Using the openSUSE Build Service to Create
Kernel Module Packages




Overview

- Target Audience: developers who wish to provide kernel
modules for multiple distributions
- Agenda
- Linux Driver Model: The preferred approach
- Kernel module packages: What are they? Why use them?
- openSUSE Build Service (OBS): Overview

- Demo: Build a sample kernel module package for SLE and RHEL
using the openSUSE Build Service

- Summary, questions




The Linux Driver Model

- http://ldn.linuxfoundation.org/node/3759
- Preferred approach for providing kernel modules

- Basic message:
- Open-source modules
- Push modules upstream (into mainline kernel)
- Less work long-term
- Better end-user experience

> No kernel-update problems

- Resources exist to help developers upstream their modules

But what to do if upstreaming isn’t possible? One
option: create a kernel module package...




I
Kernel Module Package — What Is It?

- Generically:

- Binary package (rpm, deb, etc.) that installs drivers or other kernel
modules onto the end-user's system

- Ideally:

- Should also integrate modules correctly with the host OS and kernel
> Set up module dependencies (depmod)
> Rebuild initrd if necessary
> Set up package dependencies to handle kernel updates

> Provide distro-specific functionality (support tags, etc.)

- Different distros use different terms for kernel module
packages

- kmods, KMPs, etc.




-]
Why Use Kernel Module Packages?

- There are other ways to provide out-of-tree drivers
- Rebuild from source on the end-user system
- Try to provide pre-built modules for every existing kernel
- Other approaches (some proprietary)

- Advantages of Kernel Module Packages

- Don't require development tools or source code to be installed on the end-
user's system

- Package-level dependency checks
> Warn/prevent user from installing an kernel update that will break out-of-tree modules

> (Some) distros include technology to work with kernel module packages (module-init-tools
scripts)

How to build a kernel module package? One
option: Use the openSUSE Build Seruvice...




I
openSUSE Build Service — What Is It?

- Online public and free package build and repository
hosting service: http://build.opensuse.org

- Public instance of Open Build Service (OBS) technology
- Supports building packages for most Linux distributions
- Creates packages from source code and packaging files
- Web and command-line interfaces

- Provides built packages via YUM repositories

OBS has 20,358 projects, 147,841 packages, 30,234
repositories, 29,039 confirmed developers
(as of July 25, 2011)

SusSe.



Why use OBS?

Advantages

- OBS is public (everyone can
view source code)

- Can build for multiple distros
and architectures w/o setting
up any local build servers

- Can distribute packages from

OBS (instead of maintaining
local repo hosts)

Disadvantages

- OBS is public (everyone can

view source code)

- Can't look at actual build

structure (must rely on error
reports)

- Not as much personal control

(what if OBS is unavailable?)

Note: The Open Build Server technology is open, so
organizations and /or individuals can also set up

their own OBS instances.




Demo: Using OBS to Build a Kernel Module Package




Demo Overview

- Use single source to create kernel module packages for
SUSE Linux Enterprise and Red Hat Enterprise Linux

- Step 1: Set up local build structure (source code and packaging
files)

- Step 2: Move the local build structure to OBS
- Step 3: Build the packages on OBS

- Step 4. Test installing the kernel module packages from the OBS
YUM repo

Note: The demo source code and packaging files
will also build successfully for several other rom-
based distros.




I
Step 1 — Create the Local Build

Structure

- Create directories

- Usually put all the source code in a %name-%version directory

- Source code
- *.c and *.h files along with Makefile/Kbuild file(s)

- Should build as described in
/usr/src/linux/Documentation/kbuild/modules.txt

> Test: “make -C /lib/modules/’'uname -r’/build M="pwd" modules”

> Remember to clean up: “make -C /lib/modules/’uname -r’/build M="pwd" clean”

- Compress the source code into a tarball




I
Step 1 — Create the Local Build

Structure (cont'd)

- Create a spec file

- Cross-distro KMP spec file template:
http://www.linuxfoundation.org/collaborate/workgroups/driver-
backport/samplekmpspecfile

> Uses standard macros that are defined differently depending on distro

» SUSE: see /etc/rpm/macros.kernel-source and /usr/lib/rpm/kernel-module-subpackage
(installed by kernel-source package)

» RHEL: see /etc/lib/rpm/redhat/macros and kmodtool (installed by redhat-rpm-config
package)

> %kernel _module_package does the real work
» Calls kernel-module-subpackage (SUSE) or kmodtool (RHEL)
» Configurable via options (can completely replace kernel-module-subpackage or kmodtool)

» Sets up rpm scripts to run depmod, mkinitrd, and weak-modules as necessary at
install/uninstall time




I
Step 2 — Move the Local Build
Structure to OBS

- OBS Basics:

- Structure:
> Containers:Projects:(Subprojects):Packages
> Everyone gets a home:<login> project
- Projects have Build Targets <== distros to build packages for

> Accessed via “Repositories” tab

- Projects have Distribution Repos <== where built packages are
provided

- Build targets and distribution repos can be enabled/disabled at
project and package level

- Distribution repo from one project can be build target for another
project




I
Step 2 — Move the Build Structure to

OBS (cont'd)

- Create the project/subproject
- home:andavis:linuxcon2011
- Specify the build targets for the project
- SLES 11 SP1, RHEL 6.0, openSUSE 11.4
- Add a package to the project
- “sampledriver”
- Enable/disable building and publishing for each build target
- Upload the package files

- sampledriver-1.0.tar.bz2
- sampledriver.spec




I
Step 3 — Build the Packages

- (Re)Build happens automatically whenever package
source files change
- View build status on the package page (“Overview” tab)

> View full build log by clicking on the “Succeeded” or “Failed” status link

- View/download built packages by clicking the desired build target
on the package page

- View/download from YUM repository by clicking the desired build
target on the project page

> Only available if publishing has been enabled




I
Step 4 — Test: Install the Package(s)

- Test initial install:
- Register the OBS YUM repo as an install source

- Use the system's software management tools to install the package(s)
from the YUM repo

- Test updates:
- On OBS:

> Update the package version

- On the test system:
> Ensure that the system recognizes that updated packages are available
> Install a kABI-compatible kernel update, ensure that the modules continue to work

> Install a kABI-incompatible kernel update, ensure that the installation process warns about
conflict




Caveats, Notes

- Not all distros support using kernel module packages to provide out-
of-tree modules

- Not all distros implement the LF Driver Backport Workgroup distro-
Independent macros

- However: OBS supports distro-specific tags, so spec files can be
expanded to cover other distro-specific functionality
- http://en.opensuse.org/openSUSE:Build_Service cross_ distribution _howto
- Review other OBS kernel module packages for more complex examples
- How to build kernel module packages for deb-based distros?

- Packages and repos built on OBS have OBS signatures
- Some organizations use OBS to build but not distribute packages




References

- Linux Driver Model
- http://ldn.linuxfoundation.org/node/3759
- LF Driver Backport Workgroup
- http://www.linuxfoundation.org/collaborate/workgroups/driver-backport
- OpenSUSE Build Service Documentation
- http://en.opensuse.org/Category:Build_Service
- SUSE Partner Linux Driver Program Site
- http://wiki.novell.com/index.php/Category:Partner_Linux_Driver_Program
- Red Hat Driver Update Program Site
- http://dup.et.redhat.com







	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

