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Introduction

• So, obviously, the answer to “Is the Future Open 
Source?” is “Yes”

• However, to realise this dream fully, Open Source has 
to be both a Commercial and an Ecosystem Success.

• This means that as a developer you have to be able to 
explain to a manager why Open Source makes 
Business Sense

• And as a manager you have to understand how Open 
Source can work for you Commercially

– And how to motivate developers into contributing to it
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Open Source and Economics
(For Managers)

• There's a lot of money in Open Source
– Up to 2008, total investment in Linux: $2,000,000,000

– Up to 2007, total revenue from Linux: $2,000,000,000

• The open nature of the platform makes it very easy to 
mold it to the latest commercial need.

• The licence permits any form of use
– Provided you follow the rules of the GPL

– Implies no deployment problems

• The open nature of the development ecosystem 
makes it easy to identify people who can help you

– Either by hiring or paying them directly.

– Or by collaborating with them through your own developers.
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Open Source and Economics
(For Developers)

• There's a lot of money in Open Source
– Up to 2008, total investment in Linux: $2,000,000,000

– Up to 2007, total revenue from Linux: $2,000,000,000

• Problem is that not much of it trickles into the 
developer ecosystem.

• However, you can help your company make money in 
open source

– Which means they let you spend time on it.

– To do this, you need to understand the business justifications

• If you don't work for a Company yet, open source is a 
great way to showcase your skills

– All the code is available and (some) recruiters know this.
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Employers and Open Source

• Employer understanding of Open Source is very 
variable

– Even in companies with stellar reputations in the area

• An employee who can relate an understanding of open 
source to an employer's business need is very 
valuable

• Once an employer is on the open source bandwagon, 
an employee who can participate in the ecosystem 
and train others to do so is valuable.

• Learning why open source makes Business Sense 
can be very useful to you (a developer!)
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Justifying Open Source
(to your Employer)

• Corporations produce software as unit commodities
• The corporation (or IP lawyer) thinks

– To control the commodity entirely, you need to control the 
code absolutely.

– This is the intellectual property view: You need to own as 
much property as you can

• But
– Code only has business value if it's differentiating

> If everyone does it, customers won't pay extra because you can do it

• Explaining the difference between IP value and 
Business Value is where Open Source wins.

– The pieces which have IP value but no Business Value might 
as well be Open Source
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Common Fears

• Sharing code with IP value but no Business value is 
still releasing valuable IP and Giving up Control

• “value” argument easy to shoot down
– If the code has no business value to the company, who else 

could you sell it to?

– Sharing code actually adds value by sharing support

• “Control” is harder
– However, very few commercial entities control the stack from 

top to bottom
> Usually runs on hardware chosen by the customer

> Probably runs on a customer chosen OS

> OS tends to come with JVM, C library etc.

– Thus “Control” is largely a myth anyway
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The Code Value Equation

• The True value of an application is
– What the customer is willing to pay for the function performed 

by the application

– Less what it cost you to build (the Sunk costs)

– Less the cost to you of supporting the code and fixing bugs in 
it (the Support costs)

– Less the cost of forward porting to newer interfaces and 
platforms (the Maintenance costs)

• For old, proprietary applications, this value can be 
negative

• Open source allows the reduction of this negative 
value burden by sharing it. 
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Project Innovation Diagrams

Commodity
Platform Shared Cost

Cost

Value

Delivery Support
For Innovation

Unique
Innovation

All projects start like this:
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Project Innovation Diagrams
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But as they get older, this happens:
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Project Innovation Diagrams

Commodity
Platform Shared Cost

Cost

Value

Delivery Support
For Innovation

Unique
Innovation

If you move your Deliver Support into Open Source:
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Innovation Diagram Takeaways

• Open Sourcing decreases cost by sharing
– Move non-innovative, non-value providing components into 

open source to share maintenance costs.

– Shared cost doesn't mean zero cost … how much you save 
depends on how well you share

• Ongoing projects can reduce or eliminate usual cost 
accretion by judicious use of open source

• The process of open sourcing as you go has some 
hidden dangers

– Must be careful about licence contamination
– Not just the GPL: You can't open source something that 

doesn't belong to you.
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Licensing Problems

• Every Corporation's nightmare
– Drives a huge amount of unfounded fear of the GPL

• GPL is easy to handle, provided you're careful
– Firstly, design a “Bright Line” system

> Make sure ABI between components is fully laid out

> All components interact over the ABI (no code contamination)

– If you open source components you link proprietary code to, 
make sure you use the LGPL

– When you ship a system based on GPL code, make sure you 
publish all the necessary source code

• Finally, beware of shipping someone else's component
– If they have a GPL violation, you may become liable 
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The Cost of forking

Commodity
Platform Shared Cost

Cost

Value

Delivery Support
For Innovation

Unique
Innovation

Cost of
Forking

When you fork a project, you move the shared cost
Directly to become your cost
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The Benefits of Forking

• Forking is a natural process that allows for 
experimentation within the ecosystem

• Thus Forking itself is not wrong
• The problems come if the fork lives a long time

– Because whoever created the fork has to bear its costs for a 
long time

– Plus a long lived fork separates the innovation stream
> Developers usually either work on the fork or the mainline

• The moral is Fork often but Merge Early
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Basic Economics
(for Developers)

• Corporations have effectively two economic 
benchmarks

– Expense

– Revenue

• Requirement is for Revenue minus Expense to be 
positive (in the black)

– Corporations are in trouble when it's negative (in the red)

• One way to get into the black is to reduce expense
– Previous slides about shared cost show how to do this

• Another is to increase Revenue
– So lets see how Open Source can do this



17

 

©  Novell, Inc.  All rights reserved.

The Innovation Stream

• Can think of Open Source contributions as tributaries 
of a stream

• The greater the number contributions, the bigger the 
stream
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Broadening the Innovation Stream

• If a Corporation develops in Isolation, its innovation 
stream is only as broad as it's own personnel

– Works well if you hire the best (Bell Labs in 70s-90s)

– But this becomes very expensive, very fast

• Developmen in isolation is often being repeated all 
over the industry

– Implies a huge waste of resources.

• Open Source facilitates sharing the innovation stream
– Combined stream becomes as broad as all contributors

– From every company which contributes

– Much greater than a single Corporation can sustain
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Selling the Shared Innovation Stream

• Concept is much more frightening
– You're no longer simply commoditising components which no 

longer have any Business value

– You're collaborating with your competitors on technology 
advances

– You don't control anything that's created this way and your 
competitors have immediate access.

• However, you're not paying for all the innovation either
– Shared innovation is often the only way of running a cost 

effective project delivering complex technology

• Plus the pace of development is far faster
– In marketing terms, this develops Buzz (excitement) around 

the platform
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“Controlling” the Innovation Stream

• In a truly open project, no-one has control
• However, like any stream, it responds to currents and 
flows to cut channels

• Therefore, Corporations making important 
contributions can influence the direction in which the 
stream flows.

– Thus developers become essential advocates for features and 
direction needed by corporation

– They also become Corporations ambassadors to the 
community

– Even have to learn diplomacy
> That's what negotiating with your competitors developers over how best to 

advance the system entails.
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Know your Business Model

• So for Developers, this means you have to understand 
what a Business Model is.

• Traditional Open Source Business Model is selling 
support not software

• Newer Models include selling services on the side
– To other companies (Google Ad Words)

– Or to the consumer (Cloud based applications)

• Also using Open Source as an enabler for something 
else

– Hardware (Intel, IBM, HP)

– Services (see also Cloud Based Applications)
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Japan Specific Problems

• Personnel structures in Japan are much more rigid
– Open Source requires the developer (quite low in the 

hierarchy) to be the company representative to the community

– Quite a few corporations see this as a threat to personnel 
control.

• Language Barriers
– Open source development is all done in English

– Code is written in C which is based on Western script

• Cultural Barriers
– Linux is an extreme proponent of dialectic

> Establishing correctness by Argument (often heated)

– To participate, you can't be shy about your code.
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Personnel structures can be co-opted

• A  manager can be judged by the productivity and 
utility of his employees

– For a good employee, visibility and peer judgment can 
substitute for this (small change from today).

• The trick is to manage the relationship pro-actively 
looking at the quid pro quo

– Explain to your manager what you can do for him

– Show how you can increase exposure for your company and 
thus the stature of your manager within the company.

• In Western parlance, this is called “employee 
enabling”

– US companies stimulate innovation by encouraging their 
employees to play with technology 
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Linux is no longer Ignorable

• Most companies in software today need some contact 
with Linux in some form

• In order to participate in the communites, you have to 
have credibility

– This means someone on staff contributing code that the 
community as a whole values

• The utility of an employee who interfaces with open 
source is therefore measured by their credibility in the 
community.

• Therefore, the stature of a manager in Open Source is 
measured by the community credibility of all their 
employees
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So where's the Quid Pro Quo?

• The ability to manage Open Source developers 
Successfully is a very sought after skill

• It's also a very easily recognised skill because your 
employees will be visible in the community

• Greatest Managerial skill is using the credibility and 
visibility of your employees to move the project in the 
direction you want

– Requires a slight change in management culture in Japan

– So you have to convince your manager of this

– And they have to convince their managers …

• So this is a collaboration with your manager to make a 
slight change to the Company culture
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Language Barriers can Be Overcome

• Unfortunately, only the hard way
– Developers really have to learn english

• Written English (email) is easier than spoken
– Don't have to speak proficiently, just write it

– Email isn't instantaneous, so get time to think and formulate 
replies

> i.e. don't have to reply immediately; can consider response

•  English used in email exchanges is much simpler 
than formal written english

– Mistakes are tolerated (even expected)
– Don't need conversational modes and idioms
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Cultural Interfacing

• Rule number one: Don't send your first post to the 
Linux Kernel Mailing List

– It is famous for having the least signal to noise (i.e. flame war) 
ratio of any list dedicated to Linux

– It also has the biggest contingent of non contributing criticisers

– Therefore find a subject specific lower traffic list
> And if there isn't one ask yourself if one should be created

> David Miller (controller of vger) is sympathetic to new mailing list requests

• Stick to being technical
– There are no real cultural pitfalls in the exchange of technical 

information.

– If someone else wants to flame and insult, don't engage.
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Create your own Cultural Interface

• The key to being comfortable with interactions on the 
mailing list is not to let someone else control them

– Therefore, don't join existing flame wars if you're not 
comfortable doing so

– Start your own new thread pointing out the technical issues

• What you're trying to do is create a culture for 
interaction where you're comfortable

• i.e. make them interact in your culture rather than you 
interacting in theirs.
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To Repeat

• To take full advantage of Open Source, you need to 
both increase revenue and reduce costs

• Thus you need to build a contributor community with 
your competition

– This is partly why Foundations (LF, Gnome Foundation …) 
proliferate in Open Source

– They form neutral environments for natural enemies to co-
operate

• If your company does't participate in Shared 
Innovation, It's missing out on revenue increasing 
opportunities
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Conclusions

• There are two excellent business reasons for 
participating in Open Source

– Cost Reduction by releasing code

– Revenue increase by sharing innovations

• Developers who understand both the business 
processes behind using Open Source as well as the 
Development models are very valuable

• The only person who can Influence your Company 
towards better open source participation is YOU

• So the true answer to the question “Is the Future Open 
Source” is “Yes, provided you help”.
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Thank you for listening

Questions?
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