
PRO: A Popularity-Based Multi-Threaded Reconstruction
Optimization for RAID-Structured Storage Systems

Lei Tian and Dan Feng, Huazhong University of Science and
Technology; Hong Jiang, University of Nebraska—Lincoln; Ke
Zhou, Lingfang Zeng, Jianxi Chen, and Zhikun Wang, Hua-
zhong University of Science and Technology and Wuhan
National Laboratory for Optoelectronics; Zhenlei Song,
Huazhong University of Science and Technology

Hong Jiang began his talk by discussing the importance of
data recovery. Disk failures have become more common in
RAID-structured storage systems. The improvement in
disk capacity has far outpaced improvements in disk band-
width, lengthening the overall RAID recovery time. Also,
disk drive reliability has improved slowly, resulting in a
very high overall failure rate in a large-scale RAID storage
system. Disk-oriented reconstruction (DOR) is one of the
existing I/O parallelism-based recovery mechanisms. DOR
follows a sequential order of stripes in reconstruction, re-
gardless of user access patterns. Workload access patterns
need to be considered because 80% of the accesses are di-
rected to 20% of the data, according to Pareto’s Principle,
and 10% of the files accessed on a Web server typically ac-
count for 90% of the server requests. The authors present
a popularity-based multi-threaded reconstruction opti-
mization (PRO) that takes advantage of data popularity to
improve reconstruction performance. PRO divides data
units on the spare disks into hot zones. Each hot zone has
a reconstruction thread. The priority of each thread is dy-
namically adjusted according to the current popularity of
its hot zone. PRO keeps track of the user accesses and ad-
justs the popularity of each hot zone accordingly. PRO se-
lects the reconstruction thread with the highest priority
and allocates a time slice to it. When a thread’s time slice
runs out, PRO assigns a time slice to the next highest pri-
ority thread. The process repeats until all of the data units
have been rebuilt. Priority-based scheduling is used so that
the reconstruction regions are always the hottest regions.
Time-slicing is used to exploit the I/O bandwidth of hard
disks and access locality.

PRO was compared to DOR in the evaluation because
DOR is arguably the most effective among the existing re-
construction algorithms. The evaluation of PRO examined
reconstruction performance by measuring user response
time, reconstruction time, and algorithm complexity. PRO
was integrated into the original DOR approach imple-
mented in the RAIDframe software to validate and evaluate
PRO. The evaluation was performed by replaying three dif-
ferent Web traces that consisted of read-only Web search
activity. It was found that PRO consistently outperformed
DOR in reconstruction and user response time by up to
44.7% and 23.9%, respectively. PRO’s effectiveness relies
on the existence of popularity and locality in the workload
as well as the intensity of the workload. PRO also uses
extra memory for each thread descriptor. The computation

overhead of PRO is O(n), although if a priority queue is
used in the PRO algorithm the computation overhead can
be reduced to O(log n). The entire PRO implementation in
the RAIDFrame software only added 686 lines of code.
Work on PRO is ongoing. Future work includes optimiz-
ing the time slice, scheduling strategies, and hot zone
length. Currently, PRO is being ported into the Linux soft-
ware RAID. Finally, the authors plan on further investigat-
ing use of access patterns to help predict user accesses and
of filesystem semantic knowledge to explore accurate re-
construction.

The first questioner asked about the average rate of recov-
ery for PRO. Hong answered that the average reconstruc-
tion time is several hundred seconds in the experimental
setup. The second questioner asked how well PRO recon-
struction compares to DOR reconstruction under no work-
load. Hong commented that when there is no workload
the reconstruction performance for PRO and DOR is the
same. In response to a question about write overhead,
Hong stated that his research team is actively looking into
this. The last question involved the sensitivity of the re-
sults to the number of threads and to the time slice. Hong
explained that the impact of the number of threads and
time slice is negligible in the current experimental configu-
ration. However, a more elaborate sensitivity study is un-
derway in the project.

LSF ’07: 2007 Linux Storage & Filesystem Workshop

San Jose, CA
February 12–13, 2007
Summarized by Brandon Philips (brandon@ifup.org)

Fifty members of the Linux storage and filesystem commu-
nities met in San Jose, California, to give status updates,
present new ideas, and discuss issues during the two-day
Linux Storage & Filesystem Workshop. The workshop was
chaired by Ric Wheeler and sponsored by EMC, NetApp,
Panasas, Seagate, and Oracle.

J O I NT S E S S I O N

Ric Wheeler opened the workshop by explaining the basic
contract that storage systems make with the user to guar-
antee that the complete set of data will be stored, bytes are
correct and in order, and raw capacity is utilized as com-
pletely as possible. It is so simple that it seems that there
should be no open issues, right?

Today, these basic demands are met most of the time, but
Ric posed a number of questions. How do we validate that
no files have been lost? How do we verify that bytes are
correctly stored? How can we utilize disks efficiently for
small files? How do errors get communicated between the
layers?

84 ; L O G I N : V O L . 3 2 , N O . 3

June07login1summaries_press.qxd:login summaries 5/27/07 10:27 AM Page 84

Through the course of the next two days some of these
questions were discussed, others were raised, and a few
ideas were proposed. Continue reading for the details.

Ext4 Status Update

Mingming Cao gave a status update on ext4, the recent
fork of the ext3 file system. The primary goal of the fork
was the move to 48-bit block numbers; this change allows
the file system to support up to 1024 petabytes of storage.
This feature was originally designed to be merged into ext3
but was seen as too disruptive [1]. The patch is also built
on top of the patch set that replaces the indirect block map
and with extents [2] in ext4. Support for greater than 32K
directory entries will also be merged into ext4.

On top of these changes a number of ext3 options will be
enabled by default in ext4; these include directory index-
ing to improve file access for large directories, resize inode,
which reserves space in the block group descriptor for on-
line growing, and 256-byte inodes. Users of ext3 can use
these features today by using mkfs.ext3 -I 256 -O
resize_inode dir_index /dev/device.

A number of RFCs are also being considered for inclusion
into ext4. This includes a patch that will add nanosecond
timestamps [3] and the creation of persistent file alloca-
tions [4], which will be similar to posix_fallocate but
won’t waste time writing zeros to the disk.

Currently, ext4 stores a limited number of extended attrib-
utes in-inode and has space for one additional block of ex-
tended attribute data, but this may not be enough to sat-
isfy xattr-hungry applications. For example, Samba needs
additional space to support Vista’s heavy use of ACLs, and
eCryptFS can store arbitrarily large keys in extended at-
tributes. This led everyone to the conclusion that someone
needs to collect data on how xattrs are being used, to help
developers decide how to best implement xattrs. Until
larger extended attributes are supported, application devel-
opers need to pay attention to the limits that exist on cur-
rent file systems (e.g., one block on ext3 and 64K on XFS).

Online shrinking and growing was briefly discussed and it
was suggested that online defragmentation, which is a
planned feature, will be the first step toward online shrink-
ing. A bigger issue, however, is storage management. Ted
T’so suggested that the Linux filesystem community can
learn from ZFS how to create easy-to-manage storage sys-
tems. Christoph Hellwig sees the disk management issue
as being a user-space problem that can be solved with ker-
nel hooks and sees ZFS as a layering violation. Either way,
it is clear that disk management should be improved.

The fsck Problem

Zach Brown and Valerie Henson were slated to speak on
the topic of filesystem repair, but there was a slight delay
as Val’s laptop was booting. To pass the time she intro-
duced us to the latest fashion: laptop rhinestones. They
would make a great discussion piece if you are waiting on

a fsck and, if Val’s fsck estimates for 2013 come true, hav-
ing a strategy to pass the time will become very important.

With her system booted Val presented an estimate of 2013
fsck times. She first measured a fsck of her 37-GB home
directory with 21 GB in use, which took 7.5 minutes and
read 1.3 GB of filesystem data. Next, she used projections
of disk technology from Seagate to estimate the time to
fsck a 2013 home directory, which will be 16 times larger.
Although 2013 disks will have a fivefold bandwidth in-
crease, seek times will only improve by 20%, to 10 ms,
leading to a fsck time of 80 minutes! The primary reason
for long fscks is seek latency, since fsck spends most of its
time seeking over the disk, discovering and fetching dy-
namic filesystem data such as directory entries, indirect
blocks, and extents.

Reducing seeks and avoiding the seek latency punishment
are key to reducing fsck times. Val suggested one solution:
Keeping a bitmap on disk that tracks the blocks that con-
tain filesystem metadata; this would allow for reading all
data in a single arm sweep. This optimization, in the best
case, would make a single sequential sweep over the disk
and on the 2013 disk reading all filesystem data would
only take around 134 seconds, which is a big improve-
ment. A full explanation of the findings and possible solu-
tions can be found in the paper Repair-Driven File System
Design [5]. Also, Val announced that she is working full
time on a file system called chunkfs [6] that will make
speed and ease of repair a primary design goal.

Zach Brown presented a blktrace of e2fsck. The basic out-
come of the trace is that the disk can stream data at 26
Mbps and fsck is achieving 12 Mbps. This situation could
be improved to some degree without on-disk layout
changes if the developers had a vectorized I/O call. Zach
explained that in many cases you know the block locations
that you need, but with the current API you can only read
one at a time.

A vectorized read would take a number of buffers and a
list of blocks to read as arguments. Then the application
could submit all of the reads at once. Such a system call
could save a significant amount of time, since the I/O
scheduler can reorder requests to minimize seeks and
merge requests that are nearby. Also, reads to blocks that
are located on different disks could be parallelized. Al-
though a vectorized read could speed up the fsck, eventu-
ally filesystem layout changes will be needed to make fsck
really fast.

Libata: Bringing the ATA Community Together

Jeff Garzik gave an update on the progress of libata, the in-
kernel library to support ATA hosts and devices. First, he
presented the ATAPI/SATA features that libata now sup-
ports: PATA+C/H/S, NCQ, FUA, SCSI SAT, and Compact-
Flash. The growing support for parallel ATA (PATA) drives
in libata will eventually deprecate the IDE driver, and Fe-

; LO G I N : J U N E 2 0 0 7 CO N F E R E N C E S U M M A R I E S 85

June07login1summaries_press.qxd:login summaries 5/27/07 10:27 AM Page 85

dora developers are helping to accelerate testing and adop-
tion of the libata PATA code by disabling the IDE driver in
Fedora 7 test 1.

Native Command Queuing (NCQ) is a new command pro-
tocol introduced in the SATA II extensions and now sup-
ported under libata. With NCQ the host can have multiple
outstanding requests on the drive at once. The drive can
reorder and reschedule these requests to improve disk per-
formance. A useful feature of NCQ drives is the force unit
access (FUA) bit, which will ensure that data in write
commands with this bit set will be written to disk before
returning success. This has the potential of enabling the
kernel to have both synchronous and nonsynchronous
commands in flight. There was a recent discussion [7]
about both NCQ FUA and SATA FUA in libata.

Jeff briefly discussed libata’s support for SCSI ATA transla-
tion (SAT). SAT lets an ATA device appear to be a SCSI de-
vice to the system. The motivation for this translation is
the reuse of error handling and support for distro in-
stallers, which already know how to handle SCSI devices.

There are also a number of items slated as future work for
libata. Many drivers need better suspend/resume support,
and the driver API is due for a sane initialization model
using an allocate/register/unallocate/free system and use of
“Greg blessed” kobjects. Currently, libata is written under
the SCSI layer and debate continues on how to restructure
libata to minimize or eliminate its SCSI dependence. Error
handling has been substantially improved by Tejun Heo
and his changes are now in mainline. If you have had is-
sues with SATA or libata error handling, try an updated
kernel to see whether those issues have been resolved.
Tejun and others continue to add features and to tune the
libata stack.

Communication Breakdown: I/O and File Systems

During the morning a number of conversations sprang up
about communication between I/O and file systems. In the
case of errors, file systems should be getting information
on nonretryable errors and passing that data up to user
space. Particularly bad can be situations where retries are
happening over and over when the I/O layer knows that an
entire range of blocks is missing.

A “pipe” abstraction was discussed to communicate data
on byte ranges that are currently in error, under perfor-
mance strain (because of a RAID5 disk failure), or tem-
porarily unplugged. If a file system was aware of ranges
that are currently handling a recoverable error, have unre-
coverable errors, or are temporarily slow, it might be able
to handle the situations more gracefully.

File systems currently do not receive unplug events, and
handling unplug situations can be tricky. For example, if
a fibre channel disk is pulled for a moment and plugged
back in, it may be down for only 30 seconds, but how
should the file system handle the situation? Currently, ext3

remounts the entire file system as read only. XFS has a
configurable timeout for fibre channel disks that must be
reached before it sends an EIO error. And what should be
done with USB drives that are unplugged? Should the file
system save state and hope the device gets plugged back
in? How long should it wait, and should it still work if it is
plugged into a different hub? All of these questions were
raised but there are no clear answers.

FS TR AC K

Security Attributes

Michael Halcrow, eCryptFS developer, presented an idea
to leverage SELinux and make file encryption/decryption
based on application execution. For example, a policy
could be defined so that the data would be unencrypted
when OpenOffice is using the file but encrypted when the
user copies the file to a USB key. After presenting the
mechanism and mark-up language for this idea, Michael
opened the floor to the audience. The general feeling was
that SELinux is often disabled by users and that per-
mount-point encryption may be a more useful and easier-
to-understand user interface.

Why Linux Sucks for Stacking

Josef Sipek, Unionfs [8] maintainer, went over some of the
issues involved with stacking file systems under Linux. A
stacking file system, such as Unionfs, provides an alterna-
tive view of a lower file system. For example, Unionfs
takes a number of mounted directories, which could be
NFS, ext3, etc., as arguments at mount time and merges
their name space.

The big unsolved issue with stacking file systems is han-
dling modifications to the lower file systems in the stack.
Several people suggested that leaving the lower file system
available to the user is just broken and that by default the
lower layers should only be mounted internally.

The new fs/stack.c file was discussed, too. This file cur-
rently contains a simple inode copy routine that is used by
Unionfs and eCryptfs, but in the future more stackable
filesystem routines should be pushed to this file.

Future work for Unionfs includes getting it working under
lockdep and additional experimentation with an on-disk
format. The on-disk format for Unionfs is currently under
development and will store white-out files and persistent
Unionfs inode data.

B-trees for a Shadowed FS

Many file systems use b-trees to represent files and directo-
ries. These structures keep data sorted, are balanced, and
allow for insertion and deletion in logarithmic time. How-
ever, there are difficulties in using them with shadowing.
Ohad Rodeh presented his approach to using b-trees and
shadowing in an object storage device, but the methods
are general and useful for any application.

86 ; L O G I N : V O L . 3 2 , N O . 3

June07login1summaries_press.qxd:login summaries 5/27/07 10:27 AM Page 86

Shadowing may also be called copy-on-write (COW). The
basic idea is that when a write is made the block is read
into memory, modified, and written to a new location on
disk. Then the tree is recursively updated, starting at the
child and using COW, until the root node is atomically up-
dated. In this way the data is never in an inconsistent
state; if the system crashes before the root node is updated
then the write is lost but the previous contents remain in-
tact.

Replicating the details of his presentation would be a
wasted effort as his paper, “B-trees, Shadowing and Clone”
[9], is well written and easy to read. Enjoy!

eXplode the Code

Storage systems have a simple and important contract to
keep: Given user data, they must save that data to disk
without loss or corruption even in the face of system
crashes. Can Sar gave an overview of eXplode [10], a sys-
tematic approach to finding bugs in storage systems, to
help root out the bugs that can break this contract.

eXplode systematically explores all possible choices that
can be made at each choice point in the code to make low-
probability events, or corner cases, just as probable as the
main running path. And it does this exploration on a real
running system with minimal modifications.

This system has the advantage of being conceptually sim-
ple and very effective. Bugs were found in every major
Linux file system, including a fsync bug that can cause
data corruption on ext2. This bug can be produced by
doing the following: Create a new file, B, which recycles an
indirect block from a recently truncated file, A, then call
fsync on file B and crash the system before file A’s truncate
gets to disk. There is now inconsistent data on disk and
when e2fsck tries to fix the inconsistency it corrupts file
B’s data. A discussion of the bug has been started on the
linux-fsdevel [11] mailing list.

FS TR AC K

NFS

The second day of the file systems track started with a dis-
cussion of an NFS race. The race appears when a client
opens up a file between two writes that occur during the
same second. The client that just opened the file is un-
aware of the second write and keeps an out-of-date version
of the file in cache. To fix the problem a change attribute
was suggested. This number would be consistent across re-
boots, would be unitless, and would increment on every
write.

In general everyone agreed that a change attribute is the
right solution; however, Val Henson pointed out that im-
plementing this on legacy file systems will be expensive
and will require on-disk format changes.

Discussion then turned to NSFv4 access control lists
(ACLs). Trond Myklebust said they are becoming standard
and Linux should support them. Andreas Gruenbacher is
working on patches to add NFSv4 support to Linux but
currently only ext3 is supported; more information can be
found on the Native NFSv4 ACLs on the Linux [12] page.
A possibly difficult issue will be mapping current POSIX
ACLs to NFSv4 ACLs, but a draft document, “Mapping Be-
tween NFSv4 and Posix Draft ACLs” [13], lays out a map-
ping scheme.

GFS Updates

Steven Whitehouse gave an overview of the recent changes
in the Global File System 2 (GFS2), a cluster file system
where a number of peers share one large file system. The
important changes include a new journal layout that can
support mmap, splice, and other system calls on journaled
files, page cache level locking, readpages() and partial
writepages() support, and ext3 standard ioctls lsattr and
chattr.

The readdir() function was discussed at some length, par-
ticularly the ways in which it is broken. A directory insert
on GFS2 may cause a reorder of the extendible hash struc-
ture GFS2 uses for directories. In order to support readdir,
every hash chain must be sorted. The audience generally
agreed that readdir is difficult to implement and Ted Ts’o
suggested that someone should try to go through commit-
tee to get telldir/seekdir/readdir fixed or eliminated.

OCFS2

A brief OCFS2 status report was given by Mark Fasheh.
Like GFS2, OCFS2 is a cluster file system, designed to
share a file system across nodes in a cluster. The current
development focus is on adding features, as the basic
filesystem features are working well.

After the status update the audience asked a few questions.
The most requested OCFS2 feature is forced unmount and
several people suggested that this should be a future vir-
tual filesystem (vfs) feature. Mark also said that users re-
ally enjoy the easy setup of OCFS2 and the ability to use it
as a local file system. A performance hot button for OCFS2
is the large inodes that occupy an entire block.

In the future Mark would like to mix extent and extended
attribute data in-inode to utilize all of the available space.
However, as the audience pointed out, this optimization
can lead to some complex code. In the future Mark would
also like to move to GFS’s distribute lock manager.

DualFS: A New Journaling File System for Linux

DualFS is a file system by Juan Piernas that separates data
and metadata into separate file systems. The on-disk for-
mat for the data disk is similar to ext2 without metadata
blocks. The metadata file system is a log file system, a de-
sign that allows for very fast writes, since they are always
made at the head of the log, which reduces expensive

; LO G I N : J U N E 2 0 0 7 CO N F E R E N C E S U M M A R I E S 87

June07login1summaries_press.qxd:login summaries 5/27/07 10:27 AM Page 87

seeks. A few performance numbers were presented: under
a number of micro- and macro-benchmarks, DualFS per-
forms better than other Linux journaling file systems. In
its current form, DualFS uses separate partitions for data
and metadata; this forces the user to answer a difficult
question: How much metadata do I expect to have?

More information, including performance comparisons,
can be found on the DualFS LKML announcement page
[14] and the project homepage [15]. The currently avail-
able code is a patch on top of 2.4.19 and can be found on
SourceForge [16].

pNFS Object Storage Driver

Benny Halevy gave an overview of pNFS (parallel NFS),
which is part of the IETF NFSv4.1 draft [17] and tries to
solve the single-server performance bottleneck of NFS
storage systems. pNFS is a mechanism for an NFS client to
talk directly to a disk device without sending requests
through the NFS server, fanning the storage system out to
the number of SAN devices. There are many proprietary
systems that do a similar thing, including EMC’s High
Road, IBM’s TotalStorage SAN, SGI’s CXFS, and Sun’s QFS.
Having an open protocol would be a good thing.

However, Jeff Garzik was skeptical of including pNFS in
the NFSv4.1 draft particularly because to support pNFS
the kernel will need to provide implementations of all
three access protocols: file storage, object storage, and
block storage. This will add significant complexity to the
Linux NFSv4 implementation.

Benny explained that the pNFS implementation in Linux is
modular to support multiple layout-type specific drivers,
which are optional. Each layout driver dynamically regis-
ters itself using its layout type and the NFS client calls it
across a well-defined API. Support for specific layout types
is optional. In the absence of a layout driver for some spe-
cific layout type, the NFS client falls back to doing I/O
through the server.

After this overview Benny turned to the topic of OSDs: ob-
ject-based storage devices. These devices provide a more
abstract view of the disk than the classic “array of blocks”
abstraction seen in today’s disks. Instead of blocks, objects
are the basic unit of an OSD, and each object contains
both metadata and data. The disk manages the allocation
of the bytes on disk and presents the object data as a con-
tiguous array to the system. Having this abstraction in
hardware would make filesystem implementation much
simpler. To support OSDs in Linux Benny and others are
working to get bi-directional SCSI command support into
the kernel and support for variable-length command de-
scriptor blocks (CDBs).

Hybrid Disks

Hybrid disks with an NVCache (flash memory) will be in
consumers’ hands soon. Timothy Bisson gave an overview
of this new technology. The NVCache will have 128–256
MB of nonvolatile flash memory that the disk can manage
as a cache (unpinned) or the operating system can manage
by pinning specified blocks to the nonvolatile memory.
This technology can reduce power consumption or in-
crease disk performance.

To reduce power consumption, the block layer can enable
the NVCache Power Mode, which tells the disk to redirect
writes to the NVCache, thereby reducing disk spin-up op-
erations. In this mode the 10-minute write-back threshold
of Linux laptop mode can be removed. Another strategy is
to pin all filesystem metadata in the NVCache, but spin-
ups will still occur on nonmetadata reads. An open ques-
tion is how this pinning should be managed when two or
more file systems are using the same disk.

Performance can be increased by using the NVCache as a
cache for writes, resulting in a long seek. In this mode the
block layer would pin the target blocks, ensuring a write
to the cache instead of incurring the expensive seek. Also,
a file system can use the NVCache to store its journal and
boot files for additional performance and reduced system
start-up time.

If Linux developers decide to manage the NVCache there
are many open questions. Which layer should manage the
NVCache, the file system or block layer? And what type of
API should be created to leverage the cache? Another big
question is how much punishment these caches can take.
According to Timothy it takes about a year (using a desk-
top workload) to fry the cache if you are using it as a write
cache.

Scaling Linux to Petabytes

Sage Weil presented Ceph, a network file system that is de-
signed to scale to petabytes of storage. Ceph is based on a
network of object-based storage devices, and complete
copies of each object are distributed across multiple nodes,
using an algorithm called CRUSH. This distribution makes
it possible for nodes to be added and removed from the
system dynamically. More information on the design and
implementation can be found on the Ceph homepage [18].

CO N C LU S I O N

The workshop concluded with the general consensus that
bringing together SATA, SCSI, and filesystem people was a
good idea and that the status updates and conversations
were useful. However, the workshop was a bit too large for
code discussion. More targeted workshops will need to be
held to work out the details of some of the issues dis-
cussed at LSF ’07. Topics for future workshops include vir-
tual memory and filesystem issues and extensions that are
needed to the VFS.

88 ; L O G I N : V O L . 3 2 , N O . 3

June07login1summaries_press.qxd:login summaries 5/27/07 10:27 AM Page 88

R E F E R E N C E S

[1] http://lwn.net/Articles/187336/.

[2] http://lwn.net/Articles/187321/.

[3] http://article.gmane.org/gmane.comp.file-systems
.ext4/986.

[4] http://article.gmane.org/gmane.comp.file-systems
.ext4/899.

[5] http://infohost.nmt.edu/~val/review/repair.pdf.

[6] http://www.usenix.org/events/hotdep06/tech/
prelim_papers/henson/henson.pdf.

[7] http://article.gmane.org/gmane.linux.ide/15942/.

[8] http://unionfs.filesystems.org.

[9] http://www.cs.huji.ac.il/~orodeh/papers/
ibm-techreport/H-0245.pdf.

[10] www.stanford.edu/~engler/explode-osdi06.pdf.

[11] http://marc.theaimsgroup.com/?l=linux-fsdevel
&m=117148291716485&w=2.

[12] http://www.suse.de/~agruen/nfs4acl/.

[13] http://www.citi.umich.edu/projects/nfsv4/rfc/
draft-ietf-nfsv4-acl-mapping-03.txt.

[14] http://lwn.net/Articles/221841/.

[15] http://ditec.um.es/~piernas/dualfs/.

[16] http://sourceforge.net/project/showfiles.php
?group_id=187143&package_id=218377.

[17] http://www.nfsv4-editor.org/drafts/drafts.html.

[18] http://ceph.sourceforge.net/.

; LO G I N : J U N E 2 0 0 7 CO N F E R E N C E S U M M A R I E S 89

June07login1summaries_press.qxd:login summaries 5/27/07 10:27 AM Page 89

