
Idle Cycle Injection
in Linux

Salman Qazi
Google Inc.

Static Power Provisioning

In a typical data center, power is statically provisioned.

There is some finite supply of power available.
At every level of power distribution, there is a local limit
enforced by circuit breakers.
Racks and clusters populated to respect these limits in the
worst case scenario
On average, far less power is used than allowed by the
infrastructure.

Dynamic Power Provisioning

Goal: Get useful work out of as much power as possible
Put more racks into clusters and machines into racks than
permitted by worst case scenario
Dynamically determine power quota, while staying within the
limits
Enforce the quota on individual machines by power capping

Power Capping

Limiting the amount of power used by an individual machine
Many different approaches in hardware, firmware and
software

e.g. DVFS can be used to set an upper bound on CPU
power usage.
"Power Capping a prelude to Power Shifting", Lefurgy et
al., does it in firmware.

Has other applications, such as responding to thermal
emergencies.
Indiscriminate and agnostic of workloads, when
implemented without software integration.

Modelling Power

The maximum power used by the CPU increases, as CPU
usage increases
The maximum power used by RAM increases, as CPU
usage increases
We model the power used by disks as a constant.
It is sufficient to control CPU usage in order to limit peak
power.
However, additional information about RAM and disks will
help make the bounds tighter.
See: "Power provisioning for a warehouse-sized computer",
Fan et al.

Idle Cycle Injection
Run an idling instruction on the CPU X% of the time, over
every interval of length Y.
"Power capping via forced idleness", Gandhi et al.
Advantages:

Simple and widely available
Allows the use of C-states
Fine granularity of control - compare to statically picking
P-states
Software solution: Flexibility to discriminate between
tasks

Disadvantages
Software solution: Prone to OS bugs

Idle Cycle Injection - contd.
Our Design Choices

Avoid contention
Simplest way - Control each CPU independently

�Whenever possible, account for natural idleness
Avoid affecting latency of interactive tasks
Provide flexibility to the user to control which tasks run when
power is limited.

Accounting for natural idleness

Naive algorithm - On each CPU:
 while (1) {
 schedule_for(interval * (100 - min_idle_percent) / 100);
 inject(interval * (min_idle_percent) / 100);
 }

Unnecessarily prevents useful work.
Instead:

 while (1) {
 time_left = monitor_cpu();
 inject(time_left);
 }

monitor_cpu
Let Z be the minimum of the remaining interval and the
remaining CPU time for the interval.
If Z is smaller than timer granularity, then

Return the remaining interval.
Otherwise,

schedule work until now + Z and repeat.

Problem for interactive tasks

If a batch task uses up the entire CPU quota, the interactive
task cannot run until the next interval.

Solution

Eagerly inject up to the minimum number of idle cycles when
there are no interactive tasks on the run queue.

Algorithm
/* interval_left: remaining interval in "clock time" */
/* cpu_left: remaining interval in "CPU time" */

monitor_cpu:
 if (min(interval_left, cpu_left) < timer_granularity)
 return interval_left
 Z = get_next_timer()
 T = set_timer(Z)
 while (timer_pending(T)) {
 schedule_while((mode != EAGER ||
 interactive_on_runqueue)
 && timer_pending(T))
 eager_inject();
 }
 goto monitor_cpu

eager_inject:
 while (mode == EAGER && !interactive_on_runqueue &&
 timer_pending(T))
 do_idle();

Algorithm cntd...
get_next_timer:
 lazy_deadline = min(cpu_left, interval_left)
 eager_goal = interval_left - cpu_left
 if (eager_goal > 0) {
 mode = EAGER
 next_timer = min(lazy_deadline, eager_goal)
 } else {
 mode = LAZY
 next_timer = lazy_deadline
 }
 return next_timer

Discriminating Between Tasks

virtual runtime (vruntime) is the time consumed by a task
scaled down by its relative weight.
CFS picks the task with the lowest vruntime
Since Idle Cycle Injector is a real time thread, CFS does not
know about its time consumption.
Blame CFS tasks for that time.

Choose which tasks to blame according to a user
specified order.
A task can only be responsible for at most its fair share
during injection period.
Reshuffle the runqueue.

Laptops in Deserts
�These techniques can be applied to extend battery life
when power is unavailable
Predictable power savings
Ability to select "important" applications
Accounting for the power constraint in scheduling decisions
Potential for simple but effective interfaces

Possible Extensions

P-state interpolation
Machine-wide cap
Take advantage of newer hardware

Better models: don't just guess power

Acknowledgements

The Idle Cycle Injector has been a joint effort between myself
and Ken Chen.

Lots of good ideas and other support from other people at
Google, both in the kernel team and outside.

Fin

Questions?

