
The Btrfs
Filesystem

Chris Mason



The Btrfs Filesystem

• Jointly developed by a number of companies

Oracle, Redhat, Fujitsu, Intel, SuSE, many others

• All data and metadata is written via copy-on-write

• CRCs maintained for all metadata and data

• Efficient writable snapshots

• Multi-device support

• Online resize and defrag

• Transparent compression

• Efficient storage for small files

• SSD optimizations and trim support

• Used in production today in Meego devices



Btrfs Progress

• Many performance and stability fixes

• Significant code cleanups

• Efficient free space caching across reboots

• Improved inode number allocator

• Delayed metadata insertion and deletion

• Multi-device fixes, proper round robin allocation

• Background scrubbing

• New LZO compression mode

• Batched discard (fitrim ioctl)

• Per-inode flags to control COW, compression

• Automatic file defrag option



Billions of Files?

• Ric Wheeler’s talk includes billion file creation benchmarks

• Dramatic differences in filesystem writeback patterns

• Sequential IO still matters on modern SSDs

• Btrfs COW allows flexible writeback patterns

• Ext4 and XFS tend to get stuck behind their logs

• Btrfs tends to produce more sequential writes and more
random reads



File Creation Benchmark Summary

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Fi
le

s/
se

c

Btrfs SSD
XFS SSD
Ext4 SSD
Btrfs
XFS
Ext4

• Btrfs duplicates metadata
by default

2x the writes

• Btrfs stores the file name
three times

• Btrfs and XFS are CPU
bound on SSD



0 45 90 135 180 225 270 315 330

Time (seconds)

0

20

40

60

80

100

120

140

160

M
B

/s

File Creation
Throughput

Btrfs
XFS
Ext4



0 45 90 135 180 225 270 315

Time (seconds)

0

1500

3000

4500

6000

7500

9000

10500

12000

IO
 /

 s
e
c

IOPs

Btrfs
XFS
Ext4



IO Animations

• Ext4 is seeking between a large number of disk areas

• XFS is walking forward through a series of distinct disk areas

• Both XFS and Ext4 show heavy log activity

• Btrfs is doing sequential writes and some random reads



Metadata Fragmentation

• Btrfs btree uses key ordering to group related items into the
same metadata block

• COW tends to fragment the btree over time

• Larger blocksizes lower metadata overhead and improve
performance

• Larger blocksizes provide limited and very inexpensive btree
defragmentation

• Ex: Intel 120GB MLC drive:

4KB Random Reads – 78MB/s
8KB Random Reads – 137MB/s
16KB Random Reads – 186MB/s

• Code queued up for Linux 3.1 allows larger btree blocks



Scrub

• Btrfs CRCs allow us to verify data stored on disk

• CRC errors can be corrected by reading a good copy of the
block from another drive

• New scrubbing code scans the allocated data and metadata
blocks

• Any CRC errors are fixed during the scan if a second copy
exists

• Will be extended to track and offline bad devices

• (Scrub Demo)



Discard/Trim

• Trim and discard notify storage that we’re done with a block

• Btrfs now supports both real-time trim and batched

• Real-time trims blocks as they are freed

• Batched trims all free space via an ioctl

• New GSOC project to extend space balancing and reclaim
chunks for thinly provisioned storage



Future Work

• Focus on stability and performance for desktop and server
workloads

• Reduce lock contention in the Btree and kernel data structures

• Reduce fragmentation in database workloads

• Finish offline FS repair tool

• Introduce online repair via the scrubber

• RAID 5/6
• Take advantage of new storage technologies

High IOPs SSD
Consumer SSD
Shingled drives
Hybrid drives



Future Work: Efficient Backups

• Existing utilities can find recently updated files and extents

• Integrate with rsync or other tools to send FS updates to
remote machines

• Don’t send metadata items, send and recreate file data instead



Future Work: Tiered Storage

• Store performance critical extents in an SSD

Metadata
fsync log
Hot data extents

• Migrate onto slower high capacity storage as it cools



Future Work: Deduplication

• Existing patches to combine extents (Josef Bacik)

Scanner to build DB of hashes in userland

• May be integrated into the scrubber tool

• May use existing crc32c to find potential dups



Future Work: Drive Swapping

• GSOC project

• Current raid rebuild works via the rebalance code

• Moves all extents into new locations as it rebuilds

• Drive swapping will replace an existing drive in place

• Uses extent-allocation map to limit the number of bytes read



Thank You!

• Chris Mason <chris.mason@oracle.com>

• http://btrfs.wiki.kernel.org


