
Approaches to Application Programming
with Modern, High Performance Systems

Ken Rozendal
Chief Architect, IBM Linux Technology Cener

April, 2010

All statements regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only.
Any reliance on these Statements of General Direction is at the relying party's sole risk and will not create liability or obligation for IBM.

Agenda

• Background
• History
• High level goals
• Problem attributes (hopefully)
• Application attributes
• Low level goals
• Node topology
• Cluster topology
• Application models
• Proposed approach

Background

• High Performance Computing
 Optimized for computational efficiency (cost, time, energy, space)

• Reference book:
 Patterns for Parallel Programming (PPP)

 Timothy G. Mattson
 Beverly A. Sanders
 Berna L. Massingill

History

• Stage 1 – Scalar uniprocessor systems
• Stage 2 – Vector uniprocessor systems

 Data and algorithms largely unaffected
 Code rewritten at low levels

• Stage 3a – Cluster of uniprocessor systems
 Data generally partitioned
 Algorithms completely redesigned
 Code substantially rewritten

• Stage 3b – Large multiprocessor systems
 Data largely unaffected
 Algorithms completely redesigned
 Code substantially rewritten

• Stage 4 – Clusters of large multiprocessor systems

High Level Goals

• Goals:
 Continue to get as much performance as possible from new systems.
 Use a programming model that will last as long as possible.
 Avoid (as much as possible) restructuring data, algorithms, and code
 Avoid (as much as possible) introducing new:

 Programming models
 Programming languages
 Programming interfaces

Problem Attributes (Hopefully)

• physics concurrency
 physically local effects

 speed of light (high energy physics)
 speed of wave propogation (aeronautics)
 speed of heat conduction (thermodynamics)
 speed of physical movement (siesmic, weather???)

• rule based concurrency (moves in game)

• mathematical concurrency (prime number search)

• data concurrency (SETI@Home)

Application Attributes

• floating point vs integer work

• data size
 fit in cache

 level of cache
 sequential filling of cache with next data set

 fit in each node
 fit in total memory
 I/O bandwidth limited

• degree of communication
 data movement
 distance of required data movement (geographic locality)
 frequency of data movement (step size)

Low Level Goals

• design forces (PPP):
 flexibility
 efficiency
 simplicity

• goals:
 message passing and RDMA for cluster
 thread level parallelism with lightweight synchronization for node
 hardware parallelism (possibly with accelerators) for vector operations in a

task

Node Topology

• Definition
 node = OS instance

• multi-core

• SMT threads

• cache
 more levels
 distance to cache was increasing in cycles, but no longer
 cache per core and thread declining

• NUMA

Node Topology (Advanced)

• hybrid
 management cores vs compute cores

 accelerator vs general purpose compute cores
 FPGAs

 split memory (by core type)

• accelerators
 fast floating point
 vector
 programmable

Cluster Topology

• cluster size and topology
 simple cluster vs extreme cluster

• hierarchical
 switch hierarchy
 multidimensional geometry
 mesh, torus, etc. (eg. Blue Gene)

• interconnect types
 Infiniband, RDMA Ethernet, proprietary (RDMA capable)
 standard Ethernet

• interconnect topology
 switched
 fully interconnected

Application Models

• complete hiding
 pure shared memory (OpenMP)
 pure cluster (MPI)
 problems with each

• multiple address spaces

• single address space
 local vs remote (fast vs slow)
 PGAS
 asynchronous PGAS

Application Models (Continued)

• vector accelerators (GPUs, SPEs)
 memory management
 programmable
 hide under libraries (standard or otherwise)

• programming languages
 Fortran (object oriented)
 C/C++
 Java
 X10

Application Models (Continued)

• shared memory models (MIMD)
 OpenMP
 pthreads
 Java
 SHMEM???
 GSM???

• vector accelerator models (SIMD)
 OpenCL
 CUDA (Compute Unified Device Architecture) from NVIDIA

Application Models (Continued)

• distributed shared memory models (MIMD) (PGAS)
 Unified Parallel C (UPC)
 X10
 CAF (co-array Fortran)
 asynchronous PGAS?

• cluster models
 MPI
 SM-MPI???

Proposed Approach (Continued)

• Explicitly hierarchical models
 MPI over OpenMP/pthreads/Java/SHMEM?/GSM?

• parameterize problem
 number of tasks per node
 number of nodes

• decompose problem (PPP)
 task decomposition for concurrency
 data decomposition for task locality

 group tasks
 satisfy temporal contraints?

 for synchronization efficiency
 minimize remote synchronization

 for communication reduction
 minimize message passing

Other Topics

• FPGAs

• Transactional Memory

• global arrays

• armci - aggregate remote memory copy interface

All statements regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only.
Any reliance on these Statements of General Direction is at the relying party's sole risk and will not create liability or obligation for IBM.

Programming Models Architecture

Logical Single

Address Space

Logical Multiple

 Address Spaces

Shmem
GSM

MPI
PGAS

CAF /X10/ UPC

Multiple Machine Address Spaces

BG

Open MP, SM-MPI

HW Cache

Power/PERCS

Open MP, SM-MPI

HW Cache

Roadrunner

OpenMP, OpenCL

Software Cache

Cluster Level

 Node Level

Logical View

Homogeneous Cores Heterogeneous

Fortran
C

Node Level Software
OpenMP – OpenCL - Migration

All statements regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only.
Any reliance on these Statements of General Direction is at the relying party's sole risk and will not create liability or obligation for IBM.

Two Standards

• Two standards evolving from different sides
of the market

CPUs
MIMD
Scalar code bases
Parallel for loop
Shared Memory Model

GPUs
SIMD

Scalar/Vector code bases
Data Parallel

Distributed Shared Memory Model

OpenMP OpenCL

CPU GPUSPE

The OpenCL specification consists of three
main components

• A Platform API
• A language for specifying computational kernels
• A runtime API.

• The platform API allows a developer to query a given OpenCL implementation to determine
the capabilities of the devices that particular implementation supports.

• Once a device has been selected and a context created, the runtime API can be used to
queue and manage computational and memory operations for that device.

• OpenCL manages and coordinates such operations using an asynchronous command
queue.

• OpenCL command queues can include data parallel computational kernels as well as ‐
memory transfer and map/unmap operations.

• Asynchronous memory operations are included in order to efficiently support the separate
address spaces and DMA engines used by many accelerators.

OpenCL Memory Model

• Shared memory model
 Release consistency

• Multiple distinct address
spaces
 Address spaces can be collapsed

depending on the device’s memory
subsystem

• Address Qualifiers
 __private

 __local

 __constant and __global

• Example:
 __global float4 *p;

Compute Unit 1

Private
Memory

Private
Memory

WorkItem 1 WorkItem M

Compute Unit N

Private
Memory

Private
Memory

WorkItem 1 WorkItem M

Local Memory Local Memory

Global / Constant Memory Data Cache

Global Memory

Compute Device Memory

Compute Device

...any Questions?

Thank you...

OpenCL on RoadRunner

PCIe
Compute

Unit 1

WorkItem
1

Global /
Constant

Memory Data
Cache

Compute Device 1

Compute
Unit N

WorkItem
N

Global /
Constant

Memory Data
Cache

Opteron 2 Opteron N

Compute Unit 1

WorkItem 1

Local Store

Private
Memory

Local Memory

Compute Device 2

Compute Unit N

WorkItem N

Local Store

Private
Memory

Local Memory

SPE 1 SPE N

Device Global Memory 2

System MemorySystem Memory

Host

Opteron 1

Compute
Unit 1

WorkItem
1

Global /
Constant

Memory Data
Cache

Compute Device 3

Compute
Unit N

WorkItem
N

Global /
Constant

Memory Data
Cache

PPE 1 PPE N

Private
Memory

Local
Memory

Device Global Memory 3
Host Memory

Private
Memor

y

Local
MemoryDevice Global Memory 1

LS21

QS22

PCIe

OpenCL on QS22

Compute Unit 1

WorkItem 1

Local Store

Private
Memory

Local Memory

Compute Device 1

Compute Unit N

WorkItem N

Local Store

Private
Memory

Local Memory

SPE 1 SPE N

Device Global Memory 1

System Memory

Host

PPE 1

Compute
Unit 1

WorkItem
1

Global /
Constant

Memory Data
Cache

Compute Device 2

Compute
Unit N

WorkItem
N

Global /
Constant

Memory Data
Cache

PPE 2 PPE N

Private
Memory

Local
Memory

Device Global Memory 2Host Memory

QS22

Device Global Memory

System Memory

Host Memory

Heterogeneous Node/Server Model

Host Cores
 (Base Cores)

Base
Core 1

Base
Core N…

Compute Cores(Application Specific Cores)

ASC
1

ASC
2

ASC
M-1

ASC
M……

Single Memory System – 1 Address Space
Physical Chip Boundaries Not Architectural Requirement

System Memory

Host Memory Device Global Memory

Device Memory

Hybrid/Accelerator Node/Server Model

2 Address Spaces
Physical Chip Boundaries not Architectural Requirement

Host Cores
 (Base Cores)

Base
Core 1

Base
Core N…

Compute Cores(Application Specific Cores)

ASC
1

ASC
2

ASC
M-1

ASC
M……

Device Global Memory

System Memory

Host Memory

Heterogeneous Node/Server Model

Host Device

Base Core Chip

Base
Core 1

Base
Core N…

Compute DeviceApplication Specific Core Chip

ASC
1

ASC
2

ASC
M-1

ASC
M……

Memory Ctl Memory Ctl

One Possible Multi-Chip Split
Memory Connectivity is Required

System Memory

Host Memory Device Global Memory

Device Memory

Hybrid/Accelerator Node/Server Model

Host Device

Base Core Chip

Base
Core 1

Base
Core N…

Compute DeviceApplication Specific Core Chip

ASC
1

ASC
2

ASC
M-1

ASC
M……

I/O Ctl I/O Ctl
PCI

One Possible Multi-Chip Split
Memory Connectivity is NOT Required

	Approaches to Application Programming with Modern, High Performance Systems Ken Rozendal Chief Architect, IBM Linux Technology Cener April, 2010
	Agenda
	Background
	History
	High Level Goals
	Problem Attributes (Hopefully)
	Application Attributes
	Low Level Goals
	Node Topology
	Node Topology (Advanced)
	Cluster Topology
	Application Models
	Application Models (Continued)
	Slide 14
	Slide 15
	Proposed Approach (Continued)
	Other Topics
	Programming Models Architecture
	Node Level Software OpenMP – OpenCL - Migration
	
	The OpenCL specification consists of three main components
	OpenCL Memory Model
	Slide 23
	OpenCL on RoadRunner
	OpenCL on QS22
	Slide 26
	Slide 27
	Slide 28
	Slide 29

