Sheepdog: distributed storage system for QEMU/KVM

Kazutaka Morita NTT Cyber Space Labs.

29 September, 2010

Motivation

• There is no open source storage system which fits for IaaS environment like Amazon EBS

Requirements for storage system

- Scalability
- Reliability
- Manageability

Why another storage system?

- Why not SAN storage?
 - Large proprietary storage system is too expensive
 - Shared storage could be a single point of failure
- Why not distributed file systems? (e.g. Ceph, Luster)
 - Complex configuration about cluster membership

Distributed file system

Sheepdog

Fully symmetric architecture

there is no central node such as a meta-data server

Design: not general file system

- We have simplified the design significantly
 - API is designed specific to QEMU
 - We cannot use sheepdog as a file system
 - One volume can be attached to only one VM at once

Sheepdog components

Cluster management

Cluster node management

- Totem ring protocol
 - Dynamic membership management
 - Total order and reliable multi-cast
 - Virtual synchrony

Cluster node management

- Corosync cluster engine
 - Implementation of totem-ring protocol
 - Is adopted by well-known open source projects (Pacemaker, GFS2, etc)
- Sheepdog uses corosync multi-cast to avoid metadataservers

Object storage

Object storage

- Stores flexible-sized data with a unique ID (objects)
- Clients don't care about where to store objects
- Two kinds of objects in Sheepdog
 - One writer, one reader
 - No writer, multiple readers

How to store volumes?

- Volumes are divided into 4 MB data objects
- Allocation table is stored to VDI object

Snapshot

- Copy VDI Object, and make allocated data objects read-only
- Updating read-only objects causes copy-on-write

Distributed storage

Where to store objects?

- We use consistent hashing to decide which node to store objects
 - Each node is also placed on the ring
 - addition or removal of nodes does not significantly change the mapping of objects

Replication

- Many distributed storage systems use chain replication to maintain I/O ordering
- Sheepdog can use direct replication because write collision cannot happen

Node membership history

- All nodes store the history of node membership
- Objects are stored with the version of node membership (epoch)

epoch	Node membership
1	Α, Β
2	A, B, C
3	A, B, C, D, E
4	B, C

Strong consistency

- Avoid reading old objects
- If requested object is not valid, system must return I/O error

Performance (1 VM)

Performance (1 VM)

\$ dbench -s -S

Performance (~ 256 VMs)

Sheepdog

CPU : Core2 Quad 2.4GHz Memory : 1 GB Network : 1 Gbps Disk : SATA 7200 rpm Host machines : 8 ~ 64 Virtual machines : 1 ~ 256 Data redundancy : 3

NFS (NetApp FAS 2020)

Performance (~ 256 VMs)

Throughput scales according to the number of host machines

Demonstration

- Start sheepdog cluster
- Create virtual machine volumes
- Snapshot and clone volumes
- Add new machines to cluster
- Simulate machine failure

TODO items

- Short-term goals (in few month)
 - More scalability with multiple corosync rings
 - Integration with libvirt, OpenStack Nova
 - Performance improvement
- Long-term goals (in one or two years)
 - guarantee reliability and availability under heavy load
 - tolerance against network partition (split-brain)
 - load balancing corresponding to I/O, CPU, memory load

Conclusion

- Sheepdog is scalable, manageable, and reliable storage pool for IaaS environment
 - We hope Sheepdog will become the de facto standard of cloud storage system
- Further information
 - Project page
 - http://www.osrg.net/sheepdog/
 - Mailing list
 - sheepdog@lists.wpkg.org

Appendix

Architecture: fully symmetric

- Zero configuration about cluster members
- Similar to Isilon architecture

Use sheepdog as a network storage

Use sheepdog as a virtual infrastructure

Approach: use multiple rings

Total order multicast

- 1. Send multicast message in the local ring
- 2. If master node receives the message, the node resends the multicast message in the central ring
- 3. If master nodes receive the message in the central ring, each master node resends the multicast message in the local ring

Message ordering is coordinated by multicast in the central ring