: details

• clone(CLONE_NEWPID)
• Each task inside pidns has 2 pids

• Child reaper is virtualized

• /proc/$PID/* is virtualized

• Multilevel: can create nested pidns
– slower on fork() where level > 1

• Consequence: PID is no longer unique in kernel

16

Network namespace: why?

• Various network devices

• IP addresses

• Routing rules

• Netfilter rules

• Sockets

• Timewait buckets, bind buckets

• Routing cache

• Other internal stuff

17

NET NS: devices

• macvlan
– same NIC, different MAC
– NIC is in promisc mode

• veth
– like a pipe, created in pairs, 2 ends, 2 devices
– one end goes to NS, other is bridged to real eth

• venet (not in mainstream yet / only in OpenVZ)
– MACless device
– IP is ARP announced on the eth
– host system acts as a router

18

NET NS: dive into

• Can put a network device into netns
– ip link set DEVICE netns PID

• Can put a process into netns
– New:

clone(CLONE_NEWNET)
– Existing:

fd = nsfd(NS_NET, pid); setns(fd);

19

Other namespaces

• User: UIDs/GIDs
– Not finished: signal code, VFS inode ownership

• IPC: shmem, semaphores, msg queues

20

Namespace problems / todo

• Missing namespaces: tty, fuse, binfmt_misc

• Identifying a namespace
– No namespace ID, just process(es)

• Entering existing namespaces
– problem: no way to enter existing NS
– proposal: fd=nsfd(NS, PID); setns(fd);

– problem: can't enter pidns with current task
– proposal: clone_at() with additional PID argument

21

Resource Management

● Traditional stuff (ulimit etc.) sucks
– all limits are per-process except for numproc
– some limits are absent, some are not working

 Answer is CGroups
– a generic mechanism to group tasks together
– different resource controllers can be applied

 Resource controllers
– Memory / disk / CPU … – work in progress

22

Resource management: OpenVZ

• User Beancounters
a set of per-CT resource counters, limits, and
guarantees

• Fair CPU scheduler
two-level
shares, hard limits, VCPU affinity

• Disk quota
two-level: per-CT and per-UGID inside CT

• Disk I/O priority per CT

23

Kernel: Checkpointing/Migration

 Complete CT state can be saved in a file
− running processes
− opened files
− network connections, buffers, backlogs, etc.
− memory segments

 CT state can be restored later
 CT can be restored on a different server

24

LXC vs OpenVZ

• OpenVZ was off-the-mainline historically
– developing since 2000

• We are working on merging bits and pieces

• Code in mainline is used by OpenVZ
– It is also used by LXC (and Linux-VServer)

• OpenVZ is production ready and stable

• LXC is a work-in-progress
– not a ready replacement for OpenVZ

• We will keep maintaining OpenVZ for a while

25

Questions / Contacts

kir@openvz.org

containers@linux-foundation.org

http://wiki.openvz.org/

http://lxc.sf.net/

mailto:kir@openvz.org
mailto:containers@linux-foundation.org
http://wiki.openvz.org/
http://lxc.sf.net/

26

To sum it up

 Platform-independent
− as long as Linux supports it, we support it

 No problems with scalability or disk I/O
− lots of memory, lots of CPUs no prob
− native I/O speed

 Best possible performance
 Plays well with others (Xen, KVM, VMware)

27

[Backup] Usage Scenarios

 Server Consolidation
 Hosting
 Development and Testing
 Security
 Educational

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

