
Approaches to Application Programming
with Modern, High Performance Systems 

Ken Rozendal
Chief Architect, IBM Linux Technology Cener

April, 2010

All statements regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only.  
Any reliance on these Statements of General Direction is at the relying party's sole risk and will not create liability or obligation for IBM.



Agenda

• Background
• History
• High level goals
• Problem attributes (hopefully)
• Application attributes
• Low level goals
• Node topology
• Cluster topology
• Application models
• Proposed approach



Background

• High Performance Computing
 Optimized for computational efficiency (cost, time, energy, space)

• Reference book:
 Patterns for Parallel Programming (PPP)

 Timothy G. Mattson
 Beverly A. Sanders
 Berna L. Massingill



History

• Stage 1 – Scalar uniprocessor systems
• Stage 2 – Vector uniprocessor systems

 Data and algorithms largely unaffected
 Code rewritten at low levels

• Stage 3a – Cluster of uniprocessor systems
 Data generally partitioned
 Algorithms completely redesigned
 Code substantially rewritten

• Stage 3b – Large multiprocessor systems
 Data largely unaffected
 Algorithms completely redesigned
 Code substantially rewritten

• Stage 4 – Clusters of large multiprocessor systems



High Level Goals

• Goals:
 Continue to get as much performance as possible from new systems.
 Use a programming model that will last as long as possible.
 Avoid (as much as possible) restructuring data, algorithms, and code
 Avoid (as much as possible) introducing new:

 Programming models
 Programming languages
 Programming interfaces



Problem Attributes (Hopefully)

• physics concurrency
 physically local effects

 speed of light (high energy physics)
 speed of wave propogation (aeronautics)
 speed of heat conduction (thermodynamics)
 speed of physical movement (siesmic, weather???)

• rule based concurrency (moves in game)

• mathematical concurrency (prime number search)

• data concurrency (SETI@Home)



Application Attributes

• floating point vs integer work

• data size
 fit in cache

 level of cache
 sequential filling of cache with next data set

 fit in each node
 fit in total memory
 I/O bandwidth limited

• degree of communication
 data movement
 distance of required data movement (geographic locality)
 frequency of data movement (step size)



Low Level Goals

• design forces (PPP):
 flexibility
 efficiency
 simplicity

• goals:
 message passing and RDMA for cluster
 thread level parallelism with lightweight synchronization for node
 hardware parallelism (possibly with accelerators) for vector operations in a 

task



Node Topology

• Definition
 node = OS instance

• multi-core

• SMT threads

• cache
 more levels
 distance to cache was increasing in cycles, but no longer
 cache per core and thread declining

• NUMA



Node Topology (Advanced)

• hybrid
 management cores vs compute cores

 accelerator vs general purpose compute cores
 FPGAs

 split memory (by core type)

• accelerators
 fast floating point
 vector
 programmable



Cluster Topology

• cluster size and topology
 simple cluster vs extreme cluster

• hierarchical
 switch hierarchy
 multidimensional geometry
 mesh, torus, etc. (eg. Blue Gene)

• interconnect types
 Infiniband, RDMA Ethernet, proprietary (RDMA capable)
 standard Ethernet

• interconnect topology
 switched
 fully interconnected



Application Models

• complete hiding
 pure shared memory (OpenMP)
 pure cluster (MPI)
 problems with each

• multiple address spaces

• single address space
 local vs remote (fast vs slow)
 PGAS
 asynchronous PGAS



Application Models (Continued)

• vector accelerators (GPUs, SPEs)
 memory management
 programmable
 hide under libraries (standard or otherwise)

• programming languages
 Fortran (object oriented)
 C/C++
 Java
 X10



Application Models (Continued)

• shared memory models (MIMD)
 OpenMP
 pthreads
 Java
 SHMEM???
 GSM???

• vector accelerator models (SIMD)
 OpenCL
 CUDA (Compute Unified Device Architecture) from NVIDIA



Application Models (Continued)

• distributed shared memory models (MIMD) (PGAS)
 Unified Parallel C (UPC)
 X10
 CAF (co-array Fortran)
 asynchronous PGAS?

• cluster models
 MPI
 SM-MPI???



Proposed Approach (Continued)

• Explicitly hierarchical models
 MPI over OpenMP/pthreads/Java/SHMEM?/GSM?

• parameterize problem
 number of tasks per node
 number of nodes

• decompose problem (PPP)
 task decomposition for concurrency
 data decomposition for task locality

 group tasks
 satisfy temporal contraints?

 for synchronization efficiency
 minimize remote synchronization

 for communication reduction
 minimize message passing



Other Topics

• FPGAs

• Transactional Memory

• global arrays

• armci - aggregate remote memory copy interface
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Programming Models Architecture 
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Node Level Software
OpenMP – OpenCL - Migration
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Two Standards

• Two standards evolving from different sides 
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The OpenCL specification consists of three 
main components

• A Platform API 
• A language for specifying computational kernels 
• A runtime API. 

•  The platform API allows a developer to query a given OpenCL implementation to determine 
the capabilities of the devices that particular implementation supports.

•  Once a device has been selected and a context created, the runtime API can be used to 
queue and manage computational and memory operations for that device.

•  OpenCL manages and coordinates such operations using an asynchronous command 
queue. 

•  OpenCL command queues can include data parallel computational kernels as well as ‐
memory transfer and map/unmap operations. 

•  Asynchronous memory operations are included in order to efficiently support the separate 
address spaces and DMA engines used by many accelerators. 



OpenCL Memory Model

• Shared memory model
 Release consistency

• Multiple distinct address 
spaces
 Address spaces can be collapsed 

depending on the device’s memory 
subsystem

• Address Qualifiers
 __private

  __local 

 __constant and __global

• Example: 
 __global float4 *p;
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...any Questions?

Thank you...



OpenCL on RoadRunner
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OpenCL on QS22
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System Memory
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