
Is the Future Open Source?
And what can I do to help

James Bottomley

Distinguished Engineer

2

© Novell, Inc. All rights reserved.

Introduction

• So, obviously, the answer to “Is the Future Open
Source?” is “Yes”

• However, to realise this dream fully, Open Source has
to be both a Commercial and an Ecosystem Success.

• This means that as a developer you have to be able to
explain to a manager why Open Source makes
Business Sense

• And as a manager you have to understand how Open
Source can work for you Commercially

– And how to motivate developers into contributing to it

3

© Novell, Inc. All rights reserved.

Open Source and Economics
(For Managers)

• There's a lot of money in Open Source
– Up to 2008, total investment in Linux: $2,000,000,000

– Up to 2007, total revenue from Linux: $2,000,000,000

• The open nature of the platform makes it very easy to
mold it to the latest commercial need.

• The licence permits any form of use
– Provided you follow the rules of the GPL

– Implies no deployment problems

• The open nature of the development ecosystem
makes it easy to identify people who can help you

– Either by hiring or paying them directly.

– Or by collaborating with them through your own developers.

4

© Novell, Inc. All rights reserved.

Open Source and Economics
(For Developers)

• There's a lot of money in Open Source
– Up to 2008, total investment in Linux: $2,000,000,000

– Up to 2007, total revenue from Linux: $2,000,000,000

• Problem is that not much of it trickles into the
developer ecosystem.

• However, you can help your company make money in
open source

– Which means they let you spend time on it.

– To do this, you need to understand the business justifications

• If you don't work for a Company yet, open source is a
great way to showcase your skills

– All the code is available and (some) recruiters know this.

5

© Novell, Inc. All rights reserved.

Employers and Open Source

• Employer understanding of Open Source is very
variable

– Even in companies with stellar reputations in the area

• An employee who can relate an understanding of open
source to an employer's business need is very
valuable

• Once an employer is on the open source bandwagon,
an employee who can participate in the ecosystem
and train others to do so is valuable.

• Learning why open source makes Business Sense
can be very useful to you (a developer!)

6

© Novell, Inc. All rights reserved.

Justifying Open Source
(to your Employer)

• Corporations produce software as unit commodities
• The corporation (or IP lawyer) thinks

– To control the commodity entirely, you need to control the
code absolutely.

– This is the intellectual property view: You need to own as
much property as you can

• But
– Code only has business value if it's differentiating

> If everyone does it, customers won't pay extra because you can do it

• Explaining the difference between IP value and
Business Value is where Open Source wins.

– The pieces which have IP value but no Business Value might
as well be Open Source

7

© Novell, Inc. All rights reserved.

Common Fears

• Sharing code with IP value but no Business value is
still releasing valuable IP and Giving up Control

• “value” argument easy to shoot down
– If the code has no business value to the company, who else

could you sell it to?

– Sharing code actually adds value by sharing support

• “Control” is harder
– However, very few commercial entities control the stack from

top to bottom
> Usually runs on hardware chosen by the customer

> Probably runs on a customer chosen OS

> OS tends to come with JVM, C library etc.

– Thus “Control” is largely a myth anyway

8

© Novell, Inc. All rights reserved.

The Code Value Equation

• The True value of an application is
– What the customer is willing to pay for the function performed

by the application

– Less what it cost you to build (the Sunk costs)

– Less the cost to you of supporting the code and fixing bugs in
it (the Support costs)

– Less the cost of forward porting to newer interfaces and
platforms (the Maintenance costs)

• For old, proprietary applications, this value can be
negative

• Open source allows the reduction of this negative
value burden by sharing it.

9

© Novell, Inc. All rights reserved.

Project Innovation Diagrams

Commodity
Platform Shared Cost

Cost

Value

Delivery Support
For Innovation

Unique
Innovation

All projects start like this:

10

© Novell, Inc. All rights reserved.

Project Innovation Diagrams

Commodity
Platform Shared Cost

Cost

Value

Delivery Support
For Innovation

Unique
Innovation

But as they get older, this happens:

11

© Novell, Inc. All rights reserved.

Project Innovation Diagrams

Commodity
Platform Shared Cost

Cost

Value

Delivery Support
For Innovation

Unique
Innovation

If you move your Deliver Support into Open Source:

12

© Novell, Inc. All rights reserved.

Innovation Diagram Takeaways

• Open Sourcing decreases cost by sharing
– Move non-innovative, non-value providing components into

open source to share maintenance costs.

– Shared cost doesn't mean zero cost … how much you save
depends on how well you share

• Ongoing projects can reduce or eliminate usual cost
accretion by judicious use of open source

• The process of open sourcing as you go has some
hidden dangers

– Must be careful about licence contamination
– Not just the GPL: You can't open source something that

doesn't belong to you.

13

© Novell, Inc. All rights reserved.

Licensing Problems

• Every Corporation's nightmare
– Drives a huge amount of unfounded fear of the GPL

• GPL is easy to handle, provided you're careful
– Firstly, design a “Bright Line” system

> Make sure ABI between components is fully laid out

> All components interact over the ABI (no code contamination)

– If you open source components you link proprietary code to,
make sure you use the LGPL

– When you ship a system based on GPL code, make sure you
publish all the necessary source code

• Finally, beware of shipping someone else's component
– If they have a GPL violation, you may become liable

14

© Novell, Inc. All rights reserved.

The Cost of forking

Commodity
Platform Shared Cost

Cost

Value

Delivery Support
For Innovation

Unique
Innovation

Cost of
Forking

When you fork a project, you move the shared cost
Directly to become your cost

15

© Novell, Inc. All rights reserved.

The Benefits of Forking

• Forking is a natural process that allows for
experimentation within the ecosystem

• Thus Forking itself is not wrong
• The problems come if the fork lives a long time

– Because whoever created the fork has to bear its costs for a
long time

– Plus a long lived fork separates the innovation stream
> Developers usually either work on the fork or the mainline

• The moral is Fork often but Merge Early

16

© Novell, Inc. All rights reserved.

Basic Economics
(for Developers)

• Corporations have effectively two economic
benchmarks

– Expense

– Revenue

• Requirement is for Revenue minus Expense to be
positive (in the black)

– Corporations are in trouble when it's negative (in the red)

• One way to get into the black is to reduce expense
– Previous slides about shared cost show how to do this

• Another is to increase Revenue
– So lets see how Open Source can do this

17

© Novell, Inc. All rights reserved.

The Innovation Stream

• Can think of Open Source contributions as tributaries
of a stream

• The greater the number contributions, the bigger the
stream

18

© Novell, Inc. All rights reserved.

Broadening the Innovation Stream

• If a Corporation develops in Isolation, its innovation
stream is only as broad as it's own personnel

– Works well if you hire the best (Bell Labs in 70s-90s)

– But this becomes very expensive, very fast

• Developmen in isolation is often being repeated all
over the industry

– Implies a huge waste of resources.

• Open Source facilitates sharing the innovation stream
– Combined stream becomes as broad as all contributors

– From every company which contributes

– Much greater than a single Corporation can sustain

19

© Novell, Inc. All rights reserved.

Selling the Shared Innovation Stream

• Concept is much more frightening
– You're no longer simply commoditising components which no

longer have any Business value

– You're collaborating with your competitors on technology
advances

– You don't control anything that's created this way and your
competitors have immediate access.

• However, you're not paying for all the innovation either
– Shared innovation is often the only way of running a cost

effective project delivering complex technology

• Plus the pace of development is far faster
– In marketing terms, this develops Buzz (excitement) around

the platform

20

© Novell, Inc. All rights reserved.

“Controlling” the Innovation Stream

• In a truly open project, no-one has control
• However, like any stream, it responds to currents and
flows to cut channels

• Therefore, Corporations making important
contributions can influence the direction in which the
stream flows.

– Thus developers become essential advocates for features and
direction needed by corporation

– They also become Corporations ambassadors to the
community

– Even have to learn diplomacy
> That's what negotiating with your competitors developers over how best to

advance the system entails.

21

© Novell, Inc. All rights reserved.

Know your Business Model

• So for Developers, this means you have to understand
what a Business Model is.

• Traditional Open Source Business Model is selling
support not software

• Newer Models include selling services on the side
– To other companies (Google Ad Words)

– Or to the consumer (Cloud based applications)

• Also using Open Source as an enabler for something
else

– Hardware (Intel, IBM, HP)

– Services (see also Cloud Based Applications)

22

© Novell, Inc. All rights reserved.

Japan Specific Problems

• Personnel structures in Japan are much more rigid
– Open Source requires the developer (quite low in the

hierarchy) to be the company representative to the community

– Quite a few corporations see this as a threat to personnel
control.

• Language Barriers
– Open source development is all done in English

– Code is written in C which is based on Western script

• Cultural Barriers
– Linux is an extreme proponent of dialectic

> Establishing correctness by Argument (often heated)

– To participate, you can't be shy about your code.

23

© Novell, Inc. All rights reserved.

Personnel structures can be co-opted

• A manager can be judged by the productivity and
utility of his employees

– For a good employee, visibility and peer judgment can
substitute for this (small change from today).

• The trick is to manage the relationship pro-actively
looking at the quid pro quo

– Explain to your manager what you can do for him

– Show how you can increase exposure for your company and
thus the stature of your manager within the company.

• In Western parlance, this is called “employee
enabling”

– US companies stimulate innovation by encouraging their
employees to play with technology

24

© Novell, Inc. All rights reserved.

Linux is no longer Ignorable

• Most companies in software today need some contact
with Linux in some form

• In order to participate in the communites, you have to
have credibility

– This means someone on staff contributing code that the
community as a whole values

• The utility of an employee who interfaces with open
source is therefore measured by their credibility in the
community.

• Therefore, the stature of a manager in Open Source is
measured by the community credibility of all their
employees

25

© Novell, Inc. All rights reserved.

So where's the Quid Pro Quo?

• The ability to manage Open Source developers
Successfully is a very sought after skill

• It's also a very easily recognised skill because your
employees will be visible in the community

• Greatest Managerial skill is using the credibility and
visibility of your employees to move the project in the
direction you want

– Requires a slight change in management culture in Japan

– So you have to convince your manager of this

– And they have to convince their managers …

• So this is a collaboration with your manager to make a
slight change to the Company culture

26

© Novell, Inc. All rights reserved.

Language Barriers can Be Overcome

• Unfortunately, only the hard way
– Developers really have to learn english

• Written English (email) is easier than spoken
– Don't have to speak proficiently, just write it

– Email isn't instantaneous, so get time to think and formulate
replies

> i.e. don't have to reply immediately; can consider response

• English used in email exchanges is much simpler
than formal written english

– Mistakes are tolerated (even expected)
– Don't need conversational modes and idioms

27

© Novell, Inc. All rights reserved.

Cultural Interfacing

• Rule number one: Don't send your first post to the
Linux Kernel Mailing List

– It is famous for having the least signal to noise (i.e. flame war)
ratio of any list dedicated to Linux

– It also has the biggest contingent of non contributing criticisers

– Therefore find a subject specific lower traffic list
> And if there isn't one ask yourself if one should be created

> David Miller (controller of vger) is sympathetic to new mailing list requests

• Stick to being technical
– There are no real cultural pitfalls in the exchange of technical

information.

– If someone else wants to flame and insult, don't engage.

28

© Novell, Inc. All rights reserved.

Create your own Cultural Interface

• The key to being comfortable with interactions on the
mailing list is not to let someone else control them

– Therefore, don't join existing flame wars if you're not
comfortable doing so

– Start your own new thread pointing out the technical issues

• What you're trying to do is create a culture for
interaction where you're comfortable

• i.e. make them interact in your culture rather than you
interacting in theirs.

29

© Novell, Inc. All rights reserved.

To Repeat

• To take full advantage of Open Source, you need to
both increase revenue and reduce costs

• Thus you need to build a contributor community with
your competition

– This is partly why Foundations (LF, Gnome Foundation …)
proliferate in Open Source

– They form neutral environments for natural enemies to co-
operate

• If your company does't participate in Shared
Innovation, It's missing out on revenue increasing
opportunities

30

© Novell, Inc. All rights reserved.

Conclusions

• There are two excellent business reasons for
participating in Open Source

– Cost Reduction by releasing code

– Revenue increase by sharing innovations

• Developers who understand both the business
processes behind using Open Source as well as the
Development models are very valuable

• The only person who can Influence your Company
towards better open source participation is YOU

• So the true answer to the question “Is the Future Open
Source” is “Yes, provided you help”.

31

© Novell, Inc. All rights reserved.

Thank you for listening

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

